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1 Introduction

Recently, guided by conceptual and technical advances in the conformal bootstrap, the
S-matrix bootstrap program [1] has been brought back to life [2–5]. In this approach
to describing strongly coupled quantum field theories, we make elementary assumptions
on the scattering processes, such as analyticity and unitarity, and use these to constrain
typically low energy observables such as couplings and scattering lengths. While this
approach has already led to many interesting results [5–29],1 it is clear that one of the
outstanding fundamental theoretical questions in this subject is how to rigorously justify
and determine the precise analyticity properties of S-matrices. While hard-fought progress
can be made starting from axiomatic approaches to QFT [31–33], we still find ourselves
in the embarrassing position of being far from a satisfactory understanding of even the
simplest case of two-to-two equal mass scattering.

One promising approach for dealing with this problem arises in the context of ‘rigid’
holography [2]. In this setup we consider a quantum field theory which is placed in an
asymptotically AdS space, where metric fluctuations are assumed to be absent or sup-
pressed, and study it using the standard tools of holography. It does not really matter how
this placement is achieved — i.e. for which curvature couplings, choice of boundary condi-
tions, and so on — as long as it can be done, in some way, for some sufficiently large AdS
radius. This is because what we are really after is an understanding of the physics of the
QFT for scales much smaller than the AdS radius, where such choices become irrelevant.
Any such theory defines a set of boundary observables which behave in essentially every
way as ordinary conformal correlators.2 Recent work [34] (building on [35]) argued that
for gapped QFTs the S-matrix is essentially directly determined from such correlators.3
Hence, we may hope to understand how the properties of S-matrices arise from those of
CFT correlators, which are under better non-perturbative and analytic control [37–39].

The present work serves as the starting point for carrying out this program in the
context of gapped 2d QFTs on AdS2, which are described by families of 1d CFT correla-
tors. This setup is technically simpler since it avoids dealing with the intricacies of the
physics of spin, yet sufficiently rich to describe a wealth of interesting systems, including
integrable field theories. This case also allows us to establish a detailed dictionary between
the conformal and S-matrix bootstraps, via the language of extremal functionals [40–42],
enlightening us on both of them.

In detail, we will perform an in depth study of how 2d S-matrices, describing two-
to-two equal particle scattering, emerge from 1d conformal correlators of identical scalar
operators. Our approach is purely CFT-centric: by this we mean that we do not explicitly
consider QFTs in AdS2, but rather we will show that any family of CFT correlators with
a sufficiently large gap in the OPE automatically leads to an S-matrix satisfying all the
expected properties. These properties include crossing symmetry, analyticity away from

1See [30] for a recent overview.
2The CFTs lack a stress-tensor, but global Ward identities are still satisfied by correlators on conformally

flat space.
3See also [36].
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the real axis, and unitarity. We will see that the latter corresponds to the statement that
CFT correlators in Euclidean kinematics approach generalized free fields in the flat space
limit. We will establish the analyticity properties by deriving a dispersion formula for the
S-matrix starting from one for CFT correlators. We fully characterise the singularities of
such S-matrices in terms of the CFT data, and in particular we carefully prove a certain
phase shift formula for the S-matrix in physical kinematics.

We test our results on concrete perturbative examples. In particular we show how the
bubble, triangle and box diagrams in AdS2 can be bootstrapped in the flat space limit,
and find direct agreement of our formulae with Feynman amplitudes. These examples will
also allow us to illustrate how our results may fail when the gap assumption is violated. In
S-matrix language this gap is necessary to avoid the possibility of anomalous thresholds. In
the CFT we explain that the gap is necessary to avoid unbounded OPE coefficients, arising
from the existence of unitary solutions to crossing without identity. We show that for the
triangle and box diagrams the appearance of anomalous thresholds precisely correlate with
unboundedness of the OPE in the flat space limit.

With our non-perturbative link between scattering and conformal physics well estab-
lished, we discuss the CFT description of unitarity-saturating S-matrices, such as those
describing integrable QFTs. We argue such S-matrices arise from families of extremal
CFT correlators, which contain a single tower of operators in the OPE with dimensions
determined by the phase shift of the S-matrix, and naturally saturate various bounds on
the CFT data. In particular we establish a general mapping between S-matrix and CFT
bootstrap optimization problems. We discuss the implications of our construction to the
understanding of UV completeness of S-matrices.

Let us now turn to a more detailed technical description of our main results.

Summary and outline.

Setting up the mapping. We will consider a family of CFT1 correlators of four copies of
the same field φ, and parameterized by its dimension ∆φ:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = G(z)
|x13|2∆φ |x24|2∆φ

, z = x12x34
x13x24

, xij = xi − xj . (1.1)

We should have in mind the prototypical example where this family of correlators arises
by taking a gapped 2d QFT in AdS2 and considering AdS boundary observables in such
a theory.4 In this case each correlator can be labeled by ∆φ ∼ mRAdS, where m is the
mass of some stable particle in the theory. The flat space limit corresponds to taking
large AdS radius keeping physical masses fixed, and since scaling dimensions behave as
∆ ∼ MR we must take them all to be large. In particular we must send ∆φ → ∞. It
was argued in [34] that in this limit one may extract the S-matrix of the QFT from the
family of CFT correlators, more or less directly: the correlator becomes the S-matrix after
a suitable identification of kinematic quantities. However, the limit is subtle and must be
done carefully. The purpose of this work is to understand this procedure in detail.

4Conformal correlators are obtained by pushing AdS bulk insertions towards the AdS boundary [43].
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Figure 1. Schematic derivation of the flat space limit of the correlator. We start on the left with
the conformal correlator G(z) which has branch points at z = 0, 1. We then take the limit when all
dimensions are large; this limit is not well defined in certain kinematic regions as shown in the red
blobs in the middle panel. Finally we consider the flat space limit where we analytically continue
from the safe to the problematic regions to obtain the S-matrix; after this continuation we may
encounter singularities in the S-matrix as shown in the right panel for the case of a single bound
state pole.

The concrete mapping between correlators and S-matrices is defined as:

S(s) = F [G(zs)] , zs := 1− s/4 , (1.2)

where the operator F describes taking the flat space limit.5 The action of F involves two
steps. Firstly, we take the limit ∆φ → ∞ of the correlator in a kinematic region (to be
found) where the limit is finite.6 Secondly, we must analytically continue the answer to
the desired kinematic point. We illustrate this procedure schematically in figure 1. To see
how this works in a simple example, consider the two families of correlators

G±(z) = ±1 + z−2∆φ + (1− z)−2∆φ . (1.4)

These are boundary correlators for a free scalar or fermion field in AdS2, or generalized
free fields, with the +/− sign for the Boson/Fermion. Since these are free fields we expect
the corresponding S-matrices to be ±1. To extract this from the correlator, we act with
F . First we go to a region where the limit ∆φ exists:

lim
∆φ→∞

G±(z) =

±1, if |z| ≥ 1 & |1− z| ≥ 1
∞, otherwise .

(1.5)

Secondly, we analytically continue to all z. This step is trivial here, and we indeed have
S(s) = F [G] = ±1. In general this second step is harder to perform, and we may encounter
singularities hidden inside the “blobs” of figure 1.

5In our present 1d/2d context, our conventions are such that our S-matrix would match that of a 2-to-2
scattering process of identical particles of unit mass, written as

out〈p4, p3|p1, p2〉in = (2π)24E1E2 [δ(~p1 − ~p3)δ(~p2 − ~p4) + δ(~p1 − ~p4)δ(~p2 − ~p3)]S(s) , (1.3)

where s = −(p1 + p2)2.
6Note that we are implicitly assuming that every CFT datum has a well defined limit, but which does

not have to be finite.
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Although the 2d QFT motivation described above is an important inspiration, we
will want to remain agnostic about the origin of the family of correlators, and formulate
everything purely in CFT language. In this sense, we can take equation (1.2) as a definition
of a function S(s), and ask about its properties depending on our assumptions about the
CFT. Our goals are two-fold:

• Determine the analytic properties of S(s) in the complex s-plane.

• Describe S(s), and in particular its singularities, purely in terms of CFT data.

The flat space limit. To achieve these goals we need to characterize the action of F . Our
main tool for doing so is the Polyakov bootstrap [42, 44–47], which states that any CFT
correlator has a representation of the form:

G(z) = P0(z) +
∑

∆≥∆0

a∆P∆(z) . (1.6)

This is closely related to the usual OPE expansion (a∆ are the OPE coefficients squared),
but where conformal blocks are replaced by Polyakov blocks P∆(z), which are essentially
crossing symmetric sums of Witten exchange diagrams, as we review in section 2. In
particular, their analyticity properties are the same as those of ordinary CFT correlators.
Although in general Polyakov blocks are complicated functions, we will be able to compute
them explicitly in the flat space limit, allowing us to describe the action of F on each of
them individually. For instance one finds for ∆b < 2∆φ that7

F [a∆b
P∆b

(zs)] ∝
g2
b

sb − s
+ g2

b

s+ sb − 4 , sb = (∆b/∆φ)2 , g2
b ∝ a∆b

, (1.7)

which illustrates that after analytic continuation one can find singularities that were not
initially there.

Next, we must argue that the F operation commutes with the infinite sum over states.
This can be shown by deriving certain bounds on the OPE coefficients. To prove these
bounds it will be necessary to make certain assumptions on the CFT spectrum. In practice
it will be sufficient to demand that the lowest state in the OPE (above identity) should
have dimension ∆0 >

√
2∆φ as ∆φ →∞. Such a condition is expected, since below some

critical gap there exist unitary solutions to crossing without identity which can always be
added with an arbitrarily large coefficient to any given CFT correlator. Remarkably, in S-
matrix language this assumption translates into demanding that particle production must
begin for s > 2, which is a sufficient condition for the absence of anomalous thresholds.
We will investigate this link in several perturbative examples.

7The exact formulas are given in (3.10).
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Under these assumptions, the sum over Polyakov blocks can be performed and becomes
a dispersion formula for S(s):

S(s) = 1 +
∫ 4m2

s0
ds′ K̃(s, s′) ρ̃(s′)−

∫ ∞
4m2

ds′K(s, s′) ρ(s′)

ρ(s) = lim
∆φ→∞

∆φ
−α ∑

∆∈Bα(s)

(
a∆
afree∆

)
4 sin2

[
π

2 (∆− 2∆φ)
]

ρ̃(s) = lim
∆φ→∞

∆φ
−α ∑

∆∈Bα(s)

(
a∆
ãfree∆

)
.

(1.8)

Here both K, K̃ are simple Cauchy-type kernels given in (3.19) and (3.29), and afree∆ , ãfree∆
are both positive in the associated range of integration and determined by the OPE density
of a generalized free field. The discontinuities ρ, ρ̃ are also completely specified as certain
averages of the CFT data. Further details on these expressions will be given in the main
text. The dispersion formula achieves our main goals: it proves that S(s) is an analytic
function in the complex-s plane with singularities determined by the CFT data.

Phase shift formula and extremality. It is of interest to have an expression of the S-matrix
evaluated for physical kinematics:

Sphys(s) := lim
ε→0+

S(s+ iε) , s > 4m2 . (1.9)

To compute this we must take two limits on the CFT correlator in a specific order: first
large ∆φ and then small ε. In section 4 we will prove that these limits can be commuted.
The CFT dispersion formula for S(s) already guarantees validity of the real part of the
phase shift formula. To complete the proof we will derive a dispersion relation for CFT
correlators involving their imaginary part (as opposed to the double discontinuity) and
then taking the flat space limit. Computing the physical S-matrix with the order of limits
reversed leads to a particularly nice expression for the physical S-matrix known as the
“phase shift formula”:

Sphys(s) = lim
∆φ→∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
e−iπ(∆−2∆φ) N̂∆φ

(∆, s) (1.10)

with N̂∆φ
(∆, s) approaching a delta function imposing s = (∆/∆φ)2 whose explicit expres-

sion we give in (2.19).8 Thus for these kinematics the full S-matrix is a certain average of
the CFT data. Importantly, the bounds on OPE coefficients mentioned previously guar-
antee unitarity of the S-matrix. Schematically, we have

a∆ ∼ afree∆ ⇒ |Sphys(s)| ≤ 1 (1.11)
8This formula was first proposed in [2] in higher dimensions. It was shown to follow from the OPE

expansion of the correlator in [34], but it required assuming the commuting of limits. Our main result is
thus that we prove this assumption is justified for the particular case of 1d CFTs.
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The phase shift formula also allows us to better understand what unitarity saturation
corresponds to in the CFT language: such S-matrices map onto CFT correlators whose
OPE in the flat space limit is effectively (or exactly) described by a single tower of operators
with dimensions described by the S-matrix phase shift.

Outline. The outline of this work is as follows. In section 2 we briefly review Polyakov
blocks and their computation using master functionals [48] before studying them in the
flat space limit. Section 3 is concerned with obtaining the action of F . We first determine
general bounds on the OPE density for states both above and below 2∆φ which acts as
the physical threshold in S-matrix language. Using these bounds we obtain the flat space
limit of the correlator in terms of a dispersion formula for the S-matrix. In section 4 we
study the S-matrix directly in physical kinematics and prove that it satisfies a phase shift
formula. Section 5 considers various perturbative checks of our formulae. In particular we
study AdS bubble, triangle and box diagrams and show that they are correctly described
by our formalism. In the regime where our CFT spectrum assumptions are violated, we
find that the OPE decomposition of such diagrams contains a large unbounded component
coinciding with the appearance of anomalous thresholds. In section 6 we study various
consequences of our mapping between CFT correlators and S-matrices. We argue that any
S-matrix which is a finite product of CDD factors may always be obtained as the flat space
limit of certain families of CFT correlators. In particular we propose these families can
always be chosen to be as extremal, i.e. as saturating a CFT bound. The section concludes
by establishing a precise link between the functional based conformal bootstrap and the
dual S-matrix bootstrap. We conclude with a discussion of the limitations and implications
of our construction for understanding UV completeness of S-matrices, and future research
directions. The paper is complemented by several technical appendices.

Note: while this paper was being concluded we became aware of [49] which discusses
topics related to the present work.

2 Polyakov blocks in the flat space limit

The main goal of this section is to compute Polyakov blocks in the flat space limit.
In the context of 1d CFTs, there are two simple kinds of Polyakov blocks P±∆ , cor-
responding to bosonic/fermionic boundary operators with dimension ∆φ exchanging a
scalar/pseudoscalar state bulk field with dimension ∆ in the AdS bulk. Polyakov blocks
are crossing symmetric combinations of Witten exchange diagrams together with carefully
chosen contact terms, and in principle we could use this to compute them. Instead, we will
follow a different route by using their representation in terms of master functionals [48].

