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An axiparabola is a reflective aspherical optics that focuses a light beam into an extended focal
line. The light intensity and group velocity profiles along the focus are adjustable through the
proper design. The on-axis light velocity can be controlled, for instance, by adding spatio-temporal
couplings via chromatic optics on the incoming beam. Therefore the energy deposition along the
axis can be either subluminal or superluminal as required in various applications. This article first
explores how the axiparabola design defines its properties in the geometric optics approximation.
Then the obtained description is considered in numerical simulations for two cases of interest for
laser-plasma acceleration. We show that the axiparabola can be used either to generate a plasma
waveguide to overcome diffraction or for driving a dephasingless wakefield accelerator.

I. INTRODUCTION

Bessel beams are diffractionless light waves and can
propagate with subluminal or superluminal velocities [1].
These properties have found many applications in ma-
terial processing [2], optical guiding of microscopic par-
ticles [3], optical coherence tomography [4] and forma-
tion of plasma waveguides [5]. Several optics, e. g. ax-
ilenses [6], axicon lenses [7], or conic mirrors, are able to
generate quasi-Bessel beams. The axiparabola is an as-
pherical mirror, which combines the advantages of these
different optics by being achromatic, having a high dam-
age threshold and allowing for control of the intensity
distribution along the focal line [8]. These features make
it the perfect tool for producing ultra-short quasi-Bessel
beams at very high intensity.

A beam focused by an axiparabola has phase and group
velocities, which are equal to each other, and in vac-
uum they are larger than the speed of light in vacuum
c. Depending on the mirror design, the beam’s on-axis
velocity can either only grow or only fall along the fo-
cal line. Moreover, the intensity and velocity profiles are
fully coupled: any change of the optics surface through
its so-called sag function, aiming at modifying the inten-
sity profile, impacts the velocity profile. However, this
restriction changes if the focused beam initially contains
spatio-temporal couplings (STC), which allow to decou-
ple the intensity and velocity profiles.

In this article, we study theoretically the properties of
a laser beam focused by an axiparabola and we present
ways to control these properties by the means of STC.
We first derive basic equations and describe the intensity
and velocity profiles without STC and in the geometri-
cal optics approximation. Secondly, we explore effects
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of STC on a velocity profile and determine the way to
control it. We then present an optical propagation algo-
rithm, which we further use to confirm the predictions of
geometric optics. Finally we discuss in more detail two
examples of axiparabolas of relevance for laser plasma ac-
celerators development, such as dephasingless wakefield
acceleration [9–11] or diffractionless wakefield accelera-
tion with an all-optical plasma waveguide [8, 12, 13].

II. BASIC EQUATIONS

An axiparabola is an aspheric mirror that reflects a col-
limated beam into an extended focal line by focusing rays
at different focal planes depending on their radial coordi-
nate r on the mirror. The shape of its surface is defined
by the sag function s(r). The rays coming parallel to the
optical axis ζ at the radial coordinate r impinge the mir-
ror at ζ = s(r) and are focused at ζ = f(r) = f0 + z(r)
with f0 the nominal focal length, z(r) ∈ [0, δ] the focal
line coordinate along the ζ axis, and |δ| the focal depth.
The main differences between an axiparabola and an axi-
con lens, or a conic mirror, is that f0 is non-zero, and
that δ can be either positive or negative (δ < 0 corre-
sponds to outer rays focused first). This means that the
focal spot size and effective Rayleigh range are decou-
pled. The mean focal spot transverse size is controlled
by f0 and the focal range (”effective Rayleigh range”) by
δ.

From geometrical optics laws, the sag function is de-
fined by [8]

s(r) +
r

2

(
1

D(r)
−D(r)

)
= f(r) (1)

with D(r) = ds/dr the sag derivative with respect to
the radial coordinate. Computing D(r) and choosing the
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FIG. 1: Schematic representation of rays focused by an
axiparabola with a positive z(r).

positive solution, we get

r
ds

dr
= s(r)− f(r) +

√
[s(r)− f(r)]2 + r2 . (2)

Let σ(r) = s(r) − r2/4f0 be the deviation to a per-
fect parabola and R the beam radius. Assuming that
the deviation to a parabola is small, σ � r2/4f0 and
δ2/8R2 � 1, Eq. (2) can be approximated as

dσ(r)

dr
= −rz(r)

2ff0
+ o(r3) . (3)

The integration of Eqs (2) or (3) allows to determine the
required sag function for achieving a given focal line f(r).
This will fix the intensity distribution at focus as well as
the light velocity evolution along the focal line.

