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VARIANCE ESTIMATION FOR SEQUENTIAL MONTE CARLO ALGORITHMS: A
BACKWARD SAMPLING APPROACH

YAZID JANATI EL IDRISSI, SYLVAIN LE CORFF, AND YOHAN PETETIN

ABSTRACT. In this paper, we consider the problem of online asymptotic variance estimation for particle filter-
ing and smoothing. Current solutions for the particle filter rely on the particle genealogy and are either unstable
or hard to tune in practice. We propose to mitigate these limitations by introducing a new estimator of the
asymptotic variance based on the so called backward weights. The resulting estimator is weakly consistent and
trades computational cost for more stability and reduced variance. We also propose a more computationally
efficient estimator inspired by the PaRIS algorithm of [33]. As an application, particle smoothing is considered
and an estimator of the asymptotic variance of the Forward Filtering Backward Smoothing estimator applied to
additive functionals is provided.
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1. INTRODUCTION

Sequential Monte Carlo (SMC) methods offer a flexible framework for the approximation of posterior
distributions in the context of Bayesian inference, for instance in Hidden Markov Models (HMM). These
models presuppose that the observations are defined using an unobserved process assumed to be a Markov
chain. In such a setting, we are particularly interested in estimating the law of a hidden state given all past
observations referred to as the filtering distribution and the laws of sequences of states given past and future
observations, referred to as smoothing distributions. These distributions can be approximated by weighted
empirical measures associated with random samples, usually known as particles. All SMC methods are
based on successive importance sampling and resampling steps. When a new observation is available, new
particles are sampled according to an importance distribution and then they are weighted to match the target
distribution. Finally, through a resampling scheme, particles with large weights are duplicated while low
weighted particles are discarded. This general procedure has been used in a wide range of applications such
as signal processing, target tracking, econometrics, biology, see [3, 16, 6] and the references therein.

The quantification of the Monte Carlo error of SMC estimators is a major challenge. For a variety of
SMC methods such as the bootstrap filter [23] or the Forward Filtering Backward Smoothing (FFBS) [37]
algorithms, Central Limit Theorems (CLT) with theoretical expressions of the asymptotic variance (in the
number of particles) have been derived [13, 5, 26, 15]. However, these expressions are not computable in
practice and give rise to the natural question of their estimation. Since this problem appears in an online
context, a critical constraint is that the samples produced by the original SMC algorithm should be recycled
to compute such estimates.

This problem has received some satisfactory solutions recently: a simple estimator of the asymptotic
variance when multinomial resampling is used has been proposed in [4] for the bootstrap filter algorithm
and has since been refined in [28, 32, 18]. The computation of the associated asymptotic variance estimator
at time ¢ is based on tracing the genealogy of each particle down to time 0. Although it has been shown
to be consistent as the number of particles N grows to infinity, it is particularly prone to instability when
t is large, as the successive resampling steps lead to the well known path degeneracy issue. After a few
time steps, particles are likely to share the same ancestor at time O which in turn makes the asymptotic
variance estimates collapse. To overcome this degeneracy issue, [32] proposed to only trace a part of the
genealogy of each particle according to a fixed-lag parameter following the fixed-lag smoothing approach
introduced in [31]. As long as the number of particles is balanced with the chosen lag, the bias introduced
by considering only the most recent ancestors of each particle can be controlled as shown in [32]. However,
while this alternative estimator remains easily computable, choosing an optimal lag is a non trivial task
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which makes this approach hard to tune in practice. We thus address the limitations of current asymptotic
variance estimators in this paper.

The first contribution of this paper is to propose a parameter free estimator of the asymptotic variance
associated with the bootstrap particle filter with multinomial resampling that trades computational cost
for stability and reduced variance. The construction of our estimator starts from the observation that the
aforementioned degeneracy is similar to that of classical SMC-based smoothing algorithms [17, 20, 35]
or Particle Markov Chain Monte Carlo algorithms such as the Particle Gibbs sampler [1]. In both cases,
a backward sampling step which aims at diversifying the particle trajectories has shown to be a reliable
workaround that decreases the (theoretical) variance of the estimators at the expense of higher computa-
tional cost [22, 15, 33, 11, 29, 7]. We thus aim at introducing such a mechanism in the estimation of the
asymptotic variance. The construction of our estimator relies on the analysis conducted in [28] in which
it is shown that the estimator of [4] can be interpreted as a conditional expectation with respect to the in-
dices that retrace the genealogy of the particles, given all the particles and ancestors. We show that this
construction still holds when the distribution of the indices relies on the backward importance weights. The
resulting estimator is computed by averaging auxiliary statistics that are very similar to those of the forward
implementation of the FFBS for additive functionals [12] and can be thus updated online. The time com-
plexity per update of our estimator is of order N3. Driven by the efficient implementation of the FFBS for
additive functionals developed in [33], we show that the computational cost of our estimator can be reduced
from O(N?3) to O(N?) by means of additional Monte Carlo simulation while remaining as competitive in
terms of bias and variance.

We next focus on the FFBS algorithm for the estimation of smoothing estimators. Despite the fact that
a CLT has been obtained for estimators based on the FFBS, no variance estimator has been proposed in
the literature. We show that our previous construction enables us to fill this gap and we thus provide a
consistent estimator in the case of additive functionals which are particularly critical, for instance in the
Expectation Maximization framework. Again, this estimator can be computed online and in the particular
case of marginal smoothing its computational cost can be drastically reduced.

The paper is organized as follows. In Section 3 we briefly review the SMC framework and discuss
the current estimators of the asymptotic variance proposed in [4, 28, 32]. In Section 4, we introduce our
estimator based on the backward weights, propose an online implementation and establish its asymptotic
properties. In Section 5, we extend our derivations to the FFBS algorithm and provide a consistent asymp-
totic variance estimator. We finally validate our results with numerical experiments in Section 6. Notably,
we show empirically that our novel estimator for the filter has a favourable dependence on the time horizon
t in comparison with the existing estimators. All additional proofs and discussions can be found in the
appendix.

2. NOTATIONS

For any measurable space (E, £), we denote by F(&) the set of R valued, £-measurable functions, by
Fy(€) the subset of F(E) of bounded functions on E, and by M(E) the set of measures on E. For any
1 € M(E) and h € F(E), we write

(= [ hopu(do).

For any transition kernel M from (E, £) to another measurable space (G, G), define
/M (z,dy)h(y), VheF(G), VreE.

and write p M the measure defined on G by

uM(A) := /E,u(d:c)M(x,A), VAeg.
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If M, is a transition kernel from (E, £) to (G, G) and M5 a transition kernel from (G, G) to a measurable
space (H, ), then M; Ms is the transition kernel from (E, £) to (H, ) defined by

M1M2<.'I,‘,A) = / Ml(l',dy>M2(y7A), Ve eE, VAeH.
G
In addition, M7 ® M5 is the transition kernel from (E, &) to (G x H,G ® H) defined by

M; ® Ma(x, A) := /]lA(y,z)Ml(x,dy)Mz(y,dz), VreE, AeGH.

In particular, for all N > 1,we will write M®Y for ®f\;1 M. For two £-measurable functions f, g the
tensor product is defined as
fog:E 3 (z,y) = fz)g(y).

The sets N and N* are respectively the sets of natural numbers and positive natural numbers. The L, norm
of a random variable X is || X||, := E[|X]4] 14 The supremum norm of f € F,(E) is denoted by | f|oo.
The unit function 1 is such that 1(z) = 1 for all z € E. The transpose of a matrix A is denoted AT. If
A, B € RM*N gre two matrices, then the Hadamard product A ® B is the element-wise product, i.e for all
1<i<Mand1<j<N,(A®B);; = a;;b; ;. If A € RNV then Diag(A) is the N x N diagonal
matrix such that for all 1 < i < N, Diag(A);; = A;; and if x € RN*! then Diag(x) is the N x N
diagonal matrix such that Diag(x); ; = ;. For (a,b) € N, [a : b] := NN [a,b] and [b] := [1: b]. If f is
a mapping from [N]? to R, we denote by f the associated N x N matrix such that f; ; = f(4, 7). Finally,
we adopt the following conventions. Given some set {£X}se(0:¢),ie(n), We write & = (&}, &),

kot . (¢k 1:N ._ [¢k
0:0tf '_( 007...7 tf N' {é-Of}kO,e[NtJrl

3. SEQUENTIAL MONTE CARLO

In this section, we first review the bootstrap particle filter methodology and recall the main asymptotic
results associated with the estimates produced by this algorithm. A state of the art and a discussion of the
estimation of the asymptotic variances related to this algorithm are also presented.

3.1. Definitions. Let (X, X') be a general measurable space. Let My and (M );cn be a probability measure
on (X, X) and a sequence of Markov transition kernels on X x X, respectively. Consider also a family
(gt)ten of non-negative X'-measurable functions, referred to as potentials. Throughout this paper, we make
the following assumptions on {M; }+en and { gt }ren.

(A1) The probability measure My admits 1 as probability density with respect to some reference mea-
sure v € M(X). Forall t € Nand z; € X, M¢11(x¢,.) admits myyq (¢, .) as probability density
with respect to v.

(A2) There exists a constant G, > 0 such that forallt € Nand z € X, 0 < g(z) < G
Define the sequence of unnormalized transition kernels (Q;1):cn Where, forallt € N, z; € Xand A € X,
Qt+1(xtv A) = gt(xt)Mt+1($ta A),
and, for any s,t € N2,

1d otherwise.

s® - ® ifs <t
Qs:t = {Q Qt

Let Qs:t denote its marginal with respect to the variable x;, i.e. for all z5_; € X and all measurable set A,
Qe A) = [ Quilesdoas.. don)LaCa)
Xt—s+1

Define recursively the sequence of measures (7o.¢)ten by
Yo(dzo) := Mo(dzg), 7o:t(dzos) := Y0:e—1(dxo:—1) Qe (-1, dy), 3.1
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and let v, (A4) = fxt+1 ~o:¢(dxo.t) L a(x¢) for all measurable set A. Sequential Monte Carlo algorithms aim
at solving recursively the filtering problem, i.e. at estimating the sequence of probability measures defined
as

me(day) =y (Dyl(day),  de(day) = ge(ze)me(dae) /ne(ge), (3.2)
respectively called the predictive and filtering measures. Note that 7, can be computed recursively using
ne(dey) = / ¢r—1(dwy—1)My (241, dzy). (3.3)

We motivate these definitions with the following example.

Example 3.1. Hidden Markov models consist of an unobserved state process {X;};cn and observations
{Y}}+en- They respectively evolve in two general measurable spaces (X, X') and (Y, ). It is assumed that
{X:}ten is a Markov chain with transition kernels (M1 ):en and initial distribution My. Given the states
{X:}ten, the observations {Y; }+cn are independent and for all ¢ € N, the conditional distribution of the
observation Y; only depends on the current state X;. This distribution is written G¢(X¢,.) and admits the
potential g;(x;,.) as density (the dependency in Y; is made implicit and we drop the second argument).
Given an observation record Yj.;, the predictive and filtering distributions (3.2) are then the distributions of
X; given Yy.;—1 and X, given Yj.; respectively.

These two distributions are of considerable interest in Bayesian filtering as they enable the estimation
of the hidden states through the observed data record. Unfortunately only in a few cases, such as discrete
state spaces or linear and Gaussian HMM, can they be obtained in closed form, see [3, 6] for a complete
overview.

3.2. Particle filter. We now illustrate how to obtain empirical estimates of 7; and ¢; in an online manner
through Monte Carlo simulation. Assume that at time ¢ the empirical measure n;" (dz;) := N~! Zi\il Oei (day)

based on random samples {¢; }1<;<n approximates 7;(dz;). Plugging n;" in (3.2) provides an approxima-
tion of ¢;(dx;),

N
o (dae) ==Y Widei (day),
i=1
where W := Q; 'wl, wi := g(&}) and Q; := Zivzl w?. Replacing ¢; by ¢¥ in (3.3), we obtain the mixture
#N M, 1 which allows to construct nﬁrl by drawing N samples from it. We first sample forall 1 <7 < N

an ancestor index A} ~ Categorical(W}V), and then sample &/ ; ~ M 1(&, ). The algorithm is
initialized with the approximation of 79 = My, n = N~1 Zfil b¢i (day) where &N ~ MEN and
coincides with the bootstrap algorithm with multinomial resampling [23]. Note that this mechanism has
been extended in many directions in the past decades [34, 14, 6].
Alongside n}¥ and ¢}, the particle approximation of the unnormalized marginal y;(dx;) is given by

t—1

N (dxy) = { 11 Nlﬂs}ntN(dxt), vt > 0, (3.4)

s=0

and Y (dzg) = 1}’ (dx). In particular, v/¥ () is unbiased for any measurable function  [9].

In the remainder of this paper, we denote by 7}V the o-field containing all the particles and ancestors up
totime ¢, ie. ¥ := o (&5, A§Y ).

3.3. Asymptotic variance estimation in particle filters. The particle filter described above yields consis-
tent estimators, see for instance [3, 16, 6, 30, 9] and references therein for a complete overview. Indeed, for
a test function h € F,(X') and under assumption (A 2), the SMC estimators satisfy a Strong Law of Large
Numbers when the number of particles N goes to infinity, i.e.

7 (h) o ow(h), mY (h) o), @) (h) = du(h). (3.5)
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Under the same assumptions, CLTs for ~; ( ), n¥ (h) and ¢ (h) are also available [13, 5]:
\W( —%(h)) fanet N0, Vii(h )
VN (i () =m(h) = N0,V (h), (3.6)
W(@ (1) Nf;fwo vm )

where =—> denotes weak convergence and

V5(h) = {77 (Quyre[B?) = n(h)?}, 3.7)
s=0
oo _ : 75(1)73 (Qs+1:t[h - Ut(h)]Q)
Voi(h) = 2 i (1)? , (3.8)
Vi (h) = Xt: 107 Qurneloelh = (W) (3.9)

Ye1(1)?

An intuitive derivation of (3.7) is proposed in Section D of the appendix. The authors of [4] propose to
estimate (3.7) online using the samples produced by the particle filter described above. Their estimator is
based on the genealogy of the particle system induced by the successive resampling steps of the particle
filter. From the indices AZ, it is possible to trace back the ancestors of each particle and deduce the corre-
sponding ancestor at time ¢ = 0. More interestingly, these ancestors can be computed in a forward way by
introducing the Eve indices Ei,o. Foralli € [1: N, Ei,o describes the index of the ancestor at time 0 of
particle & and can be computed from

@
I
o

i Aj_ .
Eio=E; ‘1 ole>0 +ili=o. (3.10)
The asymptotic variance estimator of 7/ (h) obtained in [4] reads (see Section B.1 of the supplementary
for a proof):

VY(h) == -N"" Z Ly, J{hgt (h)H{h(E) —nlN(h)}. (3.11)

i,JE[N]?

We sometimes refer to V%( ) as the CLE (Chan & Lai Estimator). Note that it can be computed online in
a remarkably simple way since the Eve indices (3.10) are computed recursively. However, the counterpart
of its computational simplicity is that it degenerates as soon as the ancestral paths coalesce. Indeed, it
is widely known in the SMC literature that all lineages eventually end up with the same ancestor when ¢
is large enough with respect to the number of samples NV (see e.g. [20, Section 2.2] for a more detailed
explanation). This means that for a fixed IV, as ¢ grows and s < t, Es 0= Eio for all (i,5) € N? and
Vn,t( ) = 0 for any test function h.

The degeneracy problem concerning (3.11) is partially addressed in [32] by truncating the genealogy of
the particle system. Denoting A € [t] the lag and E;t_ ,, the ancestor of & at time ¢ — ), their estimator
reads

Vo ()= =N"1 37 I g ARED) - nY (WHAE) -0 (). Ga2)
i,JE€[N]?
In the regime where (3.11) degenerates, (3.12) can be made stable provided that the lag X is chosen such
that there is little asymptotic bias. However, besides the strong mixing case for which the authors propose
a heuristic, the practical choice of such a ), although crucial, is a non trivial task.

In [28], the CLE is revisited using different techniques based on [8, 1, 2]. These tools enable them to
derive a weakly consistent term by term estimator of (3.7) based on the unbiased estimation of y;(h)? and
of each v,(1)7s(Qqp1.4[h]?). for all s € [0 : ¢]. The construction of this second estimator is appealing
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and insightful in that it helps identifying the deep root of the degeneracy in the CLE. They indeed show
that (3.11) and each ~,(1)7, (Q,1.¢[h]?) can be interpreted as a conditional expectation with respect to
particle indices that retrace the ancestral paths. Indeed, by introducing discrete random variables K., and
K2, such that conditionally on ¥, K} and K? are distributed uniformly on [IN] and such that for any
sef0:t—1],
1 K .i+1 2 K §+1
Ky =A™, Ko =11, zr2, As ™ + 1k, —k2, O,

where C, ~ Categorical(W!), then for example

VY (h) = =NE | T] Licrsrea{h(6) — ¥ (WHAEST) = (b))
s=0

]—'{\’1.

S . s . K K2
An intuitive extension is to replace the deterministic assignments K! = A *™ and K2 = A, °*' by
random ones based on backward sampling. Essentially, the backward kernel samples at time s an index ¢
. - . ; . LK} . Y .
with probability proportional to wim,s 1 (&2, &) (resp. wimsy1(£L, €1 ")) and thus allows to consider
relevant trajectories which are not necessarily ancestral trajectories.

4. VARIANCE ESTIMATION WITH BACKWARD SAMPLING

In this section we present three variance estimators for the bootstrap particle filter. In Section 4.1, we lay
out our methodology and derive a term by term variance estimator; its computation is detailed in Section
4.2. In Sections 4.3 and 4.4, we provide two additional estimators that have a lower computational cost. All
estimators and justifications are provided for the distribution (3.4). We give the expressions for the variance
estimators of the predictor and filter and provide their justification in Section B.2 of the appendix.