2.1 Master functionals

Consider the OPE expansion for a correlator

G(z) =
∑
∆≥0

a∆G∆(z|∆φ) , G∆(z|∆φ) = z∆−2∆φ 2F1(∆,∆, 2∆, z) , (2.1)

– 6 –
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where a∆ := λ2
φφO∆

are the OPE coefficients squared. Crossing symmetry is the statement
G(z) = G(1− z), which using the OPE becomes:∑

∆
a∆F∆(z|∆φ) = 0 , F∆(z|∆φ) = G∆(z|∆φ)−G∆(1− z|∆φ) . (2.2)

We will often drop the explicit dependence on ∆φ below. One way to extract information
from the crossing equation is by defining suitable linear functionals [50]. An interesting
class is defined by the following ansatz: [40–42]:

Ω[F∆] ≡ Ω(∆) ≡ 1
2

∫ 1
2 +i∞

1
2

dzf(z)F∆(z) +
∫ 1

1
2

dzg(z)F∆(z) . (2.3)

Acting with such functionals on the crossing equation leads to sum rules on the CFT data9

Ω

∑
∆≥0

a∆F∆(z|∆φ)

 =
∑
∆≥0

a∆Ω(∆) = 0 . (2.4)

The bosonic/fermionic master functionals are families of functionals labeled by a cross-ratio
w and denoted Ω+

w ,Ω−w . They were introduced in [48], where the reader can find further
details on their definition and properties. They correspond to choices of kernels that will
lead to particularly nice functional actions Ω(∆). Denoting these kernels f±w , g±w , they are
defined by setting

g±w (z) = ĝ±w (z)± δ(z − w) , ĝ±w (z) = ±(1− z)2∆φ−2f±w ( z
z−1) (2.5)

with f±w (z) = f±w (1− z), as well as the gluing condition10

Rzf±w (z) + g±w (z) + g±w (1− z) = 0 , for z ∈ (0, 1) . (2.7)

There are also certain boundary and analyticity conditions that we must impose to ensure
the solution to these constraints is unique.

The reason we care about such functionals here is due to their intimate connection to
Polyakov blocks P∆(w). These blocks are the crossing symmetric sum of Witten exchange
diagrams in AdS2 [42, 44–46, 52]. As it turns out we have

Ω±w(∆) = ∓
[
P±∆(w)−G∆(w|∆φ)

]
. (2.8)

The functional sum rules associated to master functionals are therefore the statement of
the Polyakov bootstrap:∑

∆
a∆Ω±w(∆) = 0⇔ G(w) =

∑
∆
a∆P±∆(w) (2.9)

9Under certain conditions, see [51].
10In this work we define:

Rzf(z) ≡ lim
ε→0+

f(z + iε) + f(z − iε)
2 , Izf(z) ≡ lim

ε→0+

f(z + iε)− f(z − iε)
2i . (2.6)

– 7 –
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Equivalently, the same sum rules can be re-expressed as dispersion relations for CFT cor-
relators. These take the form [48]

G(w) = −
∫ 1

0
dzĝ+

w (z)dDisc+G(z)

G(w) = +
∫ 1

0
dzĝ−w (z)dDisc−G(z)

(2.10)

with

G(w) := G(w)−
∑

0≤∆≤2∆φ

a∆P+
∆(w) , G(w) := G(w)−

∑
0≤∆≤2∆φ−1

a∆P−∆(w) (2.11)

and

dDisc±G(z) := G(z)∓ (1− z)2∆φRzG( z
z−1) . (2.12)

It follows from these results that if we know the master functional kernels we can compute
the Polyakov blocks. While we do not have analytic expressions for the kernels in general,
we do have them when ∆φ becomes large:

f±w (z) =
∆φ→∞

± 2
π

√
w(1− w)
z(z − 1)

z − 1/2
(z − w)(z − 1 + w) , z > 1 . (2.13)

As a check, notice that this satisfies equation (2.7), which becomes

±Rzf±w (z) ∼ −δ(w − z)− δ(1− w − z) (2.14)

since ĝw(z) is exponentially suppressed relative to fw(z) at large ∆φ.
After these preliminary remarks, we are now ready to compute Polyakov blocks in the

flat space limit. But first let us point out that for the special case ∆ = 0 there is actually
no computation to perform. This is because the Polyakov blocks P±0 (w) are nothing but
the generalized free boson/fermion correlators:11

P±0 (w) = G±(z) = ±1 + z−2∆φ + (1− z)−2∆φ . (2.15)

As for the other cases, we will be interested in the limit where both ∆ and ∆φ are large
and the limit of the ratio ∆/∆φ is fixed and strictly different from two. It is convenient
then to split the computation according to whether ∆ is larger or smaller than ‘threshold’,
which is 2∆φ. This is because the master functional actions admit different representations
depending on these two cases.

2.2 Polyakov blocks for ∆ > 2∆φ

While the action of the master functional is generally defined by equation (2.3), this is
not necessarily the most convenient form. Under certain conditions in ∆ it is possible to

11This is shown in detail for instance in [42].
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deform the contours in that definition to arrive at simpler expressions for the functional
actions [41]. In this way, and using (2.8), we arrive at the following expressions:

P+
∆(w) = −2 sin2 [π

2 (∆− 2∆φ)
] 1∫

0

dz ĝ+
w (z)G∆(z|∆φ) , ∆ > 2∆φ

P−∆(w) = +2 cos2 [π
2 (∆− 2∆φ)

] 1∫
0

dz ĝ−w (z)G∆(z|∆φ) , ∆ > 2∆φ − 1

(2.16)

In passing notice that these expressions, together with validity of the Polyakov bootstrap,
imply the dispersion relations (2.10).

Let us now take the large ∆φ limit. Since we already know the functional kernels, we
just need to study that limit for the conformal block. As it turns out, the exponential
suppression of the ĝ kernels can be compensated by an exponential growth of the blocks.
At large ∆ we have [53]:

(1− z)2∆φG∆(z|∆φ) =
∆→∞

(1− z
z

)2∆φ [4ρ(z)]∆√
1− ρ(z)2 , ρ(z) := 1−

√
1− z

1 +
√

1− z
. (2.17)

By further taking ∆φ →∞ one finds that for ∆ > 2∆φ (with ∆/∆φ fixed) the conformal
block is exponentially suppressed except in a narrow region around a specific value of z.
This can be expressed in the following way. Let us define:

N∆φ
(z, s) :=

√
∆φs3

32π(s− 4) exp
[
− ∆φs

3

32(s− 4)

(
z − s− 4

s

)2
]

(2.18)

which is a Gaussian in the z variable centered at z = (s− 4)/s of width O(
√

∆φ), tending
to a delta function in z. Alternatively, define

N̂∆φ
(∆, s) =

√
2

π∆φ(s− 4) exp
[
−2(∆−

√
s∆φ)2

∆φ(s− 4)

]
, (2.19)

which is also Gaussian but now in the ∆ variable, with width O(
√

∆φ), and also approach-
ing a delta function. We then have

(1− z)2∆φG∆(z|∆φ) ∼
∆,∆φ→∞

16

∆φ s
3
2
∆

N∆φ
(z, s∆)
afree∆

, s∆ ≡
(

∆
∆φ

)2

∼
∆,∆φ→∞

2
N̂∆φ

(∆, 4
1−z )

afree∆

(2.20)

where ∼ means up to exponentially suppressed terms and afree∆ is the OPE density for a
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generalized free field:12

afree∆ = 2Γ(∆)2

Γ(2∆− 1)
Γ(∆ + 2∆φ − 1)

Γ(2∆φ)2Γ(∆− 2∆φ + 1) . (2.22)

Since in the limit of infinite ∆φ the Gaussian becomes a delta function the integrals (2.16)
trivialize and we get:

P±∆(w|∆φ) =
∆φ→∞

∓
4√s∆
π∆φ

sin2 [π
2 (∆− 2∆φ)

]
afree∆

√
w(1− w)√
z∆(z∆ − 1)

z∆ − 1/2
(z∆ − w)(w + z∆ − 1) ,

(2.23)
where z∆ = 1− s∆/4.

2.3 Polyakov blocks for ∆ < 2∆φ

Now we turn to the flat space limit of Polyakov blocks with dimension ∆ < 2∆φ. To remind
us of this constraint we will sometimes denote such dimensions as ∆b (’b’ stands for bound
state). The computation will be simpler to consider for general complex cross-ratio w —
the special case where w is real is treated in appendix A but leads to results consistent with
those here. For complex w the definition of the master functional action is almost exactly
as before, but now the kernel g±w no longer contains the delta function piece. However, the
kernel f±w still has a pair of poles at w and 1−w with unit residue. The functional action
for general ∆φ and Re[w] < 1

2 can be written as we have seen before in (2.3):

Ω±w(∆b) = 1
2

∫ 1
2 +i∞

1
2

dzf±w (z)F∆b
(z) +

∫ 1

1
2

dzg±w (z)F∆b
(z) (2.24)

Note that we can obtain the result for general values of w by deforming the contour of
integration to avoid the poles in f±w . In the large ∆φ limit we can safely ignore the
exponentially suppressed contribution of g±w above if ∆b < 2∆φ. As for the f±w kernel, let
us write

fw(z) = f̂w(z)√
z(z − 1)

. (2.25)

Then the functional action can be written as

Ω±w(∆b) = i

2

∫ 1
2 +i∞

1
2−i∞

dz f̂w(z)√
z(1− z)

G∆b
(1− z|∆φ) (2.26)

Let us set zb = m2
b

4 with mb = ∆b/∆φ. In the large ∆φ limit with mb fixed one finds by
using the expressions of the previous subsection that the conformal block factor has a saddle

12By this we mean in particular that

G±(w) = G0(w|∆φ) +
∞∑
n=0

afree∆±
n
G∆±

n
(w|∆φ) , ∆±n = 2∆φ + 2n+ 1

2 ∓
1
2 . (2.21)
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point at z = zb. To do the integral we can therefore deform the contour of integration to
the steepest descent contour, which is defined by the condition

Iz {2
√
zb log[4ρ(1− z)]− 2 log(1− z)} = 0 , (2.27)

where ρ(z) is defined in (2.17). However, we must be careful since when doing this we may
cross the poles of f±w . Since there are two poles at w and 1− w, this splits the complex-w
plane into several regions, bounded by the contour above and its image under crossing, as
shown in figure 2. We therefore find the result for the functional action is

Ω±w(∆b) =
∆b,∆φ→∞

mb

2∆φ

Izf±w (zb)
ãfree∆b

+ (. . .) (2.28)

where the first term comes from the saddle point approximation, and we introduced

ãfree∆b
=

afree∆b

2 sin [π∆φ(2−mb)]
(≥ 0 for

√
2∆φ < ∆b < 2∆φ) . (2.29)

As for the pole contributions, represented as the (. . .), it is easiest to write them in terms
of the Polyakov block. Using the relation between the latter and the master functional
actions we find:

P±∆b
(w) =

∆,∆b→∞

mb

π∆φã
free
∆b

√
w(1− w)√
zb(1− zb)

zb − 1/2
(zb − w)(w + zb − 1) + E∆b

(w|∆φ) (2.30)

with the crossing symmetric E∆b
satisfying:

E∆b
(w|∆φ) =


G∆b

(w|∆φ) w ∈ I
0 w ∈ II
G∆b

(1− w|∆φ) w ∈ III
G∆b

(w|∆φ) +G∆b
(1− w|∆φ) w ∈ IV

(2.31)

where the regions I through IV are shown pictorially in figure 2. In particular we have for
real w 

w ∈ I ⇔ 0 < w < min(zb, 1− zb)
w ∈ II ⇔ 1− zb < w < zb
w ∈ III ⇔ max(zb, 1− zb) < w < 1
w ∈ IV ⇔ zb < w < 1− zb

(2.32)

This completes our calculation. As we will see in the next section, the contributions to the
flat space limit arising from these Polyakov blocks are obtained by throwing out E∆b

(w|∆φ).

3 Flat-space limit: general kinematics

In this section we will derive the flat space limit of the CFT correlator. For this to be
possible we must have control over the behaviour of the OPE in the flat space limit. For
states below 2∆φ such bounds already exist [2, 41], under certain assumptions which we
will spell out. For states above 2∆φ we will prove new bounds, which imply that on average
the OPE density of any CFT must universally match that of a generalized free field. With
these results we will show that the Polyakov bootstrap translates into a dispersion formula
for the S-matrix S(s), establishing its analyticity properties in the complex s-plane.
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Figure 2. In the flat space limit Polyakov blocks become piecewise functions defined in generically
four distinct regions. The boundaries of these regions are set by the conditions arg [G∆b

(w|∆φ)] =
0 ∪ arg [G∆b

(1− w|∆φ)] = 0. We show these regions in the complex w plane for ∆b = 1.8 (left),
∆b =

√
2 (center) and ∆b = 1.1 (right).

3.1 OPE bounds

3.1.1 States below threshold

We would like to determine the regions where the single bound state contribution a∆b
P∆b

(w)
is well defined in the flat space limit. In order to do this we need to have a bound on the
OPE coefficient a∆b

(recall ∆b < 2∆φ). Such a bound was obtained analytically in [41]
(following numerical bootstrap computations in [2], and similar results for the S-matrix
bootstrap [3]). Let us briefly review some aspects of the derivation.

Suppose we have some CFT correlator whose OPE has support on the identity operator
and a set S of scaling dimensions. Then we can obtain bounds on OPE coefficients by
constructing functionals with suitable positivity properties. Any functional ω leads to a
sum rule:13

ω(0) +
∑
∆∈S

a∆ω(∆) = 0 . (3.1)

Suppose now that the functional action satisfies the positivity constraints

ω(∆) ≥ 0 for all ∆ ∈ S . (3.2)

Then the sum rule immediately implies the bounds:∑
∆∈S′

a∆ω(∆) ≤ −ω(0) for any S ′ ⊂ S ⇒ a∆b
≤ − ω(0)

ω(∆b)
, ∆b ∈ S . (3.3)

Clearly, these bounds will in general depend on the set of states allowed on the OPE. We
will find it useful to distinguish two particular sets of assumptions on this set:

• Weak OPE condition: the set S does not contain any pair of states ∆1,∆2 such
that

s∆1 = 4− s∆2 , s∆ ≡
(

∆
∆φ

)2

. (3.4)
13We have written ω instead of Ω to emphasize that the functional giving an optimal OPE coefficient is

different from the master functional.
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• Strong OPE condition: the set S only contains states for which

s∆ > 2 ⇔ ∆ >
√

2∆φ . (3.5)

To be more precise we have in mind imposing these conditions in the flat space limit, so
that equations are meant to hold in the limit ∆φ → ∞. Clearly the strong condition
implies the weaker one. For simplicity, we will for the most part work with the stronger
assumption, although essentially all our results can be straightforwardly generalized for
the weaker one. Note that violation of the weak OPE condition can completely undo most
results in this work: a more detailed examination is conducted in section 5.5.

For CFTs satisfying the strong OPE condition, we can find an analytic functional
satisfying the necessary positivity conditions in the flat space limit. It is called the sine-
Gordon functional ωsG and it can be obtained by choosing kernels [41]:

f sGzb (z) = 2
π

√
zb(1− zb)√
z(z − 1)

z − 1/2
(z − zb)(z − 1 + zb)

1
SsGb (sz)

,

gsGzb (z) = (1− z)2∆φ−2|f sGzb ( 1
1−z )| .

(3.6)

with sz = 4(1− z) and the sine-Gordon S-matrix:

SsG
b (s) =

√
s(4− s) +

√
m2
b(4−m2

b)√
s(4− s)−

√
m2
b(4−m2

b)
, (m2

b = 4zb) . (3.7)

The action of the functional ωsG implies the bound

∑
√

2∆φ<∆i<2∆φ

mi

2∆φ

(
a∆i

ãfree∆i

)
Izif sGzb (zi) ≤ 1 , zi = 1

4

(
∆i

∆φ

)2

, (3.8)

and in particular

2
π

mb

∆φ

(
a∆b

ãfree∆b

)
≤
(
gsGb

)2
, ∆b = mb∆φ < 2∆φ , (3.9)

where
(
gsGb

)2
=
∣∣2m2

b(4−m2
b)(m2

b − 2)−1∣∣ is the squared cubic coupling coming from the
sine-Gordon breathers’ S-matrix. This result nicely makes contact with the flat space S-
matrix bounds, since gsGb is the maximum cubic coupling for a bound state of mass mb [54].

