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Chapter

Joint EigenValue Decomposition
for Quantum Information Theory
and Processing
Gilles Burel, Hugo Pillin, Paul Baird, El-Houssaïn Baghious

and Roland Gautier

Abstract

The interest in quantum information processing has given rise to the development
of programming languages and tools that facilitate the design and simulation of
quantum circuits. However, since the quantum theory is fundamentally based on
linear algebra, these high-level languages partially hide the underlying structure of
quantum systems. We show that in certain cases of practical interest, keeping a handle
on the matrix representation of the quantum systems is a fruitful approach because it
allows the use of powerful tools of linear algebra to better understand their behavior
and to better implement simulation programs. We especially focus on the Joint
EigenValue Decomposition (JEVD). After giving a theoretical description of this
method, which aims at finding a common basis of eigenvectors of a set of matrices, we
show how it can easily be implemented on a Matrix-oriented programming language,
such as Matlab (or, equivalently, Octave). Then, through two examples taken from
the quantum information domain (quantum search based on a quantum walk and
quantum coding), we show that JEVD is a powerful tool both for elaborating new
theoretical developments and for simulation.

Keywords: quantum information, quantum coding, quantum walk, quantum search,
joint eigenspaces, joint eigenvalues, joint eigenvectors

1. Introduction

The field of quantum information is experiencing a resurgence of interest due to
the recent implementation of secure transmission systems [1] based on the teleporta-
tion of quantum states in metropolitan networks and in the context of satellite trans-
missions, further underscored by the development of quantum computers. A new
path for intercontinental quantum communication opened up in 2017 when a source
onboard a Chinese satellite made it possible to distribute entangled photons between
two ground stations, separated by more than 1000 km [2, 3]. Experiments using
optical fibers [4] and terrestrial free-space channels [5] have also proved that the use
of quantum entanglement can be achieved over large distances.
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Quantum programming languages, such as Q# [6] have been developed to facili-
tate the design and simulation of quantum circuits. The underlying quantum theory is
quite complex and often counter-intuitive due to the fact that it relies on linear algebra
and tensor products—for instance, the state of a set of three independent qubits
(quantum bits) is not described by a 3-dimensional vector, as would be the case for

classical bits, but by a 23-dimensional vector which lives in a Hilbert space constructed
by tensor products of lower-dimensional spaces. Therefore, these programming lan-
guages are helpful for people who do not need to bother with the underlying theory.

However, since the quantum theory is fundamentally based on linear algebra,
there are cases of practical interest for the researcher in which keeping a handle on the
matrix representation of the quantum systems is a fruitful approach because it allows
the use of powerful tools of linear algebra to better understand their behavior and to
better implement simulation programs.

In this chapter, our objective is to illustrate how the concept of Joint EigenValue
Decomposition (JEVD) can provide interesting results in the domain of quantum
information. The chapter is organized as follows. In Section 2, we give some mathe-
matical background and in Section 3, we provide basic elements to understand quan-
tum information. Then, in Section 4, we show an example of the application of JEVD
to quantum coding, more precisely we propose an algorithm, based on JEVD, to
identify a quantum encoder matrix from a collection of given Pauli errors. Finally, in
Section 5, we show that JEVD is a powerful tool for the analysis of a quantum walk
search. More precisely, we prove that, while the quantum walk operates in a huge
state space, there exists a small subspace that captures all the essential elements of the
quantum walk, and this subspace can be determined thanks to JEVD.

2. Mathematical background

2.1 Matrices and notations

We note UT the transpose of a matrix U and U ∗ the transpose conjugate of U.
H is the normalized Hadamard 2� 2 matrix and HN the N �N Hadamard matrix

obtained by the Kronecker product (defined in the next subsection):

H ¼ 1
ffiffiffi

2
p 1 1

1 �1

� �

and HN ¼ H⊗ n N ¼ 2nð Þ (1)

IN is the N �N identity matrix (which will sometimes be noted I when its
dimension is implicit).

In the domain of quantum information processing, we mainly have unitary matri-
ces. A square matrix U is unitary [7] if U ∗U ¼ UU ∗ ¼ I. The columns of a unitary
matrix are orthonormal and its eigenvalues are of norm 1. If the unitary matrix is real,
its eigenvalues come by conjugate pairs.

We call “shuffle matrix” the permutation matrix Pa,b which represents the permu-
tation obtained when one writes elements row by row in an a� b matrix and reads
them column by column. For instance, set a ¼ 2 and b ¼ 3. If one writes the elements
1, 2, 3, 4, 5, 6 row by row in a 2� 3 matrix and reads them column by column, the
order becomes 1, 4, 2, 5, 3, 6. Then the shuffle matrix is the permutation matrix such

that 1 4 2 5 3 6ð Þ ¼ 1 2 3 4 5 6ð ÞP2,3. The inverse of Pa,b is Pb,a ¼ Pa,bð ÞT.
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Gn is the n� n Grover diffusion matrix defined by [8]:

Gn ¼ �In þ 2θnθ
T
n (2)

where θn the n� 1ð Þ vector is defined by θn ¼ 1 1 ⋯ 1½ �T= ffiffiffi

n
p

. It is easy to see
that Gnθn ¼ θn. Therefore, θn is an eigenvector of Gn with eigenvalue þ1. We can also
see that for any vector v orthogonal to θn we have Gnv ¼ �v. It follows that Gn has two
eigenvalues, �1 and þ1, and the dimensions of the associated eigenspaces are n� 1
and 1.