A. Longitudinal intensity distribution

A key parameter for the practical use of axiparabolas
is the intensity distribution along the propagation axis.
Let us start from the geometrical optics description and
define λz(z) as the linear density of ray along the prop-
agation axis ζ (in W.m−1). The laser intensity on the
axiparabola I0(r) (in W.m−2) is defined as the surface
density of rays, and it is related to the linear ray density
as

λz(z)dz = 2πrdrI0(r) . (4)

In the present study we assume a top-hat beam profile,
so that the intensity on the mirror is uniform, I0(r) =
P0/(πR

2) with P0 the incident power, leading to

dr

dz
=
λz(z)R

2

2P0r
, (5)

and finally

r(z) = R

(∫ z

0

λz(z
′)

P0
dz′
)1/2

. (6)

This equation allows to calculate the function r(z) and
hence the sag function defining the desired intensity pro-
file λz(z). For instance, for a focal line of constant inten-
sity, λz = P0/δ, we get that f = f0 + δr2/R2. The sag
function can then be obtained by integration of Eq.(2).

B. Transverse intensity distribution

While for a classical focusing optic, the focal depth,
or in other words the Rayleigh length, is closely linked
to the beam waist, these two quantities are decoupled at
the focus of an axiparabola. For the sake of simplicity, we
illustrate this property by considering a top-hat incident
beam. In the Fresnel diffraction regime, the field at the
distance f(z) = f0 + z from the axiparabola is

E(rζ , z) =− i
E0k

f(z)
e
ik

(
f(z)+

r2ζ
2f(z)

)

×
∫ R

0

dreiΨ(r)rJ0

(
k
rζr

f(z)

) (7)

with k = 2π/λ the wave-vector, rζ the radial coordinate
over the focal line, J0 the first Bessel function of first
kind and

Ψ(x) = k
(
x2/2f(x)− 2s(x)

)
= k

(
x2/2f(x)− x2/2f0 − 2σ(x)

)
≈ −k

(
x2d/2f2

0 + 2σ(x)
) (8)

for z � f0. For r � 1/k we can use the stationary phase
method to estimate the integral:

E(rζ , z) =− i E0k

f(z)
e
ik

(
f(z)+

r2ζ
2f(z)

)√
2π

Ψ′′(rs)

× rsJ0

(
k
rζrs
f(z)

)
eiΨ(rs)+iπ/4

(9)

with rs the coordinate such as Ψ′(rs) = 0 (note that we
assumed Ψ′′(rs) > 0). According to Eq. (3), we have

Ψ′(x) ≈ −kxz
f2

0

+ k
xz(x)

f2
0

+ o
(
kx3/f2

0

)
(10)

It follows from Eq. (5) that Ψ′′(rs) =
2r2
sP0/

(
λz(z)R

2f2
0

)
. As a consequence, the inten-

sity along the focal line is

I(rζ , z) = |E(rζ , z)|2

=
E2

0k
2

f2
0

2π

kΨ′′(rs)
r2
sJ

2
0

(
k
rζrs
f0

)
= kλz(z)J

2
0

(
k
rζrs
f0

)
,

(11)

with

rs = R

√∫ z

0

λz(z′)

P0
dz′ (12)
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One may easily see that the radial intensity profile is
described by the first Bessel function and that the on-
axis intensity is I0(z) = I(0, z) = kλz(z). We finally find
that the first-zero radius, for rs � 1/k, is

rζ,0(z) ≈ 0.77λN

(∫ z

0

I0(z′)

kP0
dz′
)−1/2

, (13)

with N = f0/2R the f-number. As a result, Eqs. (11)
and (13) show that the intensity does not depend on N ,
and hence that r0 can be adjusted independently of I0
by changing N . For example, for a constant intensity
focal line we get I0 = kP0/δ and rζ,0 = 0.77λN(δ/z)1/2;
the intensity at focus depends only on the beam power
and focal depth, while the focal spot is a function of
N . Therefore an axiparabola can redistribute the laser
energy into a focal line combining a long focal depth and
a very small focal spot.