This result can be generalized to any spectrum S satisfying the weaker OPE condition.
In this case one can obtain a suitable functional by replacing the sine-Gordon S-matrix by
a carefully chosen product of CDD poles. The point we wish to emphasize is that this
construction only works under the weak condition on the OPE: otherwise the functional
will not be positive. Technically this happens because the functional action below 2∆φ is
essentially the value of the imaginary part of f evaluated at z = 1− s/4, and this is always
antisymmetric under s→ 4− s.

After this review, let us assume the strong condition on the OPE so that the bounds
derived above are valid. The bound (3.9) now allows us to show that the Polyakov block
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obtained in equation (2.30) contains a finite piece in the flat space limit. We will shortly
prove that this is the only relevant such piece, so that:

F
[
a∆b
P±∆b

(w)
]

= 1
4

√
w(1− w)
zb(1− zb)

(
g2
b

zb − w
+ g2

b

zb − 1 + w

)
, g2

b = 2
π

mb

∆φ

(
a∆b

ãfree∆b

)
.

(3.10)
with the effective coupling bounded from above, g2

b ≤ (gsGb )2. To prove that this is the
indeed the only contribution, we must show that the flat space limit of a∆b

E∆b
(w|∆φ) is

zero. For example, in region III we have the product a∆b
G∆b

(1− w|∆φ), which gives

lim
∆φ→∞

a∆b
|G∆b

(1− w|∆φ)| ≤ lim
∆φ→∞

(
gsGb

)2 2∆φ

πmb
ãfree∆b
|G∆b

(1− w|∆φ)| , (3.11)

≤ lim
∆φ→∞

(factor)×
∣∣∣∣∣(1−m2

b/4)2

(1− w)2
(2 +mb)mb(1−

√
w)mb

(2−mb)mb(1 +
√
w)mb

∣∣∣∣∣
∆φ

,

(factor) =
(
gsGb

)2
× 8

√
∆φ

π
3
2
m
−1/2
b (2 +mb)−3/2(2−mb)−1/2

∣∣∣∣∣
√
w + 1
w1/4

∣∣∣∣∣ .
From the large ∆φ limit we get zero or infinity depending on the regions where the expres-
sion inside the absolute value in the second line is less or bigger than one. The final result
in the complex plane is shown in figure 3. The “bad” regions where we get divergences
are always contained in the ones for the identity block, and always cover a subset of the
real line 1 < z < 2 (which in S-matrix language is part of the physical values of the center
of mass energy 4 < s < 8).14 Since outside these bad regions the large ∆φ limit of these
factors, and therefore of a∆b

E∆b
, is equal to zero, the analytic continuation is trivial and

the flat space limit of a single Polyakov block with ∆ < 2∆φ is indeed given by (3.10).
We thus conclude that the flat space limit of a single state below threshold (3.10) gives

precisely the crossing symmetric bound state pole in our normalization.

3.1.2 States above threshold

To understand the contributions of states above 2∆φ we have to obtain a bound on the
ratio a∆/a

free
∆ . Although such bounds have appeared before for finite ∆φ [42], they were

derived for large ∆ and fixed ∆φ, whereas here we are interested in the limit where both
are large and of the same order of magnitude.

We begin by considering the quantity:

Nz ≡ (1− z)2∆φ

G(z)−
∑

0≤∆≤2∆φ

a∆G∆(z|∆φ)


=

∆φ→∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, 4
1−z ) ,

(3.12)

14These bad regions match the ones corresponding to the presence of an AdS Landau diagram [34].
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Figure 3. Large ∆φ limit of a single state below threshold ∆b = mb∆φ < 2∆φ. Each color
represents different bound state masses. The limit is well defined for complex values of w outside
the shaded regions and diverges inside. The divergent regions (and their crossing symmetric images)
start at w = m2

b/4 (w = 1−m2
b/4) and always include a subset of the physical line w > 1 (w < 0);

they overlap whenevermb <
√

2. These regions lie always inside the divergent region for the identity
given by the two discs depicted in gray.

where N̂∆φ
was defined in equation (2.19). We see that in the flat space limit, the Euclidean

correlator (with suitable subtractions) knows about the average OPE density around ∆ =
2∆φ/

√
1− z, where the average is taken in a region of width

√
∆φ. To obtain a bound on

Nz, we invoke the following results proven by one of us in [48]:

G−(z) +
∑

0<∆≤2∆φ

a∆P−∆(z) ≤ G(z) ≤ G+(z) +
∑

0<∆≤2∆φ

a∆P+
∆(z) , 0 < z < 1 .(3.13)

Importantly, these bounds hold for any ∆φ. They imply that for 0 < z < 1

(1− z)2∆φ(G−(z)−G0(z|∆φ)) +R−(z) ≤ Nz ≤ (1− z)2∆φ(G+(z)−G0(z|∆φ)) +R+(z) ,
(3.14)

where
R±(z) = (1− z)2∆φ

∑
0<∆≤2∆φ

a∆
[
P±∆(z)−G∆(z|∆φ)

]
. (3.15)

Let us now make the same assumptions on the spectrum as for the previous subsection,
i.e. the strong condition on the OPE. In this case:

R±(z) =
∆φ→∞

0 . (3.16)

This follows from the computation of Polyakov blocks in section 2.3 and the results from the
previous subsection. The point is that even though the combination a∆ [P∆(z)−G∆(z|∆φ)]
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may diverge (as depicted in the bad regions of figure 3), the extra exponential decay of the
factor (1− z)2∆φ is enough to counterbalance the divergence and get a vanishing result.

Using the expressions for G±, we conclude from 3.14 that:

lim
∆φ→∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, s) = 1 , s ∈ (4,∞) (3.17)

Physically this means that, in the flat space limit, any CFT satisfying our assumptions on
the spectrum must have an OPE density above 2∆φ which, in a precise sense, is the same
as that of a free field “on average”.15

As we will later see, this result will tell us that the S-matrix for physical kinematics
s > 4m2 must satisfy the unitarity condition |S(s)| ≤ 1.

3.2 A dispersion formula for S

We will now use the expressions derived in the previous subsection to determine the flat
space limit of the correlator. In what follows we focus on the bosonic Polyakov blocks and
drop the ± labels. Let us first consider the contributions coming from Polyakov blocks
above threshold. We have

G(z) =
∑

∆>2∆φ

a∆P∆(z) =
∆φ→∞

−
∑

∆>2∆φ

8√s∆
∆φ

K(sz, s∆)
(
a∆
afree∆

)
sin2

[
π

2 (∆− 2∆φ)
]
,

(3.18)
with

K(s, s′) = 2
π

√
s(4− s)√
s′(s′ − 4)

s′ − 2
(s′ − s)(s+ s′ − 4) . (3.19)

The idea now is to take advantage of the fact that the summand splits into two factors,
one of which is varying slowly with ∆, another which is varying fast. Let us define

ρα(s) := lim
∆φ→∞

∆φ
−α ∑

∆∈Bα(s)

(
a∆
afree∆

)
4 sin2

[
π

2 (∆− 2∆φ)
]
, (3.20)

with
Bα(s) := {∆ :

√
s∆φ ≤ ∆ <

√
s∆φ + ∆φ

α} , (3.21)

a bin in dimension space of size ∆φ
α. Setting α < 1, a simple calculation16 yields

G(z) =
∆φ→∞

−
∫ ∞

4
ds′K(sz, s′)ρα(s′) . (3.24)

15Note for a free field we have indeed∑
∆>2∆φ

2
(
a∆

afree∆

)
N̂∆φ(∆, s) = 2

∞∑
n=0

N̂∆φ(2∆φ + 2n, s) =
∫ ∞

2∆φ

d∆ N̂∆φ(∆, s) =
∆φ→∞

1 ,

which explains the awkward factor of two.
16Here’s the simple calculation. We write the overall sum in (3.18) into a sum over bins as

lim
∆φ→∞

∑
∆>2∆φ

a∆P∆(z) ∼
∞∑
k=0

2√sk
∆φ

1−α ρα(sk)K(sz, sk) , (3.22)
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It is clear that the end result must be independent of the particular choice of α. Hence all
ρα, at least for α > 1/2 converge to the same density in the sense of distributions. In fact,
we must have

ρα(s) ∼ ρ(s) ≡ Rz [ lim
∆φ→∞

G(zs)] <∞ , (3.25)

where ∼ means equality as distributions. In section 4 we will show that we may safely
commute the limit with Rz, giving us another expression for ρ(s). Crucially, the bounds
on the OPE density derived in the previous subsection imply

0 ≤ ρα(s) ≤ 2 , 1/2 < α < 1 . (3.26)

We conclude that G(z) has a finite flat space limit for any complex z, with its values
determined by formula (3.24).

Moving on, let us consider the contributions of Polyakov blocks below threshold. These
contributions are written as

F

 ∑
0≤∆≤2∆φ

a∆P∆(w)

 = 1 +
∑

0<∆≤2∆φ

F [a∆P∆(w)] . (3.27)

On the righthand side we have separated out the contribution of the identity and made the
assumption that the flat space limit commutes with the sum over states. This is justified
under the assumptions we made on the OPE. Proceeding, let us write (3.10) as:

F [a∆P∆(w)] = 2√s∆
∆φ

(
a∆
ãfree∆

)
K̃(sw, s∆) , ∆ < 2∆φ , (3.28)

with

K̃(s, s′) = 2
π

√
s(4− s)√
s′(4− s′)

s′ − 2
(s′ − s)(s+ s′ − 4) . (3.29)

We can now distinguish between two situations. In the first, a state in the OPE with
dimension ∆b sits isolated, i.e. the nearest states to lie at a distance which scales as ∆φ.
In this case we can write this expression as

F [a∆b
P∆b

(w)] = πg2
b K̃(sw, sb) , g2

b ≡
2
π

√
s∆b

∆φ

(
a∆b

ãfree∆b

)
. (3.30)

The effective coupling g2
b is guaranteed to be finite thanks to the bound reviewed in sec-

tion 3.1.1. In a more general situation we again introduce a density

ρ̃α(s) = lim
∆φ→∞

∆φ
−α ∑

∆∈Bα(s)

(
a∆
ãfree∆

)
. (3.31)

with sk =
(

2∆φ+k∆φα

∆φ

)2
. To convert the sum to an integral, note:

dk = ∆φ
1−α

2
dsk√
sk

⇒
∑
k

2√sk
∆φ

1−α →
∫ ∞

4
ds′ . (3.23)
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For an isolated bound state this would give a singular density which should be interpreted
as a delta function. The dependence on α is again essentially irrelevant and we can drop
it. In this way we obtain

F

 ∑
0≤∆≤2∆φ

a∆P∆(w)

 = 1 +
∫ 4

s0
ds′ K̃(sw, s′) ρ̃(s′) . (3.32)

Note that ρ̃(s) is non-negative by construction, but it may become arbitrarily large, as
in the delta function example above. However, this is not true for the integrated density.
Indeed, the bound (3.8) can be translated as:∫ 4

s0
ds′ K̃(sb, s′)
−SsGb (s′)

ρ̃(s′) ≤ 1 . (3.33)

This implies that integrating the density against any smooth function of s yields a finite
result. Indeed, for real s it implies:∫ 4

s0
ds′K̃(s, s′)ρ̃(s′) ≤

√
s0(4− s0) +

√
s(4− s)√

(s0(4− s0)−
√
s(4− s)

, 4− s0 < s < s0 . (3.34)

From this result it follows finiteness of the integral for any complex s away from the
integration contour, by analyticity of the kernel K̃.

We have now obtained expressions for the flat space limit of states both below and
above threshold. Putting them together we obtain the following CFT dispersion formula
for S:

S(s) = 1 +
∫ 4

s0
ds′ K̃(s, s′) ρ̃(s′)−

∫ ∞
4

ds′K(s, s′) ρ(s′)

ρ(s) = lim
∆φ→∞

∆φ
−α ∑

∆∈Bα(s)

(
a∆
afree∆

)
4 sin2

[
π

2 (∆− 2∆φ)
]

ρ̃(s) = lim
∆φ→∞

∆φ
−α ∑

∆∈Bα(s)

(
a∆
ãfree∆

)
.

(3.35)

This formula provides an expression for the flat space limit of the CFT correlator anywhere
on the complex plane. An equivalent way of obtaining it would be in terms of the correlator
itself. Indeed, a different way of stating our results is that

G(w) =
∆φ→∞

1
w2∆φ

+ 1
(1− w)2∆φ

+
∑

∆0≤∆b≤2∆φ

a∆b
E∆b

(w|∆φ) + S(sw) , (3.36)

with S(s) defined by (3.35) above. This expression makes clear that F [G] = S(s).
The CFT dispersion formula explicitly provides the desired analytic continuation of

S(s), which is initially defined only for sufficiently large s, to the entire complex plane. In
particular it establishes that S(s) is analytic everywhere except on the real axis. In turn,
its singularities can be obtained directly from this expression and are computable in terms
of the dual CFT data. Note that defining

T (s) := 2
√
s(4− s) (S(s)− 1) , (3.37)
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then we have

ρ(s) = IsT (s)
2
√
s(s− 4)

, s > 4 ,

ρ̃(s) = IsT (s)
2
√
s(4− s)

, s < 4
(3.38)

Then the bounds 0 ≤ ρ(s) ≤ 2 are consistent with unitarity of the S-matrix, while ρ̃(s) ≥ 0
is usually called “extended unitarity” [1, 55, 56]. To the best of our knowledge the latter
has not been established non-perturbatively in QFT, but here we see it follows simply from
the definition of ρ̃ in terms of the CFT OPE.

To reiterate, really what we have learned from this construction are the analyticity
properties of S. It would of course be straightforward to arrive at a dispersion relation
for S(s) of the form above, interpreting ρ, ρ̃ as discontinuities of S in the relevant cuts,
if we had assumed analyticity to begin with. Here we have instead begun with the CFT
correlator and its analyticity properties, which are well established, and ended up proving
those of S(s).

4 Flat space limit: physical kinematics

The goal of this section is to determine and justify a simple expression for the S-matrix in
physical kinematics, the phase shift formula. An expression very similar to ours was first
argued to hold for general holographic QFTs in [2]. The present derivation is essentially
the same as in [34], but simpler because it is specialized to d = 1. However, as we explain,
this derivation cannot be rigorously justified unless certain limits commute, and we will
therefore have to prove that this is the case.

