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Abstract

This paper focuses on the design of advanced core control systems for future generations of pressurized water reactors.
The objective is to improve the flexibility of nuclear power plants to cope with the rapid growth of renewable energies.
In practice, this means that the average coolant temperature, the axial power distribution of the reactor core and the
position of the control rods have to be properly regulated during power variations. In previous work, conducted by the
same authors, two promising approaches were investigated: 1) fixed-structure gain-scheduled control and 2) nonlinear
model predictive control. Here, both methods are tested according to industry standards in an attempt to determine the
best one for our problem. To achieve this, two different controllers are designed using a new multipoint kinetic model
of the reactor core, which provides an accurate representation of the axial power distribution. The advantages and
drawbacks of both design methodologies are discussed and then compared on PWRSimu, an intermediate complexity
pressurized water reactor simulator developed by Framatome.

Keywords: Nuclear Power Plants, Gain-Scheduling, Model Predictive Control

Nomenclature
ACT Average Coolant Temperature
AO Axial Offset
GSC Gain-Scheduled Control
MS Multiple-Shooting
NMPC Nonlinear Model Predictive Control
NP Nominal Power
PWR Pressurized Water Reactor
SS Single-Shooting

1. Introduction

In order to address climate change, many countries are
seeking to replace fossil fuel power plants by renewable
energy sources [1]. This energy transition poses new chal-
lenges in terms of management of the electrical network.
Since excess electricity cannot currently be stored on a
large scale, generation and consumption have to be contin-
uously balanced to ensure grid stability. For this purpose,
a number of power plants must be flexible, i.e., capable of
adjusting their power output on demand. However, unlike
fossil fuel power plants, which are easily controllable, part
of renewable energy sources, such as wind turbines or solar
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panels, are inherently intermittent. It is therefore essential
to enhance the flexibility of conventional power plants to
prepare for the upcoming expansion of renewables [2].

A nuclear power plant can be operated either in base-
load or in load-following mode [3]. In base-load mode, the
power output of the plant remains constant regardless of
electricity demand. Most nuclear power plants around the
world are still operated in base-load mode because it is
simpler and more cost-effective. In load-following mode,
the power output of the plant is adjusted depending on
the forecasted electricity consumption. Typically, the grid
operator sends a daily load profile in advance to the plant
operator, who will then set the power target of the turbine
accordingly. Whether in base-load or in load-following
mode, the nuclear power plant can also provide frequency
control to the grid. This is achieved by a dedicated con-
troller that automatically adjusts the power output of the
turbine to offset small load imbalances within seconds.

Flexible operation of a nuclear power plant is directly
related to the design of the core control system [4]. The
main task of the core control system is to maintain the
average coolant temperature (ACT) and the axial power
distribution of the reactor core, or axial offset (AO), within
appropriate limits. These limits are defined upstream to
ensure acceptable performance levels and safe operation
of the plant. During power variations, ACT regulation is
achieved by moving several neutron-absorbing control rods
inside the reactor core. However, their movements have
a detrimental impact on its axial power distribution. Ini-
tially, the movements of the control rods were mitigated by
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adjusting the boron concentration of the primary coolant.
This strategy was limiting in terms of flexibility because
the boron concentration of the coolant can only change
slowly and gradually decreases over the fuel burn-up cycle.
For example in mode A, the maximum power variation rate
of the plant is typically restricted to 1-2 %NP /min at the
beginning of the cycle, and 0.2 %NP/min at the end. To
overcome these limitations, advanced core control systems
usually comprise two separate groups, or banks, of control
rods [4]. In this way, one bank of control rods can be used
to perform power variations by, e.g., controlling the ACT,
while the other can be used to reduce axial power distribu-
tion disturbances. Thus, flexibility is increased with power
variation rates of up to 5 %NP/min. After power varia-
tions, the xenon distribution of the reactor core will slowly
change for several hours until steady-state is reached. Dur-
ing this time, the evolution of xenon concentration has
to be counterbalanced to prevent the AO of the reactor
core from drifting away. In highly advanced core control
systems, such as mode T [5], this can be done either by
moving the control rods or by adjusting the boron concen-
tration of the primary coolant. The main motivation for
using the control rods is to minimize the volume of effluent.
Yet, this can decrease the maneuvering capabilities of the
plant, as the control rods may not be properly positioned
for a quick return to nominal power. Maximum flexibility
is achieved when xenon poisoning is compensated by boron
concentration adjustments and when the level of insertion
of the control rods is controlled.

In practice, industrial core control systems manage to
meet all the aforementioned requirements using single in-
put single output Proportional-Integral-Derivative control
along with sophisticated logic rules. Even if this approach
gives satisfactory results for now, it may become insuf-
ficient against more stringent grid management criteria.
Fortunately, a wide variety of core control systems have
already been proposed (see [6] and references therein).
Popular methods include LQG/LTR, control, Hs, control,
sliding-mode control, model predictive control and gain-
scheduled control. Nevertheless, these conceptual core
control systems do not tackle all the issues that arise from
the flexible operation of nuclear power plants. Hence,
this paper proposes to bridge the gap between industry
and academia by developing two different advanced core
control systems using modern design techniques. In view
of the strong operational constraints that are placed on
the nuclear industry, two promising approaches have been
identified: fixed-structure gain-scheduled control |7, 8] and
nonlinear model predictive control [9].

