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MEAN-FIELD LIMIT DERIVATION OF A MONOKINETIC
SPRAY MODEL WITH GYROSCOPIC EFFECTS.

MATTHIEU MENARD

ABSTRACT. In this paper we derive a two dimensional spray model with
gyroscopic effects as the mean-field limit of a system modeling the in-
teraction between an incompressible fluid and a finite number of solid
particles. This spray model has been studied by Moussa and Sueur (As-
ymptotic Anal., 2013), in particular the mean-field limit was established
in the case of W interactions.

First we prove the local in time existence and uniqueness of strong solu-
tions of a monokinetic version of the model with a fixed point method.
Then we adapt the proof of Duerinckx and Serfaty (Duke Math. J.,
2020) to establish the mean-field limit to the spray model in the monoki-
netic regime in the case of Coulomb interactions.

1. INTRODUCTION

The purpose of this paper is to establish the mean-field limit derivation of
a system of partial differential equations introduced by Moussa and Sueur in
[40] to describe a two dimensional spray modeled by an incompressible fluid
and a dispersed phase of solid particles with the following interactions: The
fluid particles move through the velocity field V' generated by the fluid and
the solid particles whereas the solid particles are submitted to a gyroscopic
effect related to their velocities and to V. We define
(1.1) g(@) = —zi In |z

m

as the opposite of the Green kernel on the plane. Let w(t,x) be the vorticity
of the fluid and f(t,z,£) be the density of solid particles, then this system
can be written

Oiw + div(wV) =0
Ouf +€- Vaf +dive (€= V)Hf) =0
V=-Vigx(w+p)

pltoa) = [ ft.a,6) ¢

where ut := (—ug,u;) and p is the space density of solid particles.
Replacing Vg with a W1 kernel, Moussa and Sueur derived these
equations as the mean-field limit of a model describing the dynamics of a fi-
nite number of particles moving in an incompressible fluid (see [40, Corollary
1]). Namely, for N solid particles immersed in a fluid of vorticity wy (¢, x)
with initial condition wy, if the number of particles becomes large and if at

(1.2)
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2 M. MENARD

time zero their empirical measure fy(0) is close to a regular density fp, then
for any time t (fn(t),wn(t)) is also close to the solution (f(¢),w(t)) of (1.2)
starting from (fp,wp). The system modeling the interaction between a fluid
of vorticity wy and N solid particles with positions ¢, ..., gy and velocities
P1,---, PN is the following:

(Oywn + div(wyVy) =0
4i = Di
LN
pi = pi- — Vg wn(g) — NZV!J(qz‘(f) —4;(t))

j=1
(1.3) i

Vi = =Vigx (wy + pn)
1 N

1
where N represents both the mass of a solid particle and the circulation of

velocity around it. This model was established by Glass, Lacave and Sueur
in [21] by looking at a rigid body in a fluid and assuming that its size is
going to zero. Its well-posedness was studied in [33] by Lacave and Miot.
Remark that we can formally obtain this system from System (1.2) if we
take

1 N
f:NZléqz'@)&r

By Theorem 1.2 of [33], we know that there exists a unique global weak
solution of System (1.3) on Ry x R2.

In this paper we adapt the proof of Duerinckx and Serfaty in [50] to extend
the mean-field convergence result of [40] for the true Coulombian interaction,
that is we prove the convergence of (1.3) to (1.2) in the monokinetic regime,
or more precisely to the following system:

Ow + div(wV) =0

Op + div(pv) =0

o+ (v-Vo=(v—V)*
V==Vigs(w+p).

It can be obtained by taking formally f(¢,z,£) = p(t,7) ® d¢—y(t,y) in
System (1.2). A rigorous derivation of System (1.4) from (1.2) was proved
in [40] replacing V1'g with a W1 kernel.

Before establishing the mean-field limit, we will justify the local in time
existence and uniqueness of strong solutions of System (1.4). The local
well-posedness of Euler-Poisson system (that is the system we get if we take
w = 0 and add a pressure term in the equation on v) was studied in [39] in
the case d = 3 using the usual estimates on hyperbolic systems that were
proved in [32]. In Section 2 we extend this result to System (1.4). We will
not study the existence of weak solutions of our system, for more details on
this subject one can refer to the bibliography of the appendix of [50].

(1.4)
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Mean-field limits for regular kernels were first established by compact-
ness arguments in [6, 42] or by optimal transport theory and Wasserstein
distances by Dobrushin in [17]. The latest method is the one used in [40]
to prove the mean-field convergence of (1.3) to (1.2). In the Coulomb case,
the kernel is no longer regular and their proof no longer holds. However,
there are other works which prove mean-field limits for some systems with
Coulombian or Riesz interactions. Let us consider N particles z1,...,xn
satisfying the differential equations:

N
) 1
(1.5) ;= NZK(xi — ).
7=1
i
Then the mean-field limit to a density p satisfying

(1.6) O+ div((K * p)p) =0

has been rigorously justified in different cases:

Schochet proved in [48] the mean-field limit of the point vortex system
L

27 |x|?
Euler equations 1‘1p’ to a subsequence, using arguments previously developed
in [47] and [15] to prove existence of such solutions. This result was extended
later to include convergence to vortex sheets in [37].

For sub-coulombic interactions, that is |K(x)l, |z||VK (z)| < C|z|~* with
0 < a < d — 1, the mean-field limit was proved by Hauray in [24] assuming
div(K) = 0 and using a Dobruschin-type approach. It was also used by Car-
illo, Choi and Hauray to deal with the mean-field limit of some aggregation
models in [11, 12].

In [18] Duerinckx gave another proof of the mean-field limit of several
Riesz interaction gradient flows using a “modulated energy” that was intro-
duced by Serfaty in [49]. Together they also established the mean-field limit
of Ginzburg-Landau vortices with pinning and forcing effects in [19].

In [50], Serfaty proved the mean-field convergence of such systems where
K was a kernel given by Coulomb, logarithmic or Riesz interaction, that
is K = Vg for g(x) = |z|~° with max(d —2,0) < s < d ford > 1 or
g(x) = —In|z| for d = 1 or 2. For this purpose K * p is supposed to be
Lipschitz.

Rosenzweig proved in [46] the mean-field convergence of the point vor-
tex system without assuming Lipschitz regularity of the limit velocity field,
using the same energy as in [50] with refined estimates. Remark that it
ensures that the point vortex system converges to any Yudovich solutions
of the Euler equations (see [51]). This result was extended later for higher
dimensional systems (d > 3) in [44] by the same author.

Numerous mean-field limit results were proved for interacting particles
with noise with regular or singular interaction kernels in [3, 5, 7, 8, 13, 20,
36, 43].

(that is K = in dimension two) to a measure-valued solution of the
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For systems of order two satisfying Newton’s second law:

1
(1.7) iy = NZK(Q;Z- — ;)
7=1
J#
the mean-field convergence to Vlasov-like equations remains open in the
Coulombian case but was established for some singular kernels:

In [26, 25], Hauray and Jabin treated the case of some sub-coulombian
interactions, or more precisely they considered a kernel K = Vg where
|Vg(z)] < Clz|=* and |Vg(z)| < C|z|~5"! where 0 < s < 1. For this
purpose they used the same kind of arguments Hauray used in [24].

In [31, 30], Jabin and Wang treated the case of bounded and W~1®
gradients.

In [4, 34, 35, 27] the same kind of results is proved with some cutoff of
the interaction kernel.

In the appendix of [50], Duerinckx and Serfaty treated the case of particles
with Coulombian interactions converging to the Vlasov equations in the
monokinetic regime, that is the pressureless Euler-Poisson equations. This
was used later by Carillo and Choi in [10] to prove the mean-field limit of
some swarming models with alignment interactions.

In [23], Han-Kwan and Iacobelli proved the mean-field limit of particles
satisfying Newton’s second law to the Euler equations in a quasineutral
regime or in a gyrokinetic limit. This result was improved later by Rosen-
zweig in [45] who treated the case of quasineutral regime for a larger choice
of scaling between the number of particles and the coupling constant.

For a general introduction to the subject of mean-field limits one can have
a look at the reviews [22, 29].

1.1. Main results. If v is a probability measure on R?, we will denote

®2

v =rvQU.

Recall that g is the opposite of the Green kernel on the plane:
1
=——1 .
g(r) i= —5-Tnla]

A will denote the diagonal of (R?)2:
A= {(z,z); z € R?*}.

The main result in this paper is Theorem 1.9 which proves the mean-field
limit of solutions of System (1.3) to solutions of (1.4) with some regularity
assumptions. We will use the following definition of weak solutions:
Definition 1.1. We say that (p,w,v) is a weak solution of (1.4) if

(1) p,w € C([0,T], L' N L>=(R? R)) with compact supports.

(2) For all t € [0,T], /]R2 p(t) = /]R2 w(t) = 1.
(3) v e Whe([0,T] x R?,R?)

(4) The equation on the velocity is satisfied almost everywhere and the
continuity equations are satisfied in the sense of distributions, that
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is for every ¢ € W1°([0,T],CL(R?)) and for every t € [0,T], we
have:

/(p(t)w(t)—pocp(o))=// p(s,2)(0sp + Vip - v) (s, ) dx ds
(18) ¥ 0
[ o) —wnp) = [ [ wlsa)00+To- V(s 0)dnds
R2 0 JR2

Remark that by conservation of mass it is enough to ask

/ po = / wo =1
R2 R2
to get Assumption (2).

In Section 2 we will prove existence and uniqueness of solutions of (1.4)
in a space strictly included in C([0, 7], L' N L°°)% x W1 (see Theorem 2.1).
For the microscopic system (1.3), we will use the following definition of weak
solutions, introduced in [33]:

Definition 1.2. (wy,Qn, Pn) is a weak solution of (1.3) on [0,T] if
(1) wy € L*([0,T], L' N L>®)NC([0,T], L= —w*) with compact support.
(2) For all t € [0,T], / wy(t) = 1.
R2

(3) q1,....qn € C*([0,T],R?)

(4) The partial differential equation on wy is satisfied in the sense of dis-
tributions (which means that it also verifies (1.8)) and the ordinary
differential equations are satisfied in the classical sense.

Remark that by conservation of mass it is enough to ask
/ w N(O) =1
R2

Remark 1.3. By Theorems 1.4 and 1.5 of [33] we know that for wy(0) €
L>(R?) compactly supported and ¢ (0), ..., gy (0) distinct outside of the sup-
port of wy(0) there exists a unique weak solution of (1.3) on [0,77] for any
T > 0 and no collision between the solid particles occurs in finite time. It fol-
lows by [33, Corollary A.2] that for all 1 < p < oo, |lwn(t)||;, = [[wn(0)]|5-

to get Assumption (2).

