
HAL Id: hal-03629994
https://hal.science/hal-03629994

Preprint submitted on 4 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the Gap of AutoGraph Between Academia and
Industry: Analyzing AutoGraph Challenge at KDD Cup

2020
Zhen Xu, Lanning Wei, Huan Zhao, Rex Ying, Quanming Yao, Wei-Wei Tu,

Isabelle Guyon

To cite this version:
Zhen Xu, Lanning Wei, Huan Zhao, Rex Ying, Quanming Yao, et al.. Bridging the Gap of AutoGraph
Between Academia and Industry: Analyzing AutoGraph Challenge at KDD Cup 2020. 2022. �hal-
03629994�

https://hal.science/hal-03629994
https://hal.archives-ouvertes.fr

BRIDGING THE GAP OF AUTOGRAPH BETWEEN ACADEMIA AND
INDUSTRY: ANALYSING AUTOGRAPH CHALLENGE AT KDD CUP

2020

A PREPRINT

Zhen Xu
4Paradigm, China

xuzhen@4paradigm.com

Lanning Wei
4Paradigm, China

Institute of Computing Technology,
Chinese Academy of Sciences, China

weilanning@4paradigm.com

Huan Zhao
4Paradigm, China

zhaohuan@4paradigm.com

Rex Ying
Stanford University, USA
rexying@stanford.edu

Quanming Yao
Tsinghua University, China
qyaoaa@tsinghua.edu.cn

Wei-Wei Tu
4Paradigm, China

tuweiwei@4paradigm.com

Isabelle Guyon
ChaLearn, USA

LISN/INRIA/CNRS, University Paris-Saclay, France
guyon@chalearn.org

ABSTRACT

Graph structured data is ubiquitous in daily life and scientific areas and has attracted increasing
attention. Graph Neural Networks (GNNs) have been proved to be effective in modeling graph
structured data and many variants of GNN architectures have been proposed. However, much human
effort is often needed to tune the architecture depending on different datasets. Researchers naturally
adopt Automated Machine Learning on Graph Learning, aiming to reduce the human effort and
achieve generally top-performing GNNs, but their methods focus more on the architecture search. To
understand GNN practitioners’ automated solutions, we organized AutoGraph Challenge at KDD
Cup 2020, emphasizing on automated graph neural networks for node classification. We received
top solutions especially from industrial tech companies like Meituan, Alibaba and Twitter, which
are already open sourced on Github. After detailed comparisons with solutions from academia, we
quantify the gaps between academia and industry on modeling scope, effectiveness and efficiency,
and show that (1) academia AutoML for Graph solutions focus on GNN architecture search while
industrial solutions, especially the winning ones in the KDD Cup, tend to obtain an overall solution
(2) by neural architecture search only, academia solutions achieve on average 97.3% accuracy of
industrial solutions (3) academia solutions are cheap to obtain with several GPU hours while industrial
solutions take a few months’ labors. Academic solutions also contain much fewer parameters.

Keywords Graph Neural Networks · Automated Machine Learning · Data Challenge · Node Classification

1 Introduction

Graph structured data has been prominent in our life and various tasks are studied based upon, including recommendation
on Social Networks [Fan et al., 2019], traffic forecasting on road networks [Li et al., 2018], drug discovery on molecule
graph [Torng and Altman, 2019], link prediction on knowledge graph [Zhang et al., 2020], etc. Graph Neural Networks
(GNN) [Kipf and Welling, 2017] have been proved to be effective in modeling graph data and tremendous GNN
architectures are proposed every year [Hamilton et al., 2017, Xu et al., 2019, Wu et al., 2019, Veličković et al., 2018].

