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Abstract Topology preservation is a property of affine trans-
formations in R2, but not in Z2. In this article, given a bi-
nary object X ⊂ Z2 and an affine transformation A, we pro-
pose a method for building a binary object X̂ ⊂ Z2 resulting
from the application of A on X. Our purpose is, in particu-
lar, to preserve the homotopy type between X and X̂. To this
end, we formulate the construction of X̂ from X as an opti-
mization problem in the space of cellular complexes, and we
solve this problem under topological constraints. More pre-
cisely, we define a cellular space H by superimposition of
two cellular spaces F and G corresponding to the canonical
Cartesian grid of Z2 where X is defined, and a regular grid
induced by the affine transformation A, respectively. The
object X̂ is then computed by building a homotopic trans-
formation within the space H, starting from the complex in
G resulting from the transformation of X with respect to A
and ending at a complex fitting X̂ in F that can be embedded
back into Z2.
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1 Introduction

Affine transformations gather a large family of simple, yet
important geometric transformations which are useful in var-
ious applications of image processing, geometrical model-
ing or computer graphics. In the Euclidean spaces Rn (n ≥
2), affine transformations are bijective and preserve some
important geometrical properties (e.g. parallelism). They also
preserve topological properties. This is no longer the case
when they are considered in the Cartesian grids Zn. A sim-
ple example of this phenomenon is illustrated in Figure 1.

In Cartesian grids, various subfamilies of affine trans-
formations have been investigated, namely translations [7,
33], scalings [1,3], reflections [5,12], rotations [2,4,5,8,18,
25,44,45,49,54], rigid motions [38,39,41–43,46,50], com-
bined scalings and rotations [22], and affine transformations
[11,21,23,24,27,29,37]. The purposes were manifold: de-
scribing the combinatorial structure of these transformations
with respect to Rn versus Zn [1–3,7,8,18,21–23,33,38,48,
56], guaranteeing their bijectivity [4,5,12,25,44,49,50,54]
or their transitivity [45] in Zn, preserving geometrical prop-
erties [41,42] and, less frequently, ensuring their topolog-
ical invariance [39,43] in Zn. These are non-trivial ques-
tions, and their difficulty increases with the dimension of the
Cartesian grid [46]. Indeed, most of these works deal with
Z2 [4,5,7,8,25,33,38–40,42–45,50,54]; fewer with Z3 [41,
49,56] or Zn [18].

Regarding affine transformations, the literature has been
dedicated to the so-called quasi-affine (and sometimes quasi-
linear) transformations1. These transformations were pio-
neered in [24,37] and studied from a combinatorial point of
view, mainly by analyzing the induced tilings of the space in

1 These quasi-affine transformations are close to the class of affine
transformations that we consider in this article. They mainly differ re-
garding the digitization policy: quasi-affine transformations rely on the
floor function, whereas we will consider the rounding function.
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Fig. 1 Example of topological alterations induced by a digital affine transformation. From left to right: input digital image; an affine transformation
applied on this image (viewed in a continous way); the same transformed image viewed in the digital grid; the final discretized image, embedded
into the digital grid via Gauss digitization. The initial image is composed of two connected components. The final image is composed of 3 (or 4,
depending on the considered adjacency) connected components. The topology between both has then been modified.

2 [26], 3 [13] and n dimensions [11,27,29], and by investi-
gating their relations with fractals [28].

In this article, we investigate how it may be possible to
preserve the topological properties of a digital object defined
in the Cartesian grid when applying an affine transformation.

Previous works related to this topic were geared towards
the more restrictive case of rigid motions (i.e. the composi-
tion of translations and rotations, but without scalings). In
[43] a specific family of digital objects in Z2, called “regu-
lar”, was proved to preserve their topology under any rigid
motion. However, all the digital objects in Z2 are not reg-
ular, and the required modifications for generating a regu-
lar object from a non-regular one induce asymmetric opera-
tions between the object and its background. In [39] the pu-
tative topology preservation between an object and its im-
age in Z2 by a rigid motion was checked by searching a
path in the combinatorial space of digital rigid motions that
corresponds to a point-by-point homotopic transformation
between both. However, this process allows to assess the
topological invariance, not to ensure it. In addition, both
approaches can not easily be extended to the case of affine
transformations.

We propose a way of tackling the problem of affine trans-
formations under the constraint of topological invariance.
As in [39,43], we consider the case of digital objects in Z2.
Since a digital object X and its usual digital image by an
affine transformation A are not guaranteed to present the
same topology, our purpose is to compute a digital object X̂
that (1) has the same topology as X and (2) is “as similar
as possible” to the usual digital image of X by A. In other
words, we accept to slightly relax some constraints on geo-
metric similarity in order to ensure topological invariance.

To reach that goal, we embed our digital objects in the
Euclidean space and we process them in the (continuous
but discrete) space of cellular complexes. This allows us to
model / manipulate these objects in a way compliant with
both their digital nature and their continuous interpretation
(in particular from a topological point of view), but also

to carry out basic transformations in a space finer than Z2.
The definition of X̂ from X and A is then formulated as an
optimization problem, which presents similarities with the
topology-preserving paradigms developed in the framework
of deformable models [16,17,19,53].

This article is an extended and improved version of the
conference paper [47]. The new material is as follows. We
extend our approach from rigid to affine transformations.
This constitutes a relevant methodological contribution in
the field of discrete geometry, where a majority of the pro-
posed topology-preserving geometric transformations are re-
stricted to rotations and rigid transformations and can not
be extended to more general affine transformations. We also
propose a more complete and fully reproducible description
of the modeling part of the approach. In particular, we pro-
vide in Appendix A a description of the way of building the
cellular space where to carry out the homotopic transforma-
tion required by the algorithm. Regarding the optimization
part of the process, we provide a gradient descent approach,
with a reproducible description, whereas only a sketched de-
scription of a general scheme was given in [47]. Finally,
we present various experimental results and we compare
the behaviour of the proposed transformation approach with
other topology-preserving (rigid) transformations schemes
that rely on the notions of regularity [43] and quasi-regularity
[42], respectively.

The remainder of the article is organized as follows. In
Section 2, we introduce the basic notions required to make
the article self-contained. In Section 3, we present a sum-
mary of the proposed method. Section 4 describes the dif-
ferent cellular spaces required by the method and the way
to build and switch between them (this section is completed
by Appendix A). Section 5 describes an optimization strat-
egy developed in the space of cellular complexes in order
to ensure topology preservation while seeking the result of
the affine transformation. Section 6 presents and discusses
some results obtained with our method, and compares them
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to usual digitization-based transformations. Section 7 pro-
vides concluding remarks.

2 Basic Notions

2.1 Affine transformations

We first describe the transformations that we aim to study,
namely the affine ones. A point of R2 (and a fortiori of Z2)
is noted in bold (e.g. p). Its coordinates are noted with sub-
scripts (e.g. p = (px, py)t). The transpose symbol is some-
times omitted by abuse of notation (e.g. p = (px, py)).

An affine tranformationA : R2 → R2 is defined, for any
point p ∈ R2 as

A(p) = A · p + t =
ï

a11 a12

a21 a22

ò
·

Å
px

py

ã
+

Å
tx

ty

ã
(1)

with A = [ai, j]1≤i, j≤2, det(A) , 0, and t ∈ R2, where the six
parameters ai, j (1 ≤ i, j ≤ 2) and tx, ty are real values.

The affine transformations include, in particular:

– translations (A = I2); and
– when t = 0:

– rotations (a11 = a22 = cos θ, −a12 = a21 = sin θ for
θ ∈ R);

– symmetries (a11 = ±1, a22 = ±1, a12 = a21 = 0);
– scalings (a11 , 0, a22 , 0 and a12 = a21 = 0);

and, of course, all their compositions.
In this work, we assume that the six parameters ai, j (1 ≤

i, j ≤ 2) and tx, ty lie in Q. From an applicative point of
view, this is not a restrictive hypothesis. Indeed, transla-
tions (resp. scalings) with rational parameters can approx-
imate any translations (resp. scalings) with irrational param-
eters for any required precision. Regarding the rotations, the
parameters a11 and a21, that correspond to the cosine and
sine of the rotation angle θ can be chosen as a11 = a/c and
a21 = b/c, where (a, b, c) ∈ Z3 is a Pythagorean triple, i.e.
satisfies a2+b2 = c2. This family is sufficiently dense to rea-
sonably handle rotations while manipulating rational values
only [6].

We also assume that det(A) > 0. In other words, we only
focus on the affine transformations that preserve the orienta-
tions, which is a non-restrictive hypothesis in the context of
image processing / analysis.

The affine transformation A of Eq. (1) can then be ex-
pressed from (a11, a12, a21, a22, tx, ty) ∈ Q6. In particular, for
any p ∈ Q2, we have

A(p) =
Å

a11 px + a12 py + tx

a21 px + a22 py + ty

ã
∈ Q2 (2)

2.2 Cellular complexes

Let P ⊂ R2 be a closed, convex polygon. Let P̊ be the in-
terior of P and ∂P = P \ P̊ the boundary of P. We note
P(P) = {P̊}.

Let E = [v1, v2] ⊂ ∂P (v1, v2 ∈ R
2) be a maximal, closed

line segment of ∂P. Let E̊ = ]v1, v2[ be the interior (i.e. the
open line segment) of E, and ∂E = E \ E̊ be the boundary of
E. The open line segment E̊ is called an edge of P. We note
E(P) the set of all the edges of P.

Let v ∈ ∂E be a point of ∂E; the singleton set V = {v} is
called a vertex of P. We noteV(P) the set of all the vertices
of P.

The set

F (P) = P(P) ∪ E(P) ∪V(P) (3)

is a partition of P.
Let Ω ⊂ R2 be a closed, convex polygon. Let K be a set

of closed, convex polygons such that Ω =
⋃
K and for any

two distinct polygons P1, P2 ∈ K , we have2 P̊1 ∩ P̊2 = ∅.
We set3

K(Ω) =
⋃
P∈K

F (P) (4)

It is plain that K(Ω) is a partition of Ω. We call K(Ω), or
simply K, a cellular space (associated to Ω).