Remark 1.4. One could replace the compact support assumptions by some
logarithmic decrease of the solutions w and p at infinity as done in [18]
and [46] but for the sake of simplicity we will only consider solutions with
compact support.

In order to show that the limit of a sequence (wy, Qn, Py) of solutions of
(1.3) converges to a solution (w, p,v) of (1.4), we will control a modulated
energy similar to the one defined in [50]. Let Xy = (21,...,2n) € (R*)Y be
such that x; # x; if i # j and let u be a L' N L™ probability density with
compact support, then the following quantity is well defined:

(1.9)
f(XNaM) ::/ g(x _y) (M_ 25$z) (d.%') (M_ 25$z) (dy)

R2xR2\A
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This is the “modulated energy” used in [50, 46] to prove the mean-field limit
of (1.5) to (1.6). As we will see later this quantity controls the distance
between p and the empirical distribution on Xy in a weak sense. More
precisely we have the following proposition proved in [50] (number 3.6 in
the article):

Proposition 1.5 (proved in [50]). For any 0 < 6 < 1, there exists A > 0
and C > 0 such that for & smooth and p € L% probability density with
compact support,

< c(|s|co,eN*

#198e (FCv + 0+ Dl + 250 )

where
o E=@) =€)l
€lcos = S

Remark 1.6. In [50, Proposition 3.6] the coercivity inequality is stated with
the Holder norm |[|{||z00 but by inequality [50, Inequality (3.27)] we can
replace this Holder norm by the semi-norm [£|q0.6.

We will also need the following functional inequality, proved by Serfaty
in [50] (number 1.1 in the article).

Proposition 1.7. There exists A, C > 0 such that for any probability density
p € L™ with compact support, 1» € WH®(R? R?) and Xy € (R%)N, we have

[ -0 Vota-)a( 5 é@;u) (% g%_@ -

< C [ llyroe (F(Xn, 1) + (L[|l o) N 7).

This proposition is one of the main result of [50] as it is used to perform
a Gronwall estimate on the modulated energy from which the mean-field
result is deduced.

Now let p,w,wy be (L' N L*)(R? R) probability densities with compact
supports, v € WH(R2 R?), Qn, Py € (R?)N be such that ¢; # q; if i # j.
We define:

/H(W,p,v,WN,QN,PN)
1 N
=N Z o(qi) — pil?
i=1
H gl py — ) drdy)
(R2xR2)\A

[ ota = =) @) = ) ) da dy

+ llw = wyl22 + BN
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where

1 N
PN = N;éw
1=

and v and B are constants ensuring that H is nonnegative, as explained in
the following result:

Proposition 1.8. For any 0 < v < 1, there exists a constant B depending
only on v, [|w||1qpees 10l 1AL and stprNHleLoo such that:

(1.10) // 9@ —y)(p+w—py —wn)®*(dzdy) + BN > 0.
(R2xR2)\A

and
H(W7P7U7WN7QN7PN) = 0.

Remark that if we remove BN ™7 and if we set wy = w = 0 our quantity
H is the functionnal used by Duerinckx in the appendix of [50] to prove the
mean-field limit of particles satisfying (1.7) to the Euler-Poisson equations.

Our main result is the following theorem:

Theorem 1.9. Let (p,w,v) be a weak solution of System (1.4) in the sense
of Definition 1.1 and (wn,QnN, Pn) be a weak solution of System (1.3) in
the sense of Definition 1.2. Then we define

(L.11) Hn(t) = H(w(t), p(t), v(t), wn (1), @n (1), P (1))
Suppose that Vw € L, Vv € C°([0,T] x R?,R?) and that
(1.12) ]svté% HWJOVHleLoo < 400

(1.13) q1(0), ... an (0) & supp(wyy)

(1.14) Vi # j,qi(0) # ¢;(0).

Then there exist positive constants C and B depending only on T, p,w and
lwn || oo such that for all t € [0,T],

(1.15) Hy(t) < C(Hn(0) + N7F).

Remark 1.10. By Sobolev embeddings the solutions of the spray system
(1.4) given by Theorem 2.1 are also solutions in the sense of Definition
1.1 that satisfy the hypothesis of Theorem 1.9 and thus Theorem 2.1 gives
the existence of sufficiently regular solutions of System (1.4) that can be
approached as mean-field limits of solutions of System (1.3) (even if Theorem
1.9 does not recquire solutions to be as regular as the solutions obtained in
Theorem 2.1).

We will also prove a coerciveness result about this energy.

Proposition 1.11. Let Qn, Py € (RN and let w,wy,p € L' N L®(R?,R)
be probability densities with compact supports and v € WA>®(R2 R?). As-
sume that

(1.16) sup [|wn|| e < +00.
NeN

Then there exist positive constants C' and S such that
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(1.17) < C(1+ | Vo]fie)
H—S
X (H(w, p, v,wn, Qn, Pr) 2 + (14 [[pll e )N F)2.

In particular, if we assume that

1 N
N Z 5(%1?1') A 55111(96)
=1

%(w,pav,wNaQN,PN) N—> 0

—00

then for any a < —1,

N — i H®
p N—H—oop

wy—w — 0 inL>NnH!

N—+o00
| N
o T5
N Z O(gisps) N—>—+>oo PR Oemy(e) tn H.
i=1

Remark 1.12. The H® norm is not optimal, but it is sufficient to justify
that Hpy controls the convergence to a monokinetic distribution in a weak
sense.

As a consequence we get that if a sequence of solutions (wy,Qn, Py) of
(1.3) satisfying the hypothesis of Theorem 1.9 are such that

%N(O) N—>—+>oo 0

then for any ¢ € [0,7] we have

%N (t) N—>—+>oo 0

and it follows by Proposition 1.11 that for any ¢ € [0,7] and a < —1,
t) — p(t) in H*
pN(t) o7 p(t) in

wn (t) —w(t) N_>—+>OOO inL>’NnH!

N
1 .
N Z O(gi (t).pi (1)) N—>—+>oo p(t) @ O¢—v(t) I H™.
i=1

N
Since % ZZ_; (¢s(t),pi(1)) 1s bounded in the dual of continuous bounded func-
tions, we can extract a subsequence which will converge in the weak-x
topology of signed measures M(R? x R?). Since it necessarily converges to
p(t) ® d¢—y(t,2), Dy Weak-+ compactness we can deduce that for all ¢ € [0, 77,

N
1 * . 2
3 2 0w p(t) = P(8) ® demrira) i M(R?)
i=1
and thus we have the mean-field convergence of (1.3) to (1.4). One can
look at [46, Corollary 1.2] for a more detailed proof of such a compactness
argument.
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Remark 1.13. If we suppose that wy o — wp converges to 0 in H~! and that
pN,0 converges to po in the weak-+ topology of signed measures, then the
convergence of

/ 9z — 9)(po + wo — prvo — w0)®(dz dy)
(R2xR2)\A

to zero can be seen as a well-preparedness condition on the initial data, as
stated in the following proposition:

Proposition 1.14. Let us suppose that wn.o,wo, po € L*(R% R) are prob-
ability densities with compact support and that (q(l),...,q?\,) are such that

QY # q? if i # j. Then if we suppose

1.18 sup Wl o < +00
( ) NeN H NHLlﬁL

and

WN,O — Wy — 0 z'nH_l

N—4o0
N ; R?
pro 5o in MR
1
= 2. 9@ —Q?)N::OO//Q(@“ — y)po(@)po(y) dz dy

1<i#£j<N
we have

/ 9(z — 3)(po + wo — prvo — wno)®(dedy) —» 0.
(RZxR2)\A N—+o00

The latter statement strongly relies on the results proved in [18]. One
could have more details about these well-preparedness assumptions by read-
ing the introduction of [18].

The remainder of this paper is organized as follows. In Section 2 we
establish local well-posedness of strong solutions of (1.4). Then in Section 3
we provide the proof of Proposition 1.8, Theorem 1.9, Proposition 1.11 and
Proposition 1.14. Sections 2 and 3 are independent of each other.

2. LocAL WELL-POSEDNESS

In this section, if 4 is a continuous function defined on R? with compact
support, we will denote

Rlu] :=sup {|z| ; = € R?, p(x) # 0}
and

Rrlu] == sup R[u(t)]

o<t<T

if 4 depends on time. If B is a Banach space and 1 < p < oo, we will denote
LB := LP([0,T], B).

We will use the same convention for the Holder spaces C:],“«B and the Sobolev

spaces lef’p B. Let us also recall that ¢ is the opposite of the Green kernel
on the plane defined in (1.1).
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C will refer to a constant independent of time and of any other parameter
that can change value from one line to another. We will denote C'(A, B) for
a constant depending only on some quantities A and B.

We want to show that System (1.4) has a unique regular solution on [0, T']
for T small enough. In [39], Makino builds such a solution for the following
compressible Euler-Poisson system in three dimensions:

ou+ (u-Vyu+Vp=Fxp

Op + div(pu) =0
where p is a function of p and F' := VG where G is the Green function on
R3. There are three main differences with our system (1.4):

(1) We have no pressure term, but we have a gyroscopic effect.
(2) We have a continuity equation on w that we also need to solve.
(3) On the plane R2, the function V = —V'g* (p + w) is not in L2

except if we assume that / (p+w)=0.
In order to deal with the third point, we will assume that vo = ug + v
where ug € L? and V is a function of = that we will specify later. If we try

to find a solution of (1.4) when v = u + V, we find that (u, p,w) evolves
according to the following equations:

(0w + div(wV) =0

Op + div(pv) =0

Ou+ (u+V) - Vu+ (u- V)V =ut+ f
V=-Vigs(w+p)
f=V=V)y = (V.-V)V

v=u+V.