2.2 Kronecker product

The Kronecker product, denoted by ⊗ , is a bilinear operation on two matrices. If
A is a k� lmatrix and B is a m� nmatrix, then the Kronecker product is the km� ln
block matrix C below:

C ¼ A⊗B ¼
a11B ⋯ a1lB

⋮ ⋱ ⋮

ak1B ⋯ aklB

0

B

@

1

C

A
(3)

Assuming the sizes are such that one can form the matrix products AC and BD, an
interesting property, known as the mixed-product property, is:

A⊗Bð Þ C⊗Dð Þ ¼ ACð Þ⊗ BDð Þ (4)

The Kronecker product is associative, but not commutative. However, there exist
permutation matrices (the shuffle matrices defined in the previous subsection) such
that, if A is an a� a square matrix and B a b� b square matrix, then [9]:

A⊗Bð ÞPa,b ¼ B⊗Að ÞPb,a (5)

2.3 Singular value decomposition, image, and kernel

The Singular Value Decomposition (SVD) of an m� n matrix A is [7]:

A ¼ USV ∗ (6)

where U and V are unitary matrices, and S is diagonal. The diagonal of S contains
the Singular Values, which are real nonnegative numbers, ranked by decreasing order.
The sizes of the matrices are U m�mð Þ, S m� nð Þ and V n� nð Þ. The SVD is a very
useful linear algebra tool because it reveals a great deal about the structure of a matrix.

The image and the kernel of A are defined by:

Im Að Þ ¼ y∈
m
: y ¼ Ax for somex∈

nf g (7)

ker Að Þ ¼ x∈
n
: Ax ¼ 0f g (8)

When used in an algorithm, the notation null will also be used for a procedure that
computes a matrix whose columns are an orthonormal basis of the kernel of A.

The complement of a subspace A within a vector space H is defined by:
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Að Þc ¼ y∈H : x ∗ y ¼ 0forallx∈Af g (9)

In an algorithm, if the columns of A are an orthonormal basis of A then the
columns of B ¼ null A ∗ð Þ provide an orthonormal basis of Að Þc.

The rank of A is its number of nonzero singular values. When programmed on a
computer determination of the rank must take into account finite precision arith-
metic, which means that “zero” is replaced by “extremely small” (less than a given
tolerance value). Let us note r ¼ rank Að Þ. We have

dim Im Að Þð Þ ¼ r (10)

dim ker Að Þð Þ ¼ n� r (11)

An orthonormal basis of ker Að Þ is obtained by taking the last n� r columns of the
matrix V.

2.4 Joint eigenspaces and joint eigenvalue decomposition (JEVD)

The eigenvalue decomposition of a unitary matrix A is:

A ¼ VDV ∗ (12)

where D is a diagonal matrix, the diagonal of which contains the eigenvalues, and
V is a unitary matrix whose columns are the eigenvectors.

Let us note EA
λ the eigenspace of an operator A associated with an eigenvalue λ: The

joint eigenspace EA,B
λ,μ is:

EA,B
λ,μ ¼ EA

λ ∩E
B
μ (13)

A property of great interest in quantum information processing is that within EA,B
λ,μ

(and even within any union of joint eigenspaces) the operators A and B commute.
Determination of the joint eigenspace on a computer may be determined through

the complement, because:

EA
λ ∩E

B
μ ¼ EA

λ

� �c
∪ EB

μ

� �c� �c

(14)

Using Matrix-oriented programming languages, such as Matlab or Octave, this
requires only a few lines. Let us note Aλ and Bμ matrices whose columns are ortho-

normal bases of EA
λ and EB

μ and :½ � the horizontal concatenation of matrices. The

following computation procedure provides a matrix C whose columns are an ortho-

normal basis of EA,B
λ,μ :

C ¼ null null Aλð Þ null Bμ

� �	 
� �

(15)

However, it is not efficient in terms of complexity and in the next sections we will
propose faster computational procedures, adapted to each context.

A lower bound on the dimension of a joint eigenspace can be obtained as follows.
Let us note n the dimension of the full space. We have, obviously:

4

Matrix Theory - Classics and Advances



dim EA
λ ∪E

B
μ ≤ n (16)

and we know that:

dim EA
λ ∪E

B
μ ¼ dim EA

λ þ dim EB
μ � dim EA

λ ∩E
B
μ (17)

Combining both equations, we obtain:

dim EA,B
λ,μ ≥dim EA

λ þ dim EB
μ � n (18)

3. Quantum information principles

A quantum system is described by a state vector ψj i∈
N, where N is the dimen-

sion of the system. Since in the quantum formalism states ψj i and γ ψj i are equivalent,
for any nonzero complex number γ, the state is usually represented by a normed
vector and the global phase is considered irrelevant.