C. Velocity profile

It is well-known that Bessel beams travel at constant
velocities that can exceed light speed in vacuum. How-
ever, as shown in previous section, an axiparabola gen-
erates a quasi-Bessel beam, for which the longitudinal
group velocity is still superluminal but is no longer con-
stant. Defining the group velocity of the beam as the
velocity of the intensity peak along the focal line we can
describe it using Eq. (2). The optical path of light in
vacuum from the axiparabola to the optical axis is

p(r) =
√

[s(r)− f(r)]2 + r2 − s(r) . (14)

The geometrical group velocity is the change of the focus
position in time v = df/dt, and we note that the increase
of the optical path on axis ζ is dp = cdt. With that in
mind, we can parametrize differentials as functions of r,
and express the group velocity as:

v

c
=
df

dr

(
dp

dr

)−1

=

(
dp

dz

)−1

. (15)

Then using Eqs. (2) and (14), we get in the paraxial limit

v

c
= 1 +

2
(
ds
dr

)2
1−

(
ds
dr

)2 = 1 +
r2

2f2
. (16)

Eq. (16) shows that the group velocity is always larger
than the speed of light in vacuum and that its evolution
along the focal line can be either increasing or decreasing,
depending on whether δ is positive or negative respec-
tively. For a top-hat incident beam, we get from Eq. (6)
that the group velocity of the focal line is

v

c
= 1 +

R2

2f2P0

∫ z

0

λz(z
′)dz′ , (17)

which illustrates the direct relation of the group velocity
to the local intensity. This link between velocity and

FIG. 2: Schematic representation of a ray focused by an
axiparabola with a positive z(r) in a constant density

plasma.

intensity hinders the actual ability of axiparabolas to
control the velocity of laser power propagation. Nev-
ertheless, as will be shown later, this scheme still holds
the opportunity to dissociate that connection through
spatio-temporal couplings, which gives another degree of
freedom to control and modify the group velocity along
the focal line.

III. CONTROL OF THE VELOCITY

A. Group velocity

Axiparabola focuses different annular beamlets annuli
to different focal planes depending on their incident ra-
dial coordinates. This spatial separation allows for con-
trol of the beamlets arrival and thus control of the group
velocity. In other words: group velocity along the fo-
cal line depends on the radial coordinate on the mirror.
Hence, its value can be modified by adding a radial delay
prior to the axiparabola. This can be exemplified by con-
sidering a linear propagation in vacuum. Starting from
Eq. (15), a radial delay τ(r) is added and modifies the
velocity v as vm :

vm
c

=

(
d (p+ cτ)

dz′

)−1

. (18)

Assuming that p� cτ , this leads to

vm
c
' v

c

(
1− v

c
c
dτ

dr

dr

dz

)
. (19)

This highlights that the velocity can be controlled by
introducing simple spatio-temporal couplings. To prop-
erly illustrate this phenomenon, let’s assume a top-hat
beam in the paraxial limit for an axiparabola such as
r2/2f2 � 1: the radial delay needed for having an inten-
sity peak that propagates, at a constant velocity c + v0
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with v0 � c, is

c
dτ

dr
'
(v
c
− v0

c
− 1
)( c

v

)2 2P0r

λzR2
, (20)

leading to

cτ ' P0

λzR2

(
−v0

c
r2 +

1

2f2

(
v0

c
+

1

2

)
r4

)
+ o(r5) .

(21)

Here the term ∝ r4 flattens the velocity profile to get
an intensity peak that propagates at a constant velocity
c, while the quadratic term allows to adjust the value of
the velocity around c. This quadratic term corresponds
to the pulse front curvature (also known as longitudinal
chromatic aberration), an aberration which is present in
many laser chains, and which can be controlled by using
simple plano-convex optics in the laser chain [14, 15].
Achieving the r4 term would require the use of aspheric
lenses, specially designed for a given axiparabola.

This simple prediction model can also be adjusted to
take into account the medium in which the laser prop-
agation occurs depending on the applications. For ap-
plications in the field of laser-plasma acceleration, the
design has also to account for the laser propagation in
plasma. For this, let us consider a uniform plasma
slab localized in between the focal line’s boundaries, i.e.
plasma density ne is constant for f0 ≤ z ≤ f0 + δ and
zero elsewhere, as shown in Fig. 2. The plasma is as-
sumed to be underdense, which means ne � nc, with
nc = π/

(
λ2

0re
)

= 1.1 · 1021 (λ0[µm])−2 cm−3 being the
critical plasma density for the wavelength λ0 and re the
classical electron radius.