(2.1)

Thus if we choose V such that f € L?, we will find an equation that
we expect to have a solution in L?. We can achieve this goal choosing the

following value of V:
Vi=— (/ wO+po> VEgxx
RQ

where x is some compactly supported function such that / x =1 We
RQ

make such a choice because / p and / w are conserved and we will justify
R2 R2

later that for g compactly supported,

Vigen@ = o ([ 0 T 0 (o).
27 R2 ‘.%"2 |z|—o0

Since we assumed that p and w have compact support, we are not concerned
by the fact that V is not L? on the whole plane. Remark also that the space

—(/ wo+po> Vigsx+ L?
R2
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does not depend on the choice of y. Now we are able to write the main
theorem of this section:

Theorem 2.1. Let s be an integer such that s > 3 and ug € H*TH(R?, R?),
po,wo € H*(RZ R) such that wy and py have compact support, then if T
is small enough (with respect to some quantity depending only on ||wol s,
1Pollyzer ol s, Rlso] and Rloo)), there evists o unigue (u,w,p) with
(pyw) € (CrH*NCLH* Y2 and uw € CrH*™ N CLH® solution of (2.1).
The proof of Theorem 2.1 proceeds as follows:
(1) We fix "> 0 and define

Ry = R[po + wo]

MO = maX(HPOHHs 5 HWOHHS ) HU’OHHS‘H)

Xr = {(ch) € LFH N CrH*w(0) = wo, p(0) = po,

HPHL%OHS < 2M07 HWHLE’S’HS < 2M0,RT[p+W] < 2R07
(2.2) vt e 0.7), [ (o6) +w(®) = [ 0+ ),
v, t' € (0,70, ||p(t) — p(t')]|| your < LIt =1,

(8 = (®)] s < Ll =1, |

where L > 0 is a quantity depending only on Ry and My. Remark
that Xr is a subspace of (CrH*NCHH*"1)2. Then we fix (w, p) € X7
and we define

(2.3) Vi=-Vigx(p+w)
(2.4) V::—</RQwo+p0>VLg*x
(2.5) f=V-V)t-V.VV.

Note that we will prove in Subsection 2.1 that f € CrH®N L H+L.
(2) In Subsection 2.2 we solve in Cp, H**' N C}, H® the equation

ou+ (u+V) - Vu+ (u-V)V =ut+ f

for initial condition ug and 77 < T small enough depending only on
My and L.

(3) In Subsection 2.3 we define v = u + V and solve in (Cp H® N
Cp, H*1)? the system

Oww + div(wV) =0

Op + div(pv) = 0.
(4) In Subsection 2.4 we apply a fixed-point theorem by showing that
the map defined on X7, by (w,p) — (@, p) is a contraction for the

CrL? norm if T < T} is small enough, using the estimates proved
for the previous equations.
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Remark 2.2. Xr is strictly included in (Cp, H® N C'jlﬂlHS_l)2 but since we
prove in step (3) that the image of the application ® sending (w, p) to (@, p)
is contained in (Cy H*N 071“1 H*71)2 we have the expected regularity for the
solutions of our system.

Remark 2.3. Uniqueness is established in the space X7 which is bigger
than (CrH®* N CLH*™1)2% It ensures uniqueness for the whole system: If
(p1, w1, u1) and (p2,ws, uz) are two solutions of (1.4), then (p1,w1) = (p2,w2)
by uniqueness of the fixed point and u; = us follows by uniqueness of solu-
tions of Equation (2.6). Remark also that using energy estimates one could
prove uniqueness in a space of smaller regularity.

Before doing these different steps, we give some results about the Biot-
Savart kernel —V =g that we will need later. In this section we will use the
following definition of uniformly local Sobolev spaces:

Definition 2.4. We define HSI(R2) as the space of locally H® functions
verifying

”’LLHHSI(RQ) = sup HUHHS(B(LI)) < +o0.
v z€R2

For a more complete introduction to these spaces we refer to Section 2.2

of [32].

2.1. Properties of the Biot-Savart kernel on the plane. In this sub-
section we prove Proposition 2.5, which contains several results about the
Biot-Savart kernel —V1g.

Proposition 2.5. Let s > 3 and let i be a H® function on R? with compact
support. Denote

Vi=—-Vigxpu
Then we have the following inequalities:
(1) V € B and |V gos < CO+ RI) 1] -
(2) [IVV | grs < Cllpell s
(3) V € L and we have the three following bounds:
V1l oo

V1 oo

Rl |1l o

RIpl3 | all
IVl < CllplZs el -

(4) WV -9V gz < COU+ Rlp)) 1l

0 V) =5 [on) i +,0 (e

(6) If u has mean zero, then V € L* and

IVl 2 < C(RIu] + R[ul)? |lull 2

<C
<C

Estimates (1) to (4) are consequences of the two following propositions.
The first one is the usual potential estimate of a velocity field given by the
Biot-Savart law:
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Proposition 2.6 (Potential estimates in LP). If2 < p < oo andw € L'NLP,
then

P
2p—2

p=2
o w75

Vg *wl e < Cp @l
1 1
Vg * wl[pee < CllwllZs [0l Foe -

For the proof of this proposition see for example [28, Lemma 1]. The
second is the Calderén-Zygmund inequality:

Proposition 2.7 (Calderén-Zygmund inequality). If 1 < p < 400,
V29wl 1, < Cpllwll s -

For the proof of this inequality we refer to [2, Proposition 7.5].

Claims (5) and (6) giving the behavior of V at infinity are classical results
in fluid dynamics (see for example [38, Proposition 3.3]) that we will prove
to have the specific L? bound we need on V.

The first consequence of Proposition 2.5 is the following:

Corollary 2.8. Let pg,wo € H® with compact support, x be a smooth func-
tion with compact support and (p,w) € Xp where Xp is the space defined
by (2.2). Let us consider the functions V and f defined by (2.4) and (2.5),
then we have V € Hjl+2, fe€LXHT NCrH® and

IV g0 < CCRo. b
11l Lge o < C(Ro, Mo).
Proof of Proposition 2.5. Let us begin by the second inequality. We have:
IVV e = V295 1l e C Y [V 5 0% 1o < C llsll g

la|<s
by Proposition 2.7.
Let us now prove the third Claim. By Proposition 2.6, we have

1 1
Vil < Cllpliza Nl £es

1
< Clpllfee (/B(O RIu)) |M|)
Rl
1
2
<C ”MHL‘X’ (/B(O R[u]) 1)
Rl

< CR[p] [lpll pos -

For the second inequality of (3), we use Proposition 2.6 again to get

1 2
Vil zoo < CllpllZa llpll e -
Moreover, by Cauchy-Schwartz inequality,

NI

il < Cl[1p,rpll 2 lelli2 < CRIUlpll g -

and therefore by the embedding of H' into L* (see for example [9, Corollary
9.11]) we have

1
[V Leo < CR[uJ3 ||pell g -



14 M. MENARD

The third inequality of (3) is the second inequality of Proposition 2.6.

The first inequality follows from the two Claims we just proved: Since
all derivatives of V' of order k for 1 < k < s+ 1 belong to L? and since
IVilz, < ClIV g, we get

(leell s + Rlp] [l p2ll oo )
(L4 Rlu]) ol s

HVHHE# <C
<C
because H® — L*°.

Now let us prove the fourth point. Let « be a multi-index such that
la] < s, then 0%((V - V)V) is a combination of (9“'V - V)9*?V where
a1 +ag =a. If g =0,

10V - V)9 V]| 2 <[V o IVV | s -
If 1 <oay| < s—1, then
10V - V)0 V|| 2 < [0 V| oo [VV |
<IVVIG--
Finally if |a;| = s,
1@V - V)3 V]| 2 <0V 2 [[VV]| oo
<|VV 3 -
We conclude using (2) and (3).
We now prove the fifth claim by a standard argument. Let us set

Wz +iy) = Vi(z,y) — iVa(z,y).
Then we have
(Op +1i0y)W = (0, V1 + 0yVa2) +i(0yV1 — 0, V2)
= div(V) —icurl(V)
=0—1ip.
Thus W is holomorphic on C\B(0, R) with R = R|u| (since it is a solution

of Cauchy-Riemann equations) and we can write it as the sum of a Laurent
serie:

W(z)

Il
i\g

)

=

x
>

Remark that since we have W(z) — 0, ax = 0 for k nonpositive. Now we
Z—00

compute a; by a contour integral in the counter clockwise sense:

a; = i W(z)dz
2im JaB(o,R)
1 2 ) )
=__ W (Re?)Rie d6
2im Jy
2m
= % (Vi —iVa)(Rcos(#), Rsin(f))(R cos(f) + iRsin(0)) dd
0

1

= _— (V-n+iVt.-n)do
21 JoB(o,R)
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n beeing the outer normal vector to B(0, R) (or equivalently the inner normal
vector to B(0, R)¢) and o its unit measure. Thus by Stokes theorem,

1 1
ay = — div(V) + — / div(V4)
2T JB(0,R) 2T JB(o,R)
1
=5/, curl(V)
__
o
Finally, we get
) 1
Visive= ([ n)2+00:

- (/R M>W +0(2)

which gives us the fifth claim.
Now let us assume that / =0 and bound the L? norm of V. Let
2

R
¥ = g * i, then by the fifth point of the inequality, W is holomorphic in
B(0, R)¢ and has a holomorphic primitive. Thus we get ¢(z) = D+O(|z|™1)
and for A > 0 big enough,

LoV
9B(0,A)

< C Vg @B0,4)) 1Y Lo 9B(0,4)) 2TA

CcD
<— — 0.
A A—too

This fact allows us to compute the following integral by parts:

LwE= [ v

ol I ZAY
R2
W
< ||71Z)HL°°(supp H:U’HLl
<C [ ] HIU’HL2 kuL“’ (supp(u)) *

Now if x € B(0, R[u]), we have

C( /B (2,1)NB(0,R[]) In(lz — y))|p(y)| dy
" /B(:v, e (|f”| + [y (y)] dy>

c( In(lz — ) (y)| dy
Bml

f (O7R[M)(2R[ﬂ])|ﬂ(y)|dy>



16 M. MENARD

< CA+ R w2 -
Thus

/ VI < CRI(L+ Ry?) |l

which is the sixth claim of our proposition.
Now we prove the uniform bounds we need on f and V:

Proof of Corollary 2.8. First remark that

/ Po +wo
R2

V]

i = Vg # x| o+

by Claims (1) and (3) of Proposition 2.5. Moreover, if we denote
h=p+w-— (/ P0+wo>x
R2
we have

s <[V =Tt = (V- V)7 |

L9 Hs+1

o it PR L Can ey O

+ H(V'V)VHL%OHSH
< HVQ * hHL%‘JL2 + Hv2g * hHL%oHs + H(V ' V)VHL%OHs-Fl
<C(Brlh] + Rr[h)? b e 2 + C 11l e g

2

+00+ R | [ 0] Il
<C(RO’M0)

where we used Claims (2), (4) and (6) of Proposition 2.5.
Now let us justifiy that f € CpH®. If t1,to € [0,T], we have

1£(t) = £l = [[TEg = (p(tr) + wlty) = plta) = w(t2))]
< [Fhox (ot + witr) = plta) — wlt2))|
+ [[V2g % (p(t1) + w(tr) — plta) — w(t2))]| goos
< C(Rrlp+w] + Rrlp + w]?)?

x |lp(t1) +w(t1) — p(t2) — w(ta)ll 2
+ Cllp(tr) + w(ty) = pt2) — w(te)ll g

Hs




A MONOKINETIC SPRAY MODEL WITH GYROSCOPIC EFFECTS. 17

where we used points (6) and (2) of Proposition 2.5 and therefore f € CrH?
follows from p,w € CrH*™ 1. O

2.2. Pressureless Euler equations. In this subsection we prove that there
is a unique solution to the following equation

(2.6) ou+ (u+V) - Vu+ (u-V)V =ut+ f

where V and f are the functions defined in (2.4) and (2.5).
Following the idea of [32, 39], we start by fixing u € C7H**! and solving
the linearized equation:

{@m((uﬁ)-V)a+<a-V)V:m+f

27) u(0) = .