AutoGraph Analyses A PREPRINT

When applying GNN on graph structured data, expertise and domain knowledge is often required and numerous human
effort is required to adapt to new datasets. Automated Machine Learning (AutoML) [Hutter et al., 2019, Yao et al.,
2018] aims to reduce human efforts in deploying on various applications. AutoML, especially Neural Architecture
Search (NAS), has been successfully explored on tremendous applications, including Image Classification [Tan and Le,
2019], Object Detection [Tan et al., 2020], Semantic Segmentation [Nekrasov et al., 2019], Language Modeling [Jiang
et al., 2019], Time Series Forecasting [Chen et al., 2021], etc. As a result, researchers start to explore Automated Graph
Neural Networks (AutoGraph). AutoGraph researchers focus mainly on automatically designing GNN architectures
by NAS. The majority of these methods focus on designing the aggregation functions/layers in GNNs with different
search algorithms [Gao et al., 2020, Zhou et al., 2019, Yoon et al., 2020, Li et al., 2021, Peng et al., 2020]. Other
works, SANE [Zhao et al., 2021] and AutoGraph [Li and King, 2020], provide the extra layer-wise skip connections
design dimension; GNAS [Cai et al., 2021], DeepGNAS [Feng et al., 2021] and Policy-GNN [Lai et al., 2020] learn to
design the depth of GNNs. DiffMG [Ding et al., 2021] proposed to use NAS to search data-specific meta-graphs in
heterogeneous graph, and PAS [Wei et al., 2021] is proposed to search data-specific pooling architectures for graph
classification. The recently proposed F2GNN [Wei et al., 2022] method decouples the design of aggregation operations
with architecture topology, which is not considered before.

Despite the rich literature from academia, we ask the question of how AutoGraph is used in industrial practitioners.
Towards this end, we organize the first AutoGraph challenge at KDD Cup 2020, collaborated with 4Paradigm, ChaLearn
and Stanford University. This challenge asks participants to provide AutoGraph solutions for node classification
task. The code is executed by the platform on various graph datasets without any human intervention. Through the
AutoGraph challenge, we wish to push forward the limit of AutoGraph as well as to understand the gap between
industrial solutions and academia ones. In this paper, we first introduce the AutoGraph challenge setting. Then, we
present the winning solutions which are open sourced for everyone to use. At last, we experiment further and compare
with NAS methods for GNN methods and quantify empirically the gap with respect to top solutions. We conclude
three gaps of AutoGraph between academia and industry: Modeling scope, Effectiveness and Efficiency.

2 Challenge background

2.1 General statistics

The AutoGraph challenge lasted for two months. We received over 2200 submissions and more than 140 teams
from both high-tech companies (Ant Financial, Bytedance, Criteo, Meituan Dianping, Twitter, NTT DOCOMO, etc.)
and universities (MIT, UCLA, Tsinghua University, Peking University, Nanyang Technological University, National
University of Singapore, IIT Kanpur, George Washington University, etc.), coming from various countries. The top
three teams are: aister, PASA_NJU, qqerret. Top 10 winners’ information are shown in Table 1. The 1st winner
aister comes from Meituan Dianping, a company on location-based shopping and retailing service. This makes the
challenge particularly valuable since we can compare academic solutions with industrial best AutoGraph practices.

Table 1: General information about winning teams. Two teams tie on the 6th and 10th place. We list them both.
Place Team Name Institute Place Team Name Institute

1st aister Meituan Dianping

2nd PASA_NJU Nanjing University 6th SmartMN-THU
JunweiSun

Tsinghua University
Beijing University of Posts
and Telecommunications

3rd qqerret Ant Financial 8th u1234x1234 self-employed
4th common Alibaba Inc. 9th AML Ant Financial

5th PostDawn Zhejiang University 10th supergx
daydayup

Nanyang Tech. University
Hikvision Inc.

2.2 Problem formulation

The task of AutoGraph challenge is node classification under the transductive setting. Formally speaking, consider
a graph G = (V, E), where V = {v1, · · · , vN} is the set of nodes, i.e. |V| = N and E is the set of edges, which is
usually encoded by an adjacency matrix A ∈ [0, 1]N×N . Aij is positive if there is an edge connecting from node vi
to node vj . Additionally, a feature matrix X ∈ RN×D gives features of each node. Each node vi has a class label
yi ∈ L = {1, · · · , c}, resulting in the label vector Y ∈ LN . In the transductive semi-supervised node classification

2

AutoGraph Analyses A PREPRINT

task, part of labels are available during training and the goal is to learn a mapping F : V → L and predict classes of
unlabeled nodes.

2.3 Protocol

The protocol of AutoGraph challenge is straightforward. Participants should submit a python file containing a Model
class with required fit and predict method. We prepare an ingestion program reading dataset and instantiate the class
and call fit and predict method until prediction finishes or the running time has reached the budget limit. Ingestion
program outputs model’s prediction on test data and save to a shared space. Then, another scoring program reads the
prediction and ground truth and outputs evaluation scores. The execution of the program is totally on the challenge
platform. When developing locally, we provide script to call model.py file methods directly.