Each element f2 (resp. f1, resp. f0) of K which is the in-
terior (resp. an edge, resp. a vertex) of a polygon P ∈ K
is called a 2-face (resp. 1-face, resp. 0-face). We set Kd

(0 ≤ d ≤ 2, d ∈ Z) the set of all the d-faces of K. More
generally, each element of K is called a face.

Let f ∈ K be a face. The cell C(f) induced by f is the
subset of faces of K such that

⋃
C(f) is the smallest closed

set that includes f. If f0 is a 0-face, then C(f0) = {f0}. If f1 is
a 1-face, then C(f1) = {f1, f10, f

2
0} with f10, f

2
0 the two vertices

bounding f1, such that
⋃

C(f1) is a closed line segment. If f2
is a 2-face, then C(f2) = {f2, f11, . . . , f

k
1, f

1
0, . . . , f

k
0} (k ≥ 3) and⋃

C(f2) is the closed polygon of interior f2 with k edges fi1
and k vertices fi0 (1 ≤ i ≤ k). For any cell C(f), the face f is
called the principal face of C(f), and C(f) is also called the
closure of f. The star S (f) of a face f is the set of all the faces
f′ such that f ∈ C(f′).

A face f and its induced cell C(f) are characterized by
the list of the 0-faces in C(f). (In particular we can identify
f and C(f) to the sorted (e.g. clockwise) sequence of the k
points vi (1 ≤ i ≤ k) that correspond to these 0-faces {vi}.)

2 If there exist V1 = {v1} ∈ V(P1) and E2 = ]v1
2, v

2
2[ ∈ E(P2) such

that V1 ⊂ E2 then, without loss of correctness, we can “modify” the
polygon P2 by adding V1 into V(P2) and by substituting ]v1

2, v1[ and
]v1, v2

2[ to ]v1
2, v

2
2[ in E(P2).

3 In theory, this notation will also hold when considering R2 instead
of Ω. In practice, we will always use a bounded subset Ω of R2.
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A complex of K is a subset K ⊆ K defined as a union
of cells of K. The embedding of K into R2 is the set noted
ΠR2 (K) ⊂ R2 defined by

ΠR2 (K) =
⋃

K (5)

Let X ⊂ R2. If there exists a complex K ⊂ K such that
X = ΠR2 (K), then we say that K is the embedding of X into
K and we note K = ΠK(X).

Let K and J be two cellular spaces, and K ⊆ K, J ⊆
J be two complexes. If we have ΠR2 (K) = ΠR2 (J), i.e. if
both complexes correspond to the same continuous object,
we note K ≡ ΠK(J) and J ≡ ΠJ(K).

In this work, we will only consider complexes composed
as unions of cells with principal 2-faces. The set of all the
complexes that can be defined that way on a cellular space
K is noted CK.

2.3 Topological models and homotopic transformations

Our inputs and outputs are digital objects, namely finite sub-
sets of Zn (here with n = 2). The topological structure of
such objects can be modeled in the framework of digital
topology [52]. In this framework, the topological structure
of X and its complement X = Zn \ X is represented by adja-
cency relations [51]. More precisely, X is structured with re-
spect to the (3n−1)- (resp. 2n-) adjacency, while X is consid-
ered with the dual 2n- (resp. (3n − 1)-) adjacency, in order to
avoid topological paradoxes related to the Jordan theorem.
In practice, two points x and y of Zn are 2n- (resp. (3n − 1)-)
adjacent if

∥x − y∥p = 1 (6)

for p = 1 (resp. p = ∞). Without loss of generality, we con-
sider X with the (3n−1)-adjacency (otherwise, it is sufficient
to consider X instead of X as the object).

During the methodological process described hereafter,
the handled digital objects will be modeled as their continu-
ous analogue, i.e. as closed subsets of Rn (in particular when
carrying out the affine transformations) but also as discrete
structures, namely complexes on a given cellular spaceK (in
particular when carrying out homotopic transformations).

It is possible to deal with this digital–continuous anal-
ogy between the objects of Zn and those of Rn, via the (in-
termediate) framework of cellular complexes, formalized in
[31] in the case of cubical complexes. Indeed, the three as-
sociated topological models are compliant [34,36]. It is also
important to note that the cubical cellular spaces can be re-
fined into non-regular cellular spaces (see e.g. [10]), such as
defined in Section 2.2 without losing their topological com-
pliance.

The objects that we manipulate must preserve their topo-
logical properties. To satisfy this constraint, we consider a

strong topological invariant, namely the homotopy type. This
choice is relevant for two reasons. On the one hand, in di-
mension 2, the homotopy type is equivalent to most of the
other usual topological invariants. On the other hand, there
exist efficient topological tools that allow one to modify an
object while preserving its homotopy type.

Given two objects X and Y in Zn, we prove that they
have the same homotopy type by explicitly building a ho-
motopic transformation from X to Y. In the field of digital
topology, this is generally done by considering the notion of
simple point. In Zn, a point x ∈ X (resp. x < X) is simple
if its removal (resp. addition) from (resp. to) X rewrites as a
(monotonic) homotopic transformation. In the framework of
digital topology, simple points can be characterized by local,
combinatorial properties until Z3 [9,55].

This notion of simple point, initially defined in digital
topology, can be expressed in the framework of cubical com-
plexes, leading to an analogue notion of simple cell [14]. It
can also be extended without difficulty to any cellular com-
plex, thanks to the atomic notion of collapse [57].

In this work, the notion of simpleness is considered only
in the cellular spaces and in dimension 2 (Section 2.2). Un-
der these hypotheses, the notion of simple cell can be char-
acterized as follows. Let K be a complex defined on a cellu-
lar space K on R2. Let f2 be a 2-face of K. Let D0(f2) (resp.
D1(f2)) be the subset of C(f2) composed by the 0- (resp. 1-)
faces f the star of which intersects K only within C(f2), i.e.
S (f) ∩ K = S (f) ∩ C(f2). We say that C(f2) is a simple cell
(for K) iff4

|D1(f2) | = |D0(f2) | + 1 (7)

with | · | the cardinal on finite sets. In such case, the de-
tachment of this 2-cell C(f2) from K, i.e. the operation that
transforms K into

K � C(f2) = K \ ({f2} ∪ D1(f2) ∪ D0(f2)) (8)

corresponds to a collapse operation from K to K�C(f2), and
both complexes have the same homotopy type. Reversely, if
f2 is a 2-face of K \ K, and if C(f2) is a simple 2-cell for
the complex K∪C(f2), then the operation of attachment that
transforms K into K ∪ C(f2) corresponds to the reverse col-
lapse operation from K ∪ C(f2) into K, and both complexes
also have the same homotopy type.

For the sake of concision, in the sequel, we will note

K ⊚C(f2) =
ß

K � C(f2) if f2 ∈ K
K ∪C(f2) if f2 < K

(9)

This notation holds independently from the simpleness or
non-simpleness of C(f2).

4 This is equivalent to say that the intersection of the border of C(f2)
(i.e. C(f2) \ {f2}) and K � C(f2) (see Eq. (8)) has a Euler characteristics
of 1 (and is then also non-empty and connected), which is a necessary
and sufficient condition for simpleness in dimension 2.
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Fig. 2 Proposed framework for homotopy type preserving affine transformation. Following the flowchart (see Section 3.3): X ⊂ Z2; (1) □X = X ⊂
R2; (2) A(X) = XA ⊂ R2; (3) ΠG(XA) = G ∈ CG, (4) ΠH(G) ≡ H ∈ CH; (5) H(H) = “H ∈ CH, (6) ΠF(“H) ≡ F̂ ∈ CF; (7) ΠR2 (F̂) = X̂ ⊂ R2; (8)
⊡X̂ = X̂ ⊂ Z2.

3 Overview of the Method

3.1 Problem statement

Given a digital object X ⊂ Z2 and an affine transformation
A : R2 → R2, we aim to define a digital object X̂ ⊂ Z2

resulting from the application ofA on X.
Of course the direct application of A on X is generally

not an appropriate solution, since in most cases, we have
x ∈ Z2 ⇏ A(x) ∈ Z2. Then, we search a solution X̂ ⊂ Z2

that is “as close as possible” (but generally not equal) to
A(X) ⊂ R2.

Since affine transformations are topologically preserving
in R2, we also require that the sought solution X̂ ⊂ Z2 has
the same topology as the initial object X ⊂ Z2.

To summarize, we aim at building a digital object X̂ that:

– preserves exactly the topology of X; and
– preserves as much as possible the geometry of X;

with respect to the affine transformationA.

3.2 Input and output

The proposed method has the following inputs:

– a (finite) digital object X ⊂ Z2;
– a (rational) affine transformationA : Q2 → Q2 (Eq. (1));

and as hyper-parameter:

– a geometric measure D⋆ : 2Z
2
× 2Z

2
→ R+ used for

determining the geometric (dis)similarity between two
digital objects (with respect toA).

The method provides as output:

– a (finite) digital object X̂ ⊂ Z2

such that:

– X̂ is as close as possible to the image of X by A, which
is expressed by minimizing the measure D⋆ between X̂
and X;

– X and X̂ have the same homotopy type.

3.3 Main steps of the method

The proposed method, illustrated in Figure 2, can be decom-
posed into 8 successive steps.

(1) Embedding in R2

We define X ⊂ R2, the continuous analogue of X, as

X = X ⊕ □ (10)

where ⊕ is the usual dilation operator [20] and □ is the
closed, unit square structuring element [− 1

2 ,
1
2 ]2 ⊂ R2. In

other words, X is the union of pixels centered at the points
of X. We note∣∣∣∣∣□ : 2Z

2
→ 2R

2

X 7→ □(X) = X ⊕ □ = X
(11)

the function that defines this continuous analogue. For the
sake of concision, we will sometimes note □X instead of
□(X).

(2) Affine transformation in R2

The affine transformation A is applied on the continuous
object X (Eq. (1)), leading to the continuous object

XA = A(X) = {A(x) | x ∈ X} ⊂ R2 (12)

(3) Embedding in the cellular space G
The continuous object XA is embedded in a cellular space
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G which is the image byA of the canonical cubical space F
induced by Z2. We note

G = ΠG(XA) (13)

the complex induced by the embedding of XA in G. The
definition of both cellular spaces F and G and the way to
compute ΠG(XA) are detailed in Sections 4.1 and 4.2.