4.1. Term by term variance estimator. For any ¢ € N, let B; := {0,1}'*1. Denote by 0 the null vector
in B; and e, the vector with 1 at position s and 0 elsewhere. Let (X, X ;)SE[O:t] be a bivariate Markov chain
in (X2, X®2) and depending on b € B; with initial distribution MS" and transition kernels Mft, t > 1,

where
M (dzo, dap) == Mo(dzo){Ly,—oMo(dzf) + Ly,—104, (dz()},

4.1y
MOz, 2 dz,d2") == My (2, d2) {1y, oMy (2, d2") + 1p,—10.(d2")}, ¥t > 1.
Define also for any b € B; the measure Q;, ; by Qp, o(dwo, dzf) = ./\/lg0 (dzo,dz)) and for t > 1:
t—1 t
Qp¢ (dwo.r, dayy,y ) = /\/180 (dzo, day) H %2 (x,, 2)) H MP: (z5—1, 2, _1;das, dal). 4.2)
s=0 s=1

The measure Qy ; is the joint distribution (3.1) of the Feynman-Kac model defined by the initial distribution
Mbo the transition kernels {Mb }seq1: and by the potential functions {g$?}sc[0.¢+—1). Remark that for
any h € F(X), writing hy : xo.; — h(z), we have that Qg +(h$?) = v;(h)? and

Qe, t(he?) = 75 (1) 75 (Qqy1e[1]?)- (4.3)

A generalization of (4.3) is proved in Proposition 5.1. Consequently, for h € Fy,(X) V3% (h) in (3.7) can be

rewritten as
t

V() = Y { Qe t(hF?) = Qo (™)}, (4.4)

s=0
where hy : oy +— h(z:). Following this observation, for a given b, an estimator of Q ;(h:) could
be obtained with a single run of a bootstrap particle filter in augmented dimension (i.e. relying on the
the bivariate transition /\/lft at time ¢ and on the weighing of the associated particles with gg®2). As a
direct extension of (3.4), this estimator would be unbiased and as a byproduct, we would get an unbiased
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estimator of (4.4). However, this procedure is not in line with our initial objective in the sense that we aim
at estimating (4.4) with the particles and indices already available.

In order to motivate and introduce our approach, let us consider the static situation where ¢t = 0, by = 0
and let (h, f) € F,(X)2. Then,

N =D L LhEE), 3N M, 4.5)

1]6[N]2

is an unbiased and almost sure convergent estimator of Qo o(h ® f) = M?(h® f) and only relies on i.i.d.
samples from M rather than M$?. Note that for h = f, we thus get an unbiased estimator of vo(h)2. If
bo =1, then N1 Zfil h(&8) f(£Y) is an unbiased and consistent estimator of Q1 o(h ® f) = Mo(hf).
Taking advantage of the fact that the particles at time ¢ are i.i.d. conditionally on F7, as we use
multinomial resampling for the particle filter, we can carry these simple observations to the sequential case
in two directions as we now detail. Define for any ¢ € N* the functional version of the backward weights:

—1(y)me(y, x) 2
BN (z,y) = —2=t . W(z,y) € X2 (4.6)
' S wiyme(€f_y, @)

Assume that t = 1 and define for any (k¢,k3) € [N]? the following random variables that involve the
backward weights

Q2

£6° (i, k3) = W > Lgwesl@h st ahneh e, @
kl2€[N]2
ng (k07k0 N Z ]]'kl kQBI (5117 )Wooh(gl )f( kl)v (48)
k12€[N]?

and also the following which involve the ancestors

3 KL\ g k2
€T (o k) = Gy D Lyt 4t g6 &), 4.9)
k%:QE[N]Q 0 040 017y
23 B ekt preht
EFT(RGKD) = D Lt VN BETFED), (4.10)

kl2e[N]?

Here, BS and GT correspond to backward sampling and genealogy tracing, respectively. Consider also
Lemma 4.1 which states a crucial identity involving the backward weights.

Lemma 4.1. Forallt € N*, (z,y) € X2,

8 ol Mudn) = 210,y ) @11)

and for any (ki—1,k:) € [N]? and h € F(X),
B8N (6 &) IF] = B[, g EE)|FY] = WEPMIRIES). @12)

The proof is postponed to Section A.2 in the appendix. Applying Lemma 4.1 to (4.7) and (4.9) and using
that given F2 the particles at t = 1 are i.i.d., we get

E[EES(k, k2)|FY] = B[EST (k. k2)| FY] = 932 (5, &0 )ME[h @ f1(&5°, €5°),
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and
B 5t 8| =B ¥ tyaqBlE )1
K32 EIN]? kb2 EN]?
= E[ > nké#ngE[EST<ké,k3>|f§]}
Ky 2 €N
=N(N—-1)Qo1(h® f).
Similarly,
E[EBS(kd, k2)|FY] = E[EST (kS k2)| FN] = 952 (65, £6° ) MR @ f1(€5°, €6°);
and

IE{ Z Ly o2& (kG kg) | = N(N = 1)Qe, 1 (h® f).
kg2e[N]?

Therefore, it is possible to derive unbiased estimators of Qg 1 (h® f) and Q., 1 (h® f) (butalso Q. 1 (A& f)
and Q(1,1),1(h®f)) with a single run of the particle filter in two different ways: either by using the backward
weights and (4.7)-(4.8), or by using directly the ancestry of the particles and (4.9)-(4.10). The asymptotic
variance estimators proposed in [4, 28, 32, 18] are all based on the latter solution, while in this paper we
instead focus on estimators based on the backward weights.

We now generalize the derivations performed in the case t = 1. Denote by A, and A ; the discrete
measures conditioned on F/¥ and defined by

t
Avi(kor) == N7H] Bskss ko), (4.13)
t
_ K,
Asi(kgaikoe) = N ] {ﬂkg_kgws'_l + Lizen Bs (k2 ki_l)} : (4.14)
s=1

Specific choices of kernels {3, }%_; are, for all (k, ) € [N]?,

¢ k
Wy _ 1M ,
BTk ) = Tpmar s Bk ) = (60,8 p

S_ Zj:l wsflms( 571755)
where here again GT stands for genealogy tracing and BS for backward sampling. When the conditional
distribution given F}N is ABS ® AB (resp. AfI ® Ag}) we write Egs|-|F] (resp. Egt[|F}]). Define
also for any b € B; the coalescence function:

:B;V( f? ﬁfl)v

Tps : (INIH)? 3 (kg Kos) = [ [{Tkizaz Toi=1 + Lia a2 Lo=0}, Vs € [0 : 2], (4.15)
£=0

for any h € F(X®2(t+1)) the random variable

1—bg
K t
0185 HNb ( ) N (1)%Eas [Loo(KLy, K2OW(ESS 507N, @)

N,GT

and denote by Qb . the counterpart where the expectation in the r.h.s. is Egr.

Remark 4.2. By (4.15), the random variable QN BS( h) remains defined for any b € B, with r > ¢ and
QN B3(h) = QN BS( h) where by, is the truncation of b to the t 4 1 first terms.



10 VARIANCE ESTIMATION FOR SMC ALGORITHMS

Finally, define for any h € F(X), using h; : zo.t — h(xt),
7]\] BS Z {QN BS h®2 QN BS(h®2)} (417)

Proposition 4.3. Lett € N. For any b € B; and any h € F(X®2(t+1)),
(UHHQNBS W FN,] = QL5 (922 M [h)) for all t € N*.
(ii) Q B (h) is an unbiased estimator of Qpt(h).

(iii) Ifh e F(Xx), V,]vaBS

By convention, we used in (i) the following notation:

(h) is an unbiased estimator of V35, (h).

gt 1M (A : (@0:t-1,20:4—1) Hg?—%(xtfl’w;fl)/h(fﬂo:t,xf);t)/\/l?t(xtflafﬂ;,l;dmt,dx;)-

The proof is provided in Section A.2 of the appendix. First, (ii) is a generalization of [28, Lemma 2]
which states that QN GT( h) is also an unbiased estimator Q4 (h). Its proof, see [28, Supplementary], is
based on a doubly conditional SMC argument [2] and while this scheme can be replicated to our estima-
tor based on backward weights, we rather propose an alternative and elementary proof that also extends
straightforwardly to GT and which is based on our previous discussion. From (4.4), (iii) is a direct conse-
quence of (ii) and provides an estimator of (4.4) based on a single particle run.

Theorem 4.4 deals with the convergence of QN BS(h) for bounded h. The convergence in Ly is stated
under (A2 : 4) which are standard and the 1/v N \/> convergence rate is obtained under the additional as-
sumption (A5). The equivalent result for QéVtGT is stated in [28] and is proved under (A2) alone. From
a technical point of view, this is possible because the use of indicators instead of backward weights allows
for cancellations that simplify the analysis significantly. Assumption (A4) enables us to show that the
additional terms that come with the use of backward weights go to zero.

(A3) Forallt > 0 and (z,2') € X2, my(2',x) > 0.

(Ad) There exists oy > 0 such that for all ¢ > 1, sup,, . ex me(2',z) < oy

(AS5) There exists 0 < o_ < oy suchthat forall ¢ > 1, inf, yex my(z’,z) > o_.

Assumption (Ab) is a strong assumption that is typically verified in models where the state space X is
compact. This assumption, together with (A4), are now classic and have been widely used to obtain
quantitative bounds in the SMC literature [19, 15, 27].

Theorem 4.4. Assume that (A2 : 4) hold. For anyt € N, b € B; and h € Fy(X®2(t+1),

hmHQN%()—QwMNQZO (4.18)

In addition, if (A5) holds the convergence rate is O(1/v/'N).

Remark 4.5. The dependence on the time horizon ¢ of the Ly bound is difficult to analyze and we did not
undertake it in the proof. Adapting the proofs of the existing analysis [12, 19] is not trivial as our smoothing
estimators are non standard. Furthermore, the time dependence of the GT counterpart has not been analyzed
neither, which renders the comparison with our approach even more difficult.

The proof can be found in Section A.4 of the appendix. As a straightforward consequence, the term by
term estimator (4.17) of the asymptotic variance is weakly consistent. It remains to detail how it can be
computed. The next section is devoted to the exact computation of the estimators Qé\f ’tB (h) and QN BS( h)
that appear in its expression.
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4.2. Computation for b = 0 and b = e;. We now derive practical expressions of Qév’ ’tB (h) and QN BS( h)
in the practical case where h : 2q.¢, ¥)., +— h(2s, 2}) € F(X®2(+1), Define, for any b € B; and any ¢ > 0,

TP (K}, K) = Bes I (Ko, Ko |7 Ky K- (4.19)
Then, by the tower property, QN BS( h) in (4.16) can be rewritten as
1—b,
0 HNb (521 WO S Tk one (420
N2 t ’ trSt)e .
k,e[N]?

Next, define for any ¢ € N and (k, £) € [N]?,
t

Se(k, €) ==Y T (k, 0). (4.21)

s=0

Plugging (4.20) in (4.17), VN BS( h) can be rewritten as

t—1. N 2
Vi = Y Y s - FHmwo b, @)
k,LE[N]?

The sequential computation of VJWV’;BS(h) relies on that of S;(k, ) in (4.21), and so on that of 7,°* (k, ¢) and
T2 (k, ). By the tower property, we obtain the following recursions for 7,°:

To(ky ) = Lo pg—0 + Li—t,bo=15

Tk 0) = Tige X jeqm BS(k,z‘) PN Gg) i b =0, (4.23)
T (ks 0) = Lime 3oy ey B2 (R OV T2 (0, ) if b, =1,
for all (k,¢) € [N]? and ¢t € N*. In particular, if b = 0,
TO,0) = Lape >, BE(k,1)BE(4,5) T2 (i, 9), (4.24)
i,jE€[N]?
and if b = e,
]lkyél Zz JEIN Bs(k7i> ( )7;? 1( ) t>s,
Tk 0) = { Lpms zwe B (k, )WY, T2, (i, ) t=s, (4.25)
T2 (k, 0) t<s.
Next, combining (4.21)-(4.25) we obtain the online update of S;:
Se(k,0) = T (k) + Lnze > BE(k,8)BE3 (L, 5)Si—1 (i, ), (4.26)
i,jE[N]?

for any (k,¢) € [N]? and t € N. We have shown that despite the sum over s that appears in (4.17) we
are still able to update (4.22) at a computational cost independent of the time horizon ¢ by propagating
S; and T,°. Note that the algorithm provided in [28, Algorithm 3, Supplementary] does not compute

V{Y\{;GT sequentially since it relies on the computation of each QN GT(h®2) and QN GT(h®2) from scratch
whenever a new observation is available. In Section B.3 of the supplementary material we show how it can
be computed online using the same ideas behind the previous derivations.

The computation of the estimates QN B5(h) and Vﬁ’fs(h) can benefit from parallelization by imple-

menting the updates (4.24)-(4.25) with matrix operations:

Tt =BT ,_187°" — Diag(BP°T,_185°T)  if b, =0,
Tb_D1ag(ﬁtBSTf WEN) if b =1.
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4.3. Variance estimators with reduced computational cost. In this section we derive a second estimator
that relies only on the update of T,0. Let h € Fy(X). By (3.6), VN (v (h) — % (h)) converges in

distribution; moreover, N (v (h) — %(h))2 is uniformly integrable, using for instance a Hoeffding type
inequality (see [16]). Hence NE[(v/ (h) — y:(h))?] converges to the asymptotic variance V35 (h). On the
other hand, using the lack of bias of 7" (h),

NE (37 () = 3(1)°] = N (E [ (10)2] = %(1)?) = N (B [ (0)?] = Qo.(hF?).

A natural estimator of this quantity is obtained by replacing both terms by their unbiased estimators ;" (h)?2
and Qé\f’tBs (h$?)

VI (h) = N (Y (h)? = Qo " (hE?))

t—1 .
NP - e X TG DMEE) ).

i,jE[N]?

4.27)

For the sake of completeness we also provide the estimator for the predictor and filter and defer their
justification to the Section B.2 of the supplementary material,

V) = e Y T — 0 HAED) — (), @.28)
i,jE[N]2

Vi (h) =(N‘N1;+ > WWIT ) {h(E) — oY W HAED) — oY ()} (429
i,j€[N]?

Remark 4.6. It is worthwhile to note the parallel between (4.28) and (3.11) (up to a negligible term depend-
ing on N); the indicator is replaced by the backward statistic 7;0(1, j) which is the conditional probability
of having two disjoint backward trajectories starting from &} and &7 .

The convergence of (4.27) stated in Theorem 4.7 stems from the following identity which also appears
in [28, 18] and dates back to [8]:

L1 (N—1\""
Z{ ]\/‘bS<N ) }Qﬁ’BS(him)
s=0

beB,

Kivp (e KE
Z Ib,t(Ké:thg:t)h(ft )h(ft )
beB,

=7, (1)*Egs

ftN] NP (0 = (1)

Theorem 4.7. Let (A2 : 4) hold. For any h € Fy(X), Vi\ngS(h) converges in probability to V35 (h).

The proof is in Section A.5 of the appendix. The main advantage of (4.27) w.r.t. (4.22) is the com-
putational cost. Indeed, remark that (4.27) only relies on the sequential update of 7,0, contrary to (4.22)
which also relies on that of 7,°. Consequently, the computational time of (4.27) is roughly twice lower. In
addition, experiments show that the difference in performance is negligible so (4.27) is to be preferred in
practice.

Remark 4.8. This alternative estimator does not invalidate the relevance of (4.17). Indeed, remember that
(4.17) is an unbiased estimator. Moreover, the asymptotic variance estimator of the FFBS algorithm that
we provide in Section 5.2 is a term by term estimator that can be updated online in a way similar to (4.17).
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4.4. A PaRIS variance estimator. Let us discuss how the computational cost of (4.27) and (4.22) can be
further reduced a la PaRIS [33, 21]. In [33], the forward only implementation of the FFBS algorithm is sped
up by replacing the backward statistics by a conditionally unbiased estimator obtained by sampling particle
indices according to the backward probabilities ﬂtBS through rejection sampling. We therefore apply the
same idea here by letting 7.2 := 7 and replacing 7,* with

M
- ]]-k 74 -~ i 4 .
TPk, 0) = ]\26 Zﬁbfl(‘]k,tflv‘]é,tfl) if b =0,

=1
~ 1 .
TE(k,0) = “ZZWi TP Tiyg) i b =1,

where for any k& € [N], J,it]‘fl are i.i.d. samples according to B25(k,.). For h € F(X®2), the PaRIS
estimator of Qy ,(h) is, for any b € B,

t 1—bs
N s
Mh):{HNbS(N1> } Z TbZJ §t7§t) (4.31)
s=0 i,jE[N]?
and the PaRIS variance estimators are
(AN Z {04 (h®%) = QoM (h®?)}, (4.32)
v;V,;Mm) = N(% (h)* = Qg (h®?)), (4.33)

where M > 1 refers to the number of sampled indices. The computation of (4.27) and (4.33) is summarized
in Algorithm 1.

Algorithm 1 Update at step t 4+ 1 of the variance estimators (4.27) and (4.33) associated to ’ytlil (h)

Require: M, w : , t+1, 'TO and ; ( )
Compute ﬁtﬂ
if PaRIS then
for k € [1: N]do
Sample J; M N ~ B (k,.)
end for
for (k,¢) € [1: N]* do
Set T 1 (k, £) = Tnoze Yooty TO(JE 4o T3 1) /M
end for
else o
Compute T, Ho B3, Toﬁth’l.
Set 7'?“ =T — Dlag(’TtH).

end if
Compute Q = 7'O+1 o [h ( t+1) €N T > h is applied elementwise
return N/ (1)*{n}},(h)* — N* Zme[NP Q;;/(N —1)"2}, T

We are able to reduce the time complexity of computing 7,” to O(M N?). The key feature of the PaRIS
approach is that M does not necessarily need to be large (see [33, Section 3.1] for a discussion on this
matter). We impose M > 1 because then in the case b = 0, which is the case we are the most interested
in, the support of QN Bs( h) is made of N2M'*+! terms whereas when M = 1 it is only N2. We show
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empirically in our experiments that setting M = 3 is sufficient to provide good results for the asymptotic
variance estimation.