To the best of our knowledge, very few papers have tried
to apply these techniques to the control of a nuclear reac-
tor core. For instance, it seems that [7, 8] are the first
ones that studied fixed-structure gain-scheduled control in
this context. Regarding model predictive control, only a
handful of examples have been reported in the scientific
literature. In [10, 11|, a linear model predictive controller
is designed to achieve both ACT and AO regulation of a

reactor core that is operated in load-following mode. How-
ever, the boron concentration of the coolant is adjusted by
another module and the nuclear power plant does not pro-
vide frequency control to the grid. In another paper [12],
the power output of a reactor core is controlled by a robust
nonlinear model predictive controller. Yet, this theoreti-
cal work is not industrially relevant as it does not even
address AO regulation. By contrast, the main contribu-
tion of this paper is to conduct a realistic and compre-
hensive study on the design of nuclear reactor core con-
trol systems. The objective is to give practical insights
and methodological guidelines that could help industrial
practitioners working in nuclear engineering. Two mod-
ern control techniques, which were seldom tested in this
field, are compared against the technical specifications of
Framatome. In order to ensure consistency with industry
standards, the actuators and control objectives are identi-
cal to those considered in mode T [5].

Following on from the work carried out in [8], the first
core control system is designed based on a fixed-structure
H,/H gain-scheduled control approach. The main im-
provement is that the controller is tuned using a multipoint
kinetic model of the reactor core rather than a point ki-
netic one. In addition, the mathematical formulation of
the Hs/H ., synthesis problem has been refined and made
more readable. Moreover, the gains are now simultane-
ously tuned at each operating point and smoothly inter-
polated as a function of the scheduling variable [13]. This
greatly simplifies the design of the controller, as it avoids
a posteriori interpolation, or post-processing, of the gains.
The second core control system is designed based on a
nonlinear model predictive control approach [14, 15]. This
time, the multipoint kinetic model of the reactor core is
embedded into the controller to predict the future response
of the plant. Thus, the control inputs can be calculated
online by repeatedly solving a constrained finite horizon
optimal control problem. To this end, the model of the
reactor core is reduced using singular perturbation theory
so that it can be efficiently simulated by the controller.

The remainder of this paper is organized as follows:
Section II describes the system under study and formal-
izes the control objectives; Section III presents the design
methodology of the fixed-structure Hy/H, gain-scheduled
controller and Section IV presents the design methodol-
ogy of the nonlinear model predictive controller; Then,
the advantages and drawbacks of both techniques are dis-
cussed in Section V based on a typical load-following
MATLAB® / Simulink® simulation scenario; Finally, con-
clusions and perspectives are drawn in Section VI.

2. Problem Formulation

2.1. System Modeling

To design the core control systems, a new multipoint
core kinetic model of a pressurized water reactor (PWR),
drawn in Fig. 1, has been developed (a brief overview



of the model is given in [16] Appendix F). Its main ad-
vantage, compared to the former point kinetic model pre-
sented in (7, 16|, is that the behavior of the AO is more
accurately represented since the reactor core is now di-
vided into six meshes. However, increasing the number of
meshes also increases the size of the model. As illustrated
in Fig. 1, every new mesh requires five additional states:
two average neutron n and delayed neutron c¢ densities,
two iodine I and xenon X, concentrations, and one in-
let temperature T'. For each mesh, neutron dynamics are
described by point kinetics equations with one group of de-
layed neutrons. An adequately chosen constant exchange
coefficient has been added to take account of the trans-
fer of neutrons between meshes. In addition, the iodine
and xenon concentrations are calculated by a multipoint
iodine-xenon estimator. The rise in coolant temperature,
from the bottom to the top of each mesh, is given by a
first order differential equation and is proportional to the
amount of power generated by nuclear fission. In each
mesh, the growth rate of the fission chain reaction is char-
acterized by a quantity known as reactivity [17, 18]. Crit-
icality is achieved when the fission chain reaction is stable
and self-sustaining, i.e., when the reactivity of the reac-
tor core equals zero. Reactivity depends on many factors,
namely the fuel and coolant temperatures, the xenon con-
centration of the reactor core, the position of the control
rods and the boron concentration of the primary coolant.
The resulting feedbacks and underlying interactions be-
tween all involved variables lead to strong plant nonlin-
earities and coupling.

g Ce 15 X65
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Fig. 1: Simplified diagram of the multipoint PWR core kinetic model
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In order to move from reactor core to plant scale, a
very simple steam generator is modeled. Once again, it
is assumed that the fall in temperature between the inlet
and outlet of the steam generator is given by a first order

differential equation and is proportional to the power of
the turbine. In fact, whenever the power of the turbine is
decreased (resp. increased), the average coolant tempera-
ture will increase (resp. decrease). As a result, the nuclear
power of the reactor core will also decrease (resp. increase)
and ultimately reach steady-state because the PWR was
designed so that the fission chain reaction can be stabilized
by temperature reactivity feedbacks alone (i.e., Doppler ef-
fect and moderation) [17]. However, it is very likely that,
without control, the average coolant temperature will de-
viate from the limiting conditions of operation. Further-
more, xenon-induced spatial power oscillations may appear
if the axial power distribution of the reactor core is left un-
controlled. Therefore, the role of the core control system
is to ensure that both the ACT and the AO stay within
their respective limits before, during and after power vari-
ations [4]. This can be achieved by slightly altering the
reactivity of the reactor core.