4.1 Phase shift formula

We are interested in determining the S-matrix in physical kinematics. That is:

Sphys(sz) := lim
ε→0+

F [G(z − iε)] , z < 0 . (4.1)

Ignoring for the moment the issue of analytic continuation, this involves taking the two
limits — flat space, and going to physical kinematics — in a definite order. Suppose that
the limits commute, so that we can write instead:

Sphys(sz)
!= lim

∆φ→+∞
lim
ε→0+

G(z − iε), for sz > s0 > 4 . (4.2)

Proving this is non-trivial and will be justified in the next subsection. For now let us take
it as given, and see what expression we may obtain for Sphys. Using the OPE we have

Sphys(sz) = lim
∆φ→+∞

∑
∆≥0

a∆
G∆( z

z−1)
(−z)2∆φ

e−iπ(∆−2∆φ) . (4.3)
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for z < z0 which we determine as follows. Separate contributions below and above thresh-
old, so that

Sphys(sz) = lim
∆φ→+∞

 ∑
∆<2∆φ

a∆
G∆( z

z−1)
(−z)2∆φ

e−iπ(∆−2∆φ) +
∑

∆>2∆φ

a∆
G∆( z

z−1)
(−z)2∆φ

e−iπ(∆−2∆φ)

 ,
(4.4)

and let us assume the strong condition on the OPE, so that the bounds on OPE coefficients
reviewed in section 3.1.1 are satisfied. Then it is not hard to see that all terms in the first
sum are exponentially suppressed for z < −1, by the same logic used in section 3.1.2. So
z0 = −1 and the analytic continuation of Sphys for all z < 0 is simply

Sphys(sz) = lim
∆φ→+∞

∑
∆>2∆φ

a∆
G∆( z

z−1)
(−z)2∆φ

e−iπ(∆−2∆φ) . (4.5)

Using expression (2.20) we get the phase shift formula:

Sphys(s) = lim
∆φ→+∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, s) e−iπ(∆−2∆φ) . (4.6)

This result allows us to express the physical S-matrix directly in terms of the CFT data.
As promised, the bounds on the OPE density derived in section 3.1.2 nicely translate into
unitarity of the S-matrix:

|Sphys(s)| ≤ lim
∆φ→+∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, s) = 1 . (4.7)

To justify the phase shift formula, we must show that the flat space and physical
kinematics limits commute, i.e.:

lim
ε→0+

S(s+ iε) = Sphys(s) , (4.8)

where the right hand side is understood to be computed by the phase shift formula. We
will prove this in two steps, first by showing this relation holds when taking the real part,
and then when taking the imaginary part.

4.2 Commuting limits: real part

We begin by recalling the dispersion relation (2.10) for the subtracted correlator:

G(w) = −
∫ 1

0
dz ĝ+

w (z)dDisc+ G(z) , (4.9)

which holds for any ∆φ. Taking the large ∆φ limit we already know that the lefthand side
becomes

lim
∆φ→∞

G(zs) = S(s)− 1−
∫ 4

s0
ds′K̃(s, s′)ρ̃(s′) , (4.10)
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since it is the sum of Polyakov blocks above 2∆φ. On the other hand, the righthand side
can be written as

lim
∆φ→∞

∫ 1

0
dz ĝ+

w (z)dDisc+ G(z) =
∫ ∞

4
ds′K(s, s′)ρphys(s′) , (4.11)

with17

ρphys(s) := lim
∆φ→∞

(1− z)2∆φdDisc+ G(z)
∣∣∣∣
z= s−4

s

. (4.12)

This means that the dispersion relation for G directly translates into a dispersion relation
for S(s). But we already had such a relation, and since they involve the same kernels K, K̃
they must agree. More precisely, this implies that as distributions we must have

ρα(s) ∼ ρphys(s) . (4.13)

Now let us compute ρphys directly. Using:

lim
∆φ→∞

(1− z)2∆φdDisc+ G(z) = lim
∆φ→∞

(1− z)2∆φdDisc+

G(z)−
∑

∆≤2∆φ

a∆G∆(z)

 ,
(4.14)

together with the OPE and the unitarity bound, we can find

ρphys(s) = lim
∆φ→+∞

∑
∆>2∆φ

(
a∆
afree∆

)
4 sin2

[
π

2 (∆− 2∆φ)
]
N̂∆φ

(∆, s)

= Re [1− Sphys(s)]
(4.15)

where on the last line we use the phase shift formula for Sphys. We see that indeed as
distributions ρα(s) ∼ ρphys(s) when α > 1/2, as can be seen by splitting the sum over states
in the latter into bins of size

√
∆φ. Hence we have proven:

Rs[1− S(s)] = Re[1− Sphys(s)] , (4.16)

which establishes that the phase shift formula holds for the real part.

4.3 Commuting limits: imaginary part

The previous derivation makes clear that if we are to prove the phase shift formula for
the imaginary part, we must write a dispersion relation for CFT correlators which will
depend on the imaginary part of G. Such a dispersion relation has appeared before in the
literature [57], but as we explain it suffers from some minor issues concerning subtractions
which we clarify and settle here.

The idea is to use Cauchy’s formula for the correlator,

G(z) =
∮ dz

2πi
G(z′)
z′ − z

, (4.17)

17Recall from (2.5) the relation between the functional kernels ĝ+
w(z) = (1− z)2∆φ−2f+

w ( z
z−1 ). A simple

change of variables z → z
z−1 along with the identification f+

w=1−s/4(z = 1−s′/4) = −K(s, s′) leads to (4.11).
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and now deform the contour to pick up the discontinuities of G. However, there are two
issues. Firstly, we have to worry about contributions from z = ∞. Secondly, we may get
divergences from the contribution of the contour close to z = 0, 1. To deal with these issues
we must implement subtractions. The cleanest way to do this is to define a subtracted
correlator G̃(z) := G(z) − ∑∆≤2∆φ+1 a∆P∆(z). This has improved soft behaviour near
z = 0, 1 as compared to G(z) and leads to a dispersion relation

G̃(w) = −
∫ ∞

1

dz
π

w(1− w)
z(1− z)

2z − 1
(w − z)(w + z − 1) IzG̃(z) . (4.18)

which holds for any CFT. For the purpose at hand however, it is more convenient to work
with a slightly different dispersion relation, where we improve the behaviour near z = ∞
instead. Let us set18

C := lim
z→∞

G(z) . (4.19)

Then we can write the dispersion relation

G(w) = C −
∫ ∞

1

dz
π

2z − 1
(w − z)(w + z − 1) IzG(z) . (4.20)

This holds for arbitrary ∆φ. Using the CFT dispersion formula for s > 4 we have:

Is

[
lim

∆φ→∞
G(zs)

]
= Is

[
S(s)− 1−

∫ 4

s0
ds′K̃(s, s′)ρ̃(s′)

]
= IsS(s)−

∫ 4

s0
ds′IsK̃(s, s′)ρ̃(s′) .

(4.21)

Alternatively, we can compute the same quantity directly using our new dispersion relation.
Matching the two we get:

IsS(s) = lim
∆φ→∞

IsG(zs) +
∫ 4

s0
ds′IsK̃(s, s′)ρ̃(s′) . (4.22)

Our goal will be to prove that the righthand side is the same as Im Sphys. Consider first the
case where there are no states below threshold other than the identity. Using the OPE, a
computation which by now should be familiar gives

lim
∆φ→∞

IsG(zs) =
∑

∆≥2∆φ

2
(
a∆
afree∆

)
sin [π(∆− 2∆φ)] N̂∆φ

(∆, zs)

= ImSphys(s)
(4.23)

as desired. To finish the proof, we must show that states below threshold do not change
the result. This will follow if we can show that:

lim
∆φ→∞

Is

 ∑
0<∆≤2∆φ

a∆ [P∆(zs)−G∆(1− zs)]

 = −
∫ 4

s0
ds′IsK̃(s, s′)ρ̃(s′) , s > 4 .

(4.24)
18Note that any 1d CFT correlator is bounded by a constant at z =∞, see e.g. [51].
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The meaning of this equation is that the phase shift formula for Polyakov blocks below
2∆φ (which will appear on the left side of this equation) should give the same answer as
the flat space limit of those blocks as computed in sections 2.3 and 3 (the right side of the
equation). That is, we must check the limits commute by hand for these blocks. We show
this by direct computation in appendix B , which completes the proof.

5 Perturbative checks

In this section we check our flat space prescription in a few perturbative examples. Our
starting point is the theory of generalized free bosons φ1 with dimension ∆1. Throughout
this section we will focus on the four point correlator of this field, and so we will set
∆φ ≡ ∆1. We will also refer to the mass of the corresponding AdS bulk field as m1 but we
will set this to one , so that e.g. ∆2/∆1 ≡ m2/m1 = m2.

5.1 General remarks

Before any perturbation we have the generalized free boson correlator which has the fol-
lowing s-channel conformal block decomposition:

G0(w) = 1 +
∑
n

afree[11]nG[11]n(w) = P0(w) , (5.1)

with the double trace dimensions [11]n = 2∆1 + 2n. We then perturb the theory by
coupling φ1 to another generalized free boson φ2 with conformal dimension ∆2. The four
point function of φ1 then admits a perturbative expansion of the form

G(w) = G0(w) + g2∑
n

(
a

(1)
[11]nG[11]n(w|∆1) + afree[11]nγ

(1)
[11]n∂G[11]n(w|∆1)

)
+

+ g2∑
n

a
(1)
[22]nG[22]n(w|∆1) + . . . , (5.2)

where ∂G ≡ ∂∆G. In the first line we have the first order corrections to the dimensions and
OPE coefficients of double trace operators [φ1φ1]n and in the second line the contributions
coming from the introduction of φ2.19 We can write (5.2) alternatively in terms of Polyakov
blocks as follows

G(w) = P0(w) + g2∑
n

(
a

(1)
[11]nP[11]n(w) + afree[11]nγ

(1)
[11]n∂P[11]n(w)

)
+

+ g2∑
n

a
(1)
[22]nP[22]n(w) + . . . . (5.3)

Using the Polyakov blocks obtained from the free master functionals for φ1 many of the
terms above are zero

G(w) = P0(w) + g2
[∑
n

a
(1)
[22]nP[22]n(w) + afree[11]0γ

(1)
[11]0∂P[11]0(w)

]
+ . . . . (5.4)

19We are assuming there is no coupling of the form gφ2
1φ2 so that only double traces appear in (5.2). One

can consider particle φ1 and φ2 transforming differently under a Z2 symmetry so that this cubic interaction
is not allowed.
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Figure 4. Bubble, triangle and box Witten diagrams considered in the main text.

This is because the Polyakov blocks have double zeros at the double trace dimensions
∆ = [11]n. For the bosonic blocks this is true for every n except for n = 0, with
the last term amounting to a four-point contact interaction in AdS2, i.e. a D-function
D∆1∆1∆1∆1(z) [58–60].

So far we have kept the discussion fairly general regarding the type of couplings between
φ1 and φ2. We now restrict to cubic g122φ1φ2φ2 and quartic g1122φ1φ1φ2φ2 interactions,
where at one loop level we encounter bubble, triangle and box diagrams each associated
with different powers of g122 and g1122 (see figure 4)

G(w) = G0(w) + g2
1122Gbubble(w) + g1122g

2
122Gtriangle(w) + g4

122Gbox(w) + . . . (5.5)

The idea is to illustrate in these specific examples how the flat space amplitude is
recovered from the CFT data using our dispersion relation (3.35). In other words, we want
to exhibit how the weighted sum of the Polyakov blocks for a specific diagram becomes the
interacting part of the amplitude

g
∑
n

adiagram
[22]n Pdiagram

[22]n (w) F−−→ T diagram(s)
2
√
s(4− s)

= g

∫
ds′ρdiagram(s′)K(s, s′) , (5.6)

and the OPE coefficients the spectral density

adiagram
[22]n
afree,11[22]n

 F−−→ ρdiagram(s) = IsT (s)
2
√
s(s− 4)

. (5.7)

as given in (3.38).
Before we proceed to the flat space limit of the one-loop diagrams, let us discuss

two building blocks needed to extract adiagram
[22]n . Given the quartic g1122 and cubic g122

couplings, the building blocks for the one-loop diagrams are the contact and exchange
Witten diagrams, with associated coefficients acontact,1122

[22]n and at,exchange
[22]n . These coefficients

appear in the well known expansions of tree-level diagrams in terms of (s-channel) conformal
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Figure 5. Pictorial representation of equation (5.8) showing the OPE coefficients of the double
trace operators [11]n and [22]n appearing in the s-channel conformal block decomposition of the
contact diagram written in (5.8).

blocks. For the 1122 contact diagram we have20

Gcontact,1122(w) = D∆1∆1∆2∆2(w) =
∞∑
n=0

acontact,1122
[11]n G[11]n(w) +

∞∑
n=0

acontact,1122
[22]n G[22]n(w) ,

(5.8)
which we represent pictorially in figure 5. Here G11,22

∆ are appropriate conformal blocks for
a 1122 correlator, and the coefficient acontact,1122

[22]n was computed in [60, 61] and reads up to
a normalization
acontact,1122

[22]n = λ
(1)
11[22]nλ

(0)
22[22]n

∝


√
π(−1)nΓ(−n+∆1−∆2)Γ(n+∆2)4Γ(n+∆1+∆2− 1

2)Γ(n+2∆2− 1
2)

2n!Γ(∆1)2Γ(∆2)2Γ(2(n+∆2))Γ(2n+2∆2− 1
2) , 2∆2 + 2n < 2∆1 ,

π
3
2 Γ(n+∆2)4Γ(n+∆1+∆2− 1

2)Γ(n+2∆2− 1
2)

2n! sin[π(∆1−∆2)]Γ(1+n−∆1+∆2)Γ(∆1)2Γ(∆2)2Γ(2(n+∆2))Γ(2n+2∆2− 1
2) , 2∆2 + 2n > 2∆1 .

(5.9)
Note that the zeroth order OPE coefficients λ(0)

22[22]n appear in the generalized free field
correlator G2222(z) where the external particles are φ2, so that we have the relation

afree[22]n

∣∣∣∣
∆φ=∆2

≡ afree,22
[22]n =

(
λ

(0)
22[22]n

)2
. (5.10)

Now we review the second building block we use in our examples: the expansion of
the t-exchange diagram in s-channel blocks. It is given by

Gt-exchange(w) =
∞∑
n=0

at-exchange
[11]ñ G11,22

[11]ñ (w) +
∞∑
n=0

at-exchange
[22]ñ G11,22

[22]ñ (w) , (5.11)

where the double traces contain both parity even and odd states which we implement with
the notation [jj]ñ = 2∆j+n. The coefficients at-exchange

[jj]ñ can be obtained in terms of acontact
[jj]ñ

by means of the recursion relation of [61].21

20The relevant expressions and flat space limit for the equal dimensions contact term are discussed in
appendix B.

21The schematic form of the recursion relation is

µñ−1a
t-exch
ñ−1 + νña

t-exch
ñ + ρñ+1a

t-exch
ñ+1 = acontactn=2ñ , (5.12)

where the recursion coefficients µ, ν, ρ are rational functions of ∆1,∆2, [22]ñ. For explicit expressions in
more general scenarios see section 4.2 of [61].
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Figure 6. The sum of t- and u-exchange Witten diagrams has an expansion in terms of purely
parity even OPE coefficients.

However, since we are dealing with scalar particles (as opposed to pseudo scalars), we
are only interested in parity even OPE coefficients a[22]n . This can be simply fixed by noting
the relation between t- and u-exchange OPE coefficients: au-exchange

[jj]ñ = (−1)jat-exchange
[jj]ñ , so

that by taking the sum of t- and u-exchange Witten diagrams we have an expansion purely
in terms of parity even states. The last point is displayed in figure 6.