While it is not needed to obtain a O(M N?) time complexity, the indices J. ,}%1 can be sampled using
an accept-reject procedure with the weights W} as proposals if the transition densities m; are upper
bounded. This approach does not require the computation of the normalizing constant of the backward
weights (4.6). The computational time is then random but if the transition kernels are strongly mixing it
can be provably further reduced [15]. Theorem 4.9 is concerned with the convergence of éév t’M (h) for any
bounded h and for any fixed M > 1. Its proof bears some similarity with that of Theorem 4.4 with the
exception that the additional sampling introduces non trivial terms that need to be handled carefully. As
a straightforward consequence, we obtain the convergence in probability of V,JX’tM(h) for any h € Fy(X).
The weak consistency of (4.33) in Theorem 4.10 is however less straightforward than that of Theorem 4.7
and relies on the insight that the identity (4.30) still holds when Q{X t’BS are replaced with their PaRIS
versions. The proofs are provided respectively in Section A.6 and A.7 of the appendix.

Theorem 4.9. Assume that (A2 : 4) hold. For anyt € N, b € By, M > 1 and h € F,(X®?),
19 (1) = Qualh) 2 = 0. (434)

lim
N—o0
In addition, if (A5) holds the convergence rate is O(1/v/N).

Theorem 4.10. Let (A2:4) hold. Forallt € N, M > 1 and h € Fy(X), ny\f’tM(h) converges in
probability to Vift(h) when N goes to infinity.
5. APPLICATION TO THE FFBS

In this section, we derive an estimator for the asymptotic variance of the Forward Filtering Backward
Smoothing algorithm. We start by giving a short presentation of the FFBS algorithm and we next derive an
estimator of the asymptotic variance for additive functionals.

5.1. FFBS algorithm. The FFBS algorithm aims at solving the well known degeneracy problem associated
with the particle filter of Section 3.2 when it is used for approximating smoothing distributions. It relies on
the following backward decomposition of the joint smoothing distribution:

Bo:¢1¢(h) :/h(l“o:t)cﬁt(dxt)Tt(xt,dl‘o:t—1)7 (5.1)

where T is the backward transition kernel from (X, X) to (X, X®*): T := Id and for ¢ > 0,
Tt ::B¢t—1 ®®B¢0
and B, is the backward kernel defined by

o Jmgsi(zs, 2s41)La(zs)ds(das)
By, (zs41,4) 1= PN E AT

Denote by T the particle approximation of T; where each backward kernel By, is replaced by plugging
in the particle approximation of the filter. This yields forany A € X and 25,1 € X,

s VAGX,V.’ES+1 e X.

B(];]S(:L'S_H,A) : 1A(fé)~

O (Mst1(., Tst1)) SN wima (8 we)

Plugging this approximation and that of the filtering distribution in (5.1) yields

_ Imen(@sze)La(e)o (dey) i wim 1 (€L, 2o11)

N

N
(b(])VT’fT;FBS(h) = Z e Z K15(2-0:15)}7’(5(1')07 Tty tit)7 (52)

io=1 tg=1
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where Ay (ig.) :== Wit Ht L BB (i, i5_1). In the following, we write ¢} 4| for qbévtlFtFBS and if A is such
that b : wo. = h(zse) with0 < s < £ < t, we will instead write ¢ th( ).

The theoretical properties of the FFBS are well understood in both the asymptotic regimes of N and ¢
[15,10, 11, 19, 33, 16]. In particular, a Central Limit Theorem with an explicit expression of the asymptotic
variance is established for any h € F,(X®t*1) under (A2) in [15, Theorem 8],

VN (680 (h) = do.e(h)) = N (0, VERES (R)), (5.3)
where
FFBS : Ns (Gs,t [gt{h - ¢0:t\t(h)}}2)
Vi) = 3 S ) o4

and G ; is the kernel that integrates 1 forward and backward starting from z, i.e.

Gs,t[h] (xs) = Ts [Qs+1:t[hu (xs) = /h(xO:t)Ts(xsa de:s—l)Qs+l:t(ms; dxs—&-l:t)»

forany s € [0: t] and z, € X.

Unlike the asymptotic variance of filtering algorithms, no estimator of (5.4) exists in the literature,
even though the FFBS and its variants are of significant importance in marginal smoothing and parameter
estimation in HMMs [24]. In this section, we bridge this gap by providing an online estimator for additive
functionals h of the form

ho:t(o:t) Z hs(xs, wet1), (5.5)
s=0
where for s € [0 : ¢ — 1], we assume that h, is bounded. For such functionals, the FFBS can be computed
online with a O(N?) time complexity per tlme step, i.e. whenever a new observation is processed. For
0 < s <r <t we write hs_r(x”) Z@ s hg(l‘g, x¢+1). Expectations of functionals of the form (5.5)
include marginal smoothing, pairwise marginal smoothing and the E-step of the Expectation Maximization
algorithm.
Before we derive our estimator, let us first recall why the FFBS can be indeed computed online in this
case. For more details on the forward only implementation of the FFBS and its variants we refer the reader
to [16, 33]. For any ¢ > 0 and any additive functional hg.,,

T [hot)(ze) = / {ilo:t—1($0:t—1) + ilt—1(33t—1,l‘t)} By, ,(zy,dzi—1)Ti—1(xi—1,dz0:4—2)

=By, _, [Tt—l[ﬁo:t—l] + Bt—1(~79€t)] (z¢).
Then, plugging in the particle approximations, we obtain the following recursion

N

wi me(El 1, xy)
T [hoa)(21) = Y <5 (v ) N o )+ e}, G6)
i=1 ZJ 1 Wi 1mt(5t 1> Tt)
and then ¢y, (ho:t) = SN WITNho.](€F). Therefore, TN [ho.] needs only to be estimated at the
particle locations and smoothing estimates for additive functionals can be computed with the forward pass
and has O(NN?) complexity per time step.

5.2. Asymptotic variance estimator. From now on we will assume that hg.; satisfies (5.5). Our estimator
is based on the following alternative expression of the asymptotic variance (5.4)

i 'Y(‘;(]-)Vs (Gs,t[gt{hO:t - ¢0:t|t(h0:t)}]2)
Voo (h) = Z:% S (1) : 5.7)
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which is deduced using the definitions given in Section 3. This expression is motivated by Proposition 5.1
in which we express the numerators that appear in (5.7) in terms of expectations with respect to Q. ;. The
proof is given in Section A.3 of the appendix.

Proposition 5.1. For any s € [0 : t] and any additive functional ho.; € F(X®tH1),
¥s(1)7s (Gs,t[hO:t]Q) = Qes,t( [Ts [ilo;s] + ils:t} ®2). (5.8)

By Theorem 4.4, for any additive functional hq.; as in (5.5), we have that QN BS([ s[iLO:s] + ﬁs;t]@) is

a consistent estimator of Q._ ([T [hO:s] + hs:t]®2), but T';s[ho.s] is intractable and we only have access to
its particle approximation T2 [h.,]. Our proposed estimator of the asymptotic variance (5.3) is then

VN BS T QN B3 ( [gt{Tév[iLOs] + iLs:t - (b(])\;[ﬂt(hO:t)}] ®2>

0:t7|t (ht) = Z = 2 y

5—0 ’Yﬁ-l (1)
where we have replaced ¢. t|t(ht) by its FFBS estimator. Remark that Theorem 4.4 cannot be applied to
QNV:BS ([gefTY [ho:s] + ﬁs;t] ) because its proof relies on the fact that the function & integrated by QN BS

es,t
does not depend on the particles.

Theorem 5.2 proved in Section A.8 of the supplementary material shows that weak consistency still holds
under the assumptions of Theorem 4.4. The proof proceeds in three steps. We first establish that for all
s > 0 and additive functional ho., T [ho.s](xs) converges P-a.s. to Ty [ho.s](xs) for any 2, € X. Then,
we use it to show that at ¢ = s, the distance in Ly between Q285 ([T [ho.s]c, + BS} @ [T [ fo:s)ds + fs])
and the "idealized" consistent estimator QZ’ES ( [Ts [ho:s]es + Bé} ® [Ts [fo:s]ds + fs] ), goes to 0. Finally,
we extend the result to ¢ > s by induction, similarly to Theorem 4.4.

(5.9)

Theorem 5.2. Assume that (A2 : 4) hold. Foranyt € N, s € [0 : t], (ha, forr) € Fp(XST5H1)2
(ct,dy) € Fy(X)? and additive functionnals (ho.s, fo.s) (5.5),

hm H QN BS([TéV[hOIS]Ct + ﬁs;t] ® [Tév[fOIS]dt + fs:t])
- Qes,t([Ts[hO:s]ct + ils:t] 0y [Ts[f[):s]dt + fs:t])HQ = 07 (510)
and for any additive functional (5.5), Vo t|t(h0:t) converges in probability to Vg;ﬂ]fs(ho:t).

5.3. Algorithm for marginal smoothing. We now provide an algorithm for the case hy : xo.t — he(z¢)
known as the marginal smoothing problem For such functions (5.9) is defined for ¢ > ¢ and simplifies to

VP (he) = { Z QMBS ([gefhe — o, (h)}] %)
t+1 (5.11)

N, BS ®2
b3 @ (- |
s=0¢+1
When ¢ = t we recover the term by term estimator of the filter which is consistent with the fact that
qbivlt(h) = ¢ (h). Using the bilinearity of QN BS yields
Vili (he) = Ri; = 01, (he) Ra,o + 031, (he)* B, (5.12)
where R, := 3" _ 02"%(g ®2) and

Rb, =30 0N (lg:hd®?) + 300 —ei, QNS (g, TN )] ),
R2, ={Yi 0B (ghe® g0) + Qes - <gt ® gihe)}
+{ Zs +1 Qe ¢ (gtTﬁV[hz] ® gt) + QZ’ES(% @ ge TN [he]) }-
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Mirroring (4.25), define forany t € N, n € [0 : ¢] and f, : xo.t, x4 — f(zn,2),) the random variable
Tl (K K2) 1= B[l (B, K2 fa(€h 66| FY 1, 1Y KCE) (5.13)

1 2 1 2
and also write S}, (K}, K?) = S,(K}, K})hP* (&, €7, S2,(K} K?) = Si(K} KP)hF2 (&, &)
and for any ¢t > /,

4 t
Sta(KE KD =Y TE K, KD + ) T [T h] **) (K[ K7,
s=0 s=0+1

S? (K}, K}) ZTE WK}, K2) + Z T [TV [h) %) (K}, K2),
s=0 s=/¢+1

where for any fo, fi7% : x¢,2) — fo(xe) + fo(x)) and S is defined in (4.21). Applying the tower
property we get that

N Y i fal (o - -
Va0 =N (§o7) X WIN(SLG) — oS0 0) + 0050
,j€[N]?
The quantities S; , , |, S7,,, may be updated online using the following recursions which are again obtained
by applying the tower property
Ste1(i9) = T (1 9) T [hed (€110 TR el (€11)
tlizg Y BEEMBERG S (mn), (5.14)

m,n€[N]?

and

Sé t+1(Z j) = 7?3? (2% {Tt-',-l hé](ftﬂ) + Tt+1[h€](§g+1)}

+ligy Y BER(Lm)BE (G.n)SE, (m,m). (5.15)
m,ne[N]?

The updates of S, (i,7) and of S7, (i, j) are thus similiar to that of S; in (4.26). The computation of
the variance estimator is described in Algorithm 2.

Algorithm 2 Update at step ¢ + 1 of the variance estimator for marginal smoothing
Require: W; Y, %:N,ﬁthlvTﬁﬂhé]aT?aSz}tvsz?w‘lsﬁtﬂ(hf)
Compute Tfrll = 5:‘53+17-0Wt7 7-?4-1 t+17-0ﬁt+1 > §t+1 = IBP-ElstﬁEElT
Set Tfff = Dlag(TﬁtH) 7’?+1 = 77’t+1 - Dlag(Tt+1)’ Si41 = §t+1 D1ag(St+1) + 7; h
foric {1,2} do
Compute Se A1 T ﬁtB—ElSe tBP—ElT :
Set Sj .4, = Sy, — Diag(S,,)
end for
Set S@ R Sz 41 + T:rf [ t+1[h€]Tt+1[hl]T]
Set S7 1 — SZ,t+1 + Te [ t1[he] + Toyalhe] ']
Set Sf7t+1 = Sl},t-&-l - ¢é\|ft+1(hf)sl?,t+1 + ¢é\\]t+1(h€)25t+1
return — N2 /(N — 1)"1 37, .y WS e1(6,5), T Sit1Sts1s St
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6. NUMERICAL SIMULATIONS

We now demonstrate our estimators on particle filtering and smoothing examples in HMMs (see Ex.
3.1). We assume in this section that X = Y = R and that the dominating measure is the Lebesgue measure.
The model considered is the stochastic volatility model with, for all n > 1,

Xn+1 = @Xn + UUn+1 and Yn = 66Xp(Xn/2)Vn, (61)

with (p, 8,0) = (.975,.641,.165), {Up tnen and {V, }nen are two sequences of independent standard
Gaussian noises and U,, is independent of V;,, for all (n, m) € N2. The state process { X, },ex is initialized
with a Gaussian distribution with zero mean and variance o2 /(1—?). These are the exact values and initial-
ization used in [32]. The assumptions on the model under which [32] conduct their theoretical analysis and
(A1 : 4) are satisfied for this model. All the simulations are run on GPU and the implementations using ma-
trix operations are available at https://github.com/yazidjanati/asymptoticvariance.

6.1. Asymptotic variance of the predictor. We are interested in the estimation of the asymptotic variance
of the predictor n}¥ (Id) at each time step t. The estimator is given in Section B.2 of the appendix. We use
synthetic datasets sampled from (6.1). The real asymptotic variances are intractable and we estimate them
by repeating independently and a thousand times the computation of each predictor mean 7, (Id) with
N = 10000 and then multiplying the sample variance by N.

We first investigate how the three variance estimators based on backward sampling V,;

—=N,B
Vot behave in terms of computational time, bias and variance. The PaRIS estimator is used with M =3

without rejection sampling. For this first experiment, we sampled 750 observations from (6.1) and ran 50
particle filters with N = 3000 from which we obtained 50 replicates of each asymptotic variance estimate.
The results are reported in Figure 1. The three estimators exhibit approximately the same variance but the

term by term version becomes slightly more biased at ¢ increases. Strikingly, the PaRIS estimator VN’M
N,BS

N,BS VNAI and

behaves similarly to V, ;= with a much lower computational time and complexity as can be seen on the
left plot of Figure 6 in the supplementary material.

We now compare fo ] M with M = 3 to [4, 28, 32] on two different observation records of different
length. For the lag size parameter A, we found that A = 20 has the best bias-variance trade-off by com-
paring the obtained fixed lag estimates with the crude asymptotic variance estimator. Note that in realistic
situations choosing the right )\ is non trivial (besides the strong mixing case, as argued in [32]) and for this
reason we conducted the experiments with two additional lag values, A € {100, 200}. For moderately long
observation records (¢ € [750]) and with N = 3000, Vf/\f M compares favorably in terms of bias-variance
trade-off with the best lagged estimator and even has similar computational time on GPU. The results are
reported in Figure 2. The five different estimators are computed with the same particle cloud and replicated
50 times. As expected, when the lag is increased the fixed lag estimates exhibit more variance because
of the particle degeneracy. In the extreme case where the lag is set to 750 (CLE) bias and variance both
increase significantly, as showcased in the fifth plot.

For the longer time horizon ¢ € [3000] we set N = 5000 and picked three time steps in order to
monitor the bias and variance closely, see Figure 3. The variance of fo ;M remains steady while the bias
increases gradually but slowly. This is attributed to the fact that our estimator is a ratio of two estimators
with increasing bias and variance. Nonetheless, our estimator remains competitive with the best fixed lag
estimator. Doubling the number of particles decreases both bias and variance, as highlighted by the right
plot. The computational cost of V is approximately twice larger than that of the genealogy tracing
estimators when N = 5000 as shown in Figure 6 in the supplementary material. However, we are able to
maintain a small variance and bias without having to tune any other parameter besides the sample size. In
more complicated models or realistic scenarios, we do not know in advance which lag size is suitable and
using an inappropriate lag might yield poor estimates. We further investigate the stability of our estimator
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FIGURE 1. Long-term behavior of VTJZY ;BS (top), fo gM with M = 3 (middle) and V%BS

(bottom). The black dashed line is the asymptotic variance estimated using brute force.
The number of particles is set to N = 2000.

with respect to ¢ by comparing

D)= Y TOGH/NIN-1), DW= 3 Ty g /N(N-1),

i,JE€[N]? i,jE[N]?
which are central in the expression of the variance estimators (see Remark 4.6). We also compare E°(t) :=
| (V,]X,;BS (Id)/vee(1d))—1 ] and ET (t) which is defined in an analogous way. For the CLE (3.11), although
it is expected to collapse to 0 after O(N) timesteps following [25], the estimator starts to exhibit high bias
and variance much before as the set of time 0 ancestors depletes at a fast rate. This is illustrated on the left
plot of Figure 4 where we fix [V to 1000 and vary ¢ between 0 and 3000. We see that D%,T(t) decreases
much faster than D8 (t) and this in turn translates into longer stability for our estimator as can be seen on
the right plot of the same figure.

6.2. Asymptotic variance of the smoother. Here we are interested in the estimation of the asymptotic
variance associated to the FFBS estimates of the marginal means ¢, (Id) with £ fixed and ¢ > £ varying
using Algorithm 2. For this example we sampled four different observation records of length 160 each
and £ is set to 100. The real asymptotic variances of each ¢, (Id) are intractable and they are estimated
using 1000 independent replicates of the marginal means gbé\( ,(Id) with N = 10000. We then multiply the
obtained sample variance by N. The results are reported in Figure 5. As expected, the crude estimates of
the asymptotic variances all stagnate after some time ¢ due to the incoming observations becoming less and
less informative as ¢ grows and thus no longer influencing the value of ¢y, (Id).