In mode T [5], the nuclear reaction is controlled by mov-
ing two separate banks of control rods inside the reac-
tor core and by adjusting the boron concentration of the
primary coolant. Reactivity can be increased (resp. de-
creased) either by withdrawing (resp. inserting) the con-
trol rods from (resp. in) the reactor core or by decreasing
(resp. increasing) the boron concentration of the coolant.
The control rods are mainly used to handle abrupt changes
in reactivity but adversely impact the power distribution
of the reactor core. In fact, reactivity will mostly decrease
in the region of the reactor core where the control rods
are being inserted. To alleviate this problem, one bank of
control rods, denoted by Ppank, is dedicated to ACT reg-
ulation whereas the other, denoted by Hpapy, is dedicated
to AO regulation. Conversely, the boron concentration of
the primary coolant acts uniformly on the reactor core but
takes time to become effective. This is due to the fact that
the solutions of boric acid and demineralized water, which
are injected to modify the boron concentration, have to
flow throughout the volumetric and chemical control cir-
cuit before reaching the coolant. Hence, boron concentra-
tion adjustments are mostly used to counterbalance axial
xenon oscillations after power variations. To summarize:

e ACT regulation is achieved by moving Ppank

e AO regulation is achieved by moving Hpani during
power variations and by adjusting the boron concen-
tration of the primary coolant during xenon oscilla-
tions

In addition, the mode T allows the reactor core to quickly
return to its nominal power. This is achieved by control-
ling the level of insertion of Py, in the reactor core. Last
but not least, all three controlled variables can be success-
fully regulated even when the turbine provides frequency
control to the grid.

2.2. Control Objectives
As mentioned before, the goal of an advanced core con-
trol system is to keep the ACT, the AO and the position
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of Ppank within appropriate limits during power variations
and while frequency control is active. These limits were de-
termined beforehand by nuclear reactor engineers to com-
ply with genuine performance and safety requirements. In
mode T, their values are given by:

‘Ta(t) - Ta,ref (Pref(t))| < 1.5 °C
|AO() — AOyey| <5 % 0
‘Pbank (t> - Pbank,ref (Pref (t)ﬂ <30 Step&

where T, is the average temperature of the coolant, AO
is the axial offset of the reactor core, Pygni is the posi-
tion of the first bank of control rods, and Tg yef, AOres
and Pygnk,ref are their respective reference signals. Note
that the reference signals Tj r.y and Pygnk,rer are both
piecewise linear functions of the load profile .5 whereas
AO;.cy is a constant. Shorthand notation for the deviations
of ACT, AO and Py, are:

AT, (t) =T, (t) - Taﬂ“ef
APbank‘ (f) - Pba'nk‘ (7‘) - Pbank‘,ref (Pref (t)) .

Actuator saturation should also be considered to make the
core control system practically workable. In our case, the
reactor core is actuated by changing the speeds of both
Ppank and Hypapk, and by adjusting the boron concentration
of the coolant. The speeds of Ppanx and Hpank are simply
limited by:

deank (t)
dt

‘ deank (t)

’ < 75 steps/min
(2)

& ’ < 75 steps/min,

where Hpqni is the position of the second bank of con-
trol rods. Besides, Pponir and Hpqni are saturated as well
since the control rods cannot move beyond their maximum
insertion and extraction thresholds:

36 < Pyani < 1053 steps
9 < Hpani < 411 steps.

(3)

The upper and lower bounds of the injected boron concen-
tration variation rate depend on the current boron con-
centration of the coolant. More precisely, the higher the
boron concentration of the coolant, the lower the efficiency
of a boric acid injection. Similarly, the lower the boron
concentration of the coolant, the lower the efficiency of
a demineralized water injection. This translates into the
following inequalities:

10 . dCb,m(t) 3

< _
>~ dt (Cb,max

<ir (1), @)

where Cp mqz is the maximum boron concentration of the
coolant, M, is the total mass of water in the primary cool-
ing circuit, C ;y, is the injected boron concentration and
C} is the boron concentration of the coolant.

In our model, it is assumed that the turbine control
system has already been designed and is functioning per-
fectly. Thus, the power of the turbine can be expressed
as Py = Prey + 0P.oy where P..y is the known load
profile and 0P,.f is an unknown reference signal that is
added when frequency control is active. Specifically, P
appears as a ramp-like signal during power variations and
as a step-like signal otherwise. The additional term 0P,y
is norm-bounded by 2.5 %NP and changes about every
second. From the perspective of the reactor core, Piy,p is
seen as a disturbance signal that has to be rejected by the
core control system.

3. Fixed-Structure Gain-Scheduled Controller

The idea of gain scheduling is to break down the non-
linear control problem into a finite number of linear sub-
problems [19, 20]. The main advantage of this divide-and-
conquer approach is to rely on well-known linear design
tools rather than convoluted nonlinear methods. This
is particularly interesting given the recent developments
in non-smooth optimization for structured robust con-
trol [21].

8.1. Linearization of the Nonlinear Model

The first step in designing the fixed-structure Hy/Hx,
gain-scheduled controller is to linearize the nonlinear
model of the reactor core around several operating
points. All were determined using Framatome’s certi-
fied three-dimensional core kinetics computer code, named
SMART [22], starting from stationary conditions with
equilibrium xenon at 100 %NP. The computation of an op-
erating point begins by setting the nuclear power of the re-
actor core at a constant level. Then, the positions of Ppank
and Hp,ni are updated so that criticality is achieved with
minimal ACT and AO deviations. The boron concentra-
tion of the coolant, on the other hand, is fixed according to
the fuel burn-up. In total, 21 operating points were com-
puted over an evenly spaced grid of power values between
100 %NP and 50 %NP (i.e., one point every 2.5 %NP).
This number of points is sufficient to obtain a fine-grained
description of the original system and to ensure a smooth
transition of the gains.