(4) Embedding in the cellular space H
In the next steps of the method, our purpose is to build a
homotopic transformation for turning the complex G into
another complex F̂ that will be finally embedded back into
Z2. This requires that F̂ be defined in the cubical space F
whereas G is defined in the cellular space G. To tackle this
issue, we define a cellular space H that refines both F and G,
and we embed G into H. We note

H ≡ ΠH(G) = ΠH(XA) (14)

the complex obtained by refining the complex G into the cel-
lular space H. The definition of the cellular space H and the
way to compute H are detailed in Section 4.3.

(5) Construction of an optimal complex in H
At this stage, we aim to define a complex “H that satisfies the
required properties with respect to our problem. First, “H has
to be obtained from H (which has the same homotopy type
as X) via a homotopic transformation H in the cubical space
H. Second, “H must be embeddable into the coarser cubical
space F, i.e. there must exist a cubical complex F̂ in F such
that

F̂ ≡ ΠF(“H) (15)

Third, the digital object X̂ that will be derived from (and
will have the same homotopy type as) “H and F̂ should be
“as similar as possible” to the digital object X given as in-
put, with respect to the affine transformation A. This is ex-
pressed by the fact that we aim at reaching

minD⋆(X, X̂) (16)

for the chosen measureD⋆. The handling of this constrained
optimization process is described in Section 5.

(6) Embedding in the cellular space F
For the further digitization purpose, it is mandatory that “H
be rewritten as a complex F̂ defined in the cubical space F.
This is tractable from Eq. (15). The way to pass from H to F
is detailed in Section 4.3.

(7) Embedding in R2

The complex F̂ is embedded into R2 by following the for-
mulation of Eq. (5), i.e.

X̂ = ΠR2 (F̂) =
⋃

F̂ (17)

(8) Embedding in Z2

The continuous object X̂ is embedded into Z2 by following
the usual Gauss digitization paradigm [30]

X̂ = X̂ ∩ Z2 (18)

The function that defines the Gauss digitization5 of a con-
tinuous object is noted∣∣∣∣∣⊡ : 2R

2
→ 2Z

2

Y 7→ ⊡(Y) = Y ∩ Z2 (19)

For the sake of concision, we will sometimes note ⊡Y in-
stead of ⊡(Y). We then have X̂ = ⊡X̂.

Summary
Overall, we then define X̂ from X as

X̂ =
[
⊡ ◦ ΠR2 ◦ ΠF︸            ︷︷            ︸

(6−8)

◦H ◦ ΠH ◦ ΠG ◦ A ◦ □︸                  ︷︷                  ︸
(1−4)

]
(X) (20)

where the two parts corresponding to steps (1–4) and (6–
8) are related to geometric and structural operations (that
preserve the homotopy type), while step 5, namely the con-
struction of the homotopic transformation H corresponds to
the optimization part of the process.

4 Cellular Complexes

4.1 The initial cubical space F

The initial digital object X is defined in Z2, and so is the final
digital object X̂ that we aim to build. Both have a continuous
analogue in R2. The continuous analogue X of X is defined
as X = □X. The continuous analogue X̂ of X̂ is characterized
by X̂ = □X̂. In other words, both are defined as unions of
unit, closed squares (i.e. pixels) centered on the points of X
and X̂, respectively. In order to model /manipulate these two
continuous objects X and X̂ of R2 as complexes, we build the
cellular (actually cubical) complex space F as follows.

Let us set

∆ = Z +
1
2
=
¶

k +
1
2
| k ∈ Z

©
(21)

Let δ ∈ ∆. We define the vertical line Vδ ⊂ R2 and the hori-
zon line Hδ ⊂ R2 by the following equations, respectively

(Vδ) x − δ = 0 (22)

(Hδ) y − δ = 0 (23)

5 The choice of Gauss digitization is relevant with respect to Step
(1) since we have ⊡□ = Id2Z2 .
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We set

V∆ = {Vδ | δ ∈ ∆} (24)

H∆ = {Hδ | δ ∈ ∆} (25)

G∆ = V∆ ∪H∆ (26)

This last set G∆ is the square grid that subdivides R2 into
unit squares centered on the points of Z2. In other words, G∆
generates the Voronoi diagram of Z2 in R2.

The induced cellular complex space F(R2), simply noted
F, is then composed of the sets F0, F1 and F2 of 0-, 1- and
2-faces defined as

F0 = {{d} | d ∈ ∆2} (27)

F1 = {]d,d + ex[ | d ∈ ∆2} ∪ {]d,d + ey[ | d ∈ ∆2} (28)

F2 = {]d,d + ex[ × ]d,d + ey[ | d ∈ ∆2} (29)

where ex = (1, 0) and ey = (0, 1). In particular, we have⋃
F0 = V∆ ∩H∆ (30)⋃
F1 = G∆ \ (V∆ ∩H∆) (31)⋃
F2 = R

2 \ G∆ (32)

For a digital object X ⊂ Z2 and its continuous analogue
X = □X, we define the associated complex F = ΠF(X) ∈ CF
as

F =
⋃
x∈X

C(■x) = {f ∈ F | f ⊂ X} (33)

where∣∣∣∣■ : Z2 → F2

p 7→ p ⊕ ] − 1
2 ,

1
2 [2 (34)

is the bijective function that maps each p ∈ Z2 to its associ-
ated unit, open square (i.e. 2-face) ■(p), also noted ■p.

We set Fd(F) (0 ≤ d ≤ 2) the set of all the d-faces of F.
In particular, we have

X = □X =
⋃
ΠF(X) = ΠR2 (F) (35)

X = ⊡X = ■−1(F2(F)) (36)

4.2 The cellular space G induced byA

The affine transformation A is applied on the continuous
analogue X ⊂ R2 of X, leading to the continuous object
A(X) = XA ⊂ R2 (see Eq. (12)).

Similarly to X, that can be modeled by a complex F in
the cubical space F (Section 4.1), the object XA can also be
modeled by a complex G in a cellular space G. This cellular
space G is the image of F by the affine transformation A.
In particular, A trivially induces an isomorphism between
these two spaces.

More precisely, G derives from the grid A(G∆) which
subdivides R2 into parallelograms centered on the points of
A(Z2). We have

A(G∆) = A(V∆) ∪A(H∆) (37)

with

A(V∆) = {A(Vδ) | δ ∈ ∆} (38)

A(H∆) = {A(Hδ) | δ ∈ ∆} (39)

For each δ ∈ ∆, the lines A(Vδ) and A(Hδ) are defined
by the following equations, respectively

(A(Vδ)) a22x − a12y − a22tx + a12ty − δ = 0 (40)

(A(Hδ)) − a21x + a11y + a21tx − a11ty − δ = 0 (41)

The induced cellular space G is then composed of the three
sets of d-faces (0 ≤ d ≤ 2)

Gd = A(Fd) = {A(f) | f ∈ Fd} (42)

The continuous object XA ⊂ R2 is then modeled by the
complex G = ΠG(XA) ∈ CG

G = A(F) = A(ΠF(X)) = {A(f) | f ∈ ΠF(X)} (43)

We set Gd(G) (0 ≤ d ≤ 2) the set of all the d-faces of G.

4.3 The cellular space H refining the spaces F and G

Although XA presents good topological properties with re-
spect to X, it cannot be directly used for building the final
digital object X̂. Indeed, the complex G that models XA is
defined on G and not on F.

At this stage, our purpose is to build from the complex
G in G, a new (cubical) complex F̂ in F, that will be used
to finally define the resulting digital object X̂. In order to
guarantee the preservation of the homotopy type between
X and X̂, it is indeed necessary that G and F̂ also have the
same homotopy type, i.e. we have to build F̂ from G via a
homotopic transformation. This requires that both of these
complexes be defined in the same cellular space.

Then, we build a new cellular space H that refines both
F and G. In this space H, the 2-faces are convex polygons of
various shapes (whereas they are only squares and parallel-
ograms in F and G, respectively).

Practically, H is built from the subdivision of the Eu-
clidean planeR2 by the union of the two grids G∆ andA(G∆).
In particular, for each 2-face h2 ofH, there exists exactly one
2-face f2 of F and one 2-face g2 of G such that

h2 = f2 ∩ g2 (44)
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Based on this property, we define the two functions ϕ :
H2 → F2 and γ : H2 → G2, such that

ϕ(h2) = f2 (45)

γ(h2) = g2 (46)

Reversely, we build the two functions∣∣∣∣Φ : F2 → 2H2

f2 7→ ϕ
−1({f2}) = {h2 ∈ H2 | ϕ(h2) = f2}

(47)

and∣∣∣∣Γ : G2 → 2H2

g2 7→ γ
−1({g2}) = {h2 ∈ H2 | γ(h2) = g2}

(48)

The algorithmic process for building H from F and G is
detailed in Appendix A. This process can be carried out us-
ing only exact calculus since all the 0-faces of H have ratio-
nal coordinates. Indeed, from Eqs. (22–23) and (40–41), the
lines of G∆ andA(G∆) have rational-coefficient equations. In
particular, for two (non-colinear) such lines Li (1 ≤ i ≤ 2)
of equations

aix + biy + ci = 0 (49)

with ai, bi, ci ∈ Q, the putative point of intersection d be-
tween both forming a 0-face {d} of H has the following co-
ordinates:

(dx, dy) =
Å

b1c2 − b2c1

a1b2 − a2b1
,

a1c2 − a2c1

a2b1 − a1b2

ã
∈ Q2 (50)

It is important that the data structure finally modeling H
allows us to have access easily to C(h), S (h) for any face h of
H, but also to have access to ϕ(h2) and γ(h2) for any 2-face
h2 of H and to Φ(f2) and Γ(g2) for any 2-faces f2 of F and g2
of G.