The estimator proposed in 5.3 captures well the behavior of the asymptotic variance with little variance
and also stagnates at the same time. We observed in our experiments that, in comparison with the variance
estimators of filtering algorithms, for this estimator to provide good performance more samples are required
for shorter time horizons. Nonetheless, the increased computational time incurred by the increase of the
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Asymptotic variances
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timesteps

FIGURE 2. Long-term behavior of the asymptotic variance estimators up to ¢ = 750.
From top to bottom: PaRIS version of V,ZX gBS with M = 3, lagged estimators with (in
order) A € {20,100,200,750}. The case A = 750 corresponds to the CLE estimator.
For each estimator, the blurred colored lines represent each run out of fifty runs and
solid colored lines correspond to their average. The black dashed line is the asymptotic
variance obtained by brute force. The number of particles [V is set to 2000.
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FIGURE 3. Long-term behavior of the asymptotic variance estimates up to ¢ = 3000.
White dots represent the average of the asymptotic variance estimates of each algorithm.
The dashed black lines correspond to the asymptotic variances estimated by brute force.
N is set to 5000 on the left boxplot and 10000 on the right one. The boxplots at each time
step from left to right are: Vix ;M with M = 3 and then the lagged CLEs with A €
{20,100, 200, 3000}.
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FIGURE 4. Dependency on the time ¢ of the variance estimators. The right plot displays
the empirical error E (t) for both BS and GT with N fixed to 1000. We display the
median and the interquartile range over 30 runs. The left plot displays the median of
Dy (t) associated with the BS and GT variance estimators used on the right plot.
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FIGURE 5. Asymptotic variance estimates for four different observation records of the
marginal mean ¢%o| ,(Id) where ¢ € [100, 160]. The blurred brown lines on the left plot
represent 50 runs and the solid brown line their average. The black dashed line is the
crude variance estimator. The number of particles N is set to 5000.

number of particles is to be compared with the time it takes to compute the crude variance estimates up to
t = 160, which is about 1 hour when running on GPU. In comparison, one run of our estimator takes 3
minutes.
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APPENDIX A. PROOFS

In this section we provide the proofs of Propositions 4.3, 5.1 and Theorems 4.4, 4.9, 4.10 and 5.2. The
various Propositions and Lemmata used are stated and proved in Section A.9-A.10. Other intermediary
technical results are provided in Section C. Equations, lemmata, propositions and theorems referred to
without the prefix S are given in the main text.

A.l1. Preliminaries. In order to simplify the notations, in what follows we write
N,BS 12,1 ;2 ko eko
Q (h) = Z Ab,t (Ko:¢> ko) h(ols" s €oirt ),
HFeiNEe

where
1—b,
Ro (kb k) HNb (F27) o OPha BB (R, SLD
By (4.13),
AP (kowe) = B2 (ky s ki )ATS 1 (K1),
k7
Ag,st(ké:t; k%:t) = {st(kf, ktz—1)]1k2;ék1 + Wt—l ]lk2=k1}AZB,§t—1(ké:t—1; k%:t—l)'

and by (3.4) we have that 7Y (1) = v, (1) N ~1€,_1, hence, using (4.16) QN BS( h) becomes

VB ()= S A (ks k3RS €h5) (S1.2)

KEZEIN]20+D
2
<12 1 2 Qt 1 1 7.1
= E Ab,t—l(ko:t—lvko:t 1 E 5 kkat—l)
kg7 €[N]2t kl2e[N

N
{ t (k?,k? 1)1k1;£k2 b= O+NWt 1 ]]'ktl—ktz,bt—1:| (5015 ’ Ot )

X

N -1
A.2. Proof of Proposition 4.3.

Proof of Lemma 4.1. By (A1), for any (z,y) € X2,

N
B (@, ) o My(dz) = BN (,y) > Wi My(§)_,, dx)

i=1
gi—1(y)me(y, @
= Wt 1M ft 1, z)v(dr)
Zivlwt 1mf(§t L );
Gt 1( )
- Qt | Mt(y,dl')

Consequently, for any (k}_;,k}) € X? and h € F(X),
B[ (€4 €8I FY] = [ B (2,805 ()0l Mi(da)

/97 wt 1 ()M ( tt11ad33)
i VA (Sr
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On the other hand,
o i i ke kio1
E[1,, e h(E)|FN] = / S L Wi M€y, da)h(e) = W MR (615,
i=1
O
Proof of Proposition 4.3. For the proof of i), note that conditionally on F/ |, ¢V are i.i.d. with distribu-
tion ¥ ; My, hence,
E Z lk};ékfﬂw? (kgvktl 1) (k?aktz 1)h (fOt ) Ot )]:tNl
ki2e[N]?
koo okoy k; k2
= > / Ly B0 (i K 0) BE° (k7 K )h(€oy" s €08 )1 1 Me (g™ )y My (g™,
k:l 26 N]2
and by (4.11) in Lemma 4.1,
E Z lk,};ékfﬁ? (ktlvktl 1) (kfaktz 1)h (fOt ) Ot )]:tNl
k}2e[N]?
N(N — 1) t k2't—
=T 02 (9 22 MR I)( oot 1580 )s (51.3)
t—1

where

71Mt0[h] : (intflvxé):t—l) = g(tgfl(mtflvxé—l)/h(xO:tvxé):t)Mt(xt*hdmt)Mt(xé—lvdx;)'
On the other hand, by (4.11) in Lemma 4.1,

E| > LBk ki) ttllh’(gOt’Of)

N
‘Ftl
kl2e[N]?

Z /]lkl k2ﬂ kflkal 1) ttllh(EOt ) Ot )¢t 1Mt(d§t ) kl(dff?)

ki2elN

Z L= k2wt 1‘% 1 / (50t ) Ot )Mt(gttlladgt )s (dftk?)

-1 k12 €[N]2
N Kl k2.,
= —— (9P M) (&5 &) (S1.4)
Qtfl

where

gt 1M [A] : (xO:t—17z6:t—1) '_>9321(3315—1’12—1)/h(fo:t,zé:t)Mt(l’t—ladxt)ért(dxi)-
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If by = 0, since ;_; and K;,’fq(ké:tfp k2., ,) are F}Y | measurable for any (k{,_1, k3, 1) € [N]*, by
(S1.2) and (S1.3),

1,2 02
[QN BS )“7:75]\—]1] = o 22.5:[1\/] Ab,t—l(k(l):t—lv k?g:t—l)N(Nti_ll)

xﬂ«:ﬂ[ ST Uy BB (KL KL ) BBS (2, K2 (el €

KEZEIN]?

—1,2 k2.,
Z Ab,tfl(ké:tflﬂkg:tfl)(gt 1 [ D( 00tt117 0e1)
kgiz 1 €[N

= QéVtle (gt IMO[ ])
If b, = 1, again by (S1.2) and (S1.4),

1,2 02,
Z Ab,tfl(k(l):tfh k%:tfl)tT
kg €[N]?

{QNBS )‘}-t]\—fl}

1 1 t 1 ko.t, kg:t
[ E ]1k1 k25t ktﬂkt 1) t—1 h( 0:t » O:t)
k:l 26 N]2

fgvl]

—1, kg1 ko
= Z Ab,t—l(kO:t—lvkO:t—l)(gz(:g)flMtl[hD( 01 5 Soit1)
kL2 €[N]2

= QéVtle(gt 1M [h ])

For the proof of ii), we proceed by induction. Let ¢ = 0 and h € F(X®?). If by = 0, since &4V 54 Mo,

1 . .
{QNBS( )} =K m Z Lixh(£6,€0)
i,j€[N]?
Z LizjMalh] = Mg[h] = Qpo(h).
HG[N]2

Ifby =1,

N
{QNBS } l Z §0a§o] = M[h] = Qpo(h).

Lett € N* and h € F(X®2(+1) Assume that E[Qé\ffsl(f)] = Qps—1(f) forany b € B, and f €
F(X®2t). By (i) in Proposition 4.3 and the tower property

E[Q)*m)] =B [E[Q) | FY.]| = E [N (972 M Tn]) |
and g% MY [h] € F(X®2!). Thus, by the induction hypothesis and the definition of Qj, ;1 we get

E[Q)%°()] = E [N (23 MY )| = Qoaer (953 MY []) = Qua(h),

which completes the proof. The proof of iii) is a direct consequence of (4.4), (4.17) and ii). O
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A.3. Proof of Proposition 5.1. Let h.; be an additive functional (5.5). By definition, for s € [¢],

Gs,t(xsa hO:t) = / {BO:s(xO:s) + Bs:t(xs:t)}Ts(xsz de:s—l)Qs-{-l:t(msa d$s+l:t)

= [P0l + Fus () Qe o)
and then, setting H.; : @4, — Ts[ilo;s](xs) + ﬁs;t(xszt) we get
Vs (1)7s (G t[ho:t]?)
= s (1)7s (Qat1:t [T [ho:s] + Bs:t]g)

:/’701571(dxf);sfl)gsfl(xlsfl)/Qs+1:t[Hszt]((ES)Qs+lzt[Hs:t](-rs>’70:s(dx0:s)

= /’)/D:sfl(dxlo;sfl)gsfl(l{sfl)fYO:S(d-m():s)(sw5 (dx;)Qs+1:t[Hs:t](xs)Qerl:t[Hs:t](-7;‘/9)7
which establishes the result since by definition
Qes,t (de:tu dx(};t) = PYO:s(de:s)PYO:sfl(dxé);sfl)gsfl(xlsfl)éxs (dxls)

Qui1:t (s, dTsit) Qupre (w0, Al 1.y
If s = 0, then G ¢[ho.t)(20) = [ ho:t(20:4)Q1:t(x0, dz1.¢) and

Y0 ()70 (Gostho:e)?) = 70(Goulho:]?) = /Mo(dxo)let[hO:t}(%)Ql:t[ho:t](360)

- / Mo(d0)8s, (A Qut [hore) (@0) Qut o ()

= Qeo,t(h%%?)-
A.4. Proof of Theorem 4.4. Let m € N* and N > 2. Define
= {kY2m e [NPP™ B2 £ kY e [1:m]), (S1.5)
= {2 e [NPP™ B2 = k¥ e [1:m]}. (51.6)
Define also for any p € [2m)],
SP = {kY?™ ¢ [N]*™ : Card({k', K%, --- K> 1 k*™)) = p).
Then [N]?™ = | 2", SE, and

2m 2m 2m m
v= sy = |mrnsy, = | nsh, = | | nsy, (S1.7)
p=1 p=2 p=1 p=1

where | | means disjoint union. The first equality holds because the tuples in Z§* must contain at least two
different values and the second because tuples in Z{* contain at most m different values. The proof of
Theorem 4.4 is concerned with m = 2 and that of Proposition A.4 with m > 2. Example A.1 provides the
intersections for the case m = 2.

Example A.1. Choose m = 2 and N > 4. Then,
5 NSy = {k" e [N) 1 k' £ 12K # K (KK} = (k' k*} ),
T2NSE = {k¥ e [NJ*: kt # K2, k3 # B4 k3 e (Y B2} B ¢ (kY kDY),
U{k™ € [N]* kY #£ K2 k3 £ kY R ¢ (kY k2, kY e (kY k2D,
I3 NSy = {k"* € [N]* - k' £ K # B> £ k'),
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1)(N — 2) and Card(Z2 N S3) =

with Card(Z2 N 82) = 2N(N — 1), Card(Z2 N %) = 4N(N —

N(N —1)(N —2)(N — 3). As for 7%,
INSy = {k* € [N]* : k' = k* = k* = k*},

TPNS: = {k" c [N* k' = k% k3 = kY kY # K3

with Card(Zf N S3) = N and Card(Z? N S2) = N(N — 1).
Proof of Theorem 4.4. We proceed by induction. Throughout the proof we assume that N > 4 for the sake
of simplicity. For t = 0 and b = 0, using (4.23) and (4.20),
Qoy (M =NT'N-=17" Y Ligh(&.8),
i,jE[N]?
and Qo o(h) = M®2(h).
Q037 () = Qoo(m]l;

1 i ¢J
-F {N2(N1)2 Z Ligjirzjr { P (€05 €5) —
1,5,17 5/ €[N]4

To + 7o

T N2(N—1)2

Qo.0(h) }{h(&} &) — Qoo(h)}

where

n=E| > {h&.&) ~ Qo)}HAE.&) - Qooh)}| .

Li,d,i' .5’ €IZNS3 ]

ST {MELE) — Qoo HME &) — Qoo(h)}]

i,j,i’,j/€I2ﬂS§

7o=E

where Z2 N Sy is defined in (S1.5), (S1.7) and explicited in Example A.1, and I2NSE = (12NSHU(TEN
j') € I3 N S, then &}, {O, 50 and fo are i.i.d. Therefore,

S3). If (4, 4,4
Qo,o(h)}} =K [{h(éé@é) - Qo,o(h)}}2 =0,

E [{n(&,€) - Qoo }{n(&i . &) -
and 79 = 0. Hence, using the fact that because & is bounded, |h — Qo 0(h)|lw < 2||h|lco and that
—1)(N —2) 4+ 2N (N — 1) by Example A.1, we get
__To
NN —1)?

4|[R|13
< 0 1
= N2(N —1)2 Z 7

i.4,1',5' €I2NSS

_ ARIE[AN(N = 1)(N = 2) + 2N(N = 1)] -1
B N2(N —1)2 = oW,

Card(Z3 N S%) = AN (N
19655 (h) — Qoo (M]3

which completes the proof for b = 0. For b = 1,

N
QYF(h) = Quo(h) = N1 3" h(€h &) ~ [ iz o)Ma(do),
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and since h is bounded,

2 _ _
1215 (h) — Qua(h)||; = N ™'V, [b(€,€)] = O(N ),

where Vy, is the variance under Mo. This completes the proof for ¢ = 0. Let ¢ > 0, and assume now that

(4.18) holds at time ¢t — 1. Consider the following decomposition

Q01 (h) = Qo e(h) = Q53 (h) — B[ Q% ()| F{¥\] + E[Q)5% ()| FY4 ] = Qua(h),
which, by Proposition 4.3, becomes
Qi (h) = Que(h) = Q1% (k) — Q% (2 My [h)
+ QS PAMY ) = Qe (975 MG B]). - (SLB)
By the induction hypothesis, since h is bounded and also g;—1 by (A2), we have
Jim | Q%S (92 MY [h]) = Qo (g M) =
hence, by Minkowski’s inequality it remains to prove that

Jim HQN B (h) — QMBS (92 MU' [k ])H2 —0. (S1.9)
By Proposition 4.3, E[QN B(n)|FN,] = Q{,Vtle(gt 2 M [n]) and
E[Q;;%°(h) Q0% (972 My [1])] = E[Qp%5 (9822 My [h])?].

hence,

19055 () — QP (e My ()| = (|20 W5 — Q5 (o My ()5
Consequently, by Proposition A.8, if by = 0,

| e - @S ameinn| (5110

(N -2)(V NBS( o,
< <N(N—1)_1) Hth (924 MR ])H2
N-=2 4 Q-1 [ (N8BS N,BS (oN
+ Gl [ vtane| M QS ) 8 DY (3 (o) 1)

+ OB (M@ m(,2) Q% (BN (,) @ 1) + Q2 (me(, 2) ® 1)

x QP (1@ BN (x,.) + QB (L@ my(,2)) Q% (1 @ BY (x, »}
2
+Ggo|h|go/y®2(dy,dx)EL\78\tf__ll)
x {Qﬁsﬂmt( ) ® my( ) QS (8 () @ BY (v..))

+ O mu (L x) @ () Qs (BN (0. ) @ BN (,.)) H
andif b, =1,

N -1

2
|oiE=m - o, < (5 1) 19X Mg

+ G B2 O el 0 DO () 0 1) wiaw). SL1D
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By Proposition A.4, the first term in the r.h.s. of (S1.10) and (S1.11) is O(N~!) in both cases because
|92 M (R |.. < GZ|hloe < c0. We now show that the remaining terms go to zero when N goes to
infinity. Define for any z € X and N € N*,

Q
By(z) = —— QéVtBSi (M) @1) Q25 (1@ BN (x,.)),
By (x) = Qifﬁi (me(,2) ©1) Q%5 (1@ 1), (51.12)
B(z) = Qps1 (my(,2) ©1) Qpy_1(1®1).
We apply Theorem C.1 with fy = E[By], gv = E[By], g = B and f = 0. To establish i), note that
E[By(z)] < GoE[By(z)] forall N € N* and z € X, since for all (z,i) € X x [N], 8N (z,&_;) < 1
and N~1Q; 1 < G . Then, to prove ii), for all (h, f) € Fy(X®*)2, by the Cauchy-Schwarz inequality,
=[N E MmN () — Qe (i)
E [ (@M% = Qua() @55 ()] + E [|(@5%5() = oira () Quama (b))
< [N (1) = Quea ()|, | Q325 (D, + 120523 () = Que—a (5[] Qe—a (R

which goes to zero by the induction hypothesis, the fact that sup <y Hinisi fH

tion A.4 and |Qy ,—1(h)| < oo. Hence, for all z € X,

||2 < oo by Proposi-

Jim gy(@) =g(x) and lim E [Qﬁfﬁu ©1) } = Qi1 (1 1)2

— 00

Added to the fact that [ By (z)v(dz) = QéVtle(l ®1)2 and [ B(z)r(dz) = @y, 1(1 ® 1)2, we get by
applying Fubini’s theorem

lim [E [EN(Q;)} v(dz) = Jim E {ngfﬁ(l ®1) } = Q1 (1®1)2 = /E(x)u(dx).

N —o00
Then, for iii), first we have that E[By (2)3/2] < GZ*E[By (x)3/2] and

sup E[EN(x)g/Q] < ai/z sup E[Qévtle(l ®1)%],
NeN NeN

where the r.h.s. is finite by choosing m = 3 in Proposition A.4. The family of non negative random
variables { By ()} yen is then uniformly integrable for any z € X. Indeed, for any x € X, o € R* and
N N,
E [By(2)1gy(r)>a) < E[Bn(2)*?]/Va
< 01/26“;’42 ;u%E[QéVtle(l ®1)°]/Va,
€

hence lim supy ey E [By(2)1py (2)>a] = 0. On the other hand,
a— 00 -

Q%S (mu(,2) ®1) Q% (1® gemrmu(., )

By(x) = NoX 1 (ma(. 7)) ’
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and the induction hypothesis coupled with the fact that ¢1¥ ; (m,(., x)) N (me(., z)) with g1 (me(., ) >
0 by (A2 : 3) gives

Q7% (mu(,2) 1) Q0% (1 ® gemrmu(., )
O 1 (mu(., )

P Qpi—1 (M, 2) ®1) Qi1 (1@ gr—1mu(., x))
—> Gr—1(me(.,)) .

Hence, By (z) 50, and by uniform integrability, for any z € X

lim_fx () = lim E[By(x)] =0.