Then, the operating points are uniquely defined by a
set of scheduling variables that covers the whole operating
range of the real plant. Initially, two different schedul-
ing variables were considered: the position Py, and the
known load profile P..r. However, using both variables
is irrelevant here, as the closed-loop dynamic of Ppunk
should be directly linked to P..y. The question that re-
mains is whether to schedule the controller with respect to
the internal variable Pyqn; or the exogenous signal Pr.f.
Theoretically speaking, it would be preferable to choose
Prcs over Pygny since the impact of the hidden coupling
terms, which appear in the dynamic of the linearized gain-
scheduled controller [20], is less pronounced when an ex-
ternal signal is used for scheduling. Yet, in reality, the



behavior of the reactor core depends heavily on the posi-
tion of the control rods. Therefore, just like in [8], Prank
is selected as the only scheduling variable.

Subsequently, a collection of 21 linear open-loop models
is numerically computed with the linearization algorithm
of MATLAB® /Simulink®. For all i € [1,21], the i-th
linear open-loop model is obtained by linearizing the non-
linear model of the plant around the operating point de-
fined by o; = Pb(;zme - The iodine-xenon estimator has
been discarded from the linearization process because its
dynamics are much slower than that of the controlled out-
puts. Finally, the state-space realization of the i-th lin-
earized open-loop model is given by:

&, (t) = Ajz,(t) + Bu(t) + Ed(t)
Y= er(t)v

where z,, € R?? is the truncated state vector (i.e., without

. . ) T
iodine and xenon dynamics), u = | Pyank, Hpank, Cb.in| €
R3 are the control inputs, d = Py, € R is the exogenous
disturbance, and Yy = [Tzna Tout7 AOv Pbank, Pcore]T € RS
are the measured outputs. Note that the controlled out-
puts z = [T,, AO, Pbank]T € R? are a subset of the mea-
sured output y in the sense that:

1/2 1/2 0 0 0
z=Ty with T=1]0 0 1 0 o0f.

0 0 0 1 0
Since the control inputs u are the time derivatives of the
state variables Pyonk, Hpank and Cp sy, the open-loop state
matrix A; and the control matrix B can be decomposed

as: . a
A Ay 10
e G I

Thus, the poles of the i-th linearized open-loop model are
the union of the eigenvalues of Ay; plus three controllable
poles located at s = 0. For the chosen set of model param-
eters, it was observed that every matrix A;; is Hurtwitz
stable. This numerical assessment is consistent with real-
ity insofar as the reactor core was designed to be stable
under normal conditions. Hence, it can be concluded that
the linear open-loop models are all stabilizable.

3.2. Architecture of the Controller

To achieve asymptotic tracking of a class of reference
inputs in the presence of another class of disturbances, a
model of both exogenous signals should be embedded in
the controller. Then, this model should be duplicated as
many times as the number of outputs to be controlled [23].
Here, the reference inputs and the disturbance belong to
the same class of signals that are constant and piecewise
linear. Thus, the controller should comprise at least two
integrators per controlled output channel to achieve the
desired closed-loop performance. However, an integrator
is already included in every input-output transfer func-
tion of the linearized open-loop models. Hence, only one

Veetocccccas

Fig. 2: Block diagram of the linear time-invariant closed-loop system
computed at the i-th operating point

extra integrator needs to be added per controlled output
channel. This can be realized with the following linear
time-invariant output feedback controller:

e1(t) = Kr (zref (1) — (1))
u(t) =Kp (yref(t) - y(t)) + z[(t)v

where Y5 € R® are the reference signals of the measured
outputs and zp.r € R3? are the reference signals of the con-
trolled outputs. This controller can be seen as a multiple-
input multiple-output version of a Proportional-Integral
controller with gain matrices Kp € R3*® and K; € R3*3,
The proportional part of the controller is then filtered to
provide robustness against high-frequency noise and un-
modeled dynamics:

zI(t) = KI(Zref(t) - Z(t))

Tp(t) = diag(cll7 %, l1)> ( —2p(t) + Kp (Yrep(t) — y(t)))

u(t) = .Z‘p(t) + l’[(t),

where @ > 0 and b > 0 are the time constants of the first-
order low-pass filters that are applied to xp. The time
constants of the first and second filters are chosen equal
since the dynamic of Py, is expected to be similar to that
of Hpani- A block diagram of the linear time-invariant
closed-loop system that is computed at the i-th operating
point, i € [1,21], is shown in Fig. 2, where:

Ggiy(s) =C (8]25 — Ai)il E
GSJ)_”J(S) =C (SIQ5 — Ai)il B

1 1 1
K
a5+17a5+17b5+1) P

(o) = o

1
CZ(S) = ;K],
and e = z — 2, is the tracking error:
e = [AT,, AAO, APyani]” . (5)

The signals d, € R and d, € R® are unknown additive
disturbances that may appear on the actuators and on the
sensors of the plant. The input and the output sensitivity
functions:

S0(s) = I+ (Cy(s) + TC(5)) GD,, (5)] B

Sg(/i) (s) = [13 + GS)—HJ(S) (Cy(s) + TCZ(S))] 717

385

387

388

397

405



439

are given by the closed-loop transfer functions from d, to
u and from d, to y respectively.