Based on the above functions, each complexes F on F
and G ofG can be embedded intoH by defining the complex
ΠH(F) and ΠH(G), respectively, as

ΠH(F) =
⋃
f2∈F2(F)

⋃
h2∈Φ(f2)

C(h2) (51)

ΠH(G) =
⋃

g2∈G2(G)

⋃
h2∈Γ(g2)

C(h2) (52)

For any complex H on H, if there exists a complex F on
F (resp. G on G) such that H ≡ ΠH(F) (resp. H ≡ ΠH(G)),
then we have

F = ΠF(H) =
⋃

h2∈H2(H)

C(ϕ(h2)) (53)

G = ΠG(H) =
⋃

h2∈H2(H)

C(γ(h2)) (54)

5 Optimization-Based Affine Transformation

In this section, we discuss on the optimization part of the
proposed method. It corresponds to the computation of the
homotopic transformation H between the complexes H and“H in the cellular space H, i.e. Step (5) in Section 3.3.

The sought complex “H has to satisfy three properties:

1. it must have the same homotopy type as H;
2. it must be embeddable into the coarser cubical space F;
3. it must allow to minimize the measure D⋆ (Eq. (16))

with respect to the object X and the affine transformation
A.

Hereatfer, we express more formally these three properties.

5.1 Objective functions

We recall that the complex H corresponds to the exact em-
bedding of the digital image X in the cellular space H. More
precisely, we have

H =
[
ΠH ◦ ΠG ◦ A ◦ □

]
(X) (55)

which corresponds to the “(1–4)” part of Eq. (20). In partic-
ular, the digital object X ⊂ Z2 is expressed as a continous
object X of R2, then it undergoes an affine transformation,
and is embedded first into the cellular space G and second
into the finer cellular space H.

Let us consider a complex ‹H of the cellular space H. We
explain how H and ‹H may differ with respect to the three
above properties.

5.1.1 Topological error measure

In dimension 2, it is possible to accurately quantify the topo-
logical difference between the two complexes H and ‹H, i.e.
to define a topological error measure Etopo : CH×CH → R+.
In our case, the purpose is to ensure the preservation of the
topology between H and ‹H. Thus, we will simply impose
that Etopo(H, ‹H) = 0, i.e. that H and ‹H have the same topol-
ogy. More precisely, we will ensure this property in the algo-
rithmic process by explicitly building a homotopy between
these two complexes.

5.1.2 Digitization error measure

The cellular space H refines the cellular (cubical) space F.
In particular, any complex of CF corresponds to an analogue
complex of CH. However, the counterpart is not true, in gen-
eral: only a subset of complexes of CH have an analogue
complex in CF. More precisely, the complex ‹H admits such
analogue F̃ iff for any 2-face h2 of H, we have

Φ(ϕ(h2)) ∩ ‹H = Φ(ϕ(h2)) or ∅ (56)
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or equivalently, if for any 2-face f2 of F, we have

Φ(f2) ∩ ‹H = Φ(f2) or ∅ (57)

Less formally, this means that any 2-face of F may be fully
embedded either in ‹H or in its complement (i.e. its back-
ground), or equivalently, that it is not “composed” of both
complex and background parts.

Based on these facts, it is possible to define a digitiza-
tion error measure Edigi : CH → R+. This can be done, for
instance, by computing the number or the area of the 2-faces
of H that forbid to satisfy the property expressed by Eqs. (56
–57).

In particular, we have Edigi(‹H) = 0 iff there exists F̃ in
CF such that F̃ ≡ ΠF(‹H).

5.1.3 Geometric error measure

We are seeking a digital object X̂ ⊂ Z2 which is as similar as
possible to the initial digital object X ⊂ Z2 up to the affine
transformationA. This geometrical similarity between these
two digital objects X (that underwent A) and X̂ depends on
the similarity between their continuous analogues XA and X̂
in R2 (and equivalently between the associated complexes H
and “H in the cellular space H) but also on the chosen digiti-
zation policy that links these continuous and digital objects.

In particular, two main digitization models are frequently
considered in the literature, namely the Gauss digitization
and the majority vote model. In the Gauss digitization model,
our purpose is that X̂ be as similar as possible to ⊡XA. In the
majority vote model, our purpose is that □X̂ be as similar as
possible to XA. These two strategies lead to the following
measures on digital objects, respectively

D⊡(X, X̂) = | ⊡A(□X) ⊗ X̂ | (58)

D□(X, X̂) = | A(□X) ⊗ □X̂ | (59)

where A ⊗ B = (A \ B) ∪ (B \ A) and | · | is the cardinal
for discrete sets (Eq. (58)) and the area for continuous sets
(Eq. (59)). Note that Eq. (58) rewrites as

D⊡(X, X̂) = | □ ⊡A(□X) ⊗ □X̂ | (60)

In other words, both digital measures can be defined via a
same continuous measure as follows

D⊡(X, X̂) = D(□ ⊡A(□X),□X̂) (61)

D□(X, X̂) = D(A(□X),□X̂) (62)

where, for any finite A, B ⊂ R2

D(A, B) = | A ⊗ B | (63)

Now, let us consider the complex H (that corresponds to
XA = A(□X)) and an arbitrary complex ‹H in H. Based on
the above definitions ofD⊡ andD□, we can derive measures

Egeom : CH ×CH → R+ that allow us to assess the geometri-
cal similarity between H and ‹H
E⊡geom(H, ‹H) = D(□ ⊡ ΠR2 (H), ΠR2 (‹H)) (64)

E□geom(H, ‹H) = D(ΠR2 (H), ΠR2 (‹H)) (65)

Following the notations of Eq. (16) (and under the dig-
itization constraints induced by Edigi), the geometric error
measures E⊡geom and E□geom defined in Eqs. (64–65) in the
space H correspond to the measures D⊡ and D□ in Z2, re-
spectively.

5.2 Optimization problem

5.2.1 Formulation

The complex “H we are seeking should be the solution of the
following (multi-objective) optimization problem“H = arg‹H∈CH minEtopo(H, ‹H) (66)“H = arg‹H∈CH minEdigi(‹H) (67)“H = arg‹H∈CH minEgeom(H, ‹H) (68)

More precisely, we impose hard constraints on the topology
(H and “H must have the same homotopy type) and on the
digitization (“H must be embeddable into F). In other words,
Eqs. (66–67) must be solved exactly, i.e. we aim to have
Etopo(H, “H) = 0 and Edigi(“H) = 0, whereas we accept that “H
may not be optimal for Eq. (68).

5.2.2 Initialization and evolution of the error measures

The optimization process for defining “H within the cellular
space CH is initialized with ‹H = H. In particular, at this
initial stage, we have

Etopo(H,H) = 0 (69)

Edigi(H) ≥ 0 (70)

Egeom(H,H) ≥ 0 (71)

In other words, initially, one of the three error measures
is optimized, but this is not necessarily the case for the other
two, in particular Edigi that must be finally equal to 0. As
a consequence, in general, H is not an acceptable solution,
i.e. the identity on CH is not an acceptable solution for the
sought homotopic transformation H.

In our process, we choose to only investigate the can-
didate complexes ‹H that have the same homotopy type as
H, i.e. that satisfy Etopo(‹H,H) = 0. In other words, we im-
pose that Etopo remains constantly null during the whole op-
timization procedure. This choice is motivated by two rea-
sons. First, as stated in Section 5.1.1, defining a topological
error measure is indeed possible, but with a non-negligible



10 Nicolas Passat et al.

computational cost. By contrast, ensuring the topological in-
variance between two complexes is tractable with a negligi-
ble computational cost, for instance by considering the no-
tion of simple cell (see Section 2.3). Second, proving that
two complexes have the same homotopy type is not equiva-
lent (in a finite space) to determining a relevant homotopic
transformation between them. By contrast, building a path
in the space CH, composed of “successive” complexes that
share the same homotopy type is indeed equivalent to build-
ing such a relevant homotopic transformation.

Regarding the other two error measures, we may have to
handle antagonistic behaviours. Indeed, for Edigi, we often
start with a strictly positive value, and we have to reach a
null value for “H. By contrast, for Egeom, we may start from
a possibly non-optimal value, and we have to decrease as
much as possible (or increase as little as possible) this value,
while trying to vanish Edigi in the meantime, until reaching“H.

5.3 Research space

The space CH of all the complexes on H has a size 2|H2 |.
Some of the complexes ‹H of CH are such that ΠF(‹H) exists,
i.e. they can be embedded as complexes F̃ of CF, and then
as digital objects in Z2. Such complexes form a supbspace
of CH noted CFH. This subspace CFH is trivially isomorphic to
CF, and its size is 2|F2 |. It is important to note that‹H ∈ CFH ⇔ Edigi(‹H) = 0 (72)

In other words, the solution “H we are seeking is necessarily
a complex of CFH.

We can endow CH with a graph structure by defining the
following adjacency relation. Let H1 and H2 be two distinct
complexes of H. We have H1 ⌢ H2 iff there exists a unique
2-face h2 ∈ H2 such that H1 = H2 ⊚ C(h2). In particular,
two complexes H1 and H2 are adjacent in the graph (CH,⌢)
iff they differ from exactly one 2-cell. This graph is dense.
Indeed, each complex is adjacent to |H2| other complexes.

We can relevantly consider a strict subrelation of the ad-
jacency relation ⌢. In particular, we define the adjacency
relation⌢h as follows

(H1 ⌢h H2)⇔
ß

H1 ⌢ H2

C(h2) is a simple cell for H1,H2
(73)

In other words,⌢h is built from⌢ by considering only the
couples of complexes that differ from exactly one simple
cell. The induced subgraph (CH,⌢h) is much less dense.
Indeed, a complex is, most of the time, adjacent to approxi-
mately

√
|H2| other complexes.

This graph (CH,⌢h) is composed of connected compo-
nents. Each connected component corresponds to a family
of complexes that all share the same homotopy type.