As long as it remains isolated, the evolution of a quantum system is driven by the
Schrödinger equation. The latter is a first-order differential equation operating on the
quantum state. Its integration shows that the quantum states at times t1 and t2 are
linked by a unitary matrix U such that ψ2j i ¼ U ψ1j i. The norm is preserved because U
is unitary.

The second kind of evolution, called “measurement,” may occur if the system
interacts with its environment. A measurement consists of the projection of the state

onto a subspace of N . When the measurement is controlled, it consists in defining a
priori a decomposition of the state space into a direct sum of orthogonal subspaces
⊕
i
Hi. The measurement randomly selects one subspace. The result of the measure-

ment is an identifier of the selected subspace (for instance, its index i). After mea-
surement, the state is projected ontoHi. If Pi is the projection matrix ontoHi, then the
state becomes Pi ψj i (which is then renormalized because the projection does not
preserve the norm). The probability of Hi being selected is the square norm of Pi ψj i.

It is worth noting that a measurement may destroy a part of quantum information
(because usually, a projection is an irreversible process), while the unitary evolution is
reversible, and as such, preserves quantum information. Consequently, measurements
must be used with extreme caution—how to design the system and the measurement
device to measure only what is strictly required and not more is one of the difficult
problems encountered in quantum information processing.

Quantum systems of special interest for quantum information processing are
qubits (quantum bits) and qubit registers. A qubit belongs to a 2D quantum system

with state a normed vector of 2. To highlight links with classical digital computation,

it is convenient to note 0j i and 1j i for the orthonormal basis of 2. Physically any 2D
quantum system can carry a quantum bit. For instance, the spin of an electron is a 2D
quantum system, and the spins up and down can be associated with the basic states 0j i
and 1j i. A general qubit has an expression:

ψj i ¼ α0 0j i þ α1 1j i (19)

where α0 and α1 are complex numbers subject to α0j j2 þ α1j j2 ¼ 1.
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A qubit register is a 2n-D quantum system which, for convenience, is usually
referred to as a standard orthonormal basis noted
0:::00j i, 0:::01j i, 0:::10j i, … , 1:::11j if g and then, by analogy with classical digital

processing, n is the number of qubits. For instance, for n ¼ 2 the basis is
00j i, 01j i, 10j i, 11j if g, where abj i ¼ aj i⊗ bj i, and the quantum state of the register is:

ψj i ¼
X

a, bð Þ∈ 0, 1f g2
γab abj i (20)

Note that, contrary to classical digital registers, the qubits are usually not separa-
ble, hence the register must be considered as a whole. We say that the qubits are
entangled. However in the special case where the coefficients γab can be decomposed
in the form γab ¼ αaβb the state can be written as a tensor product of the states of two
qubits, which can be considered separately. Then, we have:

ψj i ¼ α0 0j i þ α1 1j ið Þ⊗ β0 0j i þ β1 1j ið Þ (21)

4. Application of JEVD to quantum coding

4.1 Principle of quantum coding

The objective of quantum coding is to protect quantum information [10]. In the
classical domain, the information can be protected using redundancy—for instance, if
we want to transmit bit 0 on a noisy communication channel, we can instead transmit
000 (and, similarly, transmit 111 instead of 1). On the receiver side, if one error has
occurred on the channel, for instance, if the second bit is false, we receive 010 instead
of 000, from which we can still guess that the most probable hypothesis is that the
transmitted word was 000. Of course, if there were two errors the transmitted word
could have been 111, but it is assumed that the probability of error is low, hence two
errors are less likely than one error. More elaborated channel codes have been pro-
posed, but fundamentally they are all based on the idea of adding redundancy and
assuming that the probability of channel error is low.

In the quantum domain, it is impossible to use redundancy because it is impossible
to copy a quantum state (this is due to the “no-cloning theorem” [11]). However, we
can use entanglement to produce the quantum equivalent of classical redundancy. The
principle of quantum coding is shown in Figure 1. Assume we want to protect the
quantum state ψj i of a k-qubit register. We add r ancillary qubits initialized to 0j i to
form an n-qubit register (n ¼ kþ r). The encoder is represented by a unitary 2n � 2n

Figure 1.
Principle of quantum coding.
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matrix U. Then, errors may occur on the encoded state: they are represented by a
unitary matrix E. The decoder is represented by another unitary matrix U ∗ which is
the transpose conjugate of the encoding matrix. Finally, we measure the last r qubits
of the decoded state, and, depending on the result of the measurement, we apply the

appropriate restoration matrix Uc (which is a unitary matrix of size 2k � 2k) to the k-
qubit register composed of the first k qubits of the decoded state.

As an illustration, let us consider n ¼ 2, k ¼ 1 and the very simple quantum
encoder shown in Figure 2. It is a basic quantum circuit known as the CNOT quantum
gate, and it is represented by the unitary matrix below:

U ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0

B

B

B

@

1

C

C

C

A

(22)

A quantum error on a qubit is described by a 2� 2 unitary matrix. It is convenient to
decompose the error as a linear sum of the identity and the Pauli matrices below [12]:

Z ¼
1 0

0 �1

 !