3.3. Tuning and Gain-Scheduling

The conventional approach [19, 20] for scheduling the
gains of the controller would be to: 1) synthesize a lin-
ear time-invariant controller at each operating point using,
e.g., a fixed-structure Hy/H, synthesis algorithm and 2)
smoothly interpolate the gains of the controller as a func-
tion of the scheduling variable Py,,r. However, indepen-
dently tuning the controller at each operating point may
lead to undesirable jumps in the values of the gains once
they have been interpolated. To prevent this, the gains can
be tuned against multiple neighboring models rather than
just one [8]. Here, the tuning and scheduling stages are
blended together using the Gain Surface Tuning method
presented in [13]. First, the gain matrices Kp, K; and the
time constants a, b are written as quadratic polynomials
of the scheduling variable 0 = Ppgni:

Kp(0) = Kpo + Kp10 + Kpao?

Ki(o) = K19+ K110 + Kp20°

(o
G(U) =ag+ a0+ a202
(o

b ):b0+b10'+620'2,

with coefficients Kp; € R3S Kp; € R3*3 a; € R and
b; € R for all j € {1,2,3}. Then, these coefficients are
tuned to ensure proper closed-loop performance at each
operating point. Specifically, let K € R”® be the vector of
tunable parameters. For each linearized open-loop model,
the performance objectives are represented by the follow-
ing frequency-domain criteria:

min

. i 1
i dlag(51a62753)Hér)ef*)e(K“S)SiQ

2

(K,s)|| <1

d—eq

s

oo

HWuH(i)

(i—>62

(K., )

HWISH(S”

—e€3

(K., )

HWleﬁul

(K, s)
subject to:

s

—U

, (K, s)

HW23HS)

—Uu

(K, s)

| 9|

Re(p'” (K)) < —a,

where, for all i € [1,21], H,(fl)y denotes the closed-loop
transfer function from input signal u to output signal y for
the i-th plant model, |||, and [-||, are the Hy and H
norms, and p(*) are the closed-loop poles of the i-th plant
model. Having two integrators in the loop transfer func-
tion means that Héjlf% has two zeros at s = 0. Hence, its

Hs norm can be shaped with a double integrator weighting
function which, in this context, is interpreted as a refer-
ence signal generator. In fact, minimizing the frequency-
weighted Ho norm of Héf,)efﬁe ensures both asymptotic
tracking and disturbance rejection of step-like and ramp-
like exogenous signals. The parameters (31, 32, 83) € R,
are chosen such that ACT regulation takes precedence over
AO regulation which, in turn, takes precedence over Ppank
regulation. The scalar weights (W11, Wi, Wi3) € R3>0 and
(Wai, Waa, Was) € R2 ; are used to limit the maximum set-
point deviation and the maximum control effort that are
induced by a change in the power of the turbine. The rea-
son why the controller is tuned against several single-input,
single-output H., constraints, rather than one multiple-
input, multiple-output H,, constraint, is to make the op-
timization problem more readable. Finally, the parameters
v € Ryg and a € Ry are selected to provide a sufficient
level of input-robustness and stability to the closed-loop
system.

4. Nonlinear Model Predictive Controller

The principle of model predictive control is to use a
model of the plant to predict and optimize its future be-
havior by repeatedly solving an on-line optimal control
problem over a finite horizon [14, 15]. This control tech-
nique, also known as receding horizon control, has proven
to be very successful in the process industry because it
can handle large scale, multi-input multi-output nonlin-
ear systems that are subject to actuator and state con-
straints [24].

4.1. Model Reduction

The nonlinear state-space representation of the full-
order PWR model can be written as:

() = fo (x(t), u(t),d(t))

z(to) = o,

where x € R37 is the full state vector, 2o € R3" is the initial
state, u € R3 are the control inputs, and d € R is the ex-
ogenous disturbance. In the sequel, it is assumed that the
state is perfectly measured. Since the model is intended
to be used in a model predictive control framework, spe-
cial attention is given to its computational complexity. In
practice, many numerical simulation runs are performed
to solve the optimal control problem at each time step.
However, the multiple time scale behavior of the model,
ranging from fast neutron to slow xenon dynamics, ren-
ders it numerically stiff [25]. Although the full-order model
can be simulated using powerful integration solvers, such
as [26] or [27], model reduction is still conducted to make
the optimal control problem more tractable. State estima-
tion, which is outside the scope of the paper, is another
motivation for reducing the order of the model. In the
future, a state observer should be designed to implement
the NMPC controller [28]. This task would obviously be
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easier to achieve with a reduced-order model. Therefore,
singular perturbation theory [29] is employed to remove
the dynamics that are not essential regarding the control
objectives. A well-known approximation in nuclear reac-
tor physics is the prompt-jump approximation [17, 18].
Whenever a fission reaction occurs, two types of neutrons
are emitted: prompt neutrons, which are directly emit-
ted from fission, and delayed neutrons, which are emit-
ted a moment later from the radioactive decay of fission
products. Under normal operating conditions, the reac-
tor core is predominantly governed by the dynamic of de-
layed neutrons. Consequently, prompt neutron dynamics
can be reasonably approximated by steady-state equations
without any significant loss of accuracy [30]. The result-
ing reduced-order model is given by a set of semi-explicit
differential-algebraic equations:

Eq(t) = f(xa(t), za(t), u(t), d(t))
0= g (za(t), za(t), u(t),d(t))
x4(0) = x40,

where the state is divided into a slow differential part z4 €
R3! and a fast algebraic part z, € RS.