Algorithm 1: Naive computation of “H.
Input: H ∈ CH
Input: Egeom : CH × CH → R+
Output: “H ∈ CH

H ∩ CFH, solution of Eq. (74)
1 “H initially undefined (current best solution)
2 (At this stage, we assume Egeom(H, “H) = +∞)
3 ‹H initially undefined (candidate best solution)
4 T ← ∅ (set of tested candidate solutions)
5 S ← {H} (set of candidate solutions to be tested)
6 while S , ∅ do
7 Choose ‹H in S
8 S ← S \ {‹H}
9 T ← T ∪ {‹H}

10 if Egeom(H, ‹H) < Egeom(H, “H) then
11 if ∃F̃ ∈ CF s.t. ‹H ≡ ΠH(F̃) then
12 “H ← ‹H
13 for all ‹Hh ⌢h ‹H do
14 if ‹Hh < T then
15 S ← S ∪ {‹Hh}

In particular, the connected component CH
H that contains

H is the set of all the complexes ‹H of CH which can be ob-
tained from H via a homotopic transformation H (composed
by a series of attachments / detachments of simple cells, see
Eq. (8)). Following the constraint that Etopo(‹H,H) = 0 dur-
ing the whole optimization process, it follows that the sought
optimal complex “H is an element of CH

H .
More precisely, we have “H ∈ CH

H ∩ CFH, and the multi-
objective optimization problem stated in Eqs. (66–68) can be
refined as the following (constrained) optimization problem“H = arg‹H∈CH

H∩CFH
minEgeom(H, ‹H) (74)

5.4 Algorithmic aspects

5.4.1 Exhaustive approach (naive)

We are now ready to discuss on the algorithmic aspects re-
lated to the resolution of the proposed optimization problem.
As stated in the above sections, our purpose is to determine
a complex “H defined in the cellular spaceH that is a solution
of Eqs. (66–68), and / or of Eq. (74).

A naive way of solving Eq. (74) would be to investigate
all the complexes ‹H that both have the same homotopy type
as H and are embeddable into F. This first approach is sum-
marized in Algorithm 1.

This first algorithm terminates in finite time and provides
the best solution “H (if it exists). However, it is not tractable
in practice. Indeed, it would require to exhaustively explore
the whole, potentially exponential research space CH

H ∩ CFH.
Nevertheless, it is relevant for discussing important details
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that will be involved in the next version of algorithm actually
used for solving this problem.

In particular, Algorithm 1 allows us to understand how
we can explore the subspace CH

H ∩ CFH of CH which is com-
posed of the complexes ‹H that both have the same homotopy
type as H and are embeddable into F.

Regarding the homotopy constraints, we navigate into
CH
H by starting from the initial complex H and iteratively

considering complexes that successively differ from exactly
one simple cell. This is the meaning of the condition ‹Hh ⌢h‹H (line 13). As discussed in Section 2.3, it is possible to
characterize simple cells between two complexes (Eq. (8))
by a constant time process (see Eq. (7)). In theory, deter-
mining all the complexes ‹Hh which have the same homo-
topy type as the complex ‹H would require to investigate all
the complexes that differ from ‹H by exactly one cell, which
would lead to a linear time cost O(|H2|). In practice, based
on the characterization of Eq. (7), it is sufficient to explore
the complexes that differ by one cell located “on the border”
of ‹H, which leads to a sublinear time cost, proportional to
the perimeter of the complex. This notion of border can be
formalized by defining the following sets of faces and cells

B0,1(‹H) = {h0,1 ∈ H0(‹H) ∪ H1(‹H) | S (h0,1) ⊊ ‹H} (75)

B2(‹H) = {h2 ∈ H2 | C(h2) ∩ B0,1(‹H) , ∅} (76)

B(‹H) = {C(h2) | h2 ∈ B2(‹H)} (77)

More precisely, in line 13, the candidate complexes ‹Hh differ
from ‹H by exactly one 2-cell which necessarily belongs to
B(‹H).

Regarding the embeddability of the candidate complexes‹H into F, one can rely on Eq. (56). In other words, the infor-
mation on this putative embeddability is carried by the two
functions Φ and ϕ defined in Eqs. (45, 47). In addition, we
can define three sets of 2-faces of F

I2(‹H) = {f2 ∈ F2 | Φ(f2) ∩ ‹H = Φ(f2)} (78)

O2(‹H) = {f2 ∈ F2 | Φ(f2) ∩ ‹H = ∅} (79)

M2(‹H) = {f2 ∈ F2 | ∅ ⊊ Φ(f2) ∩ ‹H ⊊ Φ(f2)} (80)

which correspond to the 2-faces of the cellular space F2 that
lie fully inside, fully outside and both inside and outside of
the complex ‹H, respectively.

It is possible to assess the embeddability of ‹H by observ-
ing the status of M2(‹H). Indeed, the condition of line 11 is
equivalent toM2(‹H) = ∅.

5.4.2 Gradient descent

We now propose a second algorithm that does not exhaus-
tively explore the research space CH

H ∩ CFH and allows to
reach a locally optimal solution. It relies on a gradient de-
scent approach, and is sketched in Algorithm 2.

Algorithm 2: Computation of “H.
Input: H ∈ CH
Input: Egeom : CH × CH → R+
Input: Edigi : CH → R+
Output: “H ∈ CH

H ∩ CFH, solution of Eq. (74)
1 ‹H ← H
2 Build B2(‹H) from Eqs. (75–76)
3 while Edigi(‹H) > 0 do
4 Choose h2 in B2(‹H) s.t. ‹H ⊚C(h2)⌢h ‹H and minimizes

Edigi and Egeom(H, · )
5 ‹H ← ‹H ⊚C(h2)
6 Update B2(‹H)

7 “H ← ‹H
If this algorithm terminates, then it is plain that the pro-

posed solution “H satisfies Eqs. (66–67), i.e. “H has the same
homotopy type as H and is embeddable into F. The first
property is ensured by the fact that for each iteration of
the while loop (line 3), we select a simple cell (condition‹Hh ⌢h ‹H in line 4). The second property is ensured by
the non-negativity condition in the while loop (condition
Edigi(‹H) > 0 in line 3). The fact that the algorithm performs a
gradient descent, i.e. that it decreases Edigi as rapidly as pos-
sible (while decreasing/increasing Egeom as slowly/rapidly
as possible) depends on the choice of h2 (line 4) and will be
discussed hereafter.

At this stage, three important points remain to be clar-
ified: (1) how to choose the successive 2-faces h2; (2) how
to guarantee (as much as possible) that the algorithm will
terminate; and (3) when it terminates, how to obtain a rea-
sonable time cost.

Based on the discussion of Section 5.4.1, we define the
digitization error measure as

Edigi(‹H) = |M2(‹H) | (81)

i.e. as the number of 2-faces of F that lie both inside and
outside ‹H.

Based on the discussions of Section 5.1.3, we define the
geometrical error measure as

Egeom(ÙH, ‹H) =
∑

h2∈H2(ÙH)⊗H2(‹H)

|h2| (82)

where ÙH = H (resp. ÙH = ΠH(□ ⊡ ΠR2 (H))) if one considers
that Egeom = E

□
geom (resp. Egeom = E

⊡
geom). This geometri-

cal error is equal to the area of the false positive and false
negative 2-faces in ‹H with respect to ÙH.

We define an energy function ε that provides, for each
2-face h2 of H, the impact of modifying the status of h2 in
H, i.e. passing from H to H ⊚C(h2).

For any f2 ∈ F, we set

σ(f2, ÙH) =

®
1 if

∑
h2∈Φ(f2)∩ÙH |h2| > 0.5

−1 if
∑
h2∈Φ(f2)∩ÙH |h2| ≤ 0.5

(83)
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In particular, σ(f2, ÙH) indicates if f2 is in majority inside (1)
or outside (−1) the target complex ÙH. We also define

ζ(f2, ÙH, ‹H) =
1 − σ(f2, ÙH)

2
+ σ(f2, ÙH) ·

∑
h2∈Φ(f2)∩‹H |h2| (84)

In particular ζ(f2, ÙH, ‹H) has a value in [0, 1]. If f2 lies in
majority inside (resp. outside) ÙH, it gives the area of f2 that
lies inside (resp. outside) ‹H.

Then, the energy ε of a 2-face h2 of H with respect to ‹H
can be defined as

ε(h2, ÙH, ‹H) = −ι(h2, ‹H) · σ(ϕ(h2), ÙH) · ζ(ϕ(h2), ÙH, ‹H) (85)

with

ι(h2, ‹H) =

®
1 if h2 ∈ ‹H
−1 if h2 < ‹H (86)

The energy function ε takes values in [−1, 1[. The greater
this value, the higher the priority for modifying the status of
the considered 2-face in order to optimize Edigi and Egeom.

We can also define a topological indicator τ that pro-
vides, for each 2-face h2 of H, its simpleness status with
respect to ‹H
τ(h2, ‹H) =

®
1 if C(h2) is simple for ‹H
−1 otherwise

(87)

In practice, the set B2(‹H) is ordered by considering the
lexicographical ⩽ on R2, associating each 2-face h2 to the
couple (ε(h2, ÙH, ‹H), τ(h2, ‹H)). The face h2 chosen in line 4
corresponds to the simple cell C(h2) with the maximal cou-
ple (ε(h2, ÙH, ‹H), τ(h2, ‹H)).

Following these definitions, the processing of the 2-faces
h2 of H2 is carried out “face by face” regarding the 2-faces
f2 of F2, by considering these faces from the closest to the
furthest from the target complex ÙH. This behaviour derives
from the definition of ε (Eq. (85)). Doing so, the algorithm
actually proceeds as a gradient descent. Indeed, it aims to
optimize Edigi and Egeom as rapidly as possible.

In the favourable cases, the algorithm will terminate by
processing at most once each 2-face h2. The termination is
characterized by the fact that the 2-face h2 with the maxi-
mal couple is such that ε(h2, ÙH, ‹H) = −1. However, it may
happen that, when processing a given 2-face f2, we may be
unable to reach a purity status (i.e. f2 ∈ M2) for this face. In-
deed, such non-convergence can be induced by topological
deadlocks. Such a situation is characterized by the fact that
the 2-face h2 with the maximal couple is such that τ(h2, ‹H) =
−1 while ε(h2, ÙH, ‹H) ≥ 0. In such case, we reverse the def-
inition of σ(f2, ÙH), i.e. we set σ(f2, ÙH) ← −σ(f2, ÙH) (with
side effects on ζ and ε).