N—o0

Finally, by Theorem C.1 we deduce that

lim [ E[By(z)|v(dz) = /I&EHME[BN(x)]V(dx) =0. (51.13)

N—o0

The other similar terms are treated in the same way by adapting the definitions in (S1.12). As for the second
integral, define for any (z,y) € X2,

mmw:Nﬁl)@ﬁma>@ww»ﬁ%m<>®wm»

Then, using that

/%ﬁmwmwww»ﬁ%@<>®Wm»ww
< Q% (me(2) 1) Q5% (BN (2, @ 1),

together with Fubini’s theorem we obtain, using N > 4,

0< [ B[R]y (e dy) < 52 [E[By(@)]v(ao),
and by (S1.13) we get that

lim ]E[RN(m,y)]y®2(dx,dy) =0.

N—o00
The remaining term goes to zero by a similar reasoning. This completes the proof of (4.18).
For the convergence rate, by the strong mixing assumption we have that

GOOU+

——— V(z,y) € X, (S1.14)
o_Q_q

BN (z,y) <

and in the case b; = 0, we have for example that

[ Qi ) © DY (B (5, vt

GO
< 2 [ QN mu(.n) 0 1) QLS (1 u(d)
o__4

< Gooo—+

N,BS
= o_ Qt— th 1(1®1)
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and

[ QS ) () QS (5 (o) @ 67 (4.)) v s dy)
G% 0%
T o207,

N,BS
Qi (1@ 1)2

Thus, replacing in (i), we get

120555 (h) — Q85 (g2 M) |
N —-2)(N -3
- {( N(J\)f(_ 1) )_1] S =MD,

L 20, G2 |h2, [ 2(N —2) o+
N(N-1) o_N(N-1)
The case b; = 1 is handled similarly using (ii) which yields
H QN Bs leyvtle (Qt 1M
[N -1

o_

Dz

<

N
Both upper bounds are O(N ~!) by Proposition A.4. This concludes the proof.

10N )2

G% |h
—1} 1025 622 MEA 3 + Tl oes (1) 2

O

A.5. Proof of Theorem 4.7. The proof is a straightforward adaptation of the proof in [28, Theorem 1].

Let h € Fy(X). By (4.30),
t

NBS Z( ) NBS(h®2)+N <N]\_fl>t+1 ]QNBS(h@)Q)

e R e

beB:\{0,e0:+} s=0

t

Z {th h® Qo,t(hgw)} = f;,ot(h)a

s=0
where we have used that for any b € B, QN Bs(h®2) N Q4.+(h$?) by Theorem 4.4.
A.6. Proof of Theorem 4.9. Define for any ¢ € [N] and b € B,
G =0 (G  Uo({ o1 amenpz) Uo({AL1, &35)),

with géV = }"év . In the following, we write

t N 1-bs
Crvpr = {H I (N_l) }%fv (1)*/N™.
s=0

The intermediary results used in the next proof are given in Section A.10.

(S1.15)

(S1.16)

Proof of Theorem 4.9. Let h € F,(X®?2). We proceed again by induction. The case ¢ = 0 is a consequence
of Theorem 4.4 since Qé\’f(’) (h) = QN BS( h) for any b € By. Lett > 0. Similarly to Theorem 4.4 we make

use of the following decomposition:

QM (h) — Qua(h) = QpM (h) — Q)M (92 My [R])

+ @zj)\,ri—1(gt 2 MU (R]) — Qi1 (gBH Mb[R)).
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By Minkowski’s inequality and the induction hypothesis, it remains to prove that

Jim [ QY () = QY (g3 My )|, = 0. (S1.17)
By Lemma A.9, ]E[é,ﬂng(h)|gg\il] QéVtM(g M [h]) and

[QNM( )th 1(91: 1Mbt[ ])] [th 1(gt 1Mbt[ ])]
hence,
||Q QévtM(gf 1Mbt ||2 = ||QN M Hz - ||intMl (9:= 1Mbt ])||§
By Proposition A.10, if by = 0,
4
8w = | ¥ 7N%J@ﬁ%@wb}
p=2 k}4eI2nsy

N —2)(N
e M

+|h|§oZE[C%v,b,t ) T%k#k%ﬂkf,kﬂ]
p=2

kiteZ2nsSy

<

and
1925 (h) = QM (g2 ME ) |[3

(N~ 2)(NV - 3) )
TR
3
+|h|zoZE[C?V,b,t S T RTR D).
p=2

ky4eZgnsy
By Proposition A.12, (A2) and the fact that / is bounded, sup y ¢y HQb (9 2 M| ])H; < o0 and
_ (N=2)(N-3) 2
J\;E)noo( N(N —-1) L) Ieni gz mi ], =0,

and by (i) in Proposition A.11, the second term in the r.h.s. also goes to zero, which shows (S1.17) when
by =0.1If by = 1,

2
||QN BS )H; _ Z]E[C?V,b,t Z ﬁb(kg,kf)ﬁb(kf,k?)}
p=1 klteI?nSy

Hth (92 M TR H2+|hIZOE[C?v,b,t Yo THRLEDT (KL KD,

ki4eIins;

and H éévt (h) — QéVtM(g ./\/l [h]) Hz goes to zero similarly to the case by = 0 and by application of
Proposition A.11.
The convergence rate follows straightforwardly by Proposition A.11 since for p € {2, 3}

E[C%v,bﬁt )3 ﬁ%kbkf)ﬁ”(kf,kb]=O<N—1>,

kl4e12nsy
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and
E[CN S TR K| = o).
kyteZins]
O

A.7. Proof of Theorem 4.10. The proof boils down to showing a PaRIS version of the identity (4.30). Let
us first prove that for all t € N and (k}, k?) € [N]?,

S TE(kE k) = 1. (S1.18)

beB;

We proceed by induction. If £ = 0,

DTk k) = ez + Tygmiz = 1.
beBo

Let t > 0 and assume that (S1.18) holds at ¢ — 1 for all (k{_,,k? ;) € [N]2. By the induction hypothesis,

> TRk k)

beB;
M M N _
) Ml{nk#ksZﬁuJ@,m zs,t1>+1k:_kaZZWf-1T#’-1<ng,tw)}

beEB—1 i=1 n=1
=M Z{1k1¢k2 Z 7; 1 l;tl,tfﬂ li?,t 1)+ L= k2ZWt 1 Z 7?1 klt L )}
beBi_1 beBi—1
_]lkl k2M Zl+]lkl k‘2M ZZWt 1
n=11:=1

= Lz + lk%:k% =1

which proves (S1.18) at time ¢. Consequently, we have that for all h € Fj,(X)

t 1—bs
- N—1 1 2
> I~ <N) Ay e = Y HI S ot neneeld)
beB; s=0 beB: kl2€[N]2
k2 i~
S h(EOR(ET) S T )
kl 2¢[N)2 beB:

=M (1) un (h) =M (h)2

The convergence in probability is then obtained by mimicking the proof of Theorem 4.7 and using Theo-
rem 4.9.

A.8. Proof of Theorem 5.2. The proof of Theorem 5.2 requires the convergence of T [hg.s](2) to Ts[ho.s] ()
P-a.s. for any x € X.

Proposition A.2. For any s € N*, any © € X and additive functional hg.s (5.5),

T [howsl(2) =5 Talhoss](2)- (S1.19)
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Proof. Letx € X. Define

an :==n 1(9s 1{T hOs fe 1+ff 1})
by == 77571 (gsflmS('vx)) )
b:= nsfl(gsflms(wx))-

where f¥ | :y+— my(y,x) and
fg—l ‘Y= ms(ya (E) {Bs—l(ya (E) - Ts[hO:s](l')} .

Then, we have that ax /by = T [ho.s](2) — Ts[ho:s)(x). By (A4), (% 1, f* ) € Fy(X)? forany z € X
and

Ns—1 (gs—l{Ts—l[iLO:s—l]st_l + ff—ﬁ) =0

Hence, choosing f,_; = f* , and f,_; = f* , in Theorem C.2 (S3.1), there exists (d,d) € (R%)? such
that

P (lan| > €) < dexp(—dNe?) . (S1.20)
On the other hand, by choosing fs—; = f* ; and f,_; = 0, there exists (d’,d’) € (R* )? such that
P(|lbxy —b| > €) < d exp(—d' Neé?).

Finally, since |an/bn| < |TY [ho:s](2)| + |Tslho:s] (@) < 2|ho.s|oo P-as. and b > 0 by (A2 : 3), there
exist (s, ¢s) € (R%)? by Lemma C.3 such that

P(lan/bn| > €) (|TN ho.s](x) — Ts[h():s](x)| > e) < &g exp(—csNe?),
from which (S1.19) follows by applying the Borel-Cantelli Lemma. ]
Proposition A.3. For any s € N* and additive functional hg.s (5.5)
lim E [¢§[1MS {(Ti\’[ho:s} - TS[hO;S])4H —0. (S1.21)
N— 00

Proof. The proof is a straightforward application of [33, Lemma 17] (which dates back to [15]). We recall
it with its proof for the sake of completeness. Define for any z € X

4N($) = |TN [ho:s](x) — Ts[hO:s]($)|4¢i~v—1(ms(vx))v
An(z) = o) (ms(,2)),
A(.’E) = ¢5,1(m5(.,$))~

We apply Theorem C.1 with fy = E[An], gn = E[KN], f=0andg = A.
NMhos|(zs) < [ |hoss| (zo:s) TN (2, do:s—1) < [ho:s|o0, hence
E[An(2)] < 16]ho.s B [Aw (2)].
(i) We have that Ay (x) N%O A(x) for any z € X by (A4), (3.5) and by the dominated conver-
gence theorem  lim ]E[AN(Q:)} = A(z). On the other hand, [E[Ay(z)|v(dz) = E[¢) (1)],
Ik A(z)v(dz) = (;SS( ) and ]\llgnooE [¢)(1)] = ¢4(1) again by the dominated convergence theo-

rem. Hence

lim [ E[Ay(z)]v(dz) = ngnooE[gbgV(l)] = ¢,(1) = / A(z)v(dz). (S1.22)

N—oc0

(i) For any x4
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(iii) By Proposition A.2, (A4) and (3.5)

An(2) N%o 0,

and since A (x) < 16|hg.s|%, 0+ P-a.s., by the dominated convergence theorem we get A}im E[An(z)] =
—00
0.
Finally, by Theorem C.1

lim E[/AN(x)V(dx)] = NliinooE[qﬁév_lMs[(TiV[ho:s] *Ts[ho;s])ﬂ] (S1.23)

N—oc0

= / lim E[Ay(z)]v(dz) = 0.

N—o0
Proof of Theorem 5.2. We write
Hi-\,[t = Tév[hOZS]Ct + ﬁs:t; H37t = Ts[hO:s]dt + ils:t
Fé\,[t = Tév[fots]ct + fs:ta Fs7t = Ts[fO:s]dt + fs:t
We proceed by induction on ¢ > s with s fixed. By Theorem 4.4,
: N,BS _ 2 _
i QN (H @ Fu) — Qe (Hes @ ) [ =0,

Hence, by the triangle inequality it suffices to show that the difference with the "idealized" estimator goes
to 0, i.e.

2
lim [|QM8S (1Y, @ FY,) - QY B (H, @ F.)| =0. (S1.24)
Jim | QNES(HY, 0 FY,) - QN ES(H, @ F...)||
For any (ho.s, fo.s) (5.5) and (hs, fs) € IFb(X)Q, by (4.20)
|ovssuy, kY,) - QB (o F,.,) |
_ Ns+t1AN(1)2 . , , . .
v 3 AT ) (R - H( R
i,JE[N]? 2
_ NNy . ; _ . _
SNTD ]\77(1) T ()| |HE(EOFT(ED) — B s (E)Fs o (E])
i,jE[N]Q ( - ) 4 4

by Cauchy-Schwarz inequality. We now show sup y ¢y || V(N — 1) =5y (1)2 T2 (i, j) H4 is bounded for
all (i,7) € [N]2. We first show by induction that for any n € N, 7.2(i,j) < 1,.,. Forall (i,5) € [N]?,
TL(i,§) = 1;;, and for any n > 0, by (4.23)

TG, 5) =Liz; Y. BES(,k)BE(,OTL (K, 0)

k,Le[N]?

Slizy Y B kB, ) Lise
k,€[N]?

STy Y, BRR)BE() < Lig,
k,l€[N]?



VARIANCE ESTIMATION FOR SMC ALGORITHMS 37

where we have used the induction hypothesis in the second line. This shows the result. Next, we have that

T (i) =1iey Y B R)WE T2, (k. 0)

k,le[N]?

<Ly Y BEE W Lise
k,L€[N]?

< 1z Z B2 (6, kYW1 = Lij.
k,L€[N]?

Hence, supycy ||[N*9Y (1)? /(N = 1)¥T (i, §) ||, < (2GZ,)*1i—;. Consequently,

QX B (ml, o FY,) - QNP (o @ F.,) |

2G2 i ZN: HH 0s(€) —Haa(EF, (€D, (S125)
and
[, €ORY. ) — R
< [ (€0 = Ha o (60)F (€|, + [ (FIL(€0) — Faa(60) B (€1)]],
< [T 0 )€) ~ Tl )€, + Ol T2 )€ ~ Tl €D
where Cyy = [dy| (| fousloo + | fsloo) " and Che 1= |es]& ([ho:s|oo + hs]oo) " which are finite because

hs, fs) € (X9, (cs, d, s, fs) € Fy(X)". We have used that
|H §s /|Cs|00|h0 oo TN (€8, d20.5-1) + [hs]oo = |Cs]oo]Po:s]oo + [Psloo = Che.
For any hy.s € Fp(X®5+L),
1T o0:s] (€2 — Tislhous) (€2)
E

E[TY [ho.s)(€1) — Tslho.s) (€1) | FY 1]]

N
= E[Z Wi, / (T [hoss] (2) = Talhos] (1)) M€y, dxﬂ
and replacing in (S1.25) we get

2
QN5 (uY, o FY,) - QNS (M, @ Fo) |

< (262)°{ Oy [ M. (T2 0] ~ T f10.)

+ OB [0 M, (T2 1o - Tulfo) ] |

The upperbound goes to zero by Proposition A.3 and this finishes the proof of the initialization.
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Lett > s and hg.s € Ap(X®*H1) an additive functional. Assume that (S1.24) holds at ¢ — 1. By the
induction hypothesis

hm || Qe t 1 (QtHivt @ QiFy t) Qe, t—1 (QtHs,t ® Qth,t) H2 =0,
where Q is defined in (3.1) and for example
QHY, (251-1) = T [ho:s) () Quled (w1 -1) + Qulht) (wo-1),
where Q[c;] and Q;[hs.] are bounded by (A2), and by defintion of Q. ; (3.1)
Qe.t-1(QeHy @ QiFs ) = Qe ¢ (Hsy ® Fsp).

Hence, to prove (5.10) it is enough to show

Jim QX (HY, @ FL) — Q)77 (QHY, @ QFY) [, =o. (S1.26)
Because T [hg.,] and T [fo.s] are /¥ ,-measurable, by Proposition 4.3

E[Q7°(HY, @ FY)|FY ] = Q00 (QHT, ® Q/FY)),
and thus
Qe (HY, @ FY,) — Q7 (QHY, @ QL) |,
= (1@ % (B @ FT) [, — 19721 (QeHT, @ QiFT) [, (5127)

Now note that Proposition A.8 is still applicable with A = Hs +t ® FS + although there is a slight abuse
because this specific i depends on the particles up to s — 1 through Tiv [ho.s] and TV [fo.s]. However,
as they are F/V ,-measurable, Proposition A.7 is still valid and hence Proposition A.8. Additionally, this

specific h is bounded almost surely since for any (4., 2%.,) € (Xt_*‘“rl)2
|Hgt(xsrt)Fi\,[t(xls:t)’ <C:= (|h0:5|00|ct|oo + |iLS:t|00) (‘f0:5|00|dt‘oo + |fs:t‘oo)
and hence
12 (Y, @ FY) — Q2% (QiHT, @ QUFY)
(N =2)(N =3) N.BS N N2
= NN-1) 1 HQb,t—1(QtHs,t ® QF,,) H2
N72G3 2 4 )E Qt 1 [ ANBS 1)ON:BS (3N 1
JrNi_ 00 v(dz) Qi1 (mae(,2) ®1)Qy ;75 (B (¢,.) ®1)
+ QB (1 @m(,2)Q éVtBi(/ﬁt (2,.) @1) + Q7% (mu(,2) ® 1)

< QN (1@ BN (x,.) + Q% (L @ my(., ) Q25 (1 @ B (x, .>>]

G2.C?%Q?
®2 dv.dz)E 00 t—1
s ,BS
< { OB ) & e ) QS (Y (o) 5 0.)
N,BS QNN:BS
+ OB ) @ )OS (5 () 0 5 (2.) ).
The first term in the r.h.s. goes to zero by Proposition A.4 and the fact that QtHéVt®QtF are bounded.

The remaining terms are similar to those that appear in the proof of Theorem 4.4 up to some constants and
thus go to zero.
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For the second part, by Theorem C.2 and Borel-Cantelli Lemma, qSé\f | ,(h) N& ¢0:¢/¢(h). Then, by
: —00

multiple applications of Theorem 5.2 and using the bilinearity of Qévng and Qp, for any s € [0 : t] and
bounded additive functional h;

OB ([T [hows] + hsse — 0y () }]¥%)

= Qéi’,lztgs([gt{Tév[hO:S] + BS?t}]®2) - (b(])\:/tﬁ(ht) (Qé\ii?s([gt{Tév[hO:S] + BS?t}] ® 1)+
+ QZ’ES (1 ® [gt{TéV[ho:s] + Bs:t}])) + ¢é\{t‘t(ht)2Qg’Es (1 ® 1)
L Qes,t([gt{Ts[hO:s] + ﬁs:t}]®2) - ¢O:t|t(ht) (Qes,t([gt{Ts[hO:s] + Es:t}] (24 1)+

0 (18 [ge{Tulhon] + hs:t}])) 4 Gouo(he)? Qe 1 (101)

= Qes,t ( [gt{Ts[hO:s] + ﬁs:t - ¢O:t|t(ht)}]®2)a

from which the weak consistency of Vé\;lBts (h) follows. O

A.9. Supporting results for Theorem 4.4. In this section we prove Proposition A.4 and the upperbound
of || Q{Xt’Bs(h) Hz used in the proof of Theorem 4.4.