4.2. Formulation of the Optimal Control Problem

At each time step, the NMPC algorithm yields a se-
quence of control inputs by solving a finite horizon optimal
control problem that is initialized with the current state of
the plant. Usually, only the first component of the control
input sequence is applied open-loop to the plant until a
new one is calculated at the next time step. The greatest
strength of NMPC is that all the previously defined core
control specifications can be directly incorporated into the
finite horizon optimal control problem:

t+NT,
wmin [ (|le @a(r), 7a(r), A [ + [0 %) dr

u(-)

subject to:
V7 € [t,t + NT]

(6)
where N > 1 is the length of the prediction horizon, T > 0
is the sampling time of the controller, and z4(t) is the dif-
ferential state of the plant that is measured at time ¢ > 0.
The core control specifications (1) — (4) are represented by
the inequality constraints map c¢: R3! x R® x R3 x R — R!6
and the tracking error (5) is given by the nonlinear map
e:R3 x RS x R — R3. The weighted 2-norms lello and

|lull p are defined by ||e||?;) = e’'Qe and Hu||?% = uTRu
where Q € R**? and R € R3*? are symmetric positive-
definite matrices. The bar subscript denotes internal

model variables that are used within the controller to pre-
dict the behavior of the real plant. In particular, the dis-
turbance signal is written as d(t) = d(t) + dd(t) where d
is the known load profile that is sent in advance by the
grid dispatcher to the plant and |d6d| < 2.5 %NP is the un-
known norm-bounded term that appears when frequency
control is active.

Transcription of the continuous optimal control problem
into a finite-dimensional nonlinear programming problem
is commonly achieved using either direct single-shooting or
direct multiple-shooting [31, 32]. Here, both options will
be implemented and tested thereafter. In a direct method,
the continuous-time control inputs are approximated with
a finite number of parameters. Most of the time, the con-
trol input sequence u = {@[0],...,u[N — 1]} is discretized
with a piecewise constant parameterization:

Vk € [0,N —1], V7 € [tr, trra], a(r) = ulk],

where tp, = t + kT;. The key difference between single-
shooting and multiple-shooting is the parameterization of
the state trajectory.

In single-shooting, the state trajectory is computed in
one shot, from ¢y to ¢y, outside of the optimization prob-
lem. In fact, for a given control input sequence u and a
fixed initial state x4(t), the state trajectory can be entirely
determined by simulating the model of the plant:

Zq(t _

ke 0.8 — 17, (ZAH)) 2 g (b wat) ),
xa(tk-&-l)

where ¢, 1R x R3t x R3*N — R37 is a numerical integra-

tion operator that returns the solution of the initial value

problem:

Z4(1) = f (Id(r),fa(T),ﬂ(T),E(T))
VT € [to, tN] 0=y (Td(T)afa(T)aﬂ(T)va(T))
fd(to) = xd(t),

at time tx11. Therefore, the optimization problem can be
reduced to:

N-—-1
min Z e (¢ss(trsrs za(t), @), d(trir)) HZ + |[alk]l[%,
k=0

subject to:
Vk € [0,N = 1], ¢ (ss(tos1;za(t), W), ulk], d(tps1)) < 0.

Hence, the advantage of using single-shooting is to remove
the equality constraints from the optimization problem.
Moreover, the state trajectory is always guaranteed to
be consistent with the dynamical equations of the model.
However, using single-shooting can increase the computa-
tional complexity of the optimization problem because the
state equations are repeatedly propagated into both the
cost function and the constraints. This is especially true
for nonlinear and/or unstable systems.

In multiple-shooting, the state trajectory is cut into
N pieces which are independently computed over each
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time interval [tx, tx+1]. These pieces are then reassembled
within the optimization problem by imposing equality con-
straints on the differential and algebraic states:

N-1
_min 3" fle (@alk + 1, 7lk], dtes) [, + I8
Ray k=0

subject to:
Vk € [0, N — 1],
¢ (Talk + 11, Za[K], Uk, d(tr41)) < 0

0

Zalk + 1]\ i —
(P = e il )
Ed[O] —xz4(t) =0,
where ¢ :R x R3! x R® — R37 is a numerical integra-

tion operator that returns the solution of the initial value
problem:

éd(T) = f (Ed(7'>7ja(7)vﬂ(7_)va(7—))
0=g (Ta(7),Ta(T), (T),E(T))
Za(te) = xaq(te),

2l

VT € [tr, tht]

at time tyy;. The drawback of multiple-shooting is
that the dimension of the optimization problem is sub-
stantially increased since the differential and algebraic
state sequences Xq = {Z4[0],...,T4[N]} and Xo =
{Z,4[0],..., T[N — 1]} become decision variables. How-
ever, this is not a real issue because the structure of the
resulting nonlinear program is block-sparse, provided that
the decision variables are arranged as follows:

(al0]", 0],z [0] 7, ... .,

Za[N — 1], 0N — 1)7, 7 [N — 1]7, 74[N]T)"

In fact, it has often been reported that efficient sparsity
exploitation can actually improve the rate of convergence
of the Newton-type algorithm which is used to solve the
nonlinear program [33]. Furthermore, having X4 and X, as
decision variables is beneficial for initializing the problem
since a priori information about the state trajectory can
be supplied to the algorithm. Last but not least, multiple-
shooting is better suited for highly nonlinear and/or unsta-
ble plants because integration is broken down into short
time intervals, meaning that the nonlinearity is equally
distributed over the shooting nodes.

4.3. Practical Implementation Issues

The nonlinear program that is transcribed using single
shooting is composed of 3N decision variables and 16 N
inequality constraints. On the other hand, the nonlin-
ear program that is transcribed using multiple-shooting is
composed of 40N +31 decision variables, 37N +31 equality
constraints and 16N inequality constraints. In both cases,
it is expected that the resolution time of the optimization
problem becomes greater than the duration 7 in between

two sampling instants because the length N > 1 of the
prediction horizon has to be large enough to ensure closed-
loop stability. Yet, we still want to recalculate the control
inputs at each time step so the plant does not remain in
open-loop for too long. Therefore, the optimization rou-
tine is deliberately terminated once the resolution time ex-
ceeds Ty seconds. Even if the solution is sub-optimal [34],
we believe that it should have sufficiently converged to
provide an acceptable level of closed-loop performance.