This reversing strategy is most of the time sufficient in
order to reach a convergence of the proposed algorithm. For

Algorithm 3: Locally optimal computation of “H.
Input: H ∈ CH
Input: ÙH ∈ CH
Output: “H ∈ CH

H ∩ CFH, solution of Eq. (74)
1 ‹H ← H
2 for all f2 ∈ F2 do
3 Compute σ(f2, ÙH) (Eq. (83))
4 Compute ζ(f2, ÙH, ‹H) (Eq. (84))

5 for all h2 ∈ H2 do
6 Compute ι(h2, ‹H) (Eq. (86))
7 Compute ε(h2, ÙH, ‹H) (Eq. (85))
8 Compute τ(h2, ‹H) (Eq. (87))

9 Build B2(‹H) (Eq. (76))
10 Sort B2(‹H) in lexicograph. order ⩽ wrt (ε( · , ÙH, ‹H), τ( · , ‹H))
11 h⋆2 ← arg max⩽ B2(‹H)
12 while ε(h⋆2 , ÙH, ‹H) ≥ 0 do
13 if τ(h⋆2 , ‹H) = 1 then
14 ‹H ← ‹H ⊚C(h⋆2 ) (Eq. (9))
15 Update ι(h⋆2 , ‹H) (Eq. (86))
16 Update ζ(ϕ(h⋆2 ), ÙH, ‹H) (Eq. (84))
17 for all h2 ∈ H2 s.t. C(h2) ∩C(h⋆2 ) , ∅ do
18 Update τ(h2, ‹H) (Eq. (87))
19 Update / resort B2(‹H) wrt h2

20 else
21 σ(ϕ(h⋆2 ), ÙH)← −σ(ϕ(h⋆2 ), ÙH)
22 Update ζ(ϕ(h⋆2 ), ÙH, ‹H) (Eq. (84))

23 for all h2 ∈ Φ(ϕ(h⋆2 )) do
24 Update ε(h2, ÙH, ‹H) (Eq. (85))
25 Update / resort B2(‹H) wrt h2

26 h⋆2 ← arg max⩽ B2(‹H)

27 “H ← ‹H
complexes presenting specific properties, with very small
structures (e.g. very thin textures, checkerboard configura-
tions, etc.), this gradient descent algorithm may fail, i.e. it
may not converge. In particular, this non-convergence could
lead to infinite iterations (line 12), due to alternating con-
figurations. Such oscillating effects can nonetheless be eas-
ily characterized by assessing the frequency of alternating
operations that every cells undergo (line 14). The optimiza-
tion process can be terminated when this frequency reaches
a given tolerance threshold.

Finally, it is worth mentioning that with this gradient de-
scent algorithm, and the proposed error measure, at each
step of the process, only a local updating is required, re-
garding the cells in the neighbourhood of the modified one,
which need to be checked for simpleness characterization,
and the potential addition / removal of such cells, in B2(‹H)
(that needs to be maintained sorted in (R2,⩽)). All these op-
erations require, at each step of the while loop (line 3), a time
O(k log b) where k is the number of cells involved in the up-
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(a) Initial object X1 (b) Gauss digitization of
A1(□X1)

(c) X̂1, Gauss digitization
policy

(d) Majority vote digitiza-
tion ofA1(□X1)

(e) X̂1, majority vote digiti-
zation policy

(f) Initial object X2 (g) Gauss digitization of
A2(□X2)

(h) X̂2, Gauss digitization
policy

(i) Majority vote digitiza-
tion ofA2(□X2)

(j) X̂2, majority vote digiti-
zation policy

(k) Initial object X3 (l) Gauss digitization of
A3(□X3)

(m) X̂3, Gauss digitization
policy

(n) Majority vote digitiza-
tion ofA3(□X3)

(o) X̂3, majority vote digiti-
zation policy

(p) Initial object X4 (q) Gauss digitization of
A4(□X4)

(r) X̂4, Gauss digitization
policy

(s) Majority vote digitiza-
tion ofA4(□X4)

(t) X̂4, majority vote digiti-
zation policy

Fig. 3 Effects of rigid motions Ai on digital objects Xi (1 ≤ i ≤ 4). (a, f, k, p) Initial digital objects Xi. (b–e) Results of the rigid motion A1 on
X1 with the following parameters: a11 =

22
25 , a12 = −

7
25 , a21 =

22
25 , a22 =

7
25 , tx = 0, ty = 0 (pure rotation). (g–j) Results of the rigid motion A2

on X2 with the following parameters: a11 =
5
13 , a12 = −

12
13 , a21 =

5
13 , a22 =

12
13 , tx =

1
5 , ty =

2
3 . (l–o) Results of the rigid motion A3 on X3 with

the following parameters: a11 =
3
5 , a12 = −

4
5 , a21 =

3
5 , a22 =

4
5 , tx =

1
3 , ty =

1
3 . (q–t) Results of the rigid motion A4 on X4 with the following

parameters: a11 =
3
5 , a12 = −

4
5 , a21 =

3
5 , a22 =

4
5 , tx =

1
5 , ty =

1
4 . (b, g, l, q) Results with a Gauss digitization of Ai(□Xi). (c, h, m, r) Results X̂i

with the proposed homotopic approach and Gauss digitization policy. (d, i, n, s) Results with the majority vote digitization of Ai(□Xi). (e, j, o, t)
Results X̂i with the proposed homotopic approach and majority vote digitization policy. For a given digitization (Gauss, majority vote) and a given
object, Xi, the blue pixels emphasize the differences between the result obtained by digitizingAi(□Xi) and the result X̂i obtained with the proposed
approach for the same digitization policy.

dating (generally, k is bounded by a low constant value) and
b the size of B2(‹H).

Algorithm 3, provides a summary of the proposed strat-
egy and refines Algorithm 2.

6 Experiments

6.1 Topology vs. non-topology preserving transformations

Let X⋆ ⊂ Z2 be a digital object and A⋆ : Q → Q an affine
transformation. We first compare results obtained with the
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(a) Initial object X5 (b) Gauss digitization of
A5(□X5)

(c) X̂5, Gauss digitization
policy

(d) Majority vote digitiza-
tion ofA5(□X5)

(e) X̂5, majority vote digiti-
zation policy

(f) Initial object X6 (g) Gauss digitization of
A6(□X6)

(h) X̂6, Gauss digitization
policy

(i) Majority vote digitiza-
tion ofA6(□X6)

(j) X̂6, majority vote digiti-
zation policy

(k) Initial object X7 (l) Gauss digitization of
A7(□X7)

(m) X̂7, Gauss digitization
policy

(n) Majority vote digitiza-
tion ofA7(□X7)

(o) X̂7, majority vote digiti-
zation policy

(p) Initial object X8 (q) Gauss digitization of
A8(□X8)

(r) X̂8, Gauss digitization
policy

(s) Majority vote digitiza-
tion ofA8(□X8)

(t) X̂8, majority vote digiti-
zation policy

(u) Initial object X9 (v) Gauss digitization of
A9(□X9)

(w) X̂9, Gauss digitization
policy

(x) Majority vote digitiza-
tion ofA9(□X9)

(y) X̂9, majority vote digiti-
zation policy

Fig. 4 Effects of affine transformations Ai on digital objects Xi (5 ≤ i ≤ 9). (a, f, k, p, u) Initial digital objects Xi. (b–e) Results of the affine
transformationA5 on X5 with the following parameters: a11 =

3
2 , a12 =

1
5 , a21 =

1
2 , a22 =

6
5 , tx =

1
5 , ty =

1
5 . (g–j) Results of the affine transformation

A6 on X6 with the following parameters: a11 =
6
5 , a12 = −

3
2 , a21 =

1
5 , a22 =

3
2 , tx =

1
3 , ty =

2
5 . (l–o) Results of the affine transformation A7 on

X7 with the following parameters: a11 =
3
2 , a12 =

1
5 , a21 =

1
2 , a22 =

6
5 , tx =

1
2 , ty = 0. (q–t) Results of the affine transformation A8 on X8 with

the following parameters: a11 =
6
5 , a12 = −

1
2 , a21 = −

1
10 , a22 =

11
10 , tx =

1
2 , ty = 0. (v–y) Results of the affine transformation A9 on X9 with the

following parameters: a11 =
6
5 , a12 =

3
2 , a21 =

1
5 , a22 =

3
2 , tx =

1
3 , ty =

2
5 . (b, g, l, q, v) Results with a Gauss digitization of Ai(□Xi). (c, h, m,

r, w) Results X̂i with the proposed homotopic approach and Gauss digitization policy. (d, i, n, s, x) Results with the majority vote digitization of
Ai(□Xi). (e, j, o, t, y) Results X̂i with the proposed homotopic approach and majority vote digitization policy. For a given digitization (Gauss,
majority vote) and a given object, Xi, the blue pixels emphasize the differences between the result obtained by digitizingAi(□Xi) and the result X̂i
obtained with the proposed approach for the same digitization policy.
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proposed homotopic approach that provides a result X̂⋆ ⊂ Z2

from the transformation of X⋆ ⊂ Z2 with respect toA⋆ ver-
sus results obtained with the standard strategy that consists
of carrying outA⋆ on the continuous object □(X⋆) ⊂ R2 and
then digitizing the result A⋆(□(X⋆)) ⊂ R2 to come back to
Z2. Such results are illustrated in Figure 3 for four couples
of objects Xi and rigid transformations Ai (1 ≤ i ≤ 4) and
in Figure 4 for five couples of objects Xi and more general
affine transformations Ai (5 ≤ i ≤ 9). In both figures, we
investigate the behaviour of two digitizations, namely the
Gauss digitization and the majority vote digitization.