X ¼
0 1

1 0

 !

Y ¼
0 i

�i 0

 !

(23)

Let us consider that an error may appear on the first encoded qubit and that this
error, if present, is represented by the unitary Pauli matrix X. Then, the error matrix
which acts on the encoded state is:

E ¼ X⊗ I ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0

B

B

B

@

1

C

C

C

A

(24)

It is easy to check that:

F ¼ U ∗EU ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B

B

B

@

1

C

C

C

A

¼ X⊗X (25)

The state at the input of the encoder is α0α1½ �T ⊗ 10½ �T ¼ α0 0 α10½ �T. The state at
the output of the decoder is, therefore, 0 α1 0 α0½ �T.

Figure 2.
CNOT quantum gate.
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Measuring the second qubit on the output of the decoder consists in decomposing
the state space into a direct sumH0⊕H1 of two subspaces spanned by 00j i, 10j if g and
01j i, 11j if g. The result of the measurement will be either 0 or 1 (index of the selected

subspace), and by analogy with classical decoding, this result will be called the “syn-
drome.” The projections on these subspaces are 00½ �T and α1α0½ �T. Then the proba-
bility to obtain syndrome 1 is 1.

The measurement then projects the state onto H1. Note that in this particular case,
the information is preserved by the projection. Then, applying the operator Uc ¼ X to
the projected state restores the initial state.

Similarly, if there is no error, we can see that F is the identity matrix, then the
projections on the subspaces are α0α1½ �T and 00½ �T. In that case, the syndrome is 0
and the state is projected ontoH0. Correction is done by applying the operator I to the
projected state, which is equivalent to doing nothing.

The very simple code used above, as an illustration, cannot correct more complex
errors (for instance, an error Z on the first qubit). However, there exist efficient
quantum codes, such as the Steane code [13], and the Shor code [14]. A remarkable
result of quantum coding theory is that a linear combination of correctable errors is
correctable [15].

Figure 3 shows the Steane Encoder, which is a n ¼ 7, k ¼ 1, t ¼ 1ð Þ quantum
encoder. This means that it encodes k ¼ 1 qubits on n ¼ 7 qubits and it is able to
correct any error occurring on t ¼ 1 encoded qubits. It is built with Hadamard
(Eq. (1)) and CNOT (Eq. (22)) quantum gates. From this circuit description, it is
possible to obtain the coding matrix U.

4.2 Determination of encoder matrix using JEVD

The problem we address can be stated as follows (see Figure 1 for the notations)—
given a list of n independent Pauli errors Ei with corresponding diagonal outer errors
Fi, determine the unitary operator U (quantum encoder) such that:

U ∗EiU ¼ Fi ∀i∈ 1, … , nf g (26)

This equation shows that the columns of U are the eigenvectors of Ei. Specification
of the code by a small set of Pauli errors is very convenient and the interest of

Figure 3.
Steane encoder.
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automatic determination of matrix U is to allow further simulations of the behavior of
the quantum code in various configurations.

To illustrate and validate the approach that will be developed below, let us consider
the collection of n ¼ 7 Pauli errors shown in Table 1. Here, to be able to check the
results, this collection has been chosen to correspond to the Steane encoder (Fig-
ure 3), while in a standard application of the method, it would be given a priori. The
interest is that here we can compute the encoder matrix from the circuit and this will
allow us to check that our method produces the correct encoder matrix.

We use n independent equations in which each Fi is a tensor product of I and Z
only (including only one Z). Therefore, matrices Fi are diagonal, and their diagonal
elements are þ1 and �1 in equal numbers.

Figure 4 shows the diagonals of the matrices Fi (each row corresponding to one
diagonal). Values �1 and þ1 are represented, respectively, by black and white dots.

Since matrix U does not depend on i in Eq. (26) its columns are joint eigenvectors

of the Ei. For instance, in the example above, the 20th column of U is a joint
eigenvector of E1, E2, … , E7 associated to eigenvalues þ1,þ1,�1,þ1,þ1,�1,�1 (see
Figure 4). In the general case, the set of n eigenvalues corresponding to the column c
of U is easily obtained by taking the binary representation of c� 1 with the mapping
0 ! þ1 and 1 ! �1.

Now, let us consider the determination of column c of U. We know that it is a
vector spanning a joint eigenspace of the Ei corresponding to a given set of eigen-

values λi, i ¼ 1, … , nf g. For each Ei let Ai denote the 2
n � 2n�1 matrix whose ortho-

normal columns span the eigenspace associated to λi and Bi the 2
n � 2n�1 matrix whose

orthonormal columns span the kernel of Ai (which corresponds to the eigenspace
associated to �λi).

Let Yk denote the joint eigenspace corresponding to eigenvalues λ j, j ¼ 1, … , k
� �

with k∈ 1, … , nf g. We propose Algorithm 1 to efficiently compute the column of U. It
computes a series of matrices Yk whose columns are an orthonormal basis of Yk.
Obviously, the searched column of U is Yn. For the moment, let us consider that K cð Þ=1
(the optimal value will be discussed later).