Propagation of light in plasma is affected by the refrac-
tion at the vacuum/plasma interface and by the modifi-
cation of the light velocity in plasma. Let i(r) be the
angle between the optical axis and the rays that are fo-
cused at z(r) in vacuum and X(r) the propagation dis-
tance after the vacuum/plasma interface of the rays that
are focused at z(r) in vacuum. Assuming paraxial rays,
these two variables are defined by

i(r) = arctan(r/(f − s)) (22)

z = X cos(i) . (23)

The rays that are focused at z(r) in vacuum cross the
optical axis at a new coordinate

z′ = X ′ cos(i′)

' zη
(

1 +
i2

2

)
(24)

for i� 1 and with η ' 1− ne/(2nc) being the refractive
index of plasma. This involves a shortening of the focal
line (δ′ < δ) that leads to a corresponding increase of the
intensity. As the optical path in plasma remains equal
to the one in vacuum (X = X ′/η), the decrease of the

propagation distance is compensated by the slower group
velocity of light in plasma (vg/c = 1− ne/(2nc)). The
group velocity of the focal line in plasma can therefore
be written

vp = v
dz′

dz
. (25)

with vp the group velocity in plasma and v the one in
vacuum. Following the same method as in Eq. (19), this
involves that the modified velocity in plasma can be writ-
ten

vp,m
c
' vp

c

(
1− v

c
c
dτ

dr

dr

dz

)
. (26)

From this equation, the required radial delay can be com-
puted with the same process as in Eq. (20). This study
of the group velocity is applicable in vacuum and in any
transparent medium and shows that the group velocity
can be adjusted independently of the intensity of the focal
line, allowing for subluminal or superluminal velocities.

B. Phase velocity

In dispersive media, group velocity and phase velocity
can be different. Therefore, to fully describe the focal
line propagation, the impact of the control of the group
velocity through STC on the phase velocity is also of
interest. Let ϕ(z, t) = kp(z) − ωt be the beam phase,
with ω the laser pulsation. The phase velocity is

vϕ =
dϕ/dt

dϕ/dz
, (27)

and in a plasma and in the absence of STC, its spatial
derivative can be written

dϕ

dz
= k

dp

dz
=
ω

v
(28)

with v the group velocity. This leads to the following
formula :

vϕ = v = 1 +
r2

2f2
. (29)

The phase velocity of the focal line is thus equal to its
group velocity. Now let us observe the evolution of the
phase velocity when a radial delay τ(r) is added prior to
the axiparabola as presented in the previous subsection.
The phase is then changed to

ϕm = k (p+ cτ)− ω (t+ τ)

= kp− ωt = ϕ .
(30)

This means that the focal line phase is not modified by
the introduction of a radial delay and therefore the phase
velocity is always equal to the unaltered group velocity,
and thus different from the group velocity in presence of
STC:

vϕ = v = 1 +
r2

2f2
. (31)
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IV. OPTICAL PROPAGATION MODELING

To simulate the evolution of the laser field along
its path we solve numerically the Helmholtz equation.
In the Fourier space, propagation of the complex field
ψ(ω, kx, ky, z) from the plane z0 to z1 can be computed
by multiplying it by the propagator

ψ1 = ψ0 exp
(
i(z1 − z0)

√
ω2/c2 − k2

x − k2
y

)
.

Here, the field is considered strictly cylindrically symmet-
ric, and solutions can be expressed via cylindric modes,

i.e. Bessel functions ψ(r) =
∫
rdrψ̂J0(krr), where kr is

equivalent to
√
k2
x + k2

y in the propagator expression.

One method, based on the quasi-discrete Hankel trans-
form (QDHT) was demonstrated in [16]. The approach
was based on the symmetric transform (same matrix for
forward and inverse projections), where both spatial and
spectral axes, r and kr, were built on the zeros of J0. In
the case of a sharply focused beam, the beam waist can be
102− 103 times smaller than the spot on the mirror, and
to resolve both one may require large numbers of points
along the radial and spectral axes Nr = Nkr & 104.