Consequently, a prediction-based delay compensation
scheme [35] is incorporated into the NMPC algorithm to
account for the non-negligible resolution time 0 < 7 < Ty
of the optimization problem. To illustrate, let py(xq(t))
be the feedback value given by the (sub-optimal) control
input sequence u*(z4(¢)) that (almost) solves the optimal
control problem with initial state x4(t). Because of the
computational delay, pun(x4(t)) is applied to the plant at
time t+7 instead of time ¢. Thus, the greater the mismatch
between x4(t) and z4(t + 7), the greater the difference be-
tween the expected and the real behavior of the closed-loop
system. Knowing the maximum resolution time 7,4, = T
of the optimization problem, the idea of [35] is to solve
the optimal control problem in advance, starting from an
estimate T4(t + Ts) of the future state in place of the cur-
rently measured state z4(t). The resulting feedback value
un(Za(t + Ty)), available at time ¢ + 7, is then applied
to the plant accordingly at time t + Ts. The next state
estimate can be computed straightforwardly by simulat-
ing the model of the plant from the newly measured state
xq(t+Ts) with input pn(T4(t+ Ts)). Note that, since the
state is estimated in an open-loop fashion, it is almost cer-
tain that the real state z4(t+7Ts) will differ from Z4(¢t+1T5).
However, it is still relevant to use the delay-compensated
input, as some degree of robustness is expected against
estimation errors [36].

5. Simulation Results

5.1. Validation Scenario
100 \1
90

80 1

701 1

60 1

Normalized Power (%NP)

50

0 1 2 3 4 5 6 7 8
Time (hours)

Fig. 3: Normalized power of the turbine with frequency control

To assess and compare the performance of the two
core control systems, a typical 8-hour load-following
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scenario is conducted on PWRSimu, an intermediate
complexity PWR simulator developed by Framatome in
MATLAB® /Simulink®. As shown in Fig. 3, this sce-
nario involves two power variations (from 100 %NP to
50 %NP and wvice versa) that are carried out at a rate of
5 %NP /min with frequency control. The full-order non-
linear PWR model is simulated on Simulink with the stiff
adaptive-step integration solver ode15s [27].

The fixed-structure gain-scheduled controller has been
tuned with the following set of parameters:

By =10/1.5 Ba=5/5 By = 2/30
Wi = 10/1.5 Wis =10/5 Wis = 10/30
Wor =10/1.25  Wap =10/1.25  Was = 10/0.04
v =05 a = 0.0001,

using Systune (MATLAB Control System Toolbox ") [21].
In order to model the whole closed-loop system in
Simulink, the quadratic polynomials Kp(o), K;(0), a(o)
and b(o) are approximated by feeding the scheduling vari-
able 0 = Pygni into 1-D lookup table blocks with linear
interpolation and clip extrapolation options.

Tuning of the NMPC controller has been achieved in two
steps. First, the matrices @ and R of the cost function (6)
are selected diagonal with normalized weights:

1 €2 €3
Q=735 Q2 =73 q3 =
(el,maac)2 (62,ma:1:)2 (637ma:1:)2
%1 1%} 1%
mn=-———m r9o = —m—& ry = ——mm5
(ul,n%ax)2 (’U/Q,maz)g (u3,mam)2’

where, for all i € {1,2,3}, €;mas and u; mqs denote the
maximum acceptable values of e; and u; (see Bryson’s
rule [37]). Then, the tunable parameters (e1,£2,e3) € R,
and (v1,v9,v3) € R3>0 are used to penalize, in order of
importance, the deviations of ACT, AO and Ppank with-
out unduly restricting the control effort. In the end, the
weighting matrices are given by:

30 20 15 0.0l 0.01 0.01
= diag(-——, =, =), R =di .
@ = diag (1.52’ 52’ 302>’ 18 (1.252’ 1.252° 0.042)

The sampling time Ty = 60 s and the prediction horizon
N = 10 are chosen so as to balance on-line complexity
and closed-loop stability. The NMPC algorithm is im-
plemented in MATLAB R2019a with CasADi v3.5.5 [38].
This open-source software provides several building blocks
which are especially useful for solving large-scale nonlinear
programing problems efficiently. Practically speaking, the
key asset of CasADi is its ability to quickly compute Jaco-
bians and exploit their sparsity pattern using algorithmic
differentiation and graph coloring techniques. Within this
framework, the reduced-order PWR model is simulated
with the stiff adaptive-step integration solver IDAS [26]
and the optimization problem is solved with the primal-
dual interior point solver IPOPT [39] using an Intel® Core”
i3-6100U processor with 16 GB of RAM. The closed-loop
interactions between the controller and the plant are rep-
resented by the sequential execution of both MATLAB®
and Simulink® files.