Ei Fi

Z⊗Z⊗Z⊗Z⊗Z⊗Z⊗Z Z⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I

X⊗X⊗ I⊗ I⊗ I⊗X⊗X I⊗Z⊗ I⊗ I⊗ I⊗ I⊗ I

X⊗ I⊗X⊗ I⊗X⊗ I⊗X I⊗ I⊗Z⊗ I⊗ I⊗ I⊗ I

X⊗ I⊗ I⊗X⊗X⊗X⊗ I I⊗ I⊗ I⊗Z⊗ I⊗ I⊗ I

Z⊗Z⊗ I⊗ I⊗ I⊗Z⊗Z I⊗ I⊗ I⊗ I⊗Z⊗ I⊗ I

Z⊗ I⊗Z⊗ I⊗Z⊗ I⊗Z I⊗ I⊗ I⊗ I⊗ I⊗Z⊗ I

Z⊗ I⊗ I⊗Z⊗Z⊗Z⊗ I I⊗ I⊗ I⊗ I⊗ I⊗ I⊗Z

Table 1.
Collection of Pauli errors.

Figure 4.
Diagonals of matrices Fi .
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if K cð Þ ¼ 1 then

∣ Y1 ¼ A1

end

fork ¼ K cð Þ þ 1 ton do

Ck ¼ B ∗
k Yk�1

Zk ¼ null Ckð Þ
Yk ¼ Yk�1Zk

























Algorithm 1: Algorithm for determination of a joint eigenspace.

The sizes of the matrices are decreasing with k:

Ck: 2
n�1 � 2n�kþ1 Zk: 2

n�kþ1 � 2n�kYk: 2
n � 2n�k.

The intuitive ideas under the algorithm are the following:

• Ck ¼ B ∗
k Yk�1: The orthonormal basis of Yk�1 is projected on the kernel of Ak. The

components of the projected vectors are expressed in the orthonormal basis Bk of
that kernel. Consequently, Im Ckð Þ is the projection of Yk�1 on the kernel of Ak,
expressed in that kernel.

• A matrix Zk whose columns are an orthonormal basis of the complement of this
projection is determined.

• Finally, the components of the basis vectors are restored to the original space by
Yk ¼ Yk�1Zk

Let us prove that the matrices Yk have orthonormal columns. This is obviously the
case for k ¼ 1. Then, by recursion, we have:

Y ∗
k Yk ¼ Z ∗

k Y
∗
k�1Yk�1Zk ¼ I (27)

Now, let us prove, by recurrence, that Im Ykð Þ ¼ Yk.
Obviously, this is the case for k ¼ 1. Assume this is the case for k� 1. We have:

Im Ykð Þ⊂ Im Yk�1ð Þ ¼ Yk�1 (28)

We have also:

B ∗
k Yk ¼ B ∗

k Yk�1Zkð Þ ¼ B ∗
k Yk�1

� �

Zk ¼ CkZk ¼ 0 (29)

Then

Im Ykð Þ⊂ ker B ∗
k

� �

¼ Im Akð Þ (30)

From Im Ykð Þ⊂Yk�1 and Im Ykð Þ⊂ Im Akð Þ we deduce Im Ykð Þ⊂Yk.
Conversely, assume that a vector x belongs to Yk. Because Yk ⊂Yk�1 there exists a

vector b such that x ¼ Yk�1b and because x∈ Im Akð Þ we have also B ∗
k x ¼ 0

10
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Then

B ∗
k Yk�1b ¼ 0 ) Ckb ¼ 0 ) ∃a : b ¼ Zka

Therefore x ¼ Yk�1b ¼ Yk�1Zka ¼ Yka ) x∈ Im Ykð Þ ) Yk ⊂ Im Ykð Þ.
After execution of the algorithm to determine each column of U, there

remains an indetermination because the joint eigenvectors (i.e., the columns of U) are
determined up to a phase factor. This has no consequence on the performance of
the quantum code. However, if we want to fix this residual indetermination, we
proposed a fast and simple procedure in ref. [16]. The procedure requires an
additional set of n Pauli errors in which each additional Fi is a tensor product of I and
X only. As an example, for the Steane code, we use Table 2.

After these remaining differences have been removed, we obtain an estimated
matrix U that is equal to the true matrix, up to a global phase (Figure 5). However,
this remaining indetermination does not matter because, as said before, the global
phase has no significance in quantum physics. Here we have chosen the global phase
so that the encoder matrix is real.