The one-loop coefficients a1-loop diagram
[22]n can be computed in terms of the tree level data

discussed above acontact
[22]n , at-exchange

[22]n . In the following sections we explain how to extract this
one-loop coefficients and compute the flat space limit of each diagram.

5.2 Bubble diagram

Let us start with the crossing symmetric sum of bubble diagrams with external dimensions
∆1 and internal dimensions ∆2 (see first diagram in figure 4). According to (5.4), its
Polyakov block expansion reads

Gbubble(w) =
∞∑
n=0

abubble
[22]n P[22]n(w) + contact , (5.13)

where [22]n = 2∆2+2n indicates as usual the double trace dimensions of φ2 with even parity.
All we have to do now is to understand what the coefficients abubble

[22]n are. The idea is that
we can get this data from lower loop level data in the same spirit as one does for amplitudes
using the optical theorem. At the level of Witten diagrams, one can see this procedure as
cutting the intermediate bulk-to-bulk propagators giving rise to lower loop level diagrams
glued together conformally as nicely explained in [62]. For the bubble diagram at hand we
want to cut the two internal propagators and isolate the double trace contributions of φ2.
The cutting and gluing procedure implies the following relation between the bubble and
contact OPE coefficients:

abubble
[22]n =

(
λcontact

11[22]n

)2
. (5.14)

To express abubble
[22]n in terms of acontact

[22]n appearing in (5.9) we need to divide by
(
λ

(0)
22[22]n

)2
=

afree,22
[22]n

abubble
[22]n =

(
acontact

[22]n

)2
/afree,22

[22]n . (5.15)

This relation is depicted in figure 7.
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Figure 7. The OPE coefficients of the double trace operators [22]n appearing in the s-channel
bubble diagram can be extracted from the ones appearing in the conformal block expansion of the
Witten contact diagram acontact,1122

[22]n and afree,22
[22]n as illustrated.

We would like to check that in the flat space limit the OPE density matches the spectral
density of the flat space bubble amplitude. We will consider the less trivial case where the
internal dimensions are smaller than the external ones ∆2 < ∆1 (or m2 < m1 in flat space
amplitude), so that there is the two-particle cut for m2 starting before the one for m1.
Normalizing the external mass to one m1 = 1, we are instructed to set

∆2
∆1

= m2,
[22]n
∆1

=
√
s , (5.16)

and compute the CFT dispersion densities as in (3.35). In this case the averaging procedure
is trivial and we get

ρbubble
CFT (s) = lim

∆1→∞

abubble
[22]n

afree,11
[22]n

 = 1
4
√
s(s− 4)

√
s(s− 4m2

2)
, (s > 4) ,

ρ̃bubble
CFT (s) = lim

∆1→∞

abubble
[22]n

ãfree,11
[22]n

 = 1
4
√
s(4− s)

√
s(s− 4m2

2)
, (s < 4) ,

(5.17)

where we have chosen a particular convenient overall normalization in (5.9).22

Now we would like to compare our CFT density (5.17) with the spectral density of the
flat space amplitude. From (5.6) we need the discontinuity of the amplitude. We could
compute the full amplitude first and then take the discontinuity, but we will take a shortcut
and get the density directly from Cutkosky rules [55].23 (This method is especially useful
when considering more complicated diagrams like the massive box below, where computing
the exact analytic amplitude is difficult.) In principle we should consider all possible bubble
diagrams where we take all permutations of the external legs, but the discontinuity (or
imaginary part) for s > 4m2

2 is non-zero only for the diagram below. By replacing the
internal propagators with momenta q and q2 = q − p1 − p2 with delta functions that put

22This was chosen to match with the exact density computer for the amplitude further below. We
could of course also match the overall normalization factor by carefully choosing the normalization of AdS
propagators and couplings appropriately [2].

23See for example section 6.3.4 of [63] for details.
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the particles on shell we find the discontinuity of the amplitude

IsT bubble(s) =

= (−i)0

2

∫
d2q

(2π)2 (2π)2 θ(q0)θ(−q0
2) δ(q2 −m2

2)δ(q2
2 −m2

2)

= 1
2

∫
±

d|~q|
8E|~q|δ

(
|~q| −

√
E2 −m2

2

)
= 1

2
√
s(s− 4m2

2)
(5.18)

where we have chosen the center of mass frame to do the computation so q = (E, ~q) where
2E =

√
s is the total energy. The ± indicates we need to sum over the two possible signs

for the spatial component of the internal momenta.
From here we see that indeed we have a match between the flat space CFT density

and the spectral density in the amplitude below and above threshold

ρbubble(s) = IsT
bubble(s)

2
√
s(s− 4)

= 1
4
√
s(s− 4)

√
s(s− 4m2

2)
= ρbubble

CFT (s) , (5.19)

ρ̃bubble(s) = IsT
bubble(s)

2
√
s(4− s)

= 1
4
√
s(4− s)

√
s(s− 4m2

2)
= ρ̃bubble

CFT (s) . (5.20)

Finally, the constant term ambiguity in (5.13) can be fixed by comparing to the full
s, t, u crossing symmetric flat space amplitude which includes a constant term coming from
the s→ u = 0 term.

5.3 Triangle diagram

Let us now consider the term associated with g2
122g1122 in the expansion (5.5) which is the

crossing symmetric sum of the triangle Witten diagrams.
Taking again the Polyakov block expansion (5.4) we have

Gtriangle(w) =
∞∑
n=0

atriangle
[22]n P[22]n(w) + contact , (5.21)

where the sum is over the double trace operators of φ2 with even parity. Same as for the
bubble diagram, we can extract the coefficients atriangle

[22]n from the tree level diagrams we
generate when cutting internal propagators in a way such that we have two external legs
on the right and two on the left of the cut. In this case we are left with a t-exchange and
(1122) contact diagrams. The relation between OPE coefficients is then:

atriangle
[22]n = λt,exchange

11[22]n × λcontact
11[22]n =

(
at,exchange

[22]n × acontact
[22]n

)/
afree,22

[22]n . (5.22)
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Figure 8. Comparison between the amplitude’s spectral density below threshold ρ̃ triangle(s) and
large dimension (∆1 = 500) numerical CFT density ρ̃ triangle

CFT (s) for m2
2 = 2/3.

This time one of the OPE coefficients at,exchange
[22]n is not available in closed form, but it can

be computed via the recursion relations of [61] sketched in (5.12). This fact prevents us
from computing the CFT density

ρ̃triangle
CFT (s) = lim

∆1→∞

atriangle
[22]n

ãfree,11
[22]n

 , s =
( [22]n

∆1

)2
< 4 (5.23)

analytically, so we will resort to a numerical comparison by solving the recursion relations
for large enough dimensions. The result for ∆1 = 500 and ∆2

2 = 2/3∆2
1 is shown in blue

dots in figure 8.
To compare with the flat space amplitude, let us extract the spectral density of the

triangle diagram using the Cutkosky rule. Taking the s-channel discontinuity we find

IsT triangle(s) =

= (−i)
2

∫
d2q

(2π)2
i

(q − p1)2 −m2
2 + iε

(2π)2θ(q0)θ(−q0
2)δ(q2 −m2

2)δ(q2
2 −m2

2)

= 1
2

∫
±

d|~q|
8E|~q|

δ
(
|~q| −

√
E2 −m2

2

)
(
(q − p1)2 −m2

2 + iε
) = s− 2

2(1 +m2
2(s− 4))

√
s(s− 4m2

2)
. (5.24)

where the convention is the same as the bubble case. Using (5.7), we then get the exact
density below threshold

ρ̃ triangle(s) = s− 2
4(1 +m2

2(s− 4))
√
s(4− s)

√
s(s− 4m2

2)
. (5.25)
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In figure 8 we plot both the CFT and flat space densities and see that we get a perfect
match. This is the case also for the density above threshold as well as for any value of m2
such that m2

2 > 1/2. We will see in section 5.5 what happens for internal masses below
this value.

5.4 Box diagram

Finally, we have the crossing symmetric sum of box diagram from the term with g4
122

in (5.4). The procedure for the comparison is the same as for the triangle diagram. The
Polyakov expansion reads

Gbox(w) =
∞∑
n=0

abox
[22]nP[22]n(w) + contact . (5.26)

By cutting the box in two, we see that the coefficients abox
[22]n are given by the square of the

(parity even) t-exchange diagram OPE coefficients

abox
[22]n =

(
λt,exchange

11[22]n
)2 =

(
at,exchange

[22]n

)2
/
afree,22

[22]n . (5.27)

As for the triangle, these coefficients are not available in closed form, so once again we
perform a numerical comparison with the flat space density.

To compare with the flat space computation, we take the imaginary part or disconti-
nuity of the amplitude for s > 4m2

2. As in the previous examples, we should consider all
possible box diagrams but only the box and twisted box below have non zero discontinuity
in this region. One can also make sense of this particular combination recalling that the
even parity coefficients at,exchange

[22]n are extracted from the sum of t- and u-exchange Witten
diagrams as in figure 6. This means that with the cutting and gluing procedure we have
precisely the sum of box and twisted box diagrams as below. Using Cutkosky rules we
arrive at

Is
[
T box(s) + T twisted box(s)

]
=

= (−i)0

2

∫
d2q

(2π)2
i

(q−p1)2−m2
2+iε

−i
(q−p4)2−m2

2−iε
(2π)2θ(q0)θ(−q0

2)δ(q2−m2
2)δ(q2

2−m2
2)

+ (p4 ↔ p3)

= 1
2

∫
±

d|~q|
8E|~q|

δ
(
|~q| −

√
E2 −m2

2

)
(
(q − p1)2 −m2

2 + iε
)(

(q − p4)2 −m2
2 − iε

) + (p4 ↔ p3)

= (s− 2)2

2(1 +m2
2(s− 4))2

√
s(s− 4m2

2)
(5.28)
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Figure 9. Comparison between the amplitude’s spectral density below threshold ρ̃ box(s) and large
dimension (∆1 = 500) numerical CFT density ρ̃ box

CFT(s) for m2
2 = 2/3.

and the corresponding spectral density is:

ρ̃ box(s) = (s− 2)2

4(1 +m2
2(s− 4))2

√
s(4− s)

√
s(s− 4m2

2)
. (5.29)

In figure 9 we show the match between the expression above and the CFT density obtained
numerically for ∆1 = 500 and m2

2 = 2/3. As for the triangle diagram, this match persists
for any m2

2 > 1/2. For m2
2 < 1/2 we encounter anomalous thresholds which are the topic

of the next section.

5.5 Anomalous thresholds

So far we have considered ranges of masses such that we avoid anomalous thresholds. The
latter are singularities in the amplitude which do not have a direct interpretation in terms
of intermediate physical states. One can obtain them by computing the associated Landau
diagrams where internal particles are on-shell (see e.g. [1]). In higher spacetime dimensions,
these singularities are typically branch points whereas in two dimensions we encounter poles
(a famous example are the Coleman-Thun double poles in the sine-Gordon model [64]). For
the diagrams discussed above we have anomalous thresholds for the triangle and box when
the internal mass has values m2

1
4 < m2

2 <
m2

1
2 .24 As can be checked — e.g. from direct

computation of the Feynman integral or Landau equations — the leading singularity of the
triangle diagram is a simple pole

T triangle
anom (s) ∼ πm1

m2
2

√
4m2

2 −m2
1

1

s−
(

4m2
1 −

m4
1

m2
2

) ,
m2

1
4 < m2

2 <
m2

1
2 . (5.30)

24We shall not consider m2
2 <

m2
1

4 , as particle with mass m1 would become unstable (m1 > 2m2) in this
region. For the sake of clarity we write all m1 factors in this discussion.
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For the box diagram we have that the leading singularity is a double pole at the crossing
symmetric point, occurring only at specific value m2

2 = m2
1/2

T box, leading
anom (s) ∼ 4π

(s− 2m2
1)2 , m2

2 = m2
1

2 , (5.31)

and the sub-leading singularity when reducing25 the box diagram to the triangle above

T box, subleading
anom (s) = T triangle

anom (s) , m2
1

4 < m2
2 <

m2
1

2 . (5.32)

In all these examples, anomalous thresholds are present when m2
2 < 1/2, which implies

that the two-particle production cut begins at s0 < 2. Equivalently, in CFT language, the
OPE contains a tower of states with dimensions [22]n beginning below

√
2∆φ. But this vio-

lates our assumptions on the CFT spectrum spelled out in 3.1.1, where they were required
in order to ensure boundedness of the OPE. It is tempting therefore to conjecture that
this unboundedness is related with anomalous behaviour in the S-matrix. The amplitudes
above provide then an excellent opportunity for understanding this.

Our first comment is that we do not believe that this unboundedness is merely an
artifact of the flat space limit. That is, we believe the OPE is genuinely unbounded (and
not just parametrically larger than our bounds) whenever our gap assumption fails. A
rigorous proof that this is the case when ∆0 ≤ 4

3∆φ follows from considering the following
family of functions:

Bα(z) = 1
[z(1− z)](2−α)∆φ

(5.33)

This function is clearly crossing symmetric, and it admits a conformal block decomposition
with a leading operator of dimension ∆0 = α∆φ (i.e. without identity). But furthermore
the OPE is positive whenever ∆0 ≤ 4

3∆φ. For instance [65]:26

B 4
3
(z) =

∞∑
n=0

bnG 4
3 ∆φ+2n(z|∆φ) , (5.34)

with bn =

(4∆φ

3

)2

2n 3F2
(
−2n, 2∆φ

3 , 2n+ 8∆φ

3 − 1; 4∆φ

3 ,
4∆φ

3 ; 1
)

(2n)!
(
2n+ 8∆φ

3 − 1
)

2n

> 0 .

This means that given a general unitary CFT correlator G with ∆0 ≤ 4
3∆φ, we can obtain

a new one by doing G → G + λB 4
3
with arbitrarily large positive λ. This establishes

there exist CFT correlators for which quantities like ρ̃ and ρ are not in general finite, at
least when the gap is below 4

3∆φ. This simple example explains the general mechanism
establishing that it is not possible to bound the OPE whenever the gap is below some
critical value: the existence of unitary correlators without identity whose overall coefficient

25When writing the amplitude in terms of Feynman parameters, the reduced diagrams come from some
of these Feynman parameters vanishing, effectively setting the length of the associated internal leg to zero.