For our calculations, we have used a non-symmetric
transform with different sampling of the initial and fo-
cused images. For this we consider field decomposi-

tion into the series, ψ(ri) =
∑Nr−1
j=0 ψ̂jJ0(kr,jri), where

ri = Rmaxαi/αNr and kr,j = αj/Rmax with αi defined as
the roots of Bessel function J0 (see [16]). This gives the

inverse Hankel transform matrix T
(−1)
ji = J0(αiαj/αNr ),

and the forward transform Tij , which is found by the nu-

merical inversion of T
(−1)
ji . To reconstruct the field, we

use the re-sampled inverse transform T (−1)
ji = J(r′ikr,j),

where axis kr,j is same as in Tij , but r′i is sampled uni-
formly in a small area around the beam effective waist.

Both schemes have been numerically in all relevant
cases. The resampling scheme demonstrated a very good
agreement with the original approach [16] with signifi-
cant sampling reduction (reduction ∼ 8 times of Nr).
The implementation of this and a few other schemes can
be found in the open-source library ”Axiprop” in [17].

V. AXIPARABOLA WITH A CONSTANT
INTENSITY FOCAL LINE

Let us now consider an axiparabola design for rele-
vant applications in laser-plasma acceleration. In laser
wakefield accelerators (LPA), an ultra-short laser pulse
is focused in a plasma to generate a plasma wave. The
amplitude of the longitudinal electric field of such a wave
can be a few orders of magnitude higher than those cre-
ated in conventional linear accelerators. One fundamen-
tal limitation of LPA is the particle-wave dephasing that
is due to the mismatch between the group velocity of the
laser in plasma and the velocity of relativistic electrons.

An axiparabola with a constant intensity line could be
used to accelerate electrons and overcome this limit. As
shown in Eq. (20), the combination of axiparabola and
appropriate spatio-temporal couplings allows to control
the group velocity, and hence eventually to phase-lock
the light beam velocity on the electron beam velocity.
This paved the way for a new acceleration concept that
could increase the energy of the generated electrons by
at least an order of magnitude [9, 10].

To design an axiparabola with a constant intensity fo-
cal line, it was assumed that the linear density of rays
λz = P0/δ, with δ the focal line length. By replacing the
expression of λz in Eq. (6), the focal length expression
becomes

f = f0 + δ
( r
R

)2

. (32)

FIG. 3: Intensity map of a constant intensity focal line
in arbitrary units, as a function of (r, z).

From Eq. (17), the group velocity can now be written

v

c
= 1 +

R2

2δf2
z . (33)

Note that the group velocity with this particular axi-
parabola design has a linear dependence on the position
along focal line z. For simulations, the following charac-
teristics were chosen: a nominal focus f0 = 400 mm, a
focal line length δ = 15 mm and a radius R = 38.1 mm.

In Fig. 3, we plot the radial distribution of laser field
intensity mapped along its propagation, and Fig. 4 shows
the beam characteristics. From Fig. 4 one can see that, in
agreement with theoretical considerations laser intensity
remains constant along the focal line. The sinusoidal
variations are typical characteristics of a Bessel beam. As
the first-zero radius diminishes along the focal line, while
the intensity remains constant, the energy encircled in
the focal spot also diminishes proportionally to the first-
zero radius.

The group velocity of the focal line is calculated by
averaging over the intensity map, hence oscillations are
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FIG. 4: Axiparabola relative intensity (blue curve),
relative energy (orange curve) and first-zero radius

(green curve), along the focal line.

FIG. 5: Group velocity as a function of the position
along the focal line of the axiparabola. The orange

curve corresponds to Eq. (33), the blue and purple ones
to simulation data obtained without and with the radial

delay displayed in Fig 6, respectively.

visible within the group velocity’s evolution along the fo-
cal line (Fig. 5). Leaving aside the oscillations, which can
not be described in the framework of geometrical optics,
the group velocity increases linearly with z, as expected
from Eq. (33). The spatio-temporal couplings computed
from Eq. (20) and shown in Fig. 6, enable to obtain a fo-
cal line with a constant group velocity close to the light
velocity in vacuum c. The gap observed between the ob-
tained and aimed group velocities, as well as the slope
deviation between the orange and blue curves are likely
due to the paraxial approximation made to compute the
theoretical velocities. The quadratic term of STC should,
therefore, be adjusted to get the requested velocity. Note
that the end of the focal line also disturbs the measure-
ment of the group velocity, which results in its sudden

FIG. 6: Radial delay needed for a group velocity equal
to c, from Eq. (20)

increase (purple curve in Fig. 5).