We have the following well-posedness theorem:

Theorem 2.9. If s is an integer such that s > 3, u € CrH*t, 5y € H511,
w with compact support and f € L%Herl NCrH?, then (2.7) has a solution
u € CrHS™ N CLH?, unique in the space CrH' N CLL2. Moreover, we have
the following estimates:

LITHS‘H)

cT(||v s 00 ps
J0leos < I i Mt
0rE®) 1 < € (| FO|, + Utlggorres + [V oz + D 1Tz ) -

[Follyosr + €|

Proof. The proof is a direct application of Theorem 1 of [32] which gives the
well-posedness result and the estimates: We can rewrite (2.7) as

2
Opi+ Y A0+ Asti = f

=1

where A; := (u; + V;) I3 for i € {1,2} and A3 := < OVi  %Vi+ 1).

To apply the theorem we need to prove the following:
(1) A; € OpL? for 1 <i<3
(2) Vt € [0.T] [ Ai(t) 10 < K for 1 <i <3
(3) A; and Ay symmetric
(4) fe LLH**'nCrH*
(5) up € H5H
where K := HVHLDOHS+2 + ||u]| oo ys+1 + C. The three last points are au-
T ““ul T ““ul
tomatically checked by the assumptions of the theorem. For the first point
and the second point, since u is in C7H*1!, we only need to prove that V is
in Hjl'" 2 which is given by Corollary 2.8.
O

As in [32] and [39] we will use the previous estimates to apply a fixed
point theorem u — % on Equation (2.7) to prove the well-posedness of the
non-linear equation (2.6). Let us first recall that we have fixed ug € H5*!,
(w, p) € X7 (where X7 is defined by (2.2)) and

Ro = R[po + wo]
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Mo = max([lpoll s » lwoll s » [[uoll gro+1)
Vi=-Vigx(p+w)

V::—</wo+po>vlg*x

f=V-V)t-V.VV.
Then the well-posedness of (2.6) is given by the following theorem:

Theorem 2.10. Let s be an integer such that s > 3, then

(1) There exists T* = T*(My, Ro) < T such that if Ty < T*, there is a
unique solution u € O, HST1 N C}le to (2.6), with

[ull oo frs+r < 2Mo.
1
(2) Let u and u' be two solutions defined on [0, T] with initial condition
ug and forcing terms f and f', where
fl=V-VHt-vV.vVv
V= =Vigx (o + )
and (p',w'") € Xp. Then we have

Hu < CeC (Mo, Fo)T HV -V

/
_U’HL%;HT HLlTlHT
where 0 < r < s.
Proof. Let T1 < T. We will use a fixed-point method on the following subset
of Cp, L*:
)Z'Tl = {u € L%‘;HS‘H NCr H?® HuHL%o ps+1 < 2Mo, u(0) = uyp,
1
|u(t) —u()||,;. < LIt —t| vt,t' € [O,Tl]}

where L depends only on My and Ry and c are constants to be fixed later.
Let v € X7, and u be the solution of (2.7) associated to u. By Theorem
2.9, for t < T, we have:

~ Iu(||V 2+ [[ull 1+1)
Ol s < eI e st gy )

< 6ch(O(RO,MO)+2M0+1)(]\40 + ¢TI C (Mo, Ro))
by Corollary 2.8. Thus we get
[a(®)]| o < 2Mo
if 71 is small enough. Moreover, using Corollary 2.8 again, we get
1960 7o < ¢ (LFO e + (el esrons + [Vl e s + 1) 17001
< ¢(C(Mo, Ro) + (2My + C(Mo, Ro) + 1)2Mp) =: L

Thus for all 77 < T* we have built a map W : )Z'Tl — )Z'Tl such that
U(u) = u, where T* = T*(My, Ro). We will now show that W is a contraction
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for the induced distance on X7,. Let v and w be two elements of X7, and
set U :=u —w. Then U := u — w satisfies:

U+ (u+V)- VYU + (U -V =—(U -V +U*.

Thus since (U - V)w € CrL?> N LLH' we can apply Theorem 1 from [32] to

have the following estimate:

Hﬁ‘ < LTV o 2 Hlellge o +1) (
L L2

< ecT1(C(M0,R0)+2M0+1)CT1

04U V)illyy 12)

198555 120 1015 12

< 4eMoTh ech(C(MmRo)ﬂL?MoJrl) HUHLOO 2
Ty

using 2.8 in the last inequality. Thus W is a contraction if 7" is small enough,
so since X7y, is complete (this can be proved in the same way as the closedness
of X7 which is proved in the beginning of section 2.4), it has a unique fixed

point in )NCTI, thus (2.6) has a unique solution for short time. Remark that
the solution we find belongs to the space L3 HHn W%;ooHs. Let us justify
that it also belongs to Cr, H*T1 N 071“1 H?:
Let € > 0, t1,t9 € [0,T1] and x;, be a mollifier. We have:
Ju(t) = u(to) | gsr <lxn * (wty) — u(t2))ll goe
+ (1122 = xn#] (u(ts) — u(t2))|| s
<O [Julty) — u(t2))l 2 +¢
if n is big enough (see for example Theorem 4.22 of [9]). Thus since u €
Cr, L2, if [t; — to| is small enough,
Ju(tr) — u(to)ll s < 2¢
Thus u € Cy, H**1. Moreover we have
du=—((u+V) - Vu—(u-V)V+ut+f
By assumption f € Cp H*® and by the previous fixed point ut € Cp H*.
Now using Claim (1) of Proposition 2.5, V' € CTlij'l, so since s = 2, we
have
(u+V) -VuelCprH®
(u . V)V c CTIHS
applying Lemma 2.9 of [32] which gives a sufficient condition to have the
product of an H:} and H*? function in H". Thus u € C%IH s,
Now let us prove the second point of our theorem: Let u and u' be two

solutions associated to f; and fo defined on [0,73] with 77 < T*(My, Ro).
Then U := u — u' verifies:

QWU+ ((u+V)- VYU +(U-V)(V+u)=Ur+F
where F := f — f’. We can rewrite this equation as

2
oU + ZA@U +BU=F
=1
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— V1 + o) 1+ 05V + Dot}
here A; := (u; i)I> and B := = 1 = 1
Where i (ui + Vi)l an ((91V2 + O1ub, — 1 02V + Doty
Then by Theorem 1 of [32], for any 0 < r < s we have:

TalArlgs g H142 s s H1Bll g s

)
Ul o gr < Ce VNE s e
T Ty

1 +Mo+1)T
U7 g st .
1

< Ce(C(Mo,Ro)+Mo+1)Ti HV v

N

HLITI Hr
where we used Corollary 2.8 in the last inequality. U

2.3. Continuity equations. In this subsection we still fix s > 3, u €
CrHt'NCLH?, (p,w) € (CrH*)?, V := —V1g* (p+ w), x smooth with
compact support such that [ x =1, Vi=— (fwo + ,00) Vigsx,vi=u+V
and we consider the following continuity equations:

{a@ + div(@V) =0

2.
(28) Op + div(pv) =0

with initial conditions (po,wo).

Theorem 2.11. Let u,p,w be as in the upper paragraph, there exists a solu-
tion (p,0) € CrH*NCLH*™ of (2.8), unique in CrL%. Moreover, we have
the following estimates:

~ T T
Plsgee < ool €T 7 xp (e T T

1@l e gre < Moo T e

~ 1 ~
10t Lo pro—1 < C(L+ Brlp+w]3) [|p + wl| oo g |10l Lo s

10:pll Lo prs—1 < C <'/(PO + wo)

Now let p1 and pa be two solutions associated to two velocity fields vi =
ui +V and vo = us + V with same initial conditions, and @, and ws be
two solutions associated to two velocity fields Vi and Vo with same initial
conditions, then we have the following estimates:

#lullerree ) -

01 = @l oo 2 S CT Vi = Vall e 2 |wall poo s

~ o~ ~ Tuall
IPr = B2l pore < CT B2l oo llve = vill o™ 70

We will also give a general lemma to control the support of a compactly
supported solution of a continuity equation:

Lemma 2.12. If u is the solution of the following continuity equation,
Opt + div(pa) =0

with a € CoWh*® and po with compact support, then i has compact support
and

(2.9) Rylu] < Rlpo] + T |lal| poe oo -

In order to prove the main theorem we will need the following result:
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Lemma 2.13. If a is a Lipschitz vector field, uo € L? and f € LLL? then
there exists a unique solution of the continuity equation

Oy + div(pa) = f

in CrL?. Moreover we have the following estimate

t
@10) e < (liolls + [ 170 ar ) eSO,
0

Proof of Lemma 2.13. The existence and uniqueness of the solution in CpL?
can be obtained by Theorem 3.19 and Remark 3.20 of [2]. Moreover by
Proposition 6 of [1], we know that for all ¢ and almost every = we have

:U’(t’X(t’x)) :MO(x)
+/0 <div(a)(s,X(S,:c)),u(s,X(s,x)) —}—f(s,X(s,x))) ds

where X is the flow associated to a. Let us denote h(t,z) = h(t, X (t,x)) for
any function h. Taking the L? norm of the upper inequality we get

t
@2 < luoll gz + (| Fll pe +/0 [div(a)(s)l| oo ()] 2 -

Thus by Gronwall lemma,

”div(a)”L%Loo ]

E@ 2 < (lpollz + [ £l 1y p2)e

Now remark that for any L? function g,
/Ig(X(t,a:))l2 do = / XN (@) de < |lg]Ze el ke

by inequality (7) of [1]. Using it for & and f we get inequality (2.10). O
Now we prove the main theorem of the section:

Proof of Theorem 2.11. Let us know use the previous lemma to prove the
H? bound on w. Let a be a multi-index such that |a| < s. Then, since V' is
divergent-free,

0;0%0 + div(Vo“w) = F*
where F'® is a combination of 0*'V -90**Vw with ||+ |ag| = s, |ag] < s—1
and |a| > 1. Thus by the upper estimate (2.10), since V' is divergent-free,
we have:

t
10°G(t)] 2 < (Ha%HLz +/0 IE*(T)l .2 dT)-
If |ag] < s —1, then
|07V - 092V 2 < [0V || oo |02 V& 12
10V || g2 |07 V&S] | 2
IVV s Mol s -

NN N

If |a1| = s, then ag = 0, thus
[0V - 0% VW[ 2 < IVV] s [Vl oo

|
NV | s [V 172

NN
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<IVV s 1]l s -
Thus

t
1070l < (H@O‘%Hm +0/0 IVV () s 9T s dT) :

Summing over all indices «, we get

t
lw@l g < <||070||Hs +C/O NV s ()] s dT)-

By Gronwall’s lemma we get the first inequality of our theorem. Now we
will prove the estimate on p. For a multi-index a with |a| < s we also have
0;0%p + div(v0®p) = F°.