26See also appendix B of [66] for a related discussion.
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may therefore become arbitrarily large.27 Can we improve our proof for any gap below√
2∆φ? Unfortunately, an exploration of generalized free field correlators of composite

operators (where the above function arises) does not seem to lead to solutions with a gap
higher than 4

3∆φ. Perhaps we did not try hard enough, or perhaps such solutions must
necessarily be interacting. Let us proceed assuming such solutions do exist, to avoid an (in
our view) artificial separation between gaps below 4

3∆φ and above it.
Let us test our conjecture linking OPE unboundedness and anomalous behaviour on

the example of the box diagram, in the region m2
1

4 < m2
2 <

m2
1

2 . In this case, the correct
scattering amplitude is obtained by taking

ρ̃box(s) → ρ̃box(s) + ρ̃box
anom(s) , m2

1
4 < m2

2 <
m2

1
2 , (5.35)

ρ̃box
anom(s) = − iπs

4(s− 4)δ
(
s− 1

m2
2

)
. (5.36)

That is, the naive analytic continuation of the density to m2
2 <

m2
1

2 fails, as we must add
a term with a delta function reproducing the simple pole in (5.32) and (5.30). We should
point out that, in fact, the density is not uniquely defined in the region (s0, 4− s0). This
is because∫ 4

s0
ds′K̃(s, s′)δρ̃(s′) = 0 , δρ̃(s) = δρ̃(4− s) , δρ̃(s > 4− s0) = 0 (5.37)

owing to the antisymmetry property K̃(s, s′) = −K̃(s, 4− s′).
With this caveat in mind, we can compare the expected density with the one computed

from the OPE data in the CFT. This is shown in figure 10. We have chosen to set ∆0 = 4
3∆φ

for simplicity, but the figure looks similar for other choices. We see the density computed
from the CFT only matches the one obtained from the amplitude above some critical value
of s. In our explorations we find that it varies very little with ∆φ, but it depends strongly
on ∆0. Also, this value is always above 4− s0, so that the ambiguity in the definition of ρ̃
cannot help us cure the mismatch. Furthermore, we find the anomalous pole always lies in
the region where there is a mismatch. More strikingly, it seems that the anomalously large
piece of the CFT density closely resembles the density computed from function B, that is

ρ̃BCFT(s) = lim
∆φ→∞

bn
ãfree4

3 ∆φ+2n
, s =

( 4
3∆φ + 2n

∆φ

)2

. (5.38)

These results suggest that anomalous thresholds are indeed directly correlated with un-
boundedness of the OPE. They also suggest that this unboundedness could follow from the
appearance of a large component in the CFT OPE which satisfies crossing symmetry by
itself. Therefore, it seems that to obtain the correct flat space limit of the full correlator
this piece must be first subtracted and its limit handled separately. Presumably this will

27A general argument that this must be the case is as follows: if there is no bound on a particular
OPE coefficient, then it must be possible to construct unitary families of correlators Gλ where that OPE
coefficient is some large number λ. Then ∂λGλ|λ=∞ is a unitarity solution to crossing without identity.
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Figure 10. Densities ρ̃ in the presence of anomalous thresholds, in the case 2∆2 = 4
3∆φ ⇔ m2

2 = 4
9 .

The densities ρ̃B
CFT, ρ̃

box
CFT are computed with ∆φ = 500. Above a critical s ≈ 2.5 the CFT and exact

densities agree, but below this value the mismatch is exponential (getting worse with increasing
∆φ). The anomalous pole contribution is shown as a dashed line. The ambiguity in ρ̃ is only present
in the shaded band.

lead to the appearance of new, anomalous, contributions to the CFT density. Finally, note
that these results are consistent with the picture in [34]: the unbounded piece of the OPE
should map into the “wrong” saddles corresponding to AdS Landau diagrams.

6 Extremality

We have established a mapping from certain families of CFT correlators and S-matrices.
In this section we will explore general properties of this mapping and how they lead to
a detailed link between extremal S-matrices, extremal CFTs, and bootstrap problems in
both contexts.

6.1 Extremality and the flat space limit

Information loss. Our basic formula states that

S(s) = F [G(zs)] . (6.1)

The S-matrix may be computed for physical kinematics via the phase shift formula (4.6),
and elsewhere on the complex plane from the dispersion relation (3.35). Our definition of
the operation F is linear, so that given two distinct CFT families G1,G2 matching with
S-matrices S1 and S2, we can build an entire family of new solutions:

S1+2(s) = xS1(s) + (1− x)S2(s) = xF [G1(zs)] + (1− x)F [G2(zs)]
= F [xG1(z) + (1− x)G2(z)] , x ∈ [0, 1]

(6.2)

The constraint x ∈ [0, 1] simultaneously guarantees that the identity operator appears in
the sum of CFT correlators with unit coefficient, and that the unitarity condition |S1+2| ≤ 1
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holds from those of S1, S2. More interestingly, starting from any two S-matrices, their
product is also an S-matrix. This is ensured by

F [G1(zs)G2(zs)] = F [G1(zs)]F [G2(zs)] (6.3)

which follows from elementary properties of the limit and of analytic continuation. This
property is a bit surprising from the way we have effectively constructed the F operation,
which requires the OPE, and we clarify why it is true in appendix C.

These properties imply that the F operation loses information. For instance, we can
take any CFT correlator and multiply it by the generalized free field correlator, the flat
space limit will unaffected since F [G+] = 1. Or we could start with a correlator and add to it
the sum of generalized free fermion and boson correlators, whose flat space limits (S = ±1)
add up to zero. In both cases the OPE structure of the CFT correlator before and after
multiplication/addition is very different, but in the flat space limit these differences are
subleading and get washed out. Thus, distinct families of CFT correlators can nevertheless
lead to the same S-matrix. This is of course in line with our general expectations: placing
a QFT in AdS for specific choices of boundary conditions and curvature couplings will lead
to specific families of CFTs, but any such choice must nevertheless have the same flat space
limit.

Extremality. A particularly interesting class of 2d S-matrices are those which saturate
unitarity for physical kinematics, i.e. |S(s)| = 1 for s > 4, which we will call extremal. This
is generally found to be the case for S-matrices saturating bootstrap bounds (see e.g. [13]),
and it is also true for integrable models [67, 68]. Extremal S-matrices can be expressed as
products of CDD factors, which describe zeros or poles, and take the form:

Spole
sb

(s) =
√
s(4− s) +

√
sb(4− sb)√

s(4− s)−
√
sb(4− sb)

, Szero
sr (s) =

√
s(4− s)−

√
sr(4− sr)√

s(4− s) +
√
sr(4− sr)

. (6.4)

A general extremal S-matrix is thus written as

|S| = 1 ⇒ S(s) =
∏
i

Spole
si (s)

∏
j

Szero
sj (s) . (6.5)

Let us examine what the condition |S| = 1 means for the CFT data. Using the phase shift
formula we have

S(s) = lim
∆φ→∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, s)e−iπ(∆−2∆φ) (6.6)

with

lim
∆φ→∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, s) = 1 . (6.7)

Recall that the Gaussian N∆φ
implies that in these sums the only states which contribute

lie inside a narrow window of width
√

∆φ centered around ∆ =
√
s∆φ. The only way in
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which the unitarity condition can be saturated is if in (6.6) the phases remain coherent
in any such window. More precisely, this should be true of the phases of the states which
contribute predominantly to the OPE (see apendix C). Such states should be described by
a single tower of operators with dimensions ∆n = 2∆φ + 2n+ γn(∆φ) satisfying:

γn(∆φ) →
n,∆φ→∞
n/∆φ fixed

γ(s) , s := lim
n,∆φ→∞
n/∆φ fixed

(
2∆φ + 2n

∆φ

)2

(6.8)

That is, the anomalous dimensions can be promoted to a slowly varying function of s in the
large ∆φ limit. In this case not only is unitarity saturated but we can explicitly describe
the S-matrix in terms of the spectrum of the CFT:

S(s) = lim
∆φ→∞

∑
∆>2∆φ

2
(
a∆
afree∆

)
N̂∆φ

(∆, s)e−iπ γn(∆φ) = e−iπγ(s) , if |S| = 1 . (6.9)

At this point, we would like to pose two questions. The first is: can we construct fami-
lies of CFT correlators which in the flat space limit describe any S-matrix of the form (6.5)?
In the following two subsections we will formulate and solve bootstrap optimization prob-
lems whose optimal solutions are CFT correlators which map to single CDD pole and CDD
zero factors. Thanks to the product property (6.3), the answer to this question is therefore
affirmative.

The second question is, can such families be chosen to be extremal: that is, that the
OPE in the corresponding correlators contains a single tower of operators not effectively
but exactly, even away from the strict ∆φ →∞ limit. Tensor products and sums of corre-
lators do not satisfy this property, but extremal correlators do arise as optimal solutions of
bootstrap problems [42, 69]. Therefore, here we also believe the answer is affirmative: in
section 6.4 we will show that there is a direct mapping between large classes of S-matrix
and CFT bootstrap problems. This means that the associated optimal solutions are also
mapped into each other, thus establishing a link between extremal S-matrices and families
of extremal correlators.

6.2 Bootstrapping the CDD pole

We will begin by describing an extremal correlator which in the flat space limit describes
the CDD pole. Although it is already known that this correlator can be obtained by
maximizing the OPE coefficient of a state corresponding to the pole [2, 41], here we will
follow a different route based on master functionals, by maximizing the correlator.28

Consider then the problem of maximizing the value of a CFT correlator, G(w), whose
spectrum starts at some dimension ∆0 >

√
2∆φ, i.e. it satisfies the strong OPE condition.

A bound may be obtained by constructing a functional Ωint
w satisfying the properties

Ωint
w (∆) ≥ G∆(w|∆φ) , for all ∆ ≥ ∆0 , (6.10)

28The correlator maximization problem with a gap ∆0 is expected to be extremized by the same correlator
which maximizes the OPE coefficient at ∆0 [48].
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since acting with such a functional on the crossing equation is easily seen to lead to

G(w) ≤ P int
0 (w|∆φ) , P int

∆ (w) := G∆(w|∆φ)− Ωint
w (∆) . (6.11)

If P int
0 (w) matches a physical CFT correlator P int

0 (w) = G int(w) then the bound is optimal
and saturated by that correlator. Note that we should think of P int

∆ (w) as a kind of
interacting version of ordinary Polyakov blocks, and the superscript serves to remind us of
this fact.

Such a functional can be defined in the same way as the master functionals Ω±w of
section 2.1, but with the important difference that for general ∆φ the kernels gintw and f int

w

aren’t simply related. However, for ∆φ →∞ we can choose:

gintw (z) = ĝintw (z) + δ(w − z) , ĝintw (z) ∼
∆φ→∞

(1− z)2∆φ−2|f int
w ( 1

1−z )| , (6.12)

In the limit of large ∆φ the remaining constraint on f int
w becomes

Rzf int
w (z) ∼ −δ(z − w)− δ(1− z − w) for z ∈ (0, 1) (6.13)

which can be solved as

f int
w (z) = 4K(sw, sz)

S int(sw)
S int(sz)

+ . . . (6.14)

where we assumed S int(s) that has the analyticity properties of an S-matrix, but that it
does not have zeros for any complex s. The corrections shown as . . . depend on the details
of S int, and would allow us to relax the absence of zeros, but we will not need to write
them out explicitly for the time being. Note that with S int = ±1 we recover the master
functionals f±w .

The sum rule for the functional Ωint
w can be stated as validity of the interacting Polyakov

bootstrap:

Ωint
w (0) +

∑
∆≥∆0

a∆Ωint
w (∆) = 0 ⇔ G(w) = P int

0 (w) +
∑

∆≥∆0

a∆P int
∆ (w) (6.15)

The computation of these interacting Polyakov blocks is essentially identical to the free
case, and we will give the result below. This equation translates into a dispersion relation
for the CFT, which we will write directly in the flat space limit in terms of the S-matrix:

S(s) = S int(s)− S int(s)
∫ ∞
s0

ds′Is′
[
K̃(s, s′)

(
1− S(s′)

S int(s′)

)]
(6.16)

The bound can now be obtained as follows. The positivity conditions on Ωint are the
statement that

P int
∆ (w) ≤ 0 , ∆ ≥ ∆0 . (6.17)

In the dispersion relation this is the constraint that the integral is positive. Indeed if that’s
the case the dispersion relation immediately implies the bound S(sw) ≤ S int(sw). We split
the integral into two pieces:

S int(sw)
∫ 4

s0
ds′K̃(sw, s′)Is′

[
− S(s′)
S int(s′)

]
+ S int(sw)

∫ ∞
4

ds′K(sw, s′)Rs′
[
1− S(s′)

S int(s′)

]
(6.18)
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The second term on the right represents the contributions above threshold. Setting

|S int(s)| = 1 , s > 4 (6.19)

and using |S(s)| ≤ 1, then the integral will be manifestly non-negative as long as S int(sw) ≥
0. As for the first term, notice that IsS(s) = ρ̃(s) ≥ 0, and hence we can make those
contributions positive as well by demanding that S int(s) is real and negative for s0 < s < 4.

We are nearly done. The constraints on S int imply that it can be written as a product
of CDD poles, with pole positions sp ≤ s0 and chosen such that both S int(sw) ≥ 0 and
S int(s0 ≤ s ≤ 4) ≤ 0. Any S int of this form gives a valid upper bound, but the optimal
such bound is obtained by choosing an isolated CDD pole at precisely s0, since in this case
it can be saturated an S-matrix satisfying our assumptions. We conclude

S(s) ≤ Spole
s0 (s) . (6.20)

To wrap up, let us check that the CFT extremal correlator P int
0 which saturates our

bound is related to the extremal S-matrix in the way we expect, namely F [P int
0 ] = S int.

Although below strictly speaking we have in mind the case S int = Spole
s0 , we will stick to the

‘int’ notation since most steps in our computation hold more generally. We will therefore
compute:

P int
0 (w) = G0(w|∆φ)− Ωint

w (0) (6.21)

To obtain Ωint(0) we use the fact that it is a valid functional, and so the corresponding
sum rule must be satisfied by any CFT correlator. In particular it must be satisfied by a
generalized free field. Therefore

Ωint
w (0) = −

∞∑
n=0

afree∆n
Ωint
w (∆n) = 1 + 1

(1− w)2∆φ
+
∞∑
n=0

afree∆n
P int

∆n
(w) (6.22)

with ∆n = 2∆φ+2n. To compute the interacting Polyakov blocks, we use that in this case
the full interacting master functional is written

f int
w (z) = 4K(sw, sz)

S int(sw)
S int(sz)

+ f sGz0 (z)E∆0(w|∆φ) (6.23)

with s0 = 4z0 and f sG the sine-Gordon functional (3.6). The last term is chosen to insure
that P int

∆0
(z) = 0. The computation of the interacting Polyakov blocks is now almost exactly

the same as the one we did for the free case in sections 2 and 3. In particular we find
∞∑
n=0

afree∆n
P int

∆n
(w) = S int(s)

∫ ∞
4

ds′K(s, s′)Rs′
[
1− 1

S int(s′)

]
+ asG∆0 E∆0(w|∆φ) (6.24)

where we used ∑∞n=0 a
free
∆n
ωsG(∆n) = −ωsG(0) = asG∆0

. Evaluating the first line and putting
everything together we find

G int(w) ≡ P int
0 (w) = 1

w2∆φ
+ 1

(1− w)2∆φ
+ asG∆0 E∆0(w|∆φ) + S int(sw) . (6.25)

In this way we see that the flat space limit of the extremal correlator for the conformal boot-
strap problem is indeed the extremal S-matrix for the corresponding S-matrix bootstrap
problem.
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6.3 Bootstrapping the CDD zero

We will now show that there is an extremal CFT that leads to the CDD zero S-matrix in
the flat space limit.