We first consider simple objects, with a trivial topology
(one connected component, no hole), namely an ellipse X1

(Figure 3(a)) and disk X5 (Figure 4(a)). In the case of a rigid
transformation A1, the topology is preserved here for both
the standard approach (Figure 3(b, d)) and our strategy (Fig-
ure 3(c, e)), and the results are the same. This emphasizes
the compliance of our approach with the standard one when
there is no topological defect has to be corrected. This be-
haviour was expected; indeed, in absence topological dead-
lock (i.e. when the condition of line 13 in Algorithm 3 is
always true), the gradient descent algorithm converges onto
a result that corresponds to the globally optimal solution for
Egeom. In particular, we then have

E⊡geom(H, “H) = 0 (88)

E□geom(H, “H) =
∑

f2∈M2(H)

min
ß ∑
h2∈Φ(f2)∩H

|h2|, 1 −
∑

h2∈Φ(f2)∩H

™
(89)

which are the optimal values that can be reached.
Even for such simple objects, we observe however that

for more general affine transformations such asA5, the stan-
dard strategy can lead to topological defects, here the cre-
ation of a hole (Figure 4(b)). In this context, our approach is
able to deal with this issue (Figure 4(c)), and the topology is
then preserved.

For more complex objects Xi (i = 2–4, 6–9) (Figures 3(f,
k, p) and 4(f, k, p, u)) with many connected components
and many holes (possibly small/thin), for both rigid trans-
formations and affine transformations, and for both Gauss
and majority vote digitization, the standard strategy leads to
many topological defects (disconnections) (Figures 3(g, i, l,
n, q, s) and 4(g, i, l, n, q, s, v, x)). By contrast, our pro-
posed approach is able to correctly handle the topological
constraints, leading to to transformed objects with the same
homotopy type as the initial objects (Figures 3(h, j, m, o, r,
t) and 4(h, j, m, o, r, t, w, y)). Once again, this was expected,
since the homotopy type is preserved by construction.

It is important to note that these results are geometrically
fairly close to the “standard”. The differences between both
are emphasized by the pixels in blue in Figures 3 and 4. In
particular, one can observe that in all the cases (except one

pixel in Figure 3(o)), the pixels that differ between the re-
sults of our approach and the standard results are only those
which are mandatory to guarantee the preservation of the ho-
motopy type. In other words, in these experiments, although
a globally optimal value of Egeom cannot be reached due to
topological constraints, it is generally optimized as much as
possible.

6.2 Comparison of topology preserving transformations

We now compare results obtained with different methods for
topology preserving geometric transformations, relying on
the following paradigms:

– the notion of (digital) regularity [43] defined for identi-
fying a class of two-dimensional digital images, that pre-
serve the 4-connectedness and well-composedness [32]
of digital images;

– the notion of quasi-regularity [42] defined for identify-
ing a class of polygons, that preserve the 4-connectedness
and well-composedness of digitized polygons;

– the proposed approach.

To this end, we consider three digital objects:

1. X10 ⊂ Z
2 which is (digitally) regular and generated as

the Gauss digitization of a quasi-regular polygon P10 ⊂

R2;
2. X11 ⊂ Z

2 which is not (digitally) regular (but 4-connected
and well-composed) and is generated as the Gauss digi-
tization of a quasi-regular polygon P11 ⊂ R

2;
3. X12 ⊂ Z

2 which is not (digitally) regular and generated
as the Gauss digitization of a non-quasi-regular polygon
P12 ⊂ R

2.

The results of these experiments are illustrated in Figure 5.
These examples emphasize the ability of the different ap-

proaches to preserve the topology when the required proper-
ties are satisfied. The digitization of a quasi-regular polygon
(Figure 5(a, b)) remains 4-connected and well-composed af-
ter a rigid transformation. A (digitally) regular object (Fig-
ure 5(a)) also remains 4-connected and well-composed after
a rigid transformation.

However, when the required properties are no longer sat-
isfied, the notions of (digital) regularity and quasi-regularity
do not preserve their associated topological properties. For
instance, in Figure 5(b), a (digitally) non-regular object is
neither 4-connected nor well-composed after the transfor-
mation in Figure 5(h)). In Figure 5(c) a (digitally) non-regular
object and the digitization of a non-quasi-regular polygon
undergo disconnections and/or erroneous connections after
the transformations in Figure 5(i, l)).

In all these cases, our proposed approach is able to pre-
serve the topology, here the preservation of the 8-connected-
ness.
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(a) X10 = P10 ∩ Z
2 (b) X11 = P11 ∩ Z

2 (c) X12 = P12 ∩ Z
2

(d) Quasi-regularity (e) Quasi-regularity (f) Quasi-regularity

(g) Regularity (h) Regularity (i) Regularity

(j) Ours (Gauss) (k) Ours (Gauss) (l) Ours (Gauss)

(m) Ours (major. vote) (n) Ours (major. vote) (o) Ours (major. vote)

Fig. 5 (a–c) Digital objects Xi and associated polygons Pi, such that
Xi = Pi ∩ Z

2 (10 ≤ i ≤ 12). The digital objects Xi are (digitally)
regular in (a) and (digitally) non-regular in (b, c). The polygons Pi
are quasi-regular in (a, b) and non-quasi-regular in (c). (d–o) Results
for the rigid transformations Ai: (d,g,j,m) A10 (rotation angle: 2π

3 );
(e,h,k,n) A11 (rotation angle: 3π

8 ); (f,i,l,o) A12 (rotation angle: π9 ). (d–
f) Results based on the quasi-regularity paradigm. (g–i) Results based
on the (digital) regularity paradigm. (j–l) Result based on the proposed
method, with a Gauss digitization policy. (m–o) Result based on the
proposed method, with a majority vote digitization policy.

These experiments are carried out only for rigid transfor-
mations, since the notions of (digital) regularity and quasi-
regularity are defined only in this context. It is worth noting
that the notion of (digital) regularity requires in particular

that the object is well-composed and has no isolated point,
while quasi-regularity requires (with its current formulation)
that the digitized object is simply connected. Such require-
ments are not mandatory with the proposed approach, which
is then more versatile.

It is also to be noticed that the notions of (digital) regu-
larity and quasi-regularity deal with Gauss digitization only,
whereas the proposed approach can handle a wider range of
digitizations, since the digitization policy can be embedded
in the metrics to be optimized.

7 Conclusion

In this article, we proposed an optimization strategy dedi-
cated to compute the result of an affine transformation ap-
plied on a digital object with the constraint of preserving
its topology while altering as little as possible its geometry.
From a structural point of view, this approach relies on the
embedding of the digital object in cellular spaces, which al-
lows us to benefit simultaneously from both continuous and
discrete properties. From an algorithmic point of view, we
rely on an optimization strategy, where the evolution of an
initial model towards the expected solution is guided and
constrained by three kinds of measures, that deal with topol-
ogy, geometry and digitization information.

The proposed strategy, discussed in Section 5.4.2 and
summarized in Algorithm 3 can be seen as a gradient de-
scent approach, that preserves the homotopy type during its
whole processing, and aims to progressively optimize the
digitization and geometrical measures, with the purpose to
reach the actually optimal value for the first and a value as
optimal as possible for the second.

When this process terminates, it gives a result which is
a local optimum for the proposed problem. For most of the
digital objects usually handled in discrete geometry, this op-
timum is indeed the global one. This is, for instance, the case
in the examples considered in Section 6.

However, for more complex objects, and especially for
those with very textured details that lie at the limit of reso-
lution of the grid (e.g. a checkerboard with one-pixel-sized
connected components), it may happen that the proposed al-
gorithm provides a non-globally optimal result, or even fail
to terminate. In order to deal with such issues, it will be nec-
essary to consider more general optimization strategies that
could explore more deeply the research space than a stan-
dard gradient descent. The development of such strategies
constitutes our short-term perspectives.

As mid-term perspectives, we will also investigate our
approach with other kinds of topological models (e.g. the
well-composed sets [32]), but also with non-binary images
[15,35]. Longer-term perspectives will consist of investigat-
ing transformations in higher dimensions.
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A Construction of the cellular space H

We describe hereafter the way we build the cellular spaceH that refines
the two cubical spaces F and G.

A.1 Input

Although F, G and H are infinite spaces, our purpose is to handle finite
digital objects. As a consequence, our first input is a finite subset S of
Z2 that will include these digital objects. Without loss of generality, we
assume that

S = [[−s, s]]2 ⊂ Z2 (90)

is a square with s ∈ N⋆. The continuous analogue of this digital set S
is the Euclidean square subset of R2 defined as

S = □S = [−s −
1
2
, s +

1
2

]2 ⊂ R2 (91)

The parameters that define the affine transformation A are also re-
quired, namely the values a11, a12, a21, a22, tx, ty ∈ Q (see Eq. (2)). Con-
sequently, the information required as input is a 7-uple (s, a11, a12, a21,
a22, tx, ty) ∈ N⋆ × Q6.

A.2 Output

The output of the algorithm is the finite subspace (namely a complex)
of the cellular space H that intersects a Euclidean square

Q = [qx, qx + w] × [qy, qy + w] ⊂ R2 (92)

with q ∈ (Z + 1
2 )2 and w ∈ N⋆.

The output cellular space

H(Q) = {h ∈ H | h ⊂ Q} (93)

is defined as a finite set of faces of H, and is partitioned into three
subsets H0(Q), H1(Q) and H2(Q) that contain the 0-, 1- and 2-faces of
H(Q), respectively. In particular, H0(Q) ∪ H1(Q) ∪ H2(Q) = H(Q) is a
partition of Q.

For each face h, we also compute the closure C(h) and/or the star
S (h) within the subspace H(Q). If h is a 0- (resp. 1-, resp. 2-) face, we
compute S 1(h) and S 2(h) (resp. C0(h) and S 2(h), resp. C0(h) and C1(h))
where S d(h) (resp. Cd(h)) is the part of S (h) (resp. C(h)) composed by
the d-faces (0 ≤ d ≤ 2).

For each 2-face h2, we also compute the functions ϕ and γ. More
precisely, we compute the functions ϕ̃, γ̃ : H2 → Z

2 such that

ϕ̃(h2) = ⊡(ϕ(h2)) (94)

γ̃(h2) = ⊡(A−1(γ(h2))) (95)

This is indeed relevant since ⊡ is a bijection between F2 and Z2 while
⊡◦A−1 is a bijection between G2 and Z2. In particular, these functions
allow us to define the two functions Φ̃ : ⊡Q ⊂ Z2 → 2H2 and Γ̃ :
S ⊂ Z2 → 2H2 such that for any p ∈ ϕ(H2) (resp. p ∈ S), we have
Φ̃(p) = ϕ̃−1({p}) (resp. Γ̃(p) = γ̃−1({p})).