Ei Fi

X⊗X⊗X⊗X⊗X⊗X⊗X X⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I

Z⊗ I⊗Z⊗Z⊗Z⊗Z⊗Z I⊗X⊗ I⊗ I⊗ I⊗ I⊗ I

Z⊗Z⊗ I⊗Z⊗Z⊗Z⊗Z I⊗ I⊗X⊗ I⊗ I⊗ I⊗ I

Z⊗Z⊗Z⊗ I⊗Z⊗Z⊗Z I⊗ I⊗ I⊗X⊗ I⊗ I⊗ I

X⊗ I⊗ I⊗ I⊗X⊗ I⊗ I I⊗ I⊗ I⊗ I⊗X⊗ I⊗ I

X⊗ I⊗ I⊗ I⊗ I⊗X⊗ I I⊗ I⊗ I⊗ I⊗ I⊗X⊗ I

X⊗ I⊗ I⊗ I⊗ I⊗ I⊗X I⊗ I⊗ I⊗ I⊗ I⊗ I⊗X

Table 2.
Additional Collection of Pauli errors.

Figure 5.
Estimated Matrix U for the Steane encoder.
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Figure 5 shows the matrix computed by our method. We have checked that it is
equal to the matrix directly computed from the circuit description.

The programmer may speed up the computation by taking into account the fact
that when computing columns c of U, some matrices Yk have already been computed
for other columns and can be reused. For instance, in Figure 4, we see that the joint
eigenvalues corresponding to columns 19 and 20 are the same, except the last one.
Then, when computing column 20, we can set K 20ð Þ ¼ n in Algorithm 1 instead of the
default value K 20ð Þ ¼ 1, because the Yn�1 for column 20 is the same as for column 19.
More generally, Algorithm 2 written in pseudo-Octave code computes the optimal
values of the K cð Þ.

K ¼ 1 1½ �
for k ¼ 2 to n do

| K ¼ reshape K; k ∗ ones 1, 2k�1
� �	 


1 2k
	 
� �

end

Algorithm 2: Algorithm for computation of the optimal values K cð Þ.
For instance, for n ¼ 3 the algorithm produces K ¼ 1 3 2 3 1 3 2 3½ �.

5. Application of JEVD to quantum walk search

5.1 Principle of quantum walk search

Let us consider a particle that can move on a graph. In the classical world, at the
time t this particle is localized at a node of the graph. It can then randomly choose
one of the edges linked to this node to reach one of the adjacent nodes at a time tþ 1.
The repeated iteration of this process is the concept of classical random walk.

A quantum walk [17] relies also on a graph, but contrary to the classical walk,
here the particle may be located at many nodes at the same time and can choose
many edges simultaneously. At the time t, the state of the particle is then described by
a state vector ψ tj i and the evolution between times t and tþ 1 is given by a

unitary matrix U ¼ SC such that ψ tþ1







�

¼ U ψ tj i. The unitary matrices C and S

represent, respectively, the choice of the edges and the movement to the
adjacent nodes.

In the following, we will consider graphs associated with hypercubes [18]. We will
note n the dimension of the hypercube and N ¼ 2n the number of nodes. Figure 6
shows the graph corresponding to a hypercube of dimension n ¼ 3. It is convenient to
label the nodes by binary words. In quantum language, these binary words κ are also

used to label the basis vectors of the so-called position space HS .
The quantum state lives in a Hilbert space built by the tensor product of the

position spaceHS (corresponding to the nodes) and the coin spaceHC (corresponding

to the possible movements along the edges) H ¼ HS ⊗HC . The dimensions of these
state spaces are Ne ¼ nN, N and n.

It is usual to define C as [19]:

C ¼ IN ⊗Gn (31)

12

Matrix Theory - Classics and Advances



where Gn is the n� n Grover diffusion matrix defined in Section 2. Matrix C
obtained for n ¼ 3 is shown on Figure 7.

The structure of S is more complex. It is convenient to first define it in HC ⊗HS

and then to transpose it to H using the shuffle matrix P ¼ Pn,N (defined in
subsection 2.2). Then:

S ¼ PŜPT (32)

where

Ŝ ¼ diag Ŝ1, … , Ŝn
� �

and Ŝd ¼ I⊗ n�dð Þ ⊗X⊗ I⊗ d�1ð Þ (33)

Figure 6.
Hypercube for n ¼ 3.

Figure 7.
Matrices C (left) and O (right) for n ¼ 3.
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The last equation just means that, because a movement along direction d corre-

sponds to an inversion of the dth bit in κ, the shift operator permutes the values
associated to nodes that are adjacent along that dimension.

A quantum walk search can be described by repeated application of a unitary
evolution operator Q, which can be written:

Q ¼ UO (34)

Here O is the oracle, which aims at marking the solutions. An example of oracle
structure is shown in Figure 7. It is a block-diagonal matrix, whose blocks are �Gn

when they correspond to a solution and In otherwise. Denote M the number of
solutions and assume thatM≪N (otherwise the quantum walk search would serve no
purpose because the probability of rapidly finding a solution with a classical search
would be high). In the example shown in the figure, there areM ¼ 2 solutions (located
at positions 1 and 4 on Figure 6).

Let t denote the number of iterations until a measurement is performed. Starting
from an initial state ψ0j i, repeated iterations lead to the state ψ tj i ¼ Q t ψ0j i which is
then measured. The theory of quantum walk search [19] shows that the probability of
success (that is the probability of obtaining a solution by measurement) oscillates as a
function of t. This means that theoretical tools which help to understand and simulate
quantum walk search lead to the development of methods to determine the optimal
time of measurement.