VI. AXIPARABOLA WITH A CONSTANT
ENERGY FOCAL LINE

The great versatility of axiparabolas for applications
provides the possibility to achieve various focal line dis-
tributions. Axiparabolas with various intensity distri-
butions are of particular interest for the investigation of
plasma channels generation for guiding purposes (Fig. 7).
The study of an axiparabola with another sag function
also allows us to assess the validity and solidity of our
theoretical model.

FIG. 7: Example of setup for a guiding experiment.
The generation beam is focused by an axiparabola and
shot a few nanoseconds before the guided beam to allow

the formation of the waveguide [8].

Let’s take the example of an axiparabola with a con-
stant energy focal line. In order to obtain a focal line
with a constant energy encircled in the central spot, the
linear density of rays λz needs to compensate for the first-
zero radius decrease, as illustrated in Fig. 4. Therefore,
following Eq. (13), λz needs to be proportional to the
square of the incident rays radius on the axiparabola r :
λz ∝ (r/R)

2
, which leads for a holed axiparabola to

f = f0 +
1

a
ln
( r
R
eaδ
)

(34)

with a = 1
δ ln

(
R

rhole

)
where rhole is the radius of the hole

at the center of the axiparabola.
However, this simple model overestimates the energy

for small radii, which would result in an increasing energy
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FIG. 8: Intensity map of a constant energy focal line in
arbitrary units as a function of (r, z).

FIG. 9: Variation along the focal line of the intensity
(blue curve), energy (orange curve) and first-zero radius

(green curve).

focal line. Therefore, we use an empirical formula similar
to the previous one but more in adequation with reality
for smaller radii. In practice this condition is fulfilled for

f = f0 + 0.1δ
r

R
+ 0.9δ

( r
R

) 1
2

, (35)

leading to an expression for the group velocity:

v

c
= 1 +

δ2

f2

(
0.405

r

R
+ 0.135

( r
R

) 3
2

+ 0.01
( r
R

)2
)
.

(36)

For simulations, we assume the same parameters as
in Sec. V: a nominal focus f0 = 400 mm, a focal depth
δ = 15 mm and a radius R = 38.1 mm.

We observe in Fig. 9 that the intensity effectively in-
creases along the focal line to compensate for the decrease
of the first-zero radius.

FIG. 10: Group velocity as a function of the position
along the focal line of the axiparabola. The orange

curve results from Eq. (33). The blue and purple curves
correspond to simulation data obtained without and

with the radial delay displayed in Fig 11, respectively.

FIG. 11: Pulse front delay required for the group
velocity to equal c, according to Eq. (20)

The theoretical group velocity matches the numerical
estimate, with the deviation at the end of the focal line,
which is mainly due to the ray approximation assumption
made to derive equations. This confirms the reliability
of the simple model exposed in the first three sections,
for axiparabolas with different sag functions and different
purposes. The spatio-temporal couplings needed to ob-
tain a focal line group velocity equal to c is also validated
by simulation data.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we demonstrated the possibility to con-
trol the longitudinal intensity distribution and the beam
velocity, over a distance much larger than the Rayleigh
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length, using an axiparabola. The adaptability of this
aspheric mirror was illustrated by designing and present-
ing two optical configurations for different applications.
We also showed through theory and simulations that the
group velocity of the focal line can be controlled through
spatio-temporal couplings and that the corresponding de-
lay can be evaluated from the main axiparabola features.
The unique capabilities and versatility of axiparabolas
open up new perspectives for manipulating intense and

ultra-short laser pulse, which is a promising boost for
the development of compact and flexible bright radia-
tion and particles sources in laser wakefield acceleration
frame. Moreover, a better control of these high intensity
focal line properties (intensity distribution, propagation
velocity) can also be an advantage for many other appli-
cations, e.g. soft X-ray laser [18], pulse compression in a
plasma [19] or photon acceleration [20].
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