Because v is not divergent-free, F'® is now a combination of 0*vd*?p
where |a1| + |ag| = s+ 1, |a1] 2 1 and |ag| < s. If |a1| < s — 1, we have
[0%10 - 8% pl| 2 < 10 0]l oo (0] 2
< 0% 0l g2 0% 2
< IVollgs 121 s -
Now if |ag| = s or s + 1 (respectively |ag| =0 or 1),
[0%10 - % pl| L2 < [Vl g5 1077 oo
< IVollgs 1070 4
< IVollgs 121 s -
Thus

10501 <<H0aﬁo|1m

t
+e / V0o 1500 gz dT) o€ S iV (0) | oo (7) dr-
0

Summing over all indices a, we get
t T .
1P| s < (HpoHHs +C/O IV s 12| s dT) e o I E)lzo0 ()

~ t — T
< (upoan +e /0 IV 0(T) | g 10T g7 dT) e Jo 114l s d7

because div(v) = div(u). The corresponding estimate follows by Grénwall’s
lemma.

Now let us bound the time derivatives of @ and p. Take o a multi-index
with |a| < s — 1, then

0,0°C = =0*(V - V@) = D Capand™V - VO™E.
a1tas=a
Moreover,
[0V - VO%26| 2 < (|0 V| oo (VO™ 2

CIVIIgoo + IVV I o) ol s -

NN
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Now by Claim (3) of Proposition 2.5,

1
[Vlgeo < CRrlp+w]5 [lp 4wl g

and ||[VV|| 5. < C|p+ wl ;. Thus we have our estimate.
Let us do the same kind of computations for p:

0,0°7 = 0*(div(w)j + u - Vi+ TV - V).
If og + g =5 -1,
0% w- 0%V pl| 2

80‘26/)‘

10l | p
|

<
< lull s 121 s -

We do the same estimates for every term composing 0%(div(u)p), except for
0% div(u)pl| 2> < [lull g 1] oo
< ull o (121 s -
Now for the third term, if |a + ao| = s — 1,
oV 03], < 072V 199771,

<C ‘ / (po +w0)| V9 % 9 x|l .o 17117

< c\ [ o0+ ) 1

by Claim (3) of Proposition 2.5. Thus we have the estimate we wanted to
prove.

Now let us prove the last point of our theorem. Substracting the two
continuity equations satisfied by w; and ws, we have

815(@1 — (?)2) + diV(Vl((?}l — &32)) = (‘/2 — ‘/1) - Vws.

Using estimate (2.10), we have

T
61~ Ballzre < Vi = Va): al o (r) dr
0
SCOT Vi = Vall e g2 llwall s -
Now we prove the last estimate we need for p; — po:
Ot (p1 — p2) + div(vi(pr — p2)) = (v2 — v1) - V2 + div(vz — v1)p2.

We can bound the second term the same way that we did for the previous
one:

[(v2 = v1) - Vo + div(ve — v1)p2| 2 <[lvr — v2ll 2 Vo2l
+ [[div(vr = va) | 12 |12l oo
< 2||vr — vall g 192l g5 -
Thus by (2.10),

~ ~ ~ T||di
151 = Bllpze 12 < CT 1Bl o s 10 = vrlpgepn €00

= T
<CT ||p2||L§9H3 HUQ _ leL%OHl ec ||u1||L%<>H3

because div(vy) = div(uy). O
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Now let us prove lemma 2.12:

Proof of Lemma 2.12. Solving the continuity equation by characteristics, we
see that

supp(u(t)) = 9" (supp(1(0)))
where v is the flow associated to a. Moreover, for x € supp uo,

9! (@)] < [9°(@)] + [¢'(z) = O (2)]

t
<muﬂﬁauw%mm7
< Rlpo]l +T HaHL%OLOO .

Taking the supremum for all z in supp(uo), we get (2.9).
]

2.4. Monokinetic spray System. In this section we prove the well-posedness
result of system (1.4), that is Theorem 2.1:

Proof of Theorem 2.1. Let (pg,wo) € H®, ug € H*T! and x be a smooth
function with compact support such that [ x = 1. We recall that we have
defined

Mo :=max([|poll 7 » lwoll g+ » 1woll grs+1), Ro := Rlpo + wol

and

Xr = {(w,p) € L¥H* N CrH*'w(0) = wo, p(0) = po,

||pHLc7>9Hs < 2M05 ||W||L§9HS < 2MO,RT[P +w] < 2R0a

vt e [O,T],/(p(t) Fw(t)) = /(po + wo),
Vt’t/ € [O’T]’ H,O(t) - p(t/)HHs—l < L|t - t,|’

HM@—wWMm4<LM—ﬂ}

with L > 0 that we will fix later. Let us justify that X is the complete
metric space for the distance

d((p1,w1), (p2,w2)) := llpr = pallpee 2 + llwr — wall oo 2 -

It is sufficient to prove that Xr is closed in (L$L?)%. Let us consider a
sequence of functions (py,wy) in X7 and (p,w) € (L5L?)? such that

d((pn,wnN), (PM))N:ZOO

and prove that (p,w) € Xp. By Banach-Alaoglu’s theorem, since H*® is
a Hilbert space, for almost every time there exists a subsequence p,, ) (t)
that converges weakly in H®. Thus by uniqueness of the limit in weak L2
Pe.(n)(t) converges weakly to p(t) for almost every ¢t € [0,T]. By lower
semi-continuity of the H® norm we get that

(2.11) lell s < 2Mo.
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By the same kind of argument we can prove that
(2.12) ||W||L39Hs < 2Mp.
and that for all ¢,¢' € [0, 7]

() = p(t)|] gos
Jw(t) = w(®)]| yor

As a consequence p and w are continuous in time with value in H*~! and
thus

Lit —t|

2.13
(213) Lit—+¢].

<
<

214) 2(0) = po.

Moreover for all ¢t € [0,T],

[ 1o02m (30 +A0) — [ Loam) (20 + w2(®) =0

by strong convergence in L?. Thus p and w have compact support and
(2.15) Rlp + w] < 2Ry.

Finally, compact support and convergence in L? implies convergence in L'
so we get that for every t € [0, T,

(2.16) / (p(t) + w(t)) = / (90 + wo).

Inequalities (2.11), (2.12), (2.13), (2.14), (2.15) and (2.16) gives us that
(p,w) € X7, so Xr is closed in LFL.

Now let us build a contraction X7 — Xp. For (p,w) € Xp fixed, we

have defined
o V:i=-Vigx(p+w)
o Vi=—([po+wo) Vtgxx
o f =V -V (V. -V)V.

By Corollary 2.8, f € L H** 1 N CrH®. Let Ty be sufficiently small so
that Theorem 2.10 can be applied and u be the solution of (2.6) given by this
theorem, v = u + V, and (p,@) be the solution of (2.8) given by Theorem
2.11. According to Theorem 2.10, the smallness of 77 depends on My and
Ry. Now let us justify that for small enough 75 < 77, we have (p,w) € Xp,.
By Theorem 2.10, we have the following estimates:

~ Ty [|ul| Ty [|ul|
Pl e < ool "5 exp (™R 90 )
1 1

~ ch||VV]]
1Bl e 17+ < llwoll e R
1

Remark that
19Vl 1o < Cllo+ wllgems < 4CMy

by Claim (2) of Proposition 2.5. Moreover by Claim (2) of Proposition 2.5
and Theorem 2.10,

(”uHL%jHS‘H + HVVHLCEHS)

(2Mp + C'RyMy)

”VU”L%;HS <C
<C
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Thus HﬁHL%OHS < 2Mjp and H&HL%OHS < 2My if T < 17 and T3 small
2 2

enough with respect to My and Ry. Now, by Lemma 2.12 and Claim (3) of

Proposition 2.5, if 0 < ¢t < T, we have
R[p(t) +w(t)] < R[p(t)] + Rw(t)]

< Ro +t([[ollpee + VI poo)

< Ro +t(llull g + [V]] oo + 1V Il=0)
R

1
+ CRyy[p+ w5 [lp+ wl 1)

N

o+t(2M0+C‘/Po+wo

1
< Ro + T5(2My + 2C Ry My + 4CR5’ My)

< 2Ry

if T3 is small enough with respect to Ry and My. By Theorem 2.11, we have:

- 1 -
HatWHLg9 He-1 S C(1+ Ryy[p+wl]3)|lp+ WHL;? Hs HWHL%’ Hs
2 2 2

< C(1+ (2Ro)3 )4AMy2M,

18Pl 26 gres < C <'/Po +wo| + HUHL‘X’QHS‘H> 1Pl 56 £z
Py T 2

< C(2Ro My + 2Mp) 2 M.

Choosing L large enough (with respect to My and Ry), we have
103 155 e < L
2
107120 pror < L.
2

Thus we have built a map @ : (p,w) — (p, @) such that ®(X7,) C X7,. We
will now prove that @ is a contraction for the L3 L? norm.