Proposition A.4. Assume that (A2) holds. For anyt € N, b € By and m € N,

sup B[ Q5% (1)]),, < oc. (S1.28)
NeN

We preface the proof with supporting lemmata.
Lemma A.5. Foranyp > 2, and N > 2m
Card(Z)* NSE) = O(NP) and Card(Z{" NSE) = O(NP).

N
p
For each of these tuples of size p, there are p>™ tuples of size 2m with each element taking one of the p

values. These tuples of size 2m contain at most p distinct elements. Hence,

N NP
Card(Z{* N SE) < Card(SE) < (p)me < FPQm,

Proof. The tuples in SE, contain p distinct elements. These p distinct elements can be selected in ( ) ways.

and similarly,

2m

Card(Z* NSE) < o

p
p

Proposition A.6. Lett € N*, m € N* and (k}_,--- ,k?™) € [N]*™.
(i) Ifp € [2:2m] and (k},--- ,kI™) € I N SE,

T 288 1 1 N G
E Hﬁt (kt7kt—1) ]:t—l S QP .
t—1

j=1
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(ii) Ifp € [1:m]and (k}, - k2™) € I" N SP,

BS,1.2j—1 1.2j—1 k?i N Gptm

Hﬂ kj kj W F —Q?ﬁ'
Proof. Letp € [2 : 2m]. By definition there are p distinct elements in each k := (k},--- , kZ™) € Z*NSP,.
Letk, := {a1, -+ ,a,} = {k},--- , k¥™} the set of cardinal p containing the p distinct elements in a tuple

k € SP.. Define for any a; € k,, V,, := {j € [2m] : k! = a;}. Bach V, is non-empty so that it is possible
to pick j; € V,,, and by (4.11) in Lemma 4.1 and the fact that different particles are i.i.d. conditionally to
Filas

N
t 1

Hﬁ ktjakz 1
P . .
HE[ [T 820k k)

=1 jEVai

fﬁl}

:H/ H 51: §t ) )¢t 1M (A7) ¢,
=1 ]GVQ
:H/ H Bt(tﬂ )5t(t7 )¢t (M (dg) o,
=1 J€Va, \{4i}
p
:H/ H 6t( 7) Mt(t1>df) )
i=1 J€Va, \{4:i}

with the convention [] = 1. Then, since for any (k, ) € [N]2, BBS(¢F,&/_1) < 1, we get

2m

p 711 Gp
HﬁBS km m t 1 H /Mt Ettlladg ) Q;DOO .
—1 71 t—1

Now letp € [1 : m]and k = (k},--- ,k2™) € Z7" N SP,. Define V,, := V,, N{1,3,...,2m — 1} for
any a; € k,. These sets are non-empty since each V,, is non-empty and has as many even indices as odd
indices, by definition of Z{" N SE,.

m*

It is then possible to pick j; € V,, and, since for any i € [N] Wi_ is
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FN | -measurable,

27
HBBS KR W FY

N
‘Ft—l ’

:H ttll]E HﬂBS k2j 1 k2g 1)
j=1

m 2 P o
STIWETT [ 9 IT a5 o e o

j=1 i=1 e,
. kfil 3 al kZ—l N/ ¢a; kil—l N a;

= Wi H H 5t (& &0 )8 (68, &5 ) o M (dgy) o
g=1 i=1 jevl\{Jl}

-1 H/ [T e emisme ag |,
i=1 i=1 JE€V,i\{ii}

with the convention [ [, = 1. Hence,

Gprtm

2 L 2 Tyy kil
HB LW

< I
— Qptm’
Qt 1
O

Proof of proposition A.4. Let m € N and assume for now that N > 2m. We proceed by induction. For
t = 0, and by = 0 we have that QN B31) = NY(N —1)! > i jeiny? Lizj = 1 which completes the
proof. If by = 1, QN 2B1) =N > i je(n Li=j = 1 and the result follows.

Lett € N* and b € 5;. Assume (S1.28) holds at time ¢ — 1. Again we treat the cases by = 0 and b; = 1
separately. In the case by = 0, by (S1.2),

el wr]=s| Y [ISIeE R
kg7 e[N]2mt+D j=1
and

S IRk

kli2m g [N]2m(t+1) j=1

“ 1,2 2j—1 725
= Z HAbt 1( kojtflvko:]tfl)

kl 2m E[N]th Jj=1

]12 1
tlkJ ;ékt . . .
<Y H T AR B (21 k29 8BS (k2 ).

kl2me[N]2m j=1
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By Proposition A.6(i) and Lemma A.5, for any k}4™ € [N]?™

Z HﬁBS 271 k?] l)ﬁBS(ktzJ7kt2J1) ]2 42

k%:27vt € [N]27n

N
Fit1

2m 2m
=Y. > E(I]s®%kK_)FY

p=2fl2meImnSh, Jj=1

2m 2m 2m
G? G2 Card(Zi* N SE) NP

< L < m. <L

I N e e

p=2 kl2meTmnSy, p=2

where C' is a constant independent of INV. Consequently, using the fact that

2j—1 12 N,BS

Z HAbt 1 (kg lvk()jt )= Qi ()™
ki2m e[N]2mt j=1
which is 7/ ;-measurable and that ;1 < NG, P-a.s. by (A2), we get
N2m—pr
N,BS/1\m N,BS N,BS
[Q ()}<CE[th 1(>nNm(N1)m} CE{th 1()},

which completes the proof. In the case b, = 1, again by (S1.2),

> HA (ko ko)

k(l)::t27n€[N]27n(t+l) Jj=1

p20-1 1.2
= Z HAbt 1 Ojt—17kO:Jt—1)
kl 2m E[N]thj 1
1,251 2 . . 2j
tl J—kj S/1.25—1 1.25—1\yp Ko
X Z H 2ok kW
k12m€ NJ2m j=1

Then, similarly to the case b; = 0, by Proposition A.6-(ii) and Lemma A.5, for any k4" € [N]?™,

m

2] 1 23 Ty a kil
d
Z H,B W ]lkfjflzkfj

kt1:2m,e[N]2m

N
‘Ft—l

BS,7.2j—1 2] Tyyaske s
> HB (ke k2 W
p=1gl2meTl NSy,
m m

Gglj—&-p NP
> <CY

QP - Qi
p=1 p=1""t—1

= k%‘szI}nﬂsﬁz t—1

N
i1

where C'is a constant independent of IV, and
TLoQ2m NP

[QNBS( )y ]gC]E ZIW

0 (W) < CE @)% )],

which completes the proof.
If N < 2m (resp. N < m), then a tuple in Z" (resp. Z7"*) contains at most N different elements and the
proof proceeds similarly by truncating the sums over p. |
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We now give more explicit computations for the case m = 2. The sets Z3 N S5 and Z? N S5 are detailed
in Example A.1.

Proposition A.7. For any h € Fy(X®2D) and (k§., 1, ,ki,_1) € [N]*,

> E WO (s, e HﬁBS (s bl 1) Lz st | i
KEIE(N)
N(N —1)(N - 2)(N —3) Ko ke
: ST (PR MEID® (&5 &%)
t—
NN - 1N =2)GZ|hlZ, on kit NN = DGE|RIZ, n ki
=+ Q3 ﬂN( t;l )+ QQ /Ul;.N( til )7
t—1 t—1
and
Z E h®2 Kt K. HﬁBS kQJ 1 k23 I)Wk?zlll J—_-N
0:t » > S0:t t—1 “kl=kZ2k3=k} |V t—1
kL4e[N]4
N(N —1) ki ki, NG k:f ki
< T2 e g+ g [ et €,
t—1
where

07 st My[BY () (@h) + M8 (2] (@®) + M8 (-, 2?)] (@) + Mu[B,7 (-, 2%)] (2?),
ol e MBY (L 2®)) (2 )MBY (o a)](@®) + M8 ()] (@) M [B,Y (-, 2%)) (22).
Proof. Let (k}.,_1, -+ ,kg,_1) € [N]*. First note that

2/ ki, kd % N
Z E [R®2(&5, -, &%) Hﬁ ki’ P—1 lkl;ék Kkt [Frlq

KielN]s
4
Kl
:Z Z E h®2(£0: "'70t Hﬂ kgﬂkgl ]:tNl
p=2 ky*eZ1ZnSy
We compute each term herebelow. For each p € [2 : 4] and k := (kt,-~- k) € IE NS, let ky, =
{ay, -+ ,a,} = {k}, -+, k{} the set of cardinal p containing the p distinct elements in a tuple k € S5.

Define for any a; € ky, V,, := {k] : j € [1:4], kI = a;}.

—Let(k{,--- ki) € ZgNS5. Then, ko = {k/, k7 } and we either have Vj,1 = {k}, k}} and Vjo = {k7, K/}
or Vi = {k',k*} and Vj2 = {k7, k}}. Assume that Vi = {k/,k}} and Vi = {k?, k!}. Then, by (4.11)
in Lemma 4.1

[Hﬁ kgvkg 1

=E[ 25 (ky ki_y) Es(ki,k?_o!fﬁl}ﬁ{ 2o (ki k7o) BES (ki k)| FY

ftNl]

/ﬂ (LR WML gl /ﬂ (R, kW M el

kfl

< g [N et )} (€M [ et €l
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If Vi = {k}, Kk} and Vi = (k2 k7).

Hﬁ?s )
j=1

k3

= el € s et @,

N
‘F
t—1 2
Q751

and

)| Fity

4
Z H BS kfj;vkg 1

kiterinsy  [i=1

< M UG Do o etf] et [ et @)

<N
t—1
Y [@N . ff-;)] (€M, [ﬁzv . f??)] ( f%l)}.

— Let (ki, - ,k}) € Z2 N S3. Then, either k3 = {k}, k?,k}} or ks = {ki, kZ k}}. Assume that
ks = (KL, k2, k3} and Viy = {k?, k2}. Then,

kLo k2 KD N, ki ki_
]:t 1| = Will till tillMt |:ﬁt ('7 till):| ( till)

t

Hﬁ k€7ki 1

G3 ki1 ki
< =M, B (5630 | (&)
Qt 1

Applying the same reasoning to all the combinations within Z3 N S5 we get

N
)| Fita

Z Hﬂ kgvkg 1

ky4eI2nss j=1
4 2
kt 1 kt 1

< MO0 o] el + o [ ot €

e [t e+ e [ et @ )

— Let (ki, - ,k}) € g N S3. Then, ky = {k}, k%, k3, k}} and

N
)| Fita

E[h®2(0tv"'v 0:t' Hﬁ kgvk? 1
k t k f
= [ i i) Hﬁ CREINMAT

kg,
/ (o' s Ot H o1 7dft )

kL, kS,
= (ggle(t][h])®2( 0t 03&—11)/915 1
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which completes the proof of the first inequality. For the second inequality, write

kb, kt 2 1 2 Tyyaskel
Z E h®2( 0 O:Ot Hﬁ - ) )Wt—111k§:k?,k?:k;‘ -7:15]\11
kl4e[N]4
27
:Z Z E h®2(0tv"’a ot HBBS kz] 1k2] 1)Wt]€i11]:t]\l1 )
p=1k}4e1inSy
— Let (k}, -+ ,k}) € I NS Then ky = {ki} and
21 3.2j—1\ya, koo ki _1ya,ke1 kf ki
HﬂBS L REWET EY | < WET W W LY (6N )

G3 kL,

< g [ e et
and

GS

o) k?—l kz—l
‘th\—ll < Q3 Mt |:ﬁt ( t—1 ):| ( t—1 )

S u|[Iawamis

kl4eI?nS: Jj=1

— Let (k/,--- ,k}) € I N S3. Then, ky = {k/, k}}, Vio = {k/, k7} and Vi3 = {k}, k/'}. Hence,

1 27
E |h&2 (ko ke HﬂBS K2 R TYWE EN
ko1 ko1
= (9= 1M [h])® (‘fo:t—l »" T 80—1 )/,
and
27
Z E h®2(5 T Ot HﬂBS k2] ' k2j 1)Wfi_11 ]:tlil
kl4eI?nss
N(N -1) k.o koii—1
= 9471(959_21/\/1%%])@2( AR S P
t—
which completes the proof. ([
Proposition A.8. Foranyt € N, h € Fp(X®2HD) and b € By,
(i) If by =0,
NBS 2 (N_Q)(N NBS N-2 4 2 Q1 N
HQ )HQS N(N — Hth 1 gt 1 Hz+ G ol E N V(@b,t)

|h‘2 t 1 2
+E 7N(N_1) v (T )},
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where

O s+ [ (il 2) ©1) + Q% (1@ mu(,2))]

< [QNBS (BN (2, ) 2 1) + QB (1@ BN (2,.)],
T, : (@, y) = QNS () @ mal, ) Q05S (BY () @ B (y,.))

+ 055 (me () @ me () Q035 (BN (v, ) @ B (2,.).
(ii) Ifby =1,

NBS

lors=m]l; <

HONE
+Gio|h|zo / [Q L ONES (i, () © 1)ONES (B (2,) 0 1)| w(da). (5129)

Proof. To prove (i), if b; = 0, by (S1.2),

BS —1,2 —1,2 kb, kS,
QN = 3T Ay b )Ry (ks ko )ORE2 (605" 609"

0:t » 1 S0:t
Hepein
12,1 2 12,3 4
E Ab,t (kO:t—h kO:t—l)Ab,t (kO:t—h kO:t—l)

i

4
(9 ) .
- {Z Z N2( — )2 Hﬁ ki7ki 1) h®2( g:‘){f«7... kO:t)},

1 50:t
Pp=2 k1 eIZNSY

and by Proposition A.7,
N, BS 2 _ (N -2)(N-3) N,BS 2 A 40 2
|0l < iy =g |9 oMb,

|h|% (N —2) <1,2 <12 -
+WE Qi Z Ay (kg1 ke ) (Rt ko1

kb 1e[N]

X{Mt {ﬁt . ] M, [Bt (- t’f)](ff‘f)
k

Y [ﬂt (. ;f)} (€)M || @

G2 |h|2, 1,2 1,2
+ N(N _ 1) E QQ Z Ab7t71(ké:t71’ k(%:tfl)Ab,tfl(kg:tfl? ké:tfl)

g e
o o et] e et @)
A 5] e et @)
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Then using (A1),
—1,2 —1,2 k371 kl,—l
Yo Moo ko)A (Reors koo )MIBY (5 65N

kot €[N]*

“ 12 1 2 ~ 1,2 3 4 N kg, ki_y
Z Ab,tfl(kO:tfhkO:tfl)Ab,tfl(kO:tfhkO:tfl)Bt (337515—1 ) ( t—1 ,2)v(de)
kgt €[N]*t
- / QNS (ma( ) © 1) QYES (BN (2,.) © 1) w(da),
and
—1,2 —1,2
Z Ab,t—l (ké:t—lﬁ k(Q):t—l)Ab,t—l (kg:t—b ké:t—l)
kgt €[N]4
k7

X MBI MY (6l
= [ QN ) © ) QS (8 () © 6 (5:.)) v ().

which completes the proof of (i) by applying the same reasoning to the remaining terms. Item (ii) is obtained
in the same way. ]

A.10. Supporting results for Theorem 4.9. In this section, we prove the analogues of Propositions 4.3-
A.4-A.6 and A.7 for Qévt’M. We remind the reader that the number of sampled indices M in the PaRIS
estimator is fixed and that G is defined in (S1.15). Let G¥ | V £}*V be the following o-algebra:

GN vErN == a(GN, Ua(elN)). (S1.30)
Lemma A.9. Foranyt € N*, h € F(X®?) and b € B,

(i) E[Qp; M (W)|GN 4] = Qpi ) (9% My [R),
(i) Qé\ft’M (h) is an unbiased estimator of Qy (),

where @é\;’M(h) is defined in (4.31).

Proof. We start with the case b; = 0. For any (k, ) € [N]?, J., | and J;, , are independent condition-
ally on GV | v &N forany i € [M]if k # £ and T | is G | -measurable, hence, using (4.4),

E 72k, Oh(el €0)

G | (S1.31)

= E[Lpzch(&F, )M 127?1 Thie1sJe4-1)|GitA]

i=1

E{]lk;éih &M IZ Z 5st k,n) S(Evm)ﬁb—l(nam)|gt]\ilj|

=1 n,me[N

= > ﬁb1<n,m>E[ﬂk#ﬁES<k,n> Es(&mm(sf,gfﬂf{vl}
n,me[N]?
1 -
—gr 2 Thm) G MIN)E ).
~ n,m€E[N]?
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Ifb, =1,

E[T2(k, Oh(eF, )

g{il} (S1.32)

= E[Lp—ch(ef, €)M 122% T2 (T, m) |G ]

i=1 m=1

]E{lk (&l M IZ Z B knthﬂ; 1”m|gt 1}

i=1 n,me[N]?

= > 73"1(n,m)E[ﬂk_eﬁfs(k,n)Wf%h@hff)|ft”1}

n,me[N]?

1._ ~
“gr, 2 Thm) (@B M) (6.

Consequently, if b, = 0, by (S1.31),
E[Q,5" (]G]

t—1 N 1-bg 71\1 (1)2 QZ_ -
T e (N_l) SIS mm[ﬁ%k,oh(ﬁf@f)\gﬁl

s=0 k,Le[N]2

t—1 N 1—bs ]\i 12 N
I () S T e @ M)
s=0 ,me[N]?

th 1(gt 1MO[ 1

and in a similar way, ]E[ééVt’M )|GN,] = QéVtMl (9P M}[h)]) by (S1.32) if b; = 1. The second item
follows straightforwardly by induction and the tower property. The induction is initialized by noting that
Qljx (’)M(h) is equal to Qé\)} (’)Bs(h) which is an unbiased estimator of Q;, ¢(h) by Proposition 4.3. O

Proposition A.10. Lett > 0and N > 4.