Let us introduce a functional Ω∂
w whose kernels are given by

f∂w(z) = 4K(sw, sz)
dw

Szero
sw (sz)

. (6.26)

with

dw := d
dzS

zero
sw (sz)

∣∣∣∣
z=w

= 2w − 1
4w(1− w) . (6.27)

To satisfy the gluing condition we need to set

g∂w(z) = (1− z)2∆φ−2|f∂w( 1
1−z )|+ δ′(w − z) . (6.28)

Let us set

P∂∆(w) ≡ ∂wG∆(w|∆φ)− Ω∂
w(∆) . (6.29)

Note that the f∂w, g∂w kernels above are not derivatives of the master functional kernels
f+
w , g

+
w , and accordingly the P∂∆ are not derivatives of ordinary Polyakov blocks. The sum

rule of Ω∂
w now yields

G′(w) = P∂0 (w) +
∑

∆0≤∆b≤2∆φ

a∆P∂∆b
(w) − dw

∫ ∞
4

dsK(sw, s)Rs
[
1− S(s)

Szero(s)

]
(6.30)

It is easy to compute

P∂0 (w) = ∂w

[
1

w2∆φ
+ 1

(1− w)2∆φ

]
+ dw

a∆b
P∂∆b

(w) = ∂wE∆b
(w) + 2mb

∆φ
K̃(sw,m2

b)
dw

Ssw(m2
b)

(6.31)

Positivity now implies

G′(w) ≤ ∂w
[

1
w2∆φ

+ 1
(1− w)2∆φ

]
+ dw ,

1
2 < w <

1
4

(
∆0
∆φ

)2

(6.32)

with optimality achieved when S(s) = Szero
sw (s). We conclude that the CDD zero S-matrix

arises from the flat space limit of the family of correlators which saturates an upper bound
on the derivative of the correlator at a point. This nicely ties in with the S-matrix derivation
in [6].

An apparent puzzle is how to characterize such CFTs from the point of view of the
OPE, since they have no bound states. In appendix D we argue that these CFTs arise as a
deformation of the generalized free boson where the leading scalar dimension ∆0 is pushed
parametrically close to the maximal gap 2∆φ + 1.
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6.4 Dual S-matrix and conformal bootstraps

The goal of this section is to explain how the S-matrix bootstrap in its dual formulation [13,
18, 26] is related to the conformal bootstrap written in the language of functionals.

S-matrix bootstrap. We begin in the S-matrix picture. We want to solve the optimiza-
tion problem:

max FS-mat
P , FS-mat

P :=
∫ 4

s0
ds c̃(s)ρ̃(s) +

∫ ∞
4

ds c(s)ρ(s) (6.33)

with

S(s) = 1 +
∫ 4

s0
ds′ K̃(s, s′) ρ̃(s′)−

∫ ∞
4

ds′K(s, s′) ρ(s′) , |S(s+)| ≤ 1 (6.34)

The primal variables are ρ, ρ̃ ≥ 0 and c, c̃ are some chosen cost functions. To get an upper
bound we will introduce dual variables to get a quantity larger than FP :

FS-mat
P ≤ FS-mat

P +
∫ ∞

4
ds [|k(s)| − Rs (k(s)S(s))] +

∫ 4

s0
dsk̃(s)ρ̃(s) (6.35)

where by assumption:

k̃(s) ≥ 0 for s ∈ (s0, 4) . (6.36)

Note that positivity of the first term follows from unitarity of the S-matrix. To get a bound
valid for any S-matrix, we first write S(s) in terms of the ρ, ρ̃ using (6.34). We then impose
conditions on k(s), k̃(s) to eliminate all dependence on the primal variables from the right
hand side of the above. (An example will be given further below cf. (6.58)). The result is:

FS-mat
D :=

∫ ∞
4

ds [|k(s)| − Rsk(s)] , (6.37)

and by construction we have

maxFS-mat
P ≤ minFS-mat

D . (6.38)

Optimality is achieved if29

k̃(s) = 0 or ρ̃(s) = 0, s0 < s < 4
Sext(s) = |k(s)|/k(s), s > 4

(6.39)

where Sext stands for the optimal (extremal) S-matrix.

29Note that in the region s > 4, optimality can also be attained through k(s) = 0 as numerically observed
in [13]. Here we do not consider this possibility but focus on unitarity saturating S-matrices.
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CFT bootstrap. Now consider the following CFT bootstrap optimization problem:

maxFCFT
P , FCFT

P =
∑

∆≥∆0

a∆µ∆ (6.40)

with

G(z) = G0(z|∆φ) +
∑

∆≥∆0

a∆G∆(z|∆φ) , ∆0 ≥
√

2∆φ . (6.41)

The primal variables are now the OPE coefficients a∆ ≥ 0, and µ∆ are again some chosen
cost functions. For example, OPE maximization would correspond to µ∆ = δ∆,∆b

, and
correlator minimization to µ∆ = −G∆(w). The gap assumption may be replaced by the
weak OPE condition spelled out in section 3.1.1, and as we already know, it plays the role
of unitarity for the S-matrix problem since it implies the OPE is bounded.

To obtain a bound we will again add a positive quantity to the primal objective. Let
us introduce a functional satisfying:

Ω(0) +
∑

∆≥∆0

a∆Ω(∆) = 0 , and Ω(∆) ≥ µΩ(∆) for ∆ ≥ ∆0 . (6.42)

To get an upper bound we consider

FCFT
P ≤ FCFT

P +
∑

∆≥∆0

a∆[Ω(∆)− µΩ(∆)] . (6.43)

We now constrain our functional such that µΩ = µ. Using (6.42) we define

FCFT
D := −Ω(0) , (6.44)

from which we obtain an upper bound

maxFCFT
P ≤ minFCFT

D . (6.45)

Optimality is achieved if

a∆ = 0 or Ω(∆) = µ(∆) , ∆ ≥ ∆0 . (6.46)

Mapping the problems. We have presented these optimization problems in a suggestive
way which makes clear that they are closely related. Let us now make the link more precise
starting from the CFT problem in the flat space limit.

First, it is clear that since ρ, ρ̃ are directly related to OPE coefficients, the CFT
correlator may also be expressed in terms of those variables. It is also clear that it is
possible to choose CFT cost functions µ∆ which will give FS-mat

P = FCFT
P .30 Let us set

Ĝ(z) = G(z)−
∑

∆≤2∆φ

a∆G∆(z|∆φ) . (6.48)

30In detail, this is achieved by setting

µ∆ =
2√s∆

∆φãfree∆
c̃(s∆) , ∆0 ≤ ∆ < 2∆φ

µ∆ =
2√s∆

∆φafree∆
4 sin2

[
π

2 (∆− 2∆φ)
]
c(s∆) , ∆ ≥ 2∆φ .

(6.47)
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Then the phase shift formula and the bounds of section 3.1.2 can be written:

Ĝ(z) =
∆φ→∞

S(sz) , z < 0

(1− z)2∆φ Ĝ(z) =
∆φ→∞

1 , z ∈ (0, 1)
(6.49)

We now parameterize our functional in terms of kernels f, g as usual. Inspired by previous
examples, we will set

g(z) = (1− z)2∆φ−2|f( 1
1−z )|+ δg(z) , z ∈ (0, 1) , (6.50)

with δg(z) introducing extra freedom and assumed to not scale with ∆φ, so that

Rzf(z) ∼ −δg(z)− δg(1− z) (6.51)

Using the definition of the functional action we can find∑
∆≥2∆φ

a∆[Ω(∆)− µΩ(∆)] =
∫ 0

−∞
dz
{
|f(z)| − Rz[f(z)Ĝ(z)]

}
∑

∆0≤∆<2∆φ

a∆ [Ω(∆)− µΩ(∆)] =
∫ 1

z0
dz [Izf(z)ρ̃(4− sz)]

(6.52)

where the µΩ(∆) are in general non-zero, since computing just Ω(∆) leads to more con-
tributions other than those shown on the RHS. For instance on the first line we should
have ∑

∆≥2∆φ

a∆µΩ(∆) =
∫ 1

0
dz δg(z)Ĝ(z) (6.53)

It is now clear we should identify:

k(s) = 4f(zs) , k̃(s) = 4Izf(zs) (6.54)

In particular, this leads to

FS-mat
D =

∫ ∞
4

ds
(
|k(s)| − Rsk(s)

)
=
∫ 0

−∞
dz
(
|f(z)| − Rzf(s)

)
= FCFT

D . (6.55)

which completes our mapping between the two bootstrap problems.
For completeness, and to conclude, let us point out that it is straightforward to gen-

eralize these constructions to enforce specific constraints on S-matrices/correlators, such
as presence of states with definite couplings. In this case we should set the costs of such
states to be zero, and since they do not need to be eliminated we do not to constrain
the associated dual variables. For instance, in CFT bootstrap language, this leads to a
modified dual objective of the form

FCFT
D = −Ω(0)−

∑
i

a∆i
Ω(∆i) =

∫ 0

−∞
dz [|f(z)| − Rzf(s)] +

∑
i

Izf(zi)ρ̃i . (6.56)

where the ρ̃i are given and fixed.
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Example: correlator maximization. Let us now illustrate the above map between
the CFT functionals and the dual S-matrix bootstrap problem through the example of
the correlator maximization problem considered in section 6.2. In the flat space limit, the
corresponding S-matrix bootstrap problem becomes bounding the amplitude evaluated at
a point S(sw) with sw ∈ (4− s0, s0). In particular, in this case the primal objective (6.33)
is given by the cost functions

F S-mat
P = S(sw)− 1 ⇒

c̃(s′) = K̃(sw, s′) ≥ 0, s′ ∈ (s0, 4)
c(s′) = −K(sw, s′) ≤ 0, s′ > 4

(6.57)

as can be seen by directly evaluating (6.34) at s = sw. The standard dual formulation
gives the minimization problem with the dual functional (6.37) where the dual variables
k, k̃ are subject to the constraints:

Rsk(s) = −c(s)− 2
π
−
∫ ∞

4
ds′
√
s′(s′ − 4)√
s(s− 4)

s− 2
(s− s′)(s′ + s− 4)Isk(s′), s > 4 ,

−k̃(s) = c̃(s)− 2
π

∫ ∞
4
ds′
√
s′(s′ − 4)√
s(4− s)

s− 2
(s− s′)(s′ + s− 4)Isk(s′), s0 < s < 4 .

(6.58)

which arise by demanding decoupling of the primal variables. Plugging in the cost functions,
we can solve these constraints by setting

k(s) = K(sw, s)−
2
π

∫ ∞
4
ds′
√
s′(s′ − 4)√
s(s− 4)

s− 2
(s− s′)(s′ + s− 4) Imk(s′) ,

k̃(s) = Isk(s) .
(6.59)

Notice this is consistent with (6.54). We also have

Rsk(s) = −δ(s− sw)− δ(4− s− sw) . (6.60)

which is the same as equation (6.13) satisfied by f int
w (z), again in agreement with (6.54).

It follows that we can also solve for k in the same way, by setting

k(s) = K(sw, s)
S int(sw)
S int(s) . (6.61)

The analyticity properties of k(s) imply that the function S int(s) should be crossing-
symmetric and meromorphic with branch points at s = 0 and s = 4. Recall (6.39),
i.e., optimality implies Sext(s) = S int(s) with |S int(s+)| = 1 and S int(s) can then be chosen
to be a product of CDD poles. Now it is the positivity constraint (6.36) which forces these
poles to be located below s0, and choosing without loss of generality S int(sw) > 0, we can
compute the dual objective (6.37) as:

F S-mat
D = S int(sw)

∫ ∞
4

dsK(sw, s)
(

1−Rs
[ 1
S int(s)

])
= S int(sw)− 1 . (6.62)

Optimality is achieved when F S-mat
D = F S-mat

P , i.e. when S(sw) = S int(sw), which happens if
both are given by a single CDD pole at s = s0, as before in section 6.2.

– 43 –



J
H
E
P
0
8
(
2
0
2
2
)
1
8
6

7 Discussion and Outlook

In this work we have studied the detailed relation between families of 1d CFT correlators
and 2d S-matrices. Our main results are a derivation of the analyticity properties of
such S-matrices under certain gap assumptions, and a characterization of their singularity
structure in terms of the CFT data.

It would be important to clarify for which S-matrices do our results apply. The starting
point of our construction is that the S-matrix arises from a gapped QFT. Can any such
QFTs be placed in an AdS space of sufficiently large radius? This is certainly the case
for any Lagrangian QFT, but more generally it seems hard to imagine an obstruction
given that correlators in any such theory decay exponentially at scale separations larger
than the gap. For instance, it seems we could define the correlators of the theory in the
following manner: starting from local QFT correlation functions, we push fields away from
each other distances much larger than the inverse mass gap while keeping the effects of
curvature negligible. At this scale correlators factorize into products of two point functions
given by free massive propagators. We can then “complete” each such propagator to an AdS
bulk-to-bulk propagator by adding a small correction. At this point we can move around
operators to arbitrarily large distances, thus leading to fully well defined correlators in
AdS.

Conversely, we can hope to use our results to show that some S-matrices cannot arise
from a gapped QFT. Indeed, many if not most 2d S-matrices consistent with crossing,
analyticity and unitarity have a non-trivial UV behaviour, which can be understood in
the context of generalized T T̄ deformations [70–73], and it would be great to understand
if we can use our results to investigate if these theories can arise from gapped QFTs in
AdS. One idea would be to show that such S-matrices do not arise from QFTs with local
observables: in practice one would need to show that it would not be possible to construct
local operators from such a theory’s S-matrix, i.e. by “inverting” LSZ. In CFT language
we would have to show that the bulk reconstruction problem [74] would not be solvable
given the CFT data implied by the S-matrix.

A different kind of argument relies on the fact that our construction implicitly acts as
an UV completion for S-matrices. Consider an S-matrix of the form:

ST T̄ (s) = e−`
2
√
s(4−s) (7.1)

which arises in the context of T T̄ deformations. One of the peculiarities of this S-matrix
is that the associated density oscillates indefinitely with s:

ρT T̄ (s) = 2 sin2
(
`2
√
s(s− 4)

)
. (7.2)

But now recall that in CFT language the density ρ is given by the double discontinuity of
the correlator,

ρ(s) = lim
∆φ→∞

[
(1− z)2∆φdDisc+G(z)

] ∣∣∣∣
z= s−4

s

. (7.3)
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Generally we would expect therefore that dρ(s)/ds should instead decay with some power
related to the Regge behaviour of the correlator [48]. To make this expectation precise, we
can use the bounds on the correlator and its derivative derived in sections 6.2 and 6.3 to
find

d
dsρ(s) ≤ 4∆φ

s− 4 for s > 8 , (7.4)

where the bound holds up to exponentially small corrections in ∆φ. We should understand
this expression as telling us that ∆φ acts as a hidden UV cut-off, beyond which we must
have ρ(s) decay to a constant. S-matrices arising from a UV complete QFT must therefore
satisfy this constraint above some scale no larger than ∆φ. This makes sense: ∆φ = mRAdS

can also be thought of as an IR cutoff, and hence there should be no reason why high energy
processes should know about it. As an example, notice that any S-matrix expressed as an
arbitrary large (but finite) product of CDD factors satisfies this property.31 In contrast,
for general S-matrices with an essential singularity at infinity such as ST T̄ , the indefinite
oscillations in the density imply that there have to be corrections at a UV scale s ∼ ∆φ/`

2

if they are to arise from a CFT1/QFT2 system. Physically, one way of understanding how
an S-matrix can possibly fail this UV constraint is if it arises from a gravitational theory. In
this case there is indeed UV/IR mixing: we cannot scatter particles with arbitrarily large
energies while ignoring the arbitrarily large but finite size of the AdS box, since eventually
we can create black holes whose size grows with the center of mass energy. Thus our
argument suggests that essential singularities signal the presence of gravitational physics,
in agreement with the logic of [35].