Let (p1,w1), (p2,w2) € Xy, (p1,w1) = ®(p1,w1) and (p2,w2) = P(p2,w2).
By Theorem 2.11, we have

||‘:31 - (’T}2HL%° L2 < CTh HVI - V2||L°° L2 H‘:J?HLOO H3
2 ) )

and

o _ Tlurllpgo s
o1 — /02||L%‘;L2 < OT Hp2HL%‘;H3 [[va — Ul“Lgf;Hl € o
Moreover, by Theorem 2.10:
[vg — w1 poe g1 = lltg — ui || oo go < CeCHORIT2 |V} Vol

Ty Ty Ts

Thus
H(Tll - 072||L35;L2 + ||/51 - ,52HL35;L2
< 20Ty Mo [|Vi — VQ”L%‘;LQ
+ 2CT2M0620T2M0CeC’(M07R0)T2 ||V'1 _ V2HL%° 1
2

< C(Mo, Ry, T)T> ||Vi — VZHL;S;Hl
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for any T < 171 < T. Moreover,
Vi = Vallg

< Vi - VZHL%‘;LQ + V(1 — VQ)HL%ZLQ
1
< C(1+4 (4Ro + (4R0)*)2) [lp1 + w1 — p2 — wzHngp

by Claims (2) and (6) of Proposition 2.5. Thus ® is a contraction if 75 is

small enough (with respect to My and Ry), so it has a unique fixed point

(p,w) € Xmpy,. O
3. MEAN-FIELD LIMIT

In this section we prove Proposition 1.8, Theorem 1.9, Proposition 1.11
and Proposition 1.14. Let us begin by proving Proposition 1.8.

3.1. Proof of Proposition 1.8. For 0 < n < 1 we define

1
gDy ={ 2 In(n) if |z <n
g(z) if [z| > n

(n)

and we denote d," the uniform probability measure on the circle of center
y and radius . We have the following lemma:

Lemma 3.1. For any 0 <7 < 1 and y € R?,
[ ot =208 z) = g0~
Proof. By a change of variable we may assume that y = 0. The function

xTr) = r — Z (n)Z
/(@) /aB(Om)m ) o™ (2)

is locally bounded and satisfies Af = —5677) = Ag". Now if |z| > 7, we
have

[ e-as’ @) - g0@) = [ (gla - 2) - gla) 457 )
0B(0,n) 8B(0,n)

x o ()
= gl — — — ] déy" (2)
/63(0,7;) <\9C’ \95’> 0

1
— ——In(1)=0
|z| 200 JoB(0,y) 2T

by dominated convergence theorem. Therefore f—g(™ is a harmonic bounded
function so it is constant. Since f(z) = g(n) = ¢ (2) for any z of norm 7,
we get that f = ¢, O

Integrating by parts, since / w —wy = 0, we have

B0 199w =wmlfa = [ olo=p)w—wn)(@)w—wx)o) dzdy.
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For a more detailed justification of such integrations by parts we refer to
[50, Equality (1.23)]. Therefore we only need to justify Inequality (1.10) to
get that ‘H > 0. For that purpose we define

1 N
_ (n)
- N Z‘Sq? :
i=1
We have

oo @)= oy - o) (dody)
(R2xR2)\A
[ sl Y - o) oy
(RZxR2)
sl sl )o@ don ()~ 4 2) 4o )
(R2xR2)\A

+2//(R2><R2)g(x_y)(w_WN+p)(x)dxd(p§<f7) _PN)( )

:L1 =+ L2 + Lg.
Integrating by parts the first line we find that

Li= [19g+ (= o0 —an) > 0.
For the second line, by Lemma 3.1 we have
- > / —q;) — 9" (¢ — ) (&g, + 07 (y) dy
1<z7£]<N

This quantity have been bounded in [41, Inequality 2.14] so we get

C N
Ly > N Z 77@'2-
i=1
Finally,

|L3| < Clg * (w —wn + p)lcn”

so by Morrey’s inequality (see for example [9, Theorem 9.12]) and Hardy-
Littlewood-Sobolev inequality (see for example [2, Theorem 1.7]) for some
p > 2 we have

< Clwllpipre + HWNHLlﬁLOO el pnpee)n™

We get Inequality (1.10) by taking n = N~

3.2. Proof of Theorem 1.9. We want to compute the derivative of the
functional Hy =11+ To+ T35+ Ty + T5 + T + 17 defined in (1.11). We will
denote o :=w + p and ay = wy + pN-

NZ’U Qz pz
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Ty = / oz — y)ax(t, do)ay(t, dy)

R2XxR2\A
T = / oz — y)alt, D)alt,y) de dy

R2XxR2\A
T4 = —2 / g(.%' - y)a(ta 1’) d.%' daN(t7 y)

R2xR2\A
2

Ty = Jw(t) — wn ()2

Ty = //R 8@ = 9)(w — ) (@) = wn)() da dy
T, = BN77.

Claim 3.2. For every t € [0,T], we have

dr
—1 =T %7 Z VU QZ : pz)
2 & 1
N 2P | 2 Vela —a5) + Vg x (wn — o) (@)
i=1 j=1
ji

+2 //RQX]RQ\A v(t,x) - Vg(z —y)pn(t, dz)(any — a)(t, dy)

=T +Ti2+T13.

Proof of Claim 3.2. Since v € C1([0,T] x R? R?) we can compute

dd];l == Z v(g;) (Op(qg) + (pi - V)o(g) — ps)
-5 Z vla) - 20 (— (v 9)(a) + (0 — V) @)

+ (pi - V)v(@i) — pi- + Vg * wn(a) ZVQ >

J#z

=% > (@) —p)- <((pi —v(t,q:)) - V)v(g) + (v(g:) — pi)*

+ Vg * (wn — a)(q) NZVQ >

J#z

N
Z : —pi)®?

29
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9 N 1 N
N > (w(g) —pi) - (Vg * (wy — a)(g) + N;Vg(%’ - %))

=1 -
i
_ 2 - YVola) : ) \©2
= — N ; U(QZ) (U(ql) - pz)
2 & 1
25 (Rl ) + Vs - @)
v
N N
+ % > o) <%ng(% — ;) + Vg x (wn = a><%>>
1= Jj=1
1 i#i
2 al v . ®2
=N ; v(gi) = (v(q) — pi)
2 & 1
N sz‘ : (NZVQ(% —¢j) + Vg (wy — O‘)(qi)>
i=1 j=1
i

2 1) Vol ot ) e i

=Ty1+Ti2+T13.

O

In the incoming computations, we will find some terms which look like
T2, that is, terms depending on p; (which will cancel out) or like 77 3, that
is terms of the form:

// A(t,z) - Vg(z — y) du(z) dv(y)
R2xR2\A

with A a smooth vector field (for example v or V) and u, v some signed
finite measures (for example a or p — py). We will finish our computations
grouping all terms corresponding to the same vector field A. Let us now
compute the time derivative of T5. Notice that the energy

N
1
En =— piQ—i—// x—y)dan(t,x)day(t,y
N N;:1H R2xR2\Ag( y) day(t,z) dan(t,y)

of System (1.3) is constant in time (for more details see [33, Proposition
5.1]). Thus we have

| X
T =En — N Z pi|?
=1
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and
N N
TN i (pl- — Vg wn(g) — N;Vg(qz - q])>
i
=5 z;pi : (Vg xwn(g) + NE;VQ(Qi - qj)>
i= j=
i
=15,

Let us compute the time derivative of the third term:

Claim 3.3. T3 € W°([0,T]) and for almost every t € [0,7], we have

dT:
Sz et Voo - peltsaty) dsdy,
dt RQXRQ

=: Tg’l .
Proof of Claim 5.5. Let (g,)o<n<1 be a family of smooth functions such that

o gp(z) = g(x) if [z >n,
* lgy(z)] < \g(g)!,
o [Vgy(@)] < —

||
* gy(—1) = gy().
For 0 <s,t <T and 0 <7 < 1, we have

T(t) — Ts(s) = //g(fﬂ —y)(a(t, z)a(t, y) — a(s,z)a(s,y)) dz dy.
Remark that

/ lgn (2 — y)(alt, z)al(t,y) — als, z)als,y))| dz dy

< [ 1@ = )ttt ) = as.2)als ) dedy < +oo

because « has compact support. Thus by dominated convergence theorem
we have

(3.3) Ts(t) —Ts(s) =}]gr%//gn(w—y)(a(t7x)a(t,y)—a(saw)a(&y))dx dy.

Since gy, is smooth and « has compact support, we have by (1.8) that

/gn(m —y)(a(t,x) —a(s,z))dz = / /(pv +wV)(1,2) - Vgp(z —y)dedr

Since (pv +wV)-*Vg, € L>=([0,T],C'(R? R)), we get from the upper equa-
tion that g,*a € W1°°([0,T],C*(R?,R)) and that for almost every ¢ € [0,77,
gy * @) = —(pv + wV) - xVgy.

Thus we can use g, * a as a test function in (1.8) to get

[[onte = viatt.vat.y) - ats.xjals ) drdy
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[ ooy apat [ [ior) v ew

_/://(pv +WV)(m2) - Vgo(y — 2)al(ry) dzdy dr
" /st //(m) +wV)(7,2) - Vgy(z — y)a(r,y)dzdy dr
- 2/St//(PU+wV)(T,x) V(@ — y)alr,y) de dy dr.

Remark that for almost any 7 € [0, T], we have
[V =) oo+ V) )a(r ) ddy
< // —— (o V) (ralalr)|drdy

H,ov—l—wVHLooLl sup sup/|
7€[0,T)xeR2 |z — y|

< (||PHL§>9L1 HUHL%OLOO + HWHL%OLI ‘|VHL39L<>°)RT[Q] HOZHL%OLOO :

where the last inequality follows from the proof of Claim (3) of Proposition
2.5. Thus by dominated convergence theorem,

[t~ )it 0tt.0) ~ ats, (s, ) dzdy
" ///P?H‘WV )(1,z) - Vg(z — y)a(r,y) de dy dr.

Combining the upper limit with (3.3) we get that
t
T3(t) — Ts(s) = 2/ //(pv +wV)(r,z) - Vg(xr — y)a(r,y) de dy dr.
Remark that since Vg * a = —V =+, we have

/: // (WV)(7,2) - Vg(z = y)a(r,y) dedy dr = 0.