(i) Ifby =0,
D S AR AR I ER RN 0
k}1eT2nSs
N —2)(N
_(zwv)())gévfffl(g?ﬂ/\/t?[h])?, (51.33)
E|C? Z TrkE KDTL (RS kD |GN || < G2, (M —1)Q7 L,@2( Ny
N,b,t t to™ )t to vt t—1| = MN(N ) b

KACTINS]
20z, "
+ o CR T (ki1 k), (S1.34)
MN(N —1) W%NP i
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and
V% 1G3 (M —1)(N-2) ~
Blcko, 3 T 70 |0, | < BT ITED, @)
kl4eZ2nS3
Q_1G3 (N —-2) ,,
+ - __C _ T (S1.35)
MN(N*:[) N,b,t lklsg[N]s t— 1b )

where

O™ ra s [ONM (me(2) ©1) + O (L@ mu(, )]
x [958 (a, )®U+Qulﬂ®&(,»L
TNM (x,y) — th 1(mt(.,m)®mt(.,y)) i 1(ﬂt (z,) @ BN (y’.))
+ Qi (mi () @ mu () Qi (BY () © B (x,.)),

and
To o (k) K2) o TRk K2 + TR (kb KT (K2, 1),
T3 o (kb k2 KDY o TR (kL K2 TR (k3 kE) + T (kb k2T (K kD)

+ TPk ED TR (R k) + Tkt k) TR (R, K).

(ii) Ifbo, =1,

E [C?v,b,t SR €N &N TR RT (kKD gﬁl}

kl4eI?nss

N —
= SO MR, (5136
and
Blhe, X TRITGED[N] 137
kl4eTins:
Q G
BT [ G () © D@ (5 (w..) & ()
G20, _
T R D T R )T (R k)

k124€ (V]2

Proof. We start with the case by = 0.
—If (kf,-- ki) € I3 NS, then kf # kE # k} # ki and conditionally on G¥ |, VEFN, T, LTl |,

JIZ?,t , and Jl€4 . are independent for any (i,4) € [M]? and Jé/\f ) i BBS(KL,.) forany £ € [1 : 4],
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thus, for any (i, j) € [M]?

|:Tb( klt 1 t 1)Tb( k3t 17 k4t 1) gt 1\/€ :|
= [Tb( ki t— 17JZ$,t—1) gtl\il\/gtl: } [Tb( kg ,t— 17Jli;4,t—1) gt]V1V§t1:N]
= Z HﬁBS (k' Ky 7;bl(k’t 1k )ﬁbl(k’t 1,k_1),
ki €[Nt n=1
and
E|:h(§fta§tk> (ft aft Z Tb klt 1’ lif,tfl)Tb( k3 t—1° k:4t 1) gf 1}
i,j€[M]?
=E[h(£ft£f) @Lghm Y HﬁBS (kp,
i,j€[M]? k14 €[N]4 n=1
><7; 1(k’t 1 —1)7~;l7—1(k?—17k?—1) gﬁJ
= 3 TR K )TE Kk [HﬂBS (k2K )R(Er €5 )R (&fz&ft)gﬁl}
ki €[N
1 ki ki) ok
= 1 ,Ebl kt} 1vk? 1)7?) 1( t— 17]‘3;1 1)(9 MO[ ]) (gt 17 t—1 >St—1 »St—1 )v
=1 ki e[N]4

where we have used that 7,2 | (ki_,, k2 ) and T, | (k3_,, k* ) are GV |-measurable in the third equality
and then proceeded similarly to Proposition A.7. By Example A.1, Card(Z2 N S3) = N(N — 1)(N —
2)(N — 3) and since b; = 0 implies that

.

C]2V,bt Cth 1N2(N )23 (8138)

we obtain

E[cfv,b,t ST (et ERE T KT (KD k)

ky4eIgnss

giv_l]

—Cu Y E{h(éfifff)h@f?,ff?)

ki4eI2nss

o Z i klt v ’itz’t‘l)Tb( k-1 k4t D|GE 1]
1,j€[M]?
(N —2)(N —3) 5w, ,
- N(N—_l)inl (922 MO[])%.

—1If (k},- -+ k}) € I3 N S2. Then ko = {k}, k?} and we either have Vir = {k}, k}} and Viz = {k2,k}}
or Vg = {ktl,k‘l} and Vi = {k7,k}}. Assume that Vis = {k},k}} and Vi = {k7,k}}. Taking into
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i _ 70 i _ 70
account that Jk%’tf1 =Jis 1 and Jk%’tf1 = Jpa g W get
Fb1l 1.2\Fb(1.3 1.4\|aN
B| 72 1t ) T2 02 k)61
_ } : j
= [ 7; 1 kg,t—l’Jk2t 1)T (Jkst 1’ k4t 1 ‘gt 1]

i,j€[M]?

:E[M2 Z Li=j Z st(ktlaktl—l) ?s(kka ),Ebl(kt 17k—1)2

i,jE[M]2 kl:QIG[NP

Z Lizj Z Hﬁ kf,kf 1) 7? 1(kt1 1ak152 1)7;b1(k? 171‘7? 1 |gt 1

i,j€[M]? kL4 e[N]4 £=1
Then,
Ggo - (M — 1>GC2>O
[Tb(kgvkz)Tb(ktvkt) Gi- 1} M2 D Thalkiakia)+ M,

Lgrz ev)2

xS MBI IMBY (€T (R B2 )T (R k).

ki €[N]4

Similarly, if Vs = {k{, k! } and Vi = {k7, k}}, we obtain

E[ﬁ”(k#kf)ﬁb(k?,k?) gévl}
G2, ~ (M —1)G?,
< M2 . 226: T ety k)T (kP ki) + TMOE,

xS MY (eI OMUBY (e T (R k)T (R k).

ki €[N]*

Consequently,

E[ Moo Tk KT (K

ky4eIgns:

GtN_l}

G%>.N(N ~ ~ ~
< CNUTZD S T k2% + TR k2 )T (R ) )

= 2
MQt 1 k1‘21€[N]2

9 B _ 4
+ G NIV L i / Z {mt(t )N (x, ft )mt(gt 1 ,y)BiV(y7§fiEl)+

2
MY k4 [N

my ( o 1 ) )ﬂt (z, gt )mt(ﬁfjl,y)ﬂt (Y, St )} t— l(kt 17kt271)7~— (kt 1ak71)V®2(dxady)-
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Then, using (S1.38),

E[C?v,b,t S TR RTR KD|GY }
kl4eI2ns2
G202
< givay — et 2 AT R T R )T 0 k) |

k% €[N]?

2 _ 2
GO]Ti(J]\\{(Nl—)?;_l/{Q“ Qe )®mt("y)) byt— 1(5:5 (z,) ® BN (y,.))

£ G (a2 @ me() B (B 0, @ B (a, .>)}u®2<dx,dy>,

which yields (S1.34).

—1If (k},--- ,k}) € Z2 N S3. Then elther k:3 = {k}, k2, k}} or ks = {ki, k? k}}. Assume that k3 =
{ki, kf,k3} Then Vix = {k{, Kt} J, for any ¢ € [M] and

1 -1 k?,tfl

E[ﬁb(kbkf)ﬁb(ki,kf)

gﬁl}

= [ Z 7?1 klt 1 t—1)7~;b—1( i?»t 1’ k4t 1 |gt 1]

i,j€[M]?

= |: Z ]]-’L J Z Hﬁ kiztu ; 1 (kt 1,]671)’7;111(1{3?71,]{%71)

i,j€[M]? klj”le[N]“ 1

Z Lizj Z HﬁBS ke k 'Eb l(kt 1k )7?1(/% 1 —1)|gtj\£1:|

i,j€[M]? ky €[N]4 £=1
G3 b 1 2 b 3 1
< MQ3 Z T (ks ki) Ty (K1, kyp_q)
L g1 e[N]3
-1)G3, Kl ~
P 0% S e TR R TR 1K)
t—1 k4 e[N]4

The remaining combinations are treated in the exact same way and (S1.35) is obtained by using again
(S1.38).
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Consider now the case b; = 1 and let (k},--- , k}) € 2N 822. Then ki = k2, k} = ki and k} # k}. Thus,

E[h(ﬁff*@f) @ ahm? Y Y wi

LIEIM]? k24 €[N]2

be( kltl,k,)T(J,iStl, DIgN 1}
kL k2 K2kl k3
SGRAUGRDIDY [ oot s ywis
ki €[N]* £=1
Xﬁb—l(ktl—lak )ﬁbl(kt k1) gtj\llil
1 b 2 kt 1 k?71
T 0f Z 7; 1(’% 1k )7; 1(kt 1,k )(gt 1M [h ]) (ft IS A
L ekt ey
Since b; = 1 implies that
2 0y
CNpt = Cth 1 N2
and using Card(Z{ N S82) = N(N — 1), we get
kb ok? K2 okt =
S D S AR AR EN RN

k4 eI?nS2

~Chie X Epet el gt ¥ wihwity

klteI?nss i,j€[M]2 k?f €[N]2

gﬁl}

Xﬁb( litl,tﬂak? 1)Tb( k36— 1ak?—1)

N 2
—Qiﬂ”ﬁ( 22 MR,

which proves (S1.36).
Let (k},---  k}) € I2NS5. Then ky = {ki}, k} = k? =k} =k} and J,ﬁl .1 =44, - Hence,
- LT = i ~ j
E[M 2> WEWI T Tl kf_lmb_lu,zg,t1,k;*_1>|gﬁ1}
1,JE[M]? 24 c[N]?
1 k7
= E[ Z U Y ) A LA 7? L (Bi_q, k7 1)7? (B_q k)

k%t e[N)3

M-1 kfﬁ ~ ~
+ Z HBBS k2L R t117?1(]‘%117]{1521)7?1(]9?17/{?1){%]\[1]

M
k14 €[N]4 £=1
G} Fb (g1
= MQO?? E: Titq (ki lakt 1)7; 1(kt 17kt—1)
t—1 124
k7 e[N]3

el [ atom () & D@ (6 o) & i),
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This yields

E[C%v,b,t 3 ﬁ%khkf)ﬁb(kf,kbw&}

ky4eIins;
G Qi1 ~ ~
= M]\t[ CN,b,t—l Z 7;b—1(ki}—1ﬂk?—l)ﬁb—l(ki}—lvk?—ﬂ
kl 214€[N]
G3 Qt 1 NJVI AN, M N
Qyio1 (me(.,2) @ I)Qb,t—l(ﬁt (z,.) ® v(dz),
which in turn proves (S1.37). O
Proposition A.11. Ler (A2 : 4) hold. Lett > 0. For any b € B;
(i) If by = 0, then for p € {2, 3},
Jim EICR,, D TPk kDT K| =0. (S1.39)
- kH4E€T2NSE :
(ii) If by = 1, then
Jim E|CR,, > T%@%%ﬁ@i#):a (S1.40)
- kl4eIinsS;
Additionally, if (A5) holds then the rate of convergence is O(N~1).
Proof. We prove (i)-(ii) simultaneously by induction. Let ¢ = 0 and b € By. By definition, Tb T2 and,
if bo = O
CRoo D Tolhko kd)To (k3 ko) = Z Lizj = O(N?), (SL41)
k}teI2ns: i,jE[N
4 _
CR 0 Z To (kb k) TS (k3 k) = NN 1) Z LizjLlizy = O(N7Y).  (S1.42)
kite12nss i,5,kE[N]3
If by = 1, then
oo Do ToUko k)T (S k) = 55 D Limj = ONTH). (S1.43)
kl4ez2nS} i,JE€[N]?

Let ¢t > 0 and assume that both (i)-(ii) hold at ¢ — 1. Define

DY, =BG, Tm:1,k31>nb1<k;1,kfl>],
L k124 €[N

[ 1
DY, =E|G,s 3 Tizl,,,wé_l,kz_l)]
: K2 N2

[ 2
DY, =E|G,. ., 3 Tizl,b<k§_1,kz_1,k§_1>},
- K E(N]S
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where Ti(tl—)l,b and T§2—)1,b are defined in Proposition A.10. If b, = 0, then by (i) in Proposition A.10, using
that ;1 < NGoo,

BChoe 3 TR RTIED)
KIET2NS?
4

O G2 (M -1) [~
= w<_U)/rﬁMuww@mmmﬂ+2§?D%7<M4®

MN(N —

-

and

E%%@t > ﬁ%@wﬂﬁ@i%ﬂ

kb EeTZNS3

QG2 (M N —2) N.M Gi N
< —_— .
E[ N( /@ dz)| + 222D, (S145)

where é{)v I;M and Tév t’M are defined in Proposition A.10. We deal first with Dé\f , and Dé\”b. Ifb;_1 =0,
then by definition of 7,2 | in (4.4),

Dé\,[b = E[szv,b,t1 Z Tb (k?t 17 )ﬁbl(k’?ukfl)}

ki €I2NS2

(S§1.46)
Dé\,[b = E[szv,b,t1 Z Tb (k?t 17 )ﬁil(kiu k?l):|'
ki eI2NS3
Ifb;_1 =1,
Dé\,[b =2E |:CJ2V,b,t—1 Z 7? 1(kt 19 —1)ﬁb—1(k?—1a kzl—l):|7
k1 €e72nSi
(S1.47)

Dzls\,[b =4E |:CJ2V,b,t 1 Z 7? 1(kt 1s —1)ﬁb—1(kf—1: kf—1)]-

kL e72nS}
In all cases, by the induction hypothesis we get for any b € B; with by = 0,
. N _ : N _
J\/lgnocDZb o 0’ ]\}gnooDB’b =0

Regarding the first terms in the r.h.s. of inequalities (S1.44)-(S1.45), they go to zero when N goes to infinity
since they are, up to the constant (M — 1)/M < 1, the PaRIS counterpart of By (S1.12) in the proof of

Theorem 4.4 and are treated in the exact same way since sup yey £ [éév I;M (1)3] < oo by Proposition A.12.
If b, = 1, then, by Proposition A.10, using that Q; 1 < NG, ,

Ek%m 3 i%@mﬂﬁwi%ﬂ
ky4eIins;

0 1G2 G?
<E[t1 = [ 5 e x) @ )G (5 (2, © Vi) + T2 DY,

The first term goes to zero when N goes to infinity similarly to the case b; = 0. As for the second term, if
b;—1 = 0 then by definition of D},

0 < Dy, < D3,
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andif b;_1 =1,
2 7b 1 2 2 N
0< DY =E|Chy, 3 Tk <D
k{2 €[N]?

Hence, in both cases D , goes to zero by (A.10). This ends the proof of the first claim.

Now assume that (A5) holds also. We proceed by induction. At ¢ = 0 the rate of convergence is
O(N~1) by (S1.41)-(S1.42) and (S1.43). Let t > 0 and assume that the rate of convergence in (i) and (ii)
att — 1is O(N~1). Assume that b; = 0. By the strong mixing assumption we have that

B (e y) < Z2T iz y) e X2, (S1.48)
o_Qsq
Using for example that
[ @ mtsz) @ 1ptda) = [ @5 (mel.s) @ o)) o dy) = O} (1w 1),
and then bounding 3}V using (S1.48) we get that
QG (M =) [=nu Gﬁooi(M
E{ NV D) /Tbyt (m,y)l/®2(dx,dy)] < WHQ’” ! 1®1)] (S1.49)
and
Qtfngo(M — 1)(N — 2) < N,M 40'+Ggo(M - 1)(N 2
B = [a)  awtan)| < AT Gt a s

where both bounds are O(N ~1) by Proposition A.12. Going back to (S1.44)-(S1.45), we obtain

~ ~ 2G4 0% (M 2 G4,
B|CRo: D, TPk EDTI(R K| < 2+—HQ£VtMl 1®1)|, +2=2D3,

_ 2MN(N M

kl4eT2NS3
and
Blchs, 3 TURLETIG K]
ky4eIgnss
4oy G, (M ><N 2) G,

< O'_MN(N ||Qbf 11®1H2 DBb

By (S1.46)-(S1.47) and the induction hypothesis, we get that Dé\fb and Dé\f , are both O(N~1). Finally,

applying Proposition A.12 we get O(N 1) upper bounds. This ends the proof for the case by = 0 . The
case by = 1 follows the same steps. |

Proposition A.12. Assume that (A2) holds. Forall M > 1,t € Nand b € By,

sup Héé\;’M(l)HS < 0. (51.50)
NeN

Proof. We proceed by induction on ¢ € N. Assume for now that N > 6 and M > 2.
Since QéVOM( ) = QN BS( h) for any h, the case t = 0 follows from Proposition A.4. Let ¢ > 0 and

assume that (S1.50) holds at ¢ — 1. We only treat the case by = 0. The proof for the case b; = 1 follows
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using the same steps. Since we have that

3
uQéY;M<1>||§E[c%M > II7 )

ki6e[N]6 ¢=1

b i it
Z Z HIE [N P k:?“,t71> ’
the proof proceeds by (i) splitting the sum in three parts with respect to the cardinal of the triplet (i*, i%,3) €

k1O ET3 it e[ M]3 (=1
[M]3, and (ii) bounding each term by ||Qb M (1)|13 up to a constant independent of N. Let (i, 2 %) €
v v

[M]?. If Card({s',4*,4°}) = 3, then for all k}® € [N]°, (J'oy, |, J;

1 k2 t—1
pendent conditionally on G ; v £}V, defined in (S1.30), and

(S1.51)

)eeqi:3) are mutually inde-

3
E{Hnbl(tf,g;_l,tl, 1ol 1}
=1

3

_ b it

s 11E AT SR
3

_ [H ST AP R BB (K2 ) TR (R

/=1 k2[ 1: 2[ N]2

_ Z Hr];b ) kffll,k, [HﬁBS kn n

k16 €[N]8 =1

GN Vel }

gz&]

giil]

|72
Hence, by Proposition A.6, Lemma A.5 and similarly to the proof of Proposition A .4,

3
Z E{Hﬁb—l( Ii[fefl,t—v k”t 1)

kioezy Le=1

Gy }

3
Tb 20—1 2@ N
= Z Hﬁfl kt17k Z [Hﬁ (k¢ ki q)| Fit 1}
kS e[N]Gé:l k%ﬁeIS n=1
b2 : Gz,
< Y )Y Y @
leEN]Fﬁ 1 p:thl:GezgnSég t—1

AN

(if) ST ()

=2 t kL6, e[ N]6 £=1
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where < means less than or equal up to a multiplicative constant independent of N. Consequently,

3 SN RS T Hm Y )

[ kFOeT3 i3 e[M]?