There are several open questions and directions of research to pursue in the future.
The most important is to clarify the singularity structure in the presence of anomalous
thresholds. In the CFT these appear when the gap in the OPE is sufficiently small, causing
a catastrophic loss of control in the OPE data. We have conjectured that a resolution could
lie in an understanding of unitary solutions to crossing without identity and in particular
their flat space limit. It would be nice to understand what this means in practice, and
possible links to the observations based on the Mellin amplitude prescription made in [34],
for which the 1d Mellin amplitudes of [75] might prove useful.

An exciting direction to explore is scattering processes of higher numbers of particles,
with the most interesting being three-to-three. Firstly because analyticity properties in
this case are poorly understood, and secondly because of our map between extremal CFTs
and extremal S-matrices. Integrability can be formulated in terms of the Yang-Baxter
equation which expresses three-to-three scattering processes in terms of two-to-two, and it
would be nice to understand what these conditions mean for the CFT data.

It would also be interesting to generalize our study to CFT correlators of distinct
fields, which map onto S-matrices describing distinguishable particles. A special and rich
set of examples corresponds to S-matrices with global symmetry. In this case not only

31It is important to point out however that there should be extra consistency conditions in order for the
S-matrix to describe a UV complete theory. For the example of CDD factors at hand, one such condition
goes along the lines of not having more resonances than bound states in the theory (see [72, 73]).
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have S-matrix bootstrap studies been performed, but also CFT ones. Some of the S-
matrix components now have “left” cuts which are constrained by unitarity, and it would
be interesting to understand how these are determined by the CFT data. There are also S-
matrices saturating bounds with intricate analytic structure. It would be nice to understand
their CFT interpretation.
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A Polyakov blocks for ∆ < 2∆φ: real argument

In this subsection we perform the computation of Polyakov blocks with dimension ∆ < 2∆φ

for the special case where the cross-ratio w takes real values. The computation follows in
the footsteps of a similar one in [41]. Again, we set ∆ = ∆b. After a change of variables
we can rewrite a general functional action in terms of a single conformal block

Ω(∆b) = −


1
2 +i∞∫

1
2

dz
f(z)

2 −

1
2∫

1
2−i∞

dz
f(1− z)

2 +
1∫

1
2

dz g(z)−

1
2∫

0

dz g(1− z)

G∆b
(1−z|∆φ) .

(A.1)
In the large ∆φ limit with mb fixed the conformal block factor has a saddle point at
z = zb ≡ m2

b/4 with steepest descent direction now running along the imaginary axis. We
will therefore modify shift our contour, making use of the gluing condition (2.7) to obtain

Ω(∆b) = −

 zb+i∞∫
zb

dz
f(z)

2 −
zb∫

zb−i∞

dz
f(1− z)

2 +
1∫

zb

dz g(z)−
zb∫

0

dz g(1− z)

G∆b
(1−z|∆φ) .

(A.2)
Now we restrict to master functionals Ω±w(∆b). The first two integrals in the above equation
can be performed directly by the steepest descent method. Since the poles of f±w lie on
the real axis we don’t have to worry about the steepest descent contour crossing them.
Instead those contributions now effectively appear through the last two terms above, since
g±w (z) = ĝ±w (z)± δ(w− z), where the kernel ĝw(z) is exponentially suppressed with respect
to fw(z). That leads us to the expression

Ω±w(∆b) =
∆b,∆φ→∞

mb

∆φ

Izf±w (zb)
ãfree∆b

∓

 1∫
zb

dz δ(z − w)−
zb∫

0

dz δ(z − 1 + w)

G∆b
(1−z|∆φ) ,

(A.3)
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where

ãfree∆b
=

afree∆b

2 sin [π∆φ(2−mb)]
(≥ 0 for

√
2∆φ < ∆b < 2∆φ) . (A.4)

The last two terms with delta functions in (A.3) evaluate to different combinations of
individual conformal blocks, depending on the possible configurations between the saddle
point zb and the master functional parameter w. Using the relation between the Polyakov
blocks and the master functional actions we find:

P±∆b
(w) =

∆,∆b→∞

mb

π∆φã
free
∆b

√
w(1− w)√
zb(4− zb)

zb − 1/2
(zb − w)(w + zb − 1) + E∆b

(w|∆φ) (A.5)

with the crossing symmetric E∆b
satisfying:

E∆b
(w|∆φ) =


G∆b

(w|∆φ) 0 < w < min(zb, 1− zb)
0 1− zb < w < zb
G∆b

(1− w|∆φ) max(zb, 1− zb) < w < 1
G∆b

(w|∆φ) +G∆b
(1− w|∆φ) zb < w < 1− zb

(A.6)

This is in agreement with the results in the main text.

B The phase shift formula for Polyakov blocks

The goal of this section is to show that the phase shift formula applied to Polyakov blocks
leads to the same result as their flat space limit computed in section 2.2. Consider then

[P∆(z)−G∆(z)] = −
∞∑
n=0

[αn(∆)G∆n(zs) + βn(∆) ∂∆G∆n(zs)] (B.1)

We want to prove that

lim
∆φ→∞

lim
ε→0

[P∆(zs)−G∆(zs)] = ig2
√
s(s− 4)√

s∆(4− s∆)
2s∆ − 4

(s− s∆)(s− 4 + s∆) (B.2)

The sum over states localizes on those ∆n satisfying ∆n ∼ ∆φ

√
1− z. This means

that to compute the above we need to determine the functional actions in the limit where
n,∆φ →∞ with fixed ratio. We will do this relying on fact that we can write the Polyakov
block as a sum of Witten exchange diagrams:

P∆(z) = W
(S)
∆ (z) +W

(T )
∆ (z) +W

(U)
∆ (z) + n(∆)C(z) (B.3)

with some suitably chosen n(∆) and C(z) the Ψ4 contact term in AdS2. We have

C(z) =
∞∑
n=0

[anG∆n(z) + bn∂∆G∆n(z)] (B.4)

with

bn = afree∆n

(2n)!(∆φ)4
n(4∆φ − 1)2n

2(n!)2(2∆φ)2
n(2∆φ)2

2n
, an = 1

2∂nbn (B.5)
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We begin by applying the phase shift formula to the contact term. We begin by rearranging

C(z) =
∞∑
n=0

{(
an
afree∆n

−
∂na

free
∆n

2afree∆n

)
afree∆n

G∆n(z) + bn
afree∆n

∂∆
[
afree∆n

G∆n(z)
]}

(B.6)

In the flat space limit the second set of terms dominate. Using the asymptotic form of
conformal blocks (2.20) we find

C(zs) ∼
−iπ√
s(s− 4)

, (B.7)

with s > 4, up to an irrelevant overall constant. The s-channel exchange diagram is simply
related to the contact diagram by the action of the Casimir operator (see e.g [61]). We
have

W
(S)
∆ (zs) ∼

∞∑
n=0

β
(S)
n (∆)
afree∆n

∂∆
[
afree∆n

G∆n(z)
]

(B.8)

with β(S)
n ∼ bn/[∆(∆− 1)−∆n(∆n − 1)]. Including the precise normalisation and taking

the flat space limit one finds

W
(S)
∆ (zs) = −i 2√s∆

π∆φã
free
∆

√
s∆(4− s∆)√
s(s− 4)

1
s− s∆

. (B.9)

Doing the same computation for the other channels is not trivial, since the OPE coefficients
are not known in closed form for general n,∆φ. However, we do know that whatever the
phase shift formula gives has to be a crossing symmetric expression, so we can simply sum
this result over images. This leaves the overall contact term to be fixed. Its coefficient is
determined by demanding that in the OPE expansion of P∆ we have β0(∆) = 0. In the flat
space limit this means that we must tune the contact term such that P∆(zs) is suppressed
at threshold, s→ 4. Doing this leads to the result:

ãfree∆ (P∆(zs)−G∆(zs)) = −i 2√s∆
∆φ

2
π

√
s(s− 4)√

s∆(4− s∆)
s∆ − 2

(s− s∆)(4− s− s∆) . (B.10)

This agrees on the nose with the limit of expression (3.28).

C Products of CFT correlators and S-matrices

Let us adress an apparent puzzle. Consider two extremal CFT correlators leading to two S-
matrices saturating unitarity. The product property (6.3) then guarantees that the product
CFT correlator will also lead to an extremal S-matrix simply given by the product of the
previous two. But this is surprising, since the product CFT correlator is not “extremal”,
in the sense that it will not only the two towers of operators in G1 and G2, but also new
operators arising from their tensor product. So naively these three towers of states, each
of which have different anomalous dimensions, should interfere with each other and lead
to |S| < 1. The solution as we is that there is a single subset of these operators which
dominates the OPE in the flat space limit.
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First note that if we say that G = G1G2 corresponds to a given ∆φ, then we must assign
x∆φ to G1 and (1 − x)∆φ to G2. For simplicity let us set x = 1/2. There are then three
towers of (non-identity) states with dimensions

∆1,n = ∆φ + 2n+ γ1(n)
∆2,m = ∆φ + 2m+ γ2(m)

∆nm,p = ∆1,n + ∆2,m + 2p
(C.1)

Then the statement is that the first two towers actually give subleading contributions to
the OPE in the flat space limit, while the third tower is then equivalent to a single tower
of states with dimensions ∆12 = 2∆φ + 2p + γ1(s) + γ2(s), leading to the expected result
S(s) = e−iπ[γ1(s)+γ2(s)].

Let us see how the OPE coefficients of each tower compare to afree∆ , introducing the
explicit dependence on ∆φ. Then at a given ∆ the first two towers give contributions of
the form afree∆ (∆φ/2)/afree∆ (∆φ) which is exponentially suppressed. The last tower has OPE
coefficients

afree∆1,n(∆φ/2)afree∆2,m(∆φ/2)× λ(∆1,∆2, p) (C.2)

with n+m+ p ∼ (∆− 2∆φ)/2 and the λ coefficients appear in

G∆1(z)G∆2(z) =
∞∑
p=0

λ(∆1,∆2, p)G∆1+∆2+2p,z(z) , (C.3)

and are given explicitly by

λ(∆1,∆2, p) =
2−4pΓ

(
p+ 1

2

)
(∆1)p (∆2)p

(
∆1 + ∆2 + 1

2

)
p−1

(∆1 + ∆2 + 1)2p−1
√
πΓ(p+ 1)

(
∆1 + 1

2

)
p

(
∆2 + 1

2

)
p

(
∆1 + ∆2 + 1

2

)
2p−1

(∆1 + ∆2 + 1)p−1

(C.4)
We begin by noting that λ decreases exponentially with p even for p,∆1,∆2 large, so the
dominant contribution to the sum comes from p ∼ 0. We are left with a sum over n,m,
but it is now easy to show

lim
∆φ→∞

afree∆1,n
(∆φ/2)afree∆−∆1,n

(∆φ/2)
afree∆

=
{

1 ∆1,n = ∆/2
0 otherwise (C.5)

and so the dominant contributions come from states with n ∼ m and p = 0, i.e. with

∆ = 2∆φ + 2n+ γ1(s) + γ2(s) . (C.6)

D Extremal CFTs for the CDD zero

There is a simple one parameter family of extremal CFT correlators obtained as a de-
formation of the generalized free boson.32 These correlators saturate an upper bound on

32See [42] and [69] for analytic and numerical studies.
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the OPE coefficient of an operator sitting at the gap ∆0 = 2∆φ + g, where g < 1, so
that each correlator is labeled by both g and ∆φ , i.e. G(z) ≡ Gg(z|∆φ). One finds both
numerically and analytically in perturbation theory that the spectrum of the correlator
Gg varies smoothly as we dial g away from zero, where the correlator matches the gen-
eralized free boson. By this we mean that not only no new states appear beyond those
already contained in the generalized free solution, but furthermore that the dimensions of
the states vary continuously with g. The deformation is relevant, in the sense that for any
fixed g < 1, anomalous dimensions of operators eventually decay to zero at high energies,
but as g → 1 the spectrum approaches that of a generalized free fermion. Another way of
putting it is that the same family can in principle be obtained as an irrelevant deformation
of the latter solution.

We will argue that in the limit ∆φ →∞ this family of extremal CFTs maps onto the
family of S-matrices described by a single CDD factor. This factor will be a zero or a
pole depending on g. For definiteness we will focus on the former case, and explain the
relationship to the latter in due course. That is, we claim:

SCFT(s) = Szero/pole
s0 (s) , SCFT(s) ≡ F [Gg(zs)] , (D.1)

where g is related to s0 and must be taken to scale with ∆φ in a precise way. The picture is
that for g/∆φ < 0 and fixed for large ∆φ we recover CDD pole, where as for 0 < g < 1, we
have a CDD zero, where in particular a finite position of the zero requires 1− g ∼ 1/

√
∆φ.

We can check this mapping perturbatively when g � 1. In this limit the CFT is a
small deformation of the free boson solution, and is described by a free boson in AdS2
with a small quartic contact interaction. The interaction shifts the dimensions of double
trace operators in the correlator, but does not introduce any new states to the theory. The
anomalous dimensions of operators are given by [42]

γn(∆φ) := ∆n − 2∆B
n = 2g (2n)!(∆φ)4

n(4∆φ − 1)2n
2(n!)2(2∆φ)2

n(2∆φ)2
2n

+O(g2) (D.2)

This leads to

γ(s) = 4g
√

2√
π∆φ

√
s(s− 4)

+O(g2) (D.3)

from which we can determine the S-matrix SCFT. Expanding it we find a perfect match
with Szero

s0 if we equate

√
s0(4− s0) =

√
2π
∆φ

g . (D.4)

which implies that in this regime s0 is parametrically close to threshold. Negative g requires
continuing s0 around the cut beginning at s = 4, which turns the CDD zero into a CDD
pole. Hence, in a certain sense, the second sheet of the S-matrix is the region 2∆φ < ∆ <

2∆φ + 1. The function γ(s) has an interesting form. The CFT computation which leads
to (D.2) requires that all anomalous dimensions are small. But this is true even when g
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is not parametrically small, as long as we are not too close to threshold s ∼ 4. Hence, for
finite g we should expect that

γ(s) = c(g)√
∆φs(s− 4)

,
√
s0(4− s0) = c(g)√

∆φ

(D.5)

The function c(g) captures the non-perturbative dynamics which are only relevant for
∆− 2∆φ = O(1) in the flat space limit. Unfortunately we do not have information about
this function beyond leading order.33 However, we expect that for any fixed g < 1, c(g)
remains finite, and hence the CFT family maps onto a single CDD zero parametrically
close to threshold.

Let us now assume the correspondence between SCFT and Szero
s0 is true to see what can

be learned about the mapping between s0 and g. Since g is the anomalous dimension of
operators close to threshold we impose the condition

Szero
s0 (s = 4 + ε) = g (D.6)

where ε = ε(g) should be parametrically small. In fact, we should expect ε = O(∆φ
−1). A

simple calculation yields √
s0(4− s0) =

√
ε(g) tan

(
πg

2

)
(D.7)

Consistency with our results at finite g < 1 determines√
∆φε(g) tan

(
πg

2

)
= c(g) . (D.8)

For small g this yields ε(g) = 8π/∆φ, i.e. ∆φε(g) is order one as expected. Assuming this
remains true for any g we see that to have a finite s0 requires taking g parametrically close
to unity, 1 − g = O(∆φ

−1/2). In this regime c(g) becomes large and perturbation theory
breaks down.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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