Finally, we get

t
7,(0) - 13(s) =2 [ [[ o(r.0) - Volo — g)o(r.a)a(r.p) dedy
which ends the proof of 3.3 for almost every ¢ € [0, 7. O
Now for the fourth term, we have:

Claim 3.4.
dT4 _2// (t,z) - Vg(x —y)(wy — w)(t,z) dz day(t,y)

_ 2//1)@795) -Vg(z —y)p(t,z) dz day(t,y)
sz Vg * ()
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=:Ty1 +Tao +Ty3.
Proof of Claim 3.4. Recall that

Ty = — 2//1&2 - g(x —y)a(t,x) dedayn(t,y)
= 2//]R2 . g(x —y)a(t,x)wn(t,y)ddy

Z/ g(x — qi(t))a(t,z)dz.

Using g, in the same way we did for the previous claim, one can prove that
Ty is W1 and that for almost every ¢ € (0,7),

ﬂ :< - 2/ Vg(x — (V(t, z)w(t,z) + p(t,x)v(t,x)) de dan (t,y)
+2 [ Vgt — ) Ve att e (b.y) da dy>
N
+ % ;pi : /Vg(x —gi)o(t,xz)dx

=A; + As.

Let us compute each term. For the second term in A;, remark that:
[ 9ot =)Vttt aon (e dsdy
~ [[] vata - oty - att. oo g drdyday (e, )

= // Vig(z —y) - Vyly — 2)a(t, z)wy (t,y) dedy day(t, 2)

— // <_/vlg(y — 2)al(t, z) dx) Vg(y — 2)wn(t,y) dy dan(t, 2)

- // V(t,y) - Vgly — 2)wn(t,y) dy dan(t, 2)
= // V(t,z) - Vg(xr —y)wn(t,z)de dan(t,y).

It follows that
A =2 // V(t,z) Vg(x —y)(wy —w)(t,z)dedan(t,y)
-9 // v(t,z) - Vg(x —y)p(t,x) dedan(t,y)

=Ty1+Typo.

For the second term:

N
2
N E pi-/Vg(qi—x)a(t,x) dz
i=1
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5 N

=~ > i+ Vgxalg)
i=1

=Ty 3.

We now need to differentiate the fifth term with respect to time.

Claim 3.5. T5 is Lipschitz and for almost every t € [0,7] we have:

%:—Q/Vw-(V—VN)(w—WN)

dt
= T571.

Proof of Claim 3.5. Let (xy)y>0 be a sequence of mollifiers with compact
support and set w}l, = Xy *wn. For t,s € [0,T], we have

T5(0) ~ T5(s) = [ lo(®) — w0 — [ fo(s) —n(o)P
— lim [ fult) =R (OF - [ fu(s) ~ ()P
—tin [* ([ lotr) -3 ) ar

= [ tn) =R P =2 [ =) vV — xp ¢ (n V)
=2 [ (0~ W) div((V = Vi) + (o~ ) Vi)
42 [ @ W) vl Vi vy x (Vi)
) / (@ —wh)Vew- (V = Vi)
+2 [ (@ -wl)Vw-wh) Yy
L2 / wdiv(W Vi — xo % (@n Vi)
) / W div(Ww] Vi — x * (n V).

For the first term, remark that for any 1 < p < 2, we have Vy € LY and

loc &

1 1
Wl N m wp in L? where — + — = 1. Thus since w — wy has compact support

and Vw € L, we have

2/(w—wK,)Vw-(V—VN)R2/(w—wN)Vw-(V—VN).

Remark also that the second term cancels out because Vi is divergent-free:

1
/(w—w]"\,)VN-V(w—w?V):—i/VN-V]w—w?VIQ:O
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We will now prove that the two last term tends to zero. For the third term,
we integrate by parts to get:

2/wdiv(w7VVN — Xn * (WNWN)) = —2/Vw (Wl VN = xn * (WNVN))

Since Wi, Vy —O>wNVN, Xn * (WNVN) —O>wNVN in L' and Vw € L™, we
n— n—
have

2 / Vw - (w;]VVN — Xy * (WNVN)) 7:60.

For the last term, since all the ¢; are outside of the support of wy (see
Remark 1.3), they are also outside of the support of w}; if 7 is small enough.
Thus we have:

Vv € WhP(suppw})

for any 2 < p < +00. By the commutator estimate of DiPerna and Lions in
[16] (see [14, Lemma 2.2] for more details) we get

[VN,XU*]WNnjO)O in Llloc'

Since w}; is uniformly bounded in L*, we obtain

n
/WN[VN’ Xn*]wN m 0.
which ends the proof of Claim 3.5. U
For the sixth term:

Claim 3.6. Tg Lipschitz and for almost every t € [0,7] we have
ATy
I _ Vol — ) - V() —n) (1, 2)(w — wx)(t,y) de dy
t R2 xR
2

2
+ / Vo(z —y) - Vg (@ — wn)(t 2w (t, 2) dzd(p — pa) ().
R2 xRR?

Proof of Claim 3.6. Using g, in the same way we did for Claim 3.3, one can
prove that Ty is W1 and that for almost every ¢ € (0,7T),

% = //RQxRQ Vyg(z —y) (Vw = Vywn)(t,2)(w — wn)(t, y) dedy

- //]R?><R2 Vy(x —y) - V(t,2)(w —wn)(t 2)(w —wn)(t,y) dedy

+ 2 //R2XR2 Vg(x—y) - (V=Vn)(t, z)wn(t, ) (w — wn)(t,y) dz dy.

Since V= Vy = =Vtg* (w—wn + p — pn) we get
I, Fote =) (V= Vit o) (t2) w — ) (t,1) dady
R2xRR2

— //R2 - Vg(z —vy)- Vig * (w—wn)(t, z)wn (t,x)ded(p — pN)(y)

which ends the proof of Claim 3.6. U
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Remark that all terms depending on p; (coming from the equations of
Claim 3.2, Claim 3.4 and Equation (3.2)) cancels out, that is

Tio+To1+Ty3=0.

Now let us group all terms of the form

. vt e — ) dut)avy
R2xR2\A
coming from the equations of Claims 3.2, 3.3 and 3.4:

Tis+ Ts1 + +Tap
=2 //RQ woia v(t,z) - Vg(x —y)(pn @ (ay — @) —p @ ay + p @ a)(dz dy)
=9 //R2><R2\A v(t,z) - Vg(x —y)d(p — pn)(t,z) d(a — an)(t,y)
=2 //]R?xR?\A v(t,z) - Vg(r —y)d(a — an)(t,z)d(a — ay)(t,y)
_ 2//R2XR2\Av(t,x) Vgl —y)(w—wn)(t,z)dxd(a — an)(t,y)
- // (v(t,2) = v(t,y)) - Vg(z — y) d(a — an)(t, z) d(a — an)(t,y)
R2xR2\A

+ 2/vl(t,x) (V=VN)(t,2)(w —wn)(t,z)dz

because

? //R2><R2\A v(t,z) - Vg(z —y)d(a = an)(t, z) d(a = an)(t,y)
= // v(t,z) - Vg(zr —y)d(a — ay)(t,z)d(a — ayx)(t,y)
R2XxR2\A
+ //R?xR?\A v(t,y) - Vg(y — z)d(a — ay)(t,y) d(a — ay)(t, x)

= // (vt 2) —v(t,y)) - Vg(z —y) d( — an)(t, 2) d(a — an)(t, y).
R2xR2\A

Let us do the same for V' (there is only one term, coming from the equa-
tions of Claim 3.4):

Toy =2 // V(t,2) - Voo — y)(wx —w)(t,z) dzdax(ty)

= 2// V(t,z) Vg(x —y)(wy —w)(t,z)ded(a — an)(t,y)

because
[ Vita) - Vot@ - y)ow - o) t.)att ) dsdy

- /V(t’x)(wN - W)(t’x) ’ VL(t’x) dz
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Thus
Ty1 = —2//Vl(t,x) (V =Vn)(t,x)(w(t,x) —wn(t,x)) de.

Putting all terms together, we obtain

(3.4) N
% - %ZVU(%) s (v(g) — pi)®?

i=1

" //R2 XR2\A(U(t’ z) —v(t,y)) - Vg(z — y) (o — an)®*(dz dy)
+ - A-(V = V) (w—wy)
+ 2//R2X]R2 Vg(x—y) V(t,z)(w—wn)(t,z)(w — wy)(t,y) dedy

w2 [ Vglo—9)- Vo s (@ —an)(t ey (ta) ded(p = o))
X
=:Ri+Ras+ Rs3+ Rs+ Rs

with A = 2(vt —V+—Vw). In order to control R3, we will need the following
result:

Lemma 3.7. If A €¢ W', then there exists A > 0 and a constant C
depending only on ||Ally1.00 such that

‘ /A (V= V) (w —wN)‘ < C<~7:(QN=P) + llw — will72

+ [ oo - i - em) @) - am dray+ N)
where F is the functionnal defined by (1.9).
Proof. Let us fix I = [A-(V — Vy)(w — wn), then

I—_ //A(m) Vg — y)(w — wn)(@) dw + p — wy — pi)(y) do

:1 //(Al(x) - AJ_(y)) Vg —y)(w—wn)(z)(w —wn)(y) de dy

By [50, Lemma 4.3],

= [ VA s fgx (= wn)g < (@ wy)
where for i, j € {1,2} and h regular enough,
[h, hli; = 20;h0;h — |V h|?6; ;.

Hence
11| < C VA oo Vg * (w—wn)72 -
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Therefore by (3.1) we have

35 [l <CVA| L~ //g(fv —y)(w —wn)(@)(w — wn)(y) dz dy.

Now denote
Ev = —Vgx* [-Al(w —wn)].

We can write
L= [ nu)o = pn)(d).

Using Proposition 1.5 (proved in [50]), we get that for any 0 < 6 < 1,
there exists constants C, A > 0 such that

I| <C|én| oo N~

In(N)\ 2
+ IVl (F@wp) + (14 Il M)

By Morrey’s inequality (see for example [9, Theorem 9.12]) and Proposi-
tion 2.7, for some p > 2 depending only on 6, we have

Enleos < C||V2g + [-A* w = wn)
CllA(w —wn)ll»
CllAll e lw — wnll e
<Ol Al (o]l + el 1)
by Remark 1.3. Therefore by Assumption (1.12),

[Enlcoe < C.

where C' is independent of N. Now, by Proposition 2.7,

/

Lp

NN

N

[V2 LAt @ —wn)l|, < 1Al oo — w2
Thus we obtain the inequality we wanted to prove. O
. dHy
Let us get back to the expression of ST =Ry +Ry+ Rs+ Rs+ R;5
given by (3.4). We have

VUHLOO

N
2]
(36) IRl < TS S (g — pif® < 2 Vol M

i=1

For the second term,

Ry Z//RQXW\A(v(t,x) —o(t,y)) - Vg(z — y)(w — wy)®?(dz dy)
+ //RQXRQ\A(v(t,x) —o(t,y)) - Vg(z —y)(p — pn)®%(da dy)

+ 2 //RQXRQ\A(U(L y)—v(t,x)) - Vg(x —y)(w —wn)(z)dzd(p — pn)(y)

=:Ro1 + Ro2 + Ra3.
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We can bound Ry as we did to obtain Inequality (3.5) and we get

B0 1Roal < CIVole [ gl =)0 =)o) =)o) dady,
Using Proposition 1.7 (proved in [50]) with = p € L, we get

(3.8) Rop < C ol (F(@Qnsp) + (14 [lpll )N 7).