> %ﬁ[m e T

kl6ezd it3e[M]3

Gy }

GV ]

MM—l M —2) g
s (Sa)ete 3 TI 05",

k1, €[N]8 =1

and
6
NP NPQS
63 =C} .
N,b,t(pz_;gfl) e 1(29,, i
6
GS-PN©
< C?V,b,tfl (Z Ng,(N_l)3> S C?V,b,tfl'
p=2

Therefore,

CB
IE[ ]]\th SN Ligege H7; W kn . k2zt 1)} <lovM@lE. (s152)

kl GE[N]G 41: 3€[M

Assume now that Card({z i2,i%}) = 2 and that i* = 2. For all (k},--- ,k¢) € [N]°, condltlonally on

2

Nb -1 l
GN | veEN ( Ji 17‘]/2% ,) is independent from 7,”; ( £%7t_1, [ DT 1( 1"]11415 L

hence, using (SI.S),

b it
ORI AT

kl6ezd =

{= [Hn’u RPN P

kl 4612

v

~ .3 -3 .
X { Z E{ﬁbl(‘]lif,t—u‘]lzc?,t—l) gtl\il v’stl‘N]}

k36 eZ;
(PN N N\ N
= (F27b +F35 + F47b)F1,bv

with
N b i3
F17b = E E{El( kP t—1> kGf 1)
KEOET)

= Z lkg;&k? Z ﬂ? kf,kf 1) (kkatG 1)7?1(]%5 17k156 1);

k36 e[N]2 k36, €[N]?

N, v el }

g vk } (S1.53)
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and
2 ~ 2
Z E{Hﬁb—l(‘]lzf’fl,t—v k2 t— 1) gt 1\/5 }
kyderz “e=1
4 2 , ,
=3 % B[RS0 v
P=2 k}4eI2nSy =1
:F21Yb+F3]Yb+Féfo7
where
1
FRy= > Lgae Y AP KBRS RO T, (b k)
kl2€[N)2 k12 €[N]?

2
Fyy Z L1 zp22n3 Z Hﬁ (k¢ k)T kR kD)
kl8e[N]3 kL3 €[N]3 =1

IS D IV Hﬁ (K kTR (et ke )Ty (K k),

ktl:4€[N]4 kl:i E[N]Aiﬁ 1
where Til_)l , and ng_)l , are defined in Proposition A.10. We now upperbound each ]E[FfoFi%\gﬁ 1] for
€[2:4].

Consider first the case E[F}, F1,|G/¥ |]. Let S¢ := {k'® € [N]°: k} # &k} # k} # ki, k} # k{'}. Then,
Se C (Z§NS3) L (Z§NS3) L (I N SS) and

3 6
EFNENIGY ) = S [[7 0t it) 3 [H Sk k)| ]
kl:G E[N]6 /=1 kl 665 n=1
S Z HTb kt2€117k,2[ Z Z |:HBBS kn n gt 1:|
k16 €[N]6 £=1 p=4kl6cT3nSY n=1
6 3
NPQGP ~
S ( o 1°°> > T 75 K, (S1.54)
t—

p=4 k36 €[N]6 £=1

by Proposition A.6 and Lemma A.5.
Consider now the case E[F, F;y, |G ;] and define S5 := {k}® € [N]° : k! # ki # Kk}, k! # k?}. Then,

E[F73Fib|Gita]

- Z T( (kt 1akt 17 )7? 1(kt 17k Z |:H/BBS kn n

k15 €[N]5 kl®€Ss n=1

gy ]

Proceeding similarly as in Proposition A.6 and Lemma A.5, it can be shown that

Z [HﬁBskn n

k}5€Ss n=1

lox } NOGL, | 2NGL | NPGE
i BV O o,
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Finally, by noting that
Z T t lﬁkt 17kt 1)7; l(kt lﬁkt 1 Z Hlnbl kt%llvk% )
k}5 €[N]® k16 €[N]6 =1
we get

E[FF55 /G0
_ <N5Ggo RARE N N3G§o>
0 0, 0

Z Tt 1,b kt l’kt 1 t l)ﬁbl(kt lakt 1)

k15 €[N]8

N5G5,  2N*GY  N3G3 ~
<4( > 4 2 4 °°) > H7;’11 k2N R, (S1.55)

Q° Of Q3
t—1 t—1 t—1 kt1:_61€[N]6 /=1

Consider now the case E[F, F;, |G/ ]. In the same way as for the previous case, we obtain

E[Ff,VbFé,Vb\géVl]<2< > Hﬁblk%l,k D). (S156)

NYGL  aNBGE, N2G20>
k16 e[N]6 =1

- -
@ a7, 07

Thus, combining (S1.56), (S1.55) and (S1.54), we obtain

|:Cth Z Z Tz s8¢ {it zQ}Hﬁ 1 k21/ 110 I%Wt 1):|

kL6e[N]6 i3 e[ M]3

6
08 NPGE, 5 ,
5EK ar 1N3(N—1)3>Qb’t 1 }~H9bt L)]f5-
p=2 '~

The other trlplets (i,42,43) for which Card({i',42,i®}) = 2 are handled similarly and are bounded by

H Qév tiv 11 Hg up to some multiplicative constant mdependent of N. We finally obtain

|: N,b,t Z Z ]lCard ({i,i%,i%})= HT ( ]:;/ 1o £§K7t_1):| NHQIZ)Vtkll )Hg

k16 e[N]o i3 e[ M]3
(S1.57)
It now remains to treat the case Card({i!,i?,i%}) = 1. Let (k',--- , k%) € [N]%. Denote by Posz(k*%)

the set of elements in [N]? with positions of equal elements similar to those of the equal elements in k7.
For example,

POS3((271’1)) {(G,4,9) | (4,9) € [N, # j},
POSS(( )) {(277’73) | (Zaj) € [N}Qﬂi 7&]}7
Pos((1,2,3)) = {(i,4. k) | (i,,k) € [N]®, Card({i, j, k}) = 3}.
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Letp € [2: 6] and (k}, - ,kP) € Z3 N S§. Without loss of generality, assume that the first p elements of
Kk} are all different.
3 ~ 2
]E[H T (T T |a 1}
=1 )
3 ~
= Z Hﬁb—1 ktﬂllak% {Hﬂ (ki ki) gt 1]
k6, €Posg (kii¢) £=1 n=1
3
G, ~
< o >, II7 5k

=1 g GlePos5(k16)l 1

GP
<o Dl Hﬁblk?’ll,k”)

t1k166 16 £=1

Consequently, by Lemma A.S,

3

Tb it

Z E[Hﬁl( K21 k”t 1)

k}Cez3nsy -e=1

3

< G% k2é 1 kzz

= Qp t—1 » )
kl6ez3nsy ~ tTL 1S e[N]6 £=1

NPGE
<y Hfrflkfeam

kL6 [N]6 £=1

Gy }

and,

|: = Z Z ]]-Card({z ,i2,i3})= 1H7; 1 kzz 1y ;I;z,tl)]

kL6 e[N]6 il3e[M]3

5. 6  NPGP, \ ~ 3
gE[(;Qg_f]\;S(N_l)?,)QlIJ%Ml ]NHth 1 )||3 (S1.58)

Finally, combining (S1.52), (S1.57) and (S1.58) we get

H,Qvé\,[t,M(1>H§: [ Vbt Z Z H’]; 1 k” L1 I%”t 1):| NHth 1 ’

kFO[N]6 13 e[ M]3 =1

3
3’

and hence sup > H QN M Hd < oo by the induction hypothesis. This ends the proof for the case b; = 0.
If M = 2, then (S1. 52) is equal to 0 and (S1.57), (S1.58) remain the same. The result then follows. If

N < 6 then it suffices to truncate the sums over p to obtain the result. O

APPENDIX B. FURTHER ALGORITHMIC DETAILS

B.1. Alternative expression of the genealogy tracing variance estimator. The expression of the CLE
estimator (3.11) provided in the main paper is different from the expression of the estimator appearing in
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[32]. We show here that these are two expressions of the same quantity. Note first that

1N ?
<Nzh(§2) —Ugv(h)> =0
Py g g, (R(ED) — ¥ (WHAE) — ¥ ()}

t,0=
i,jE[N]?

FNTE N Ly AR(ED = () HAED) = 0¥ (1)}

1,J€[N]?
On the other hand,
Yo g g, (&) — 0 (W)HRE) — ¥ (b))
i,j€[N]?
N . .
=y Lg; g =i lR(E) = m¥ (WHR(E) =0l (1))
k=14j€[N]?
N 2
= Z <Z 1E§O:k{ Uiv(h)}> :
k=1 =1
Thus,
VN,(h) = -N71 Lg; g, T0(ED =0l (W) HR(ED) = 0¥ (1))
1,jE[N]?

N /N A 2
Ny (Z 1o, o {h(€) ) <h>}> .
k=1 \i=1

where the expression in the second line is that of [32]. By a similar reasoning, (3.12) is also equivalent to
their estimator.

B.2. Variance estimators for the predictor and filter. The asymptotic variances of the predictor and
filter (3.8)-(3.9) can be expressed using V5. Indeed,

V3ilh = () _ 5 f 101 @erall— ()
waE 7(1)?

and using that

—ne(h — m(h))Q} = V;%(h),

Ye(ge{h — ¢¢(h)}) _ Y1 (gih)

= — ¢e(h) =0,
Ye+1(1) Ye+1(1) #(h)
we get
Vielo{h = ou(h)})
% (h) = 2 : S2.1
Vd),t( ) ’Yt-f—l(]-)z ( )
Then, replacing y;(h) and ¢;(h) by their empirical approximations v/ (k) and ¢¥ (h), we obtain
_Nt )
Vaio () i= oy 2o TE@AE(E) - n (HAE) - (W}, (2.2)
i,j€[N]?
225 (h) = N WiWITL 6, ) {h(&) — o (h) }{h(&]) — ¢ (h 2.3
V (h )*m %} t"Ve It (%J){ (&) — o4 ( )}{ (&) — o' ( )} (52.3)
i,j€[N]?

As a consequence of Theorem 4.7, these estimators are also weakly consistent.
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Corollary B.1. Let (A1 : 4) hold. For any h € Fy(X), V%> (h) = V25(h) and V)25 (h) — V5, (h).

Proof. Tt suffices to note that Qé\f ;BS and Q,; are bilinear, that n¥ (h) N n¢(h) and to apply Theorem 4.4
again:

NBS ({h* ]{V(h)}®2)
*thB (h®2) — N (h )QNBS(h®1) N (h )QNBS(1®h)+77t (h)? QNBS( 1)
=5 Qur ({h— m(R)}22) .

Hence, V.5 (h — n¥ (b)) SN >%(h — n¢(h)) and using the fact that v;¥ (1)? 5 4,(1)? we get the
cons1stency for the predictive measures The remaining limit is a straightforward application. ]

Algorithm 3 Update at step ¢ + 1 of the variance estimator for the predictor

Require: w; Y, ¢l ¢bN and T
Compute ﬁt—i—l

if PaRIS then
for k € [1: N]do
Sample J1 M g 6t+1( 2
end for

for (k,¢) € [1: N]? do
M i i
Set T% 1 (k, 0) = Lo D52y 7;0(Jk,ta Jo ) /M

end for
else o

Compute Tt+10: /6?317‘?,31‘,8-5/1-

Set T?+1 - Tt-‘rl - Diag(Tt+1).
end if -
Compute @ =T 0, © [{n(EEN) — (W) H{RrEEN) —nNy(R)} ]. > his applied elementwise
return —N!/(N — 1)t+! i jen i T it

B.3. GT term by term estimator of the asymptotic variance. In this section we derive the GT counter-
part of the term by term estimator (4.17). Define for all £ > 0

n?tT(Ktlﬂ Kt2) = Egr [Ib,t(K&t, Kg:t) ‘]:th Ktlﬂ Kt2] ) (S2.4)
and 7Z,GoT(K37K3) = lKg;ﬁKg,bO:o + lngKg,bo:r
By the tower property and the definition of Egt[-|F}Y ], for all (k,¢) € [N]? and ¢t > 0, if b; = 0,
7;?(]67@ = lk# Z lAfzi,Af:j,EftIl(ivj) = I]-k#l%c,;t‘l;l(Affl?Affl)a
i,j€[N]?

andif b, = 1,

N
72?(’@1) = Lk=¢ Z 1A§’71:in—17;),Gt—El(i’j) = 1k=€ZWtJ—17E,GtT—1(Af—1J)~

i,j€[N]? =1
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Similarly to BS, we have by the tower property

1-b, N
085 HNb ( ) %]\(;) S 7 h(er, €, (S2.5)

s=0 k,Le[N]?
and the term by term estimator is thus
+N.GT N (1)? GT t+1 o7 kyp (el
Voi (h)= TIN—1) Z {St (k,€) — N 17?)% (kaf)} h(&)R(&), (52.6)

k,Le[N]?

where S£T is such that for all (k,¢) € [N]?,
t

N
SET(k,0) = Y TR 0) = Tame D W Tl 1 (AF 1, 5) + Lise ST (A1, AL ),

5=0 i=1
which shows that (S2.6) is also updated online in a rather simple way by propagating the matrices S¢' and
Tou

APPENDIX C. TECHNICAL RESULTS

Theorem C.1 (Generalized dominated convergence theorem). Let ( fx) nen be a sequence of X -measurable
Sunctions and (gn ) Nen a sequence of non-negative X -measurable functions. Assume that the following as-
sumptions hold.

(i) There exists C > 0 such that | fn ()| < Cgn(x) forall N € Nand x € X.
(ii) (gn)Nen converges pointwise to g and J\}im [ gndv = [ gdv < oo
—00

(iii) (fn)Nen converges pointwise to f.
Then, f is v-integrable and A}im [ fndv = [ fdv.
—00

Proof. The proof can be found in [36]. (Il
Theorem C.2 and Lemma C.3 are borrowed from [33] and [15] respectively.

Theorem C.2. Assume that (A2 : 4) hold. Then, for all s € N, hy € Fy(X®5+L) and (fs, fg) € Fyp(X)2,

there exist constants (Cs, 55) € (Ri)Q, depending on hg, fs, and fs, such that for all N € N* and all
e eRY,

P(’N 1Zw hl fs) (€0 + Fo (&)} = ns(Tolhal fs + fo) _5> < C, exp (—651\152),
(S3.1)

( HEN L) € + T (€D} - o (Tulnils + £)| 2 g> < Cyexp (~CoNe?).
(S3.2)

Lemma C.3. Assume that ay,by and b are random variables defined on the same probability space such
that there exist positive constants 3, B, C1, Bo, Cy and M satisfying the following assumptions.

e lay/by| < M,P—a.s.andb > B.

e Foralle >0andall N > 1,P(|by — b| > ¢) < By exp(—C1 Ne?).

e Foralle >0andall N > 1,P (|lay| > ) < Byexp(—CaNe?).
Then, there exist two positive constants Bs, Cs such that

an
P2
(b

N

> 6) < Bzexp(—C3Ne?).
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APPENDIX D. ASYMPTOTIC VARIANCE OF THE JOINT PREDICTIVE DISTRIBUTION
In this section we provide some intuition on (3.7). Let h € F(X'). By the law of total variance,
V(W] = V[E[N (B) | 7]+ E[VivE (h) | Y]] (S4.1)
As N1 (1) is F{¥-measurable and the particles at time ¢ + 1 are i.i.d conditionally on 7", we have that
N

EDNA) | 7] =280 Y pMenli€l)
1=1
1%2 Mt+1 1(&1) = 7" (Qesa[h]). (S4.2)

On the other hand,

N
VI 1) =PV | Y b FY | = N 0, (1)

where

Varnton [M(E1)] = 0N Megr ({h — 6 Myg1 (0)}).
Therefore,

VI () | FY) = N2 (02 (Quea[{h - 6 Mesa (1))
=N (WY (Quaa [{h — ¢£VMt+1(h)}2} ). (54.3)
Replacing (S4.2)-(S4.3) in (S4.1), we get the recursive formula
NV[%]\JIA(}L)] =NV [%N (Qt+1[hm + E[Vﬁﬂ(l)%N (Qt+1 [{h - ¢£VMt+1(h>}2])]

= Mo (Qy.41[h]?) = ye41(R)?
41

+ZE fys 'ys 1 Qs [{Qs+1 t+1 ] ¢571(M5 @s-{-l:t—i—l[hu)}Q])]'

With multiple applications of (3.5) in the main paper, we get that

A WY Qs [{ Qa1 = 6 (M [ Qs ])}])
=5 s (1) 751 (Qs [{Quritsa[h] = @51 (M [Qs+1:t+1[h]])}2])v (S4.4)
and, using that v,(1)ps_1(M[h]) = %(h) and s (Qq 41441 []) = Ye41(h) for all h we get
Vs (1751 (Qs [{ Qo 141 1] — D51 (M [Quipipia | h]])}z])
=W ({ Qv 1h] = dums (M [Qu 1044 [01])})
=7s(1)7s @sﬂ:tﬂ(h) } - %+1(h)2-
Finally, by (A2) and the boundedness of h, [y (1)| < G5, |Q,11.4[h]| < GLo®|h|s, thus

|7§(1)73]\]—1(Qs [{Qs+1:t+1[h] - 5—1(Ms [Qs+1:t+1[h]])}2])| < 4G22|h|oo,
and by the dominated convergence theorem, for any s € [0 : ¢],
I Bl 03 Q@ 10— 62 (M [Quria [41))})
=75 (D% [Qupre1 (0] = vesa()*. (S4.5)
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and NV [y}, [h]] — Zié {fyg(l)'ys [Qui1:041(R)?] —ve41(h)?}. As argued in Section 4.3 of the main
paper, E[N (721 (h) —vi+1(h)) "] converges to the asymptotic variance when N goes to infinity, and since
721 (h) is an unbiased estimator of v,11(h), NV[v}{1[h]] = E[N (751 (h) — 41 (h))2] . Therefore,

t+1
A}i_r)nooE [N(%f\h(h) - %+1(h)>2] = Z {’Ys(l)% @s+1:t+1(h)2] - 7t+1(h)2}»
s=0

which ends the proof.

APPENDIX E. COMPUTATIONAL TIME COMPARISON

2 ]
ce YIS ) o
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FIGURE 6. Comparison of time complexity (left) and runtime (right) for the different
estimators, per time step. The runtime on the left plot is on CPU and that on the right plot
on GPU, only for our most competitive estimator.
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