In the sequel, we will show that JEVD is a fruitful tool in this context. Indeed, set E

to be the union of the joint eigenspaces of U and O, and E its complement. Inside E,

the operators commute. So, if we note with index E the restrictions of the operators to
E, we have:

Q2
E ¼ UEOEð Þ UEOEð Þ ¼ UEO

2
EUE ¼ U2

E (35)

Then, inside E, there is no significant difference between the effective quantum
walk Q and the uniform quantum walk U, because, after each pair of successive
iterations, the evolution is identical. Since the uniform quantum walk has no reason to
converge to a solution, we deduce that the interesting part of the process lives in the

complement of E, that is in E.
After establishing results about the dimensions of the eigenspaces of U and O,

we will show that the concept of joint eigenspaces allows us to establish an upper
bound on the dimension of the complement, with the remarkable result that this
dimension grows only linearly with n. Then, we propose an algorithm for efficient
computation of the joint eigenspaces and, finally, use it to check our theoretical
upper bound.

5.2 Eigenspaces of U and O

Set

F ¼ HN ⊗ In (36)

Then matrix F diagonalizes S:
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FSF ¼ HN ⊗ Inð ÞPN,nŜPn,N HN ⊗ Inð Þ (37)

¼ Pn,N In ⊗HNð ÞŜ In ⊗HNð ÞPN,n (38)

¼ PTdiag … ,HNŜdHN, …
� �

P (39)

The latter term is diagonal because the mixed product property, H2 ¼ I and
HXH ¼ Z, shows that:

HN ŜdHN ¼ I⊗ n�dð Þ ⊗Z⊗ I⊗ d�1ð Þ (40)

Once more, using the mixed product property, we can also prove that F keeps C
unchanged, that is:

FCF ¼ C (41)

The diagonal of FSF is the concatenation of the binary representation of the
numbers 0 to N � 1 with the mapping 0 ! þ1ð Þ and 1 ! �1ð Þ. That is:

FSF ¼ diag S0, … , Sκ, … , SN�1ð Þ (42)

Note that the diagonal of Sκ contains k times �1 and n� k times þ1 (where k is the
Hamming weight of κ).

Then, because F2 ¼ I, FUF is a block diagonal matrix:

FUF ¼ FSFð Þ FCFð Þ (43)

¼ diag … , Sκ, …ð ÞC (44)

Block κ is then

Uκ ¼ SκGn (45)

We have:

dim EUκ

� ≥dim ESκ ,Gn
þ,� (46)

≥dim ESκ
þ þ dim EGn

� � n (47)

≥ n� kð Þ þ n� 1ð Þ � n (48)

≥ n� k� 1 (49)

and

dim EUκ

þ ≥dim ESκ ,Gn
�,� (50)

≥dim ESκ
� þ dim EGn

� � n (51)

≥ kþ n� 1ð Þ � n (52)

≥ k� 1 (53)

Then, there is only room left for at most 2 eigenvalues, specifically, at most a pair
of conjugate ones.
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Assume that this pair of eigenvalues exists. Since the diagonal of Gn contains
�1þ 2

n, the trace of Uκ is:

trace Uκð Þ ¼ n� kð Þ þ1ð Þ þ k �1ð Þð Þ �1þ 2

n

� �

(54)

¼ �nþ 2kþ 2 1� 2
k

n

� �

(55)

The sum of the eigenvalues is equal to the trace and we already have eigenvalue �1
with multiplicity n� k� 1 and eigenvalue þ1 with multiplicity k� 1. The sum of
these n� 2 eigenvalues is �nþ 2k. Then the sum of the two missing eigenvalues must

be 2 1� 2 k
n

� �

. Let us denote them by λk and λ ∗
k . We must have Re λkð Þ ¼ 1� 2 k

n. Then,

since λkj j ¼ 1 we have

λk ¼ 1� 2
k

n

� �

þ i
2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k n� kð Þ
p

(56)

Considering the eigenvalues of �Gn and In it is trivial to show that the dimensions
of the eigenspaces of the oracle are:

dim EO
� ¼ M and dim EO

þ ¼ Ne �M (57)

5.3 Upper bound on the dimension of the complement

The eigenvalues of U belong to �1,þ1, λk, λ
∗
k

� �

where k∈ 1, n� 1½ �. Then, there
are 2þ 2 n� 1ð Þ ¼ 2n eigenspaces of U.

For j∈ 1, 2n½ � let α j be the dimensions of these eigenspaces and β j the dimensions of

their intersections with EO
þ. An eigenvector of U is in an intersection if and only if it is

orthogonal to EO
�. Then, because the dimension of EO

� is M, we have β j ≥ α j �M.