Now,

Ry = /XN d(p—pn)

with xy = —2v- Vg * (w —wn) + 2Vg * (-v(w — wy)). Using Proposition
1.5, we get that

Raal <C (ko ¥+ [9xvle (F(Qxo0)
1
_ In(N)\ 2
ol ) ).

Now by Morrey’s inequality (see for example [9, Theorem 9.12]), Hardy-
Littlewood-Sobolev inequality (see for example [2, Theorem 1.7]) and Propo-
sition 2.7, for some p > 2 we have

xnleoe SC([Voll e Vg * (@ = wn)ll o + [0l oo [ V29 * (@ = wn)| 1

+[|V2g * (v(w —wn))| 1)
< Cllliproe (lw —wnllzy + llw —wnll 2)
< Ol (lw = wnllp + llo = wnll oo
< Clllwroe (]l o+ loiell o+ 190l oo+ el )

by Remark 1.3. Therefore by Assumption (1.12),

XN lcoo < C.

Moreover, using Proposition 2.7 and Equation (3.1), we have

VXNl STVl Ve * (@ = wn)ll e + [0l e [V2g * (0 = wi)[ .-
+ HV2g * (v(w — wN))HL2

<Clollwes (( [[,_, ate = 1)~ wn)a)o — wn)) dz )

+Hw—wNHL2)-

1
2

Therefore

B2l <C ol ( o= oxl
(39 L ote = — ) @) =)@ de dy

FQuop) (14 upum)N—A).
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Combining inequalities (3.7), (3.8) and (3.9) we find that
(3.10) |Re| < Cllvllyce (v + F(@Qn,p) + (L4 [lpll )N ).

Now using Lemma, 3.7, since V', v and Vw are in L™,

|Rs| <C<f(QN, p) + |lw — wylF2 + N7

+ // 9z — 1) — wn)(@) (@ — wy)(y) de dy),

We can bound Ry as we did to obtain Inequality (3.5) (with A = V') and we
get

(312)  |Ra| S CVV]| oo //g(fv —y)(w —wn) (@) (w —wy)(y) de dy.

Finally we have

(3.11)

Ry = [ Vg Cun)dp = p)

with uy = —wnV=+g * (w — wy). Using Proposition 1.5 we get

| Rs| <C’<|Vg>x< (- uN)|CoeN + HV2g* (-uny HL2 (f(QN,p)

F L+ om0

Using Morrey’s inequality (see for example [9, Theorem 9.12]), Proposition
2.7 and Hardy-Littlewood-Sobolev inequality (see for example [2, Theorem
1.7]), we get that for some p > 2,

Vg * (-un)|eoe < C[|V2g* (un)|,,

< Cllunllpy
S COllwnlize Vg * (@ = wn)ll
< Cllon| oo [lo = wn]]

2p
[ p+2

N

Cllwnllzee (lw —wnllpr + llw = wn i)
<C HW?VHLOO (HWOHLI + HWJOVHLl + HWOHLOO + HW?VHLOO)
by Remark 1.3. Therefore by Assumption (1.12),
Vg * (-un)loo < C.
Now using Proposition 2.7 again, we get

1929 ()| 12 < C llunlz
< Clon g // (@ — wn) (@) (w — wy)(y) de dy

by Equation (3.1). Therefore by Assumption (1.12),

Rs) <c(f<QN,p> F (4 ol ) N
(3.13)

w ot e )@ — o)) ety
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Combining inequalities (3.6), (3.10), (3.11), (3.12) and (3.13) we get

d
ﬂ <C<’HN + F(Qn,p) + N—/3>.

for some 5 > 0. We are only remained to bound F(Qn,p) by Hy. Let us
write

FQn.p) = //szRz\A gz —y)(w+p—wy — PN)®2(dm dy)
_ //R2xR2 g(x —y)(w—wy)(z)(w—wy)(y)dedy
w2l e e @) drdlp = px) )

SHy+0r2 | ey - @) drdlp = px) )

To bound the upper integral, we use Proposition 1.5 to get that
(3.14)

o [ o= wmato—px)

<c<|g* (0 — won)leos N 120 Vg * (@ — won)l

o (]-‘(QN,/)) + (14 [lpll o) N7+ ln(TN)f)

<Clg * (w— wN)]Co,eN_A +C||Vg* (w— WN)”%?

1 In(N
2 (F@uap) + ()N 4 ),

2 N
Now by Morrey’s inequality (see for example [9, Theorem 9.12]) and Hardy-
Littlewood-Sobolev inequality (see for example [2, Theorem 1.7]), for some
p>2

9% (W = wn)leoo < ClIVg* (w = wn)ll s
<Cllo—wnll g,

(3.15) <Ol - Lt \ w?VHLﬁQ
<Ol prnpee + 9kl pigee)
<C

by Assumption (1.12). Using (3.1) we also have

IV * (@ = wn)l|72 < M-
Therefore
1
for some for some A\ > 0, hence

(3.16) F(Qn.p) < C(Hy + N7
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It follows that
dHn
Cdt

Applying Gronwall’s lemma we get
Hy(t) < (Hn(0) + CN~F)efT
that is Inequality (1.15).

<C<7—[N+N B)

3.3. Proof of Proposition 1.11. Let ¢ be a smooth test function with
compact support in R*. We have:

1 N
/w(%ﬁ) <NZ5(qi,pi) - P®5£=v(x>> (dz dg)

1 N
:NZ Qzapz - qhv(%))]

1
+ Zl o(gisv(q)) — /tp(x,v(x))p(x) dz
=T, + 1.
Let us bound T7:

T < 2; I (gi, )l [pi = v(g1)]
1

< l¢llgs —Zm — o(q)

by Sobolev embedding. Using Cauchy—Schwarz inequality we get

(3.17) T < CWme(NZ\pz— qﬁ!) :

=1
For the second term:

T = 1 [ etesot@no - pw)(an

<llgo g, o)l llp = pnllg—2-
Let f:= (I4,v), then

(318)  lleofllg < O+ [Volfnn) sup ||Vhpo
0<k<2

Now let ¢ := 9%p for some multi-index « of length k € {0, 1,2}, then
wo sl = [ 10l oit,2))? da
< sup/\ib(w,y)!zdx
y

< s
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where F(y) := [ |[¢(z,y)|* dz (see for example [9, Corollary 9.13]). Remark
that

9, ()] = 2 ' [ tubtaitey) i

< [0 0P as+ [ o) da,

Doing the same computations for all derivatives of F' of order less or equal
than three and integrating in y gives us

2
[Ellysa < Clleblis -
From (3.18) and the upper equation we get

(3.19) lp o fllge < O+ V0lfpr) 1ol g -

Now, by [46, Proposition 3.10] (which is a refined version of Proposition
1.5), we have

1 _1 1 1

lp = pxllg-2 < CUF @, p)|2 + N2 [In(N)[> + (1 + [|pl oo )N T2).
Using Assumption (1.16) we can bound F(Qn, p) as in (3.16) to get
(320) “F(QNap)‘ < C(H(W7P7U7WN7QN7PN)+N_>\)

and therefore
1 _
||p - pNHH*2 < C(H(wap’vawN’QN’PN)Q + (1 + ||p||L°°)N A)

for some A > 0. Combining the upper inequality with (3.17) and (3.19) we
get that

N
1
'/ o(z,8) <N Z(S(qzwpi) —P® 55=U(93)> ‘
i=1

1 gl
< CAHVOlfye) 19l s (H(w, p,v,wn, @, Pr) Z+C (14 |pll o )N 7F) 2
for some 5 > 0. Thus we get (1.17). It follows from this estimate that if
H(w,p,v,wN,QN,PN) — 0
N—o00

then
N

1
N 221 O(qs,ps) H—_g P& Og—v(tz)-
By equality (3.1) we also have
2 2
Vg (o — )2 + o~ wnlZa — 0
Now remark that for any p € L2,

~ 2
IVgxullje = C |[Vai|,

(3.21) _ C/ |ﬁ|(§€|gl2 d

2
= Cllplizg-s
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and therefore .
wy—w — 0 inL*NnH
N—+o0
Finally, using Inequality (3.20), we have
F(Qn,p) N
and therefore by [46, Proposition 3.10] we get that for any a < —1,

— in H*
PN N—+00 pom
which concludes the proof of Proposition 1.11.

3.4. Proof of Proposition 1.14. We have

/ 9(z — y)(po +wo — pn,p — wip)?(dz dy)
(R2XR2)\A

=F(Qn,, po) + / g(z — y)(wo — wn0)®?(dz dy)
(R2xR2)\A

_ 2/ g(x — y)(wo — wN,o)(w) dzd(po — PMO)(y)
(R2XR2)\A

It is proved in Theorem 1.1 of [18] that the weak-* convergence of py to

po and the convergence of
1
N2 Z g(q? - q?)

1<i£j<N

to
// g(x —y)po(x)po(y) dr dy
R2 xRR2

ensures that

(3.22) F(Qn,0:p0) v

Using (3.1), (3.21) and the convergence of wy o to wp in H~' we have that

/ gz —y)(wo — wN70)®2( dedy) — 0.
(R2XR2)\A N—+o00

Using inequalities (3.14) and (3.15) we have

/ 9(@ — 1) (wo — wivo)(x) dz d(po — pN,o><y>\
(RZxR2)\A
<C<(||Wo||leLoo T ool )N

In(N)\ ?
+ Vg * (wo — wno)ll 2 (J:(QN,o,po) + (14 [|poll oo )N+ —ngv )> >

Using Assumption (1.18), equations (3.1), (3.21), (3.22) and the convergence
of wy,p to wp in H~! we get that

[ s =) —wno)@) ded(m - o)) (20
(R2XR2)\A N—+o00

which ends the proof of Proposition 1.14.
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