A.3 Definition of the square Q

The first task is to define the square Q, i.e. to define q and w so that
Q includes the image of the square S by the affine transformation A.
Since S is convex, we can simply compute the images of the four ver-
tices of S by A to reach that goal. In particular, for 0 ≤ i, j ≤ 1, we
set

ci, j = ((−1)i(s +
1
2

), (−1) j(s +
1
2

)) (96)

The four points ci, j are the vertices of S . For 0 ≤ i, j ≤ 1, we compute
ri, j = A(ci, j). We set

r−x = min
i, j
{⌊ri, j

x +
1
2
⌋} −

1
2

(97)

r−y = min
i, j
{⌊ri, j

y +
1
2
⌋} −

1
2

(98)

r+x = max
i, j
{⌈ri, j

x −
1
2
⌉} +

1
2

(99)

r+y = max
i, j
{⌈ri, j

y −
1
2
⌉} +

1
2

(100)

Finally, we define

qx = r−x (101)

qy = r−y (102)

w = max{r+x − r−x , r
+
y − r−y } (103)

The square Q is then defined by its four vertices q0,0 = q, qw,0 =

q + wex, q0,w = q + wey and qw,w = q + wex + wey.

A.4 Definition of the generator lines of H(Q)

The cellular subspace H(Q) is induced by the subdivision of Q by the
lines of V∆, H∆,A(V∆) andA(H∆). These four sets are infinite, but for
each of them, the subset of lines that contribute to the subdivision of
Q is finite and corresponds to the lines that intersect the square Q. The
subsets V∆(Q) of V∆ and H∆(Q) of H∆ are defined by

V∆(Q) = {Vδ | δ ∈ ∆ ∩ [qx, qx + w]} (104)

H∆(Q) = {Hδ | δ ∈ ∆ ∩ [qy, qy + w]} (105)
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while the subsetsA(V∆)(Q) ofA(V∆) andA(H∆)(Q) ofA(H∆) can be
determined as follows. For 0 ≤ i, j ≤ 1, we compute

ui, j = A−1(qiw, jw) (106)

These four points ui, j are the vertices of the parallelogramA−1(Q). We
set

δ−x = min
i, j

(⌈ui, j
x +

1
2
⌉) −

1
2

(107)

δ+x = max
i, j

(⌊ui, j
x −

1
2
⌋) +

1
2

(108)

δ−y = min
i, j

(⌈ui, j
y +

1
2
⌉) −

1
2

(109)

δ+y = max
i, j

(⌊ui, j
y −

1
2
⌋) +

1
2

(110)

The only lines of V∆ (resp. H∆) that intersect A−1(Q) are the lines Vδ
(resp. Hδ) for δ−x ≤ δ ≤ δ

+
x (resp. δ−y ≤ δ ≤ δ

+
y ). This leads us to define

the subsetsA(V∆)(Q) ofA(V∆) andA(H∆)(Q) ofA(H∆) as follows

A(V∆)(Q) = {A(Vδ) | δ−x ≤ δ ≤ δ
+
x } (111)

A(H∆)(Q) = {A(Hδ) | δ−y ≤ δ ≤ δ
+
y } (112)

A.5 Definition of H0(Q)

Any 0-face f0 of H(Q) corresponds to the intersection of (at least) two
lines of V∆(Q), H∆(Q), A(V∆)(Q) and A(H∆)(Q) inside the square Q.
(Of course, such two lines cannot belong to a same subset.) Reversely,
two lines from two of these subsets can induce at most one such 0-
face. In order to ensure that the intersection between two lines is indeed
inside the square Q, we define for each line L the segment, noted Q(L),
that corresponds the intersection between L and Q. In particular, two
lines L1 and L2 will intersect inside Q iff Q(L1) and Q(L2) intersect.

Let L be a line of V∆(Q), H∆(Q), A(V∆)(Q) or A(H∆)(Q). We
compute the putative intersections

L ∩ Vqx = {m
x−} (113)

L ∩ Vqx+w = {mx+} (114)

L ∩ Hqy = {m
y−} (115)

L ∩ Hqy+w = {my+} (116)

with the convention that mx− = (my−
x ,−∞) and mx+ = (my+

x ,+∞) if L is
colinear to Vqx and Vqx+w and my− = (−∞,mx−

y ) and my+ = (+∞,mx+
y )

if L is colinear to Hqy and Hqy+w. The segment associated to L is then

Q(L) = (117)

[(max{mx−
x ,m

y−
x },max{mx−

y ,m
y−
y }), (min{mx+

x ,m
y+
x },min{mx+

y ,m
y+
y })]

For the sake of concision, a 0-face f0 will be also noted as ⟨h⟩
where h is the point that defines this face, i.e. the intersection point of
these two lines.

Let L1, L2 be two lines of two distinct subsets of V∆(Q), H∆(Q),
A(V∆)(Q) or A(H∆)(Q). If L1 ∩ L2 = {h} (i.e. if L1 ∩ L2 , ∅ and
L1 , L2, i.e. L1, L2 are non-colinear), then ⟨h⟩ is a 0-face of H0(Q) iff
h ∈ Q(L1) and h ∈ Q(L2). The exhaustive scanning of all the couples
of lines within V∆(Q), H∆(Q), A(V∆)(Q) or A(H∆)(Q) then allows us
to build H0(Q).

A.6 Definition of H1(Q)

For each line L of V∆(Q), H∆(Q), A(V∆)(Q) or A(H∆)(Q), we keep
track of all the 0-faces of H0(Q) induced by the intersection of L with
another line. In particular, we note I(L) the sets of all the points corre-
sponding to these 0-faces.

For the sake of concision, a 1-face f1 will be also noted as ⟨h1,h2⟩

where f1 = ]h1,h2[.
Let I(L) = {h0, . . . ,hi . . . ,ht} (t ≥ 0). Without loss of generality,

we assume that the points hi are sorted in the lexicographic order in
Q2. (Note that we have h0 and ht equal to the bounds of Q(L).) Then,
for any 0 ≤ i ≤ t − 1, ⟨hi,hi+1⟩ is a 1-face of H1(Q). Reversely, each 1-
face ofH1(Q) satisfies this property for one (or two) line(s) L of V∆(Q),
H∆(Q),A(V∆)(Q) orA(H∆)(Q).

For any 1-face f1 = ⟨hi,hi+1⟩, the set C0(f1) is defined as {⟨hi⟩, ⟨hi+1⟩}.
Reversely, for any 0-face f0 ∈ H0, the set S 1(f0) is defined as {f1 ∈ H1 |

f0 ∈ C0(f1)}.

A.7 Definition of H2(Q)

Let f0 = ⟨h⟩ be a 0-face of H0. The set S 1(f0) contains many 1-faces
⟨h,h′⟩ that can be easily sorted in the clockwise order with respect to
the orientation of the vectors h′ − h. For each 1-face f1 = ⟨h,h′⟩ of H1,
we can then define the successor of f1 in S (⟨h⟩) (resp. in S (⟨h′⟩)) with
respect to this ordering. This successor will be noted σ(⟨h′,h⟩) (resp.
σ(⟨h,h′⟩)); note in particular that the order of h,h′ in the notation of σ
will then be important in that case.

For the sake of concision, a 2-face f2 will be also noted as ⟨h1, . . . ,
hi, . . .ht⟩ (t ≥ 3) where the hi are the vertices of the corresponding
convex polygon, clockwise ordered. Each 2-face6 f2 is defined (up to
circular permutations) by ⟨h1, . . . ,hi, . . .ht⟩ such that for any 1 ≤ i, j ≤
t, we have hi , h j, for any 1 ≤ i ≤ t − 2, we have σ(⟨hi,hi+1⟩) =
⟨hi+1,hi+2⟩ and σ(⟨ht−1,ht⟩) = ⟨ht,h1⟩.

For any 2-face f2 = ⟨h1, . . . ,hi, . . .ht⟩, the sets C0(f2) and C1(f2)
are defined as

C0(f2) = {⟨h1⟩, . . . , ⟨hi⟩, . . . ⟨ht⟩} (118)

C1(f2) = {⟨h1,h2⟩, . . . , ⟨hi,hi+1⟩, . . . , ⟨ht−1,ht⟩, ⟨ht,h1⟩} (119)

Reversely, for any 0-face f0 ∈ H0, the sets S 1(f0) and S 2(f0) are defined
as

S 1(f0) = {f2 ∈ H2 | f0 ∈ C0(f2)} (120)

S 2(f0) = {f2 ∈ H2 | f1 ∈ C1(f2)} (121)

A.8 Definition of the functions ϕ̃, γ̃, Φ̃, Γ̃

Let f2 = ⟨h1, . . . ,hi, . . .ht⟩ be a 2-face of H(Q). We set7

b(f2) =
1
t

t∑
i=1

hi (122)

a point inside f2, and a = A−1(b(f2)). We set

ϕ̃(f2) = argp∈Z2 min ∥p − b(f2)∥ = ([bx(f2)], [by(f2)]) (123)

γ̃(f2) = argp∈Z2 min ∥p −A−1(b(f2))∥ = ([ax], [ay]) (124)

6 There exists one such ⟨h1, . . . ,hi, . . .ht⟩ which is not a 2-face, and
that corresponds to the boundary of H(Q). It is characterized by the
fact that it contains the four points q0,0, qw,0, q0,w and qw,w.

7 In practice, considering any 3 points hi would be enough for our
purpose.
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where [ · ] is the rounding operator. From ϕ̃ and γ̃, we then define Φ̃ :
ϕ̃(H2) ⊂ Z2 → 2H2 and Γ̃ : S ⊂ Z2 → 2H2 .

In particular, these functions allow us to define the two functions
Φ̃ : ϕ̃(H2) ⊂ Z2 → 2H2 and Γ̃ : S ⊂ Z2 → 2H2 as follows

∀p ∈ ⊡(Q),∀f2 ∈ H2, f2 ∈ Φ̃(p)⇔ ϕ̃(f2) = p (125)

∀p ∈ S,∀f2 ∈ H2, f2 ∈ Γ̃(p)⇔ γ̃(f2) = p (126)