Consequently

X

2n

j¼1

β j ≥
X

2n

j¼1

α j � 2nM (58)

Obviously, we have
P2n

j¼1α j ¼ Ne, so that

X

2n

j¼1

β j ≥Ne � 2nM (59)

It follows that the dimension of the complement has an upper bound:

dim Ec ≤ 2nM (60)

This is a remarkable result—despite the fact that the dimension of the Hilbert
space grows exponentially (Ne ¼ n2n), the dimension of the complement grows only
linearly with n.
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5.4 Fast computation of the joint eigenspaces

5.4.1 Introduction

To check our theoretical upper bound, we propose an efficient algorithm for fast
computation of the joint eigenspaces.

We have to compute orthonormal bases of joint eigenspaces of U and O. The

dimension of EO
� is small, hence, it makes sense to define it by an orthonormal basis

generating the eigenspace. However, the dimension of EO
þ is large (greater than Ne=2).

Hence, it is computationally more efficient to define it by an orthonormal basis of its

complement (which is EO
�). Indeed dim EO

� ≪dim EO
þ. We then have to design an

algorithm adapted to each case.

5.4.2 Intersection of two eigenspaces defined by orthonormal bases

Let us consider a matrix A whose columns are an orthonormal basis of an

eigenspace of U, and a matrix B whose columns are an orthonormal basis of EO
�.

Set p and q to be the number of columns of these matrices (their number of rows
being Ne). We want to compute an Ne � r matrix J whose columns are an
orthonormal basis of the joint eigenspace (whose dimension we have set to be r).
We propose the algorithm below, which is a straightforward adaptation of Theorem 1
in ref. [20].

First, we compute the p� q matrix C below:

C ¼ A ∗B (61)

Then, we compute the SVD of C:

C ¼ UcScV
∗
c (62)

Denote by sk the singular values (the diagonal elements of Sc) and determine r such
that sk ≥ 1� ε for k ¼ 1, … , r, and sk < 1� ε for k> r. Here ε≪ 1 is a very small positive
value introduced to take into account the presence of small errors due to computer
finite precision arithmetic. Finally:

J ¼ AUc : , 1 : rð Þ (63)

Or, equivalently, J ¼ BVc : , 1 : rð Þ.

5.4.3 Intersection of two eigenspaces, one of them being defined by an orthonormal basis of
its complement

Let us consider a matrix A whose columns are an orthonormal basis of an
eigenspace of U, and a matrix B whose columns are an orthonormal basis of the

complement of EO
þ (that is EO

�). First, we compute the p� qmatrix C (Eq. (61)). Then,
we compute the p� r matrix (r≤ p) Z below:

Z ¼ null C ∗ð Þ (64)
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and we obtain an Ne � r matrix J whose columns are an orthonormal basis of EU,O
λ,þ

from:

J ¼ AZ (65)

The justification of the algorithm is as follows. The q columns of C are a basis of the
projection of Im Bð Þ into Im Að Þ, the components being expressed in the basis of Im Að Þ
The complement of Im Cð Þ in Im Að Þ is the desired intersection (expressed in Im Að Þ).
The columns of Z are an orthonormal basis of this intersection. Finally, Eq. (65)
restores the components in the original space.

5.5 Simulation results

Consider a hypercube of dimension n ¼ 7 withM ¼ 3 solutions located at nodes
2, 8, 9. The dimension of the state space is then Ne ¼ n2n ¼ 896. From the discussion
above, we know that the dimension of the complement is upper bounded by 2nM ¼ 42.

The algorithm gives us the dimensions of the joint eigenspaces of U and O

(Table 3). The sum of the dimensions of the joint eigenspaces is then
P2n

j¼1β j ¼ 858,

from which we obtain the dimension of the complement:

dim Ec ¼ Ne �
X

2n

j¼1

β j ¼ 38 (66)

We can see that, as expected, this dimension (dim Ec ¼ 38) is much smaller than
the dimension of the original state space (Ne ¼ 896). We can also check that it is less
than the theoretical upper bound (2nM ¼ 42), as expected.

6. Conclusions

The recent growth of research on quantum communications and quantum infor-
mation processing opens new challenges. In this chapter, we have shown that matrix

λ
O

λ
U dimE

O,U
λ
O,λU

�1 any λk or λ
∗
k 0

þ1 λ0 ¼ þ1 321

þ1 λ1 or λ
∗
1 4

þ1 λ2 or λ
∗
2 18

þ1 λ3 or λ
∗
3 32

þ1 λ4 or λ ∗4 32

þ1 λ5 or λ
∗
5 18

þ1 λ6 or λ
∗
6 4

þ1 λ7 ¼ �1 321

Table 3.
Joint eigenspaces of O and U for n ¼ 7 and M ¼ 3 solutions located at nodes 2, 8, 9.
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theory concepts, such as JEVD, are powerful tools to propose new theoretical results as
well as efficient simulation algorithms.

In the domain of quantum coding, we have shown how to determine the encoding
matrix of a quantum code from a collection of Pauli errors. On a more speculative note
to be part of future work concerning interception of quantum channels, it might also
be useful to identify the quantum coder used by a noncooperative transmitter.

In the domain of quantum walk search, thanks to JEVD we have proved that there
exists a small subspace of the whole Hilbert space which captures the essence of the
search process, and we have given an algorithm that allows us to check this result by
simulation.
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