5.2. Simulation Results and Discussion

Final value of the cost function

[—NMPC SS —NMPC MS|

0 1 2 3 4 5 6 7 8
Time (hours)

Fig. 4: Semi-log plot of the final value of the cost function (NMPC
single-shooting vs NMPC multiple-shooting)

In order to choose between single-shooting and multiple-
shooting, both transcription methods were implemented
and tested. As can be seen in Fig. A.7 and A.9, the
ACT deviation and the position deviation of Pp.nx are
almost identical for both methods. However, the AO
deviation, shown in Fig. A.8, is significantly smaller in
multiple-shooting because the behavior of Hpank, shown
in Fig. A.11, is less erratic than in single-shooting. The
same phenomenon can be observed, but to a lesser extent,
for Ppank in Fig. A.10 and for the boron concentration in
Fig. A.12. The reason behind this, as Fig. 4 demonstrates,
is that the optimization problem converges more quickly
to the solution when transcribed in multiple-shooting. In
fact, it turned out that further increasing the resolution
time in multiple-shooting had no effect on the final value
of the cost function. This suggests that the optimal solu-
tion can always be found within the allocated time, which
is why multiple-shooting is selected over single-shooting.

Overall, the performance of the NMPC controller is bet-
ter than that of the gain-scheduled controller. As can be
seen in Fig. A.13, A.14 and A.15, both controllers man-
age to keep the ACT, the AO and the position of Pygpi
close to their reference signals. Yet, as can be observed in
Fig. A.16, A.17 and A.18, the gain-scheduled controller
tends to overuse the actuators in comparison with the
NMPC controller. This shows that the bandwidth of the
controller does not need to be particularly large even when

Table 1: Comparison between the gain-scheduled controller and the
nonlinear model predictive controller

[ GsC [

Several linear models
Frequency domain design
Output-feedback control
Robust design
Pre-computed gains
Continuous-time control
No anticipation

NMPC \

One nonlinear model
Time domain design
State-feedback control
Nominal design

Online calculations
Discrete-time control
Preventive actions
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Fig. 5: Fixed-structure gain-scheduled control approach

frequency control is active. However, the NMPC controller
may struggle to reject other sudden and unexpected dis-
turbances, as the control inputs are only updated every
minute. To give a concrete example, note that the prin-
cipal effect of frequency control is to cause ACT fluctu-
ations of about +0.8 °C. A closer look at Fig. A.13 re-
veals that these fluctuations cannot be properly mitigated
by the NMPC controller because they are unpredictable
and of relatively high frequency. The gain-scheduled con-
troller, on the other hand, gives better results since it pro-
vides continuous feedback to the plant and was designed
using robust control methods. As a matter of fact, ro-
bustness is still an open issue in the field of model predic-
tive control [15]. Therefore, it should be mentioned that
the reduced-order PWR model, which is embedded in the
NMPC controller, derives from the one that is used for
validation. Hence, it is not surprising that the NMPC
controller performs better than the gain-scheduled con-
troller, which was designed off-line based on simpler linear
models. This is both a strength and a weakness of non-
linear model predictive control. While it is indeed better
to use a very detailed and accurate model for prediction,
it can also become an issue if the computation time of
the NMPC control law gets too long. Worse, using an ex-
cessively complex model can even make the optimization
problem intractable. Besides, it is also good to recall that
the NMPC controller is a state-feedback controller whereas
the gain-scheduled controller is an output-feedback one.
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Fig. 6: Nonlinear model predictive control approach

Unfortunately, some state variables, such as the xenon con-
centration of the reactor core, cannot be physically mea-
sured. Thus, the NMPC controller cannot be practically
implemented unless a nonlinear state observer is designed.
This not only increases the overall complexity of the core
control system but also raises additional concerns about
its robustness.

6. Conclusion

In this paper, two advanced core control systems have
been designed for flexible operation of future PWRs. The
first one is a fixed-structure Hy/H, gain-scheduled con-
troller and the second one is an NMPC controller. The
design methodologies of both controllers have been de-
tailed and their performances have been compared on the
intermediate complexity pressurized water reactor simula-
tor of Framatome, named PWRSimu. The gain-scheduled
controller is well adapted to cope with unexpected distur-
bances and model uncertainties. Moreover, its architec-
ture is readable and easy to implement. However, some
improvements should be made to avoid overusing the ac-
tuators (a dead-zone nonlinearity could be taken into ac-
count in the design of the controller using, e.g., the circle
criterion). By contrast, the NMPC controller can handle a
wide range of constraints and can easily deal with distur-
bances that are known in advance. Its predictive capabil-
ities make it possible to achieve good performance while
limiting the control effort. However, it is very difficult to
analyze its robustness, especially when used together with
a state-observer. In future work, the controllers will be
combined in a hierarchical manner to overcome the lim-
itations of both design strategies. The NMPC controller
could be located at an upper level to provide a feedforward
action to the plant as well as reference output trajectories
to the gain-scheduled controller. Then, the gain-scheduled
controller could be used at a lower level to reject unknown
disturbances and to ensure that the closed-loop system
stays close to the reference trajectory despite model un-
certainties. This hierarchical scheme is also motivated by
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the multiple time scales of the plant. In fact, the upper
layer could anticipate future load variations and forecast
the evolution of xenon concentration while the lower layer
could simply focus on disturbance rejection and setpoint
tracking. It would also make sense to leave the calcula-
tion of boron concentration adjustments to the upper layer
since the evolution of the boron concentration is substan-
tially slower than the movements of the control rods.
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Appendix A. Simulation Results
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Fig. A.7: Average coolant temperature deviation (NMPC single-
shooting vs NMPC multiple-shooting)
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Fig. A.9: Position deviation of Py (NMPC single-shooting vs
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Fig. A.10: Position of Ppanx (NMPC single-shooting vs NMPC
multiple-shooting)
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Fig. A.11: Position of Hpanix (NMPC single-shooting vs NMPC
multiple-shooting)
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