2.4 Metric

We use Accuracy (Acc) and Balanced Accuracy (BalAcc) as evaluation metrics, defined as

Acc =
1

|Ω|
∑

i∈Ω
1ŷi=yi , BalAcc =

1

|C|
∑

i∈C
Recalli,

where Ω is the set of test nodes indexes, yi is the ground truth label for node vi and ŷi is the predicted label, C is the
set of classes and Recalli is the recall score for class i. Accuracy (Acc) is used in the challenge to rank participants
and Balanced Accuracy (BalAcc) is applied for additional analyses since it takes into account the imbalanced label
distribution of datasets.

2.5 Datasets

Fifteen graph datasets were used during the competition: 5 public datasets were directly downloadable by the participants
so they could develop their solutions offline. Five feedback datasets were made available on the platform during the
feedback phase to evaluate AutoGraph algorithms on the public leaderboard. Finally, the AutoGraph algorithms were
evaluated with 5 private datasets, without human intervention. These dataset are quite diverse in domains, shapes,
density and other graph properties because we expect AutoGraph solutions to have good generalization ability. On the
other hands, we intentionally keep the characteristics of 5 feedback datasets and 5 private datasets similar to enable
transferability. We summarize dataset statistics in Table 2. The licenses and original sources of these datasets are also
provided1.

Table 2: Statistics of all datasets. “Avg Deg” is the average number of edges per node. “Directed” and “Weighted”
indicate the two properties of a graph. “Skewness” here is calculated by number of nodes in the largest class divided by
number of nodes in the smallest class.

Dataset Phase Domain #Node #Edge #Feature #Class Avg Deg Directed? Weighted? Skewness

a Public Citation 2.7K 5.3K 1.4K 7 1.9 F F 5
b Public Citation 3.3K 4.6K 3.7K 6 1.4 F F 3
c Public Social 10K 733K 0.6K 41 73.3 F F 81
d Public News 10K 2,917K 0.3K 20 291.7 T T 467
e Public Finance 7.5K 7.8K 0 3 1.0 F F 111

f Feedback Sales 10K 194K 0.7K 10 19.4 F F 18
g Feedback Citation 10K 41K 8K 5 4.1 F F 6
h Feedback Medicine 10K 2,461K 0.3K 23 246.1 T T 1,773
i Feedback Finance 15K 16K 0 3 1.1 F F 213
j Feedback Medicine 11K 22K 0 9 2.0 F F 227

k Private Sales 8K 119K 0.7K 8 14.9 F F 6
l Private Citation 10K 40K 7K 15 4 F F 34
m Private News 10K 1,425K 0.3K 8 142.5 T T 360
n Private Finance 14K 22K 0 10 1.6 F F 61
o Private Social 12K 19K 0 19 1.6 F F 62

1https://github.com/AutoML-Research/AutoGraph-KDDCup2020

3

https://github.com/AutoML-Research/AutoGraph-KDDCup2020

AutoGraph Analyses A PREPRINT

Figure 1: Illustraion of AutoGraph scope. Industrial people provide a full pipeline solution that covers from data
preprocessing to evaluation. Academic researchers focus mainly on model architecture and hyperparameter optimization.

3 Solutions

In this part, we introduce various methods suitable for the AutoGraph challenge, including the provided challenge
baseline and solutions from top-3 winners. We conclude the first gap at the end.

Baselines (GCN(L2)). In the provided baselines, there is no feature engineering except for using the raw node features.
For graph without node features, e.g. dataset i,j, one hot encoding is used to unroll the node lists to a dummy feature
table. During model training, a MLP is first used to map node features to the same embedding dimension. Then a two
layer vanilla GCN is applied for learning node embeddings. Another MLP with softmax outputs the final classification.
Dropout is used. All the hyperparameters are fixed by experience. No time management since the model is simple and
one full training will not cost more than the allowed time budget.

1st placed winner. The 1st winner is from team aister. Their code is open source here2. The authors use four GNN
models, two spatial ones: GraphSage [Hamilton et al., 2017] and GAT [Veličković et al., 2018], two spectral ones:
GCN [Kipf and Welling, 2017] and TAGConv [Du et al., 2017] to process node features collectively. For each GNN
model, a heavy search is applied offline to determining the important hyperparameters as well as the boundaries. In
the online stage, they use a smaller search space to determine the hyperparameters. In order to accelerate the search,
they do not fully train each configuration but instead early stop in 16 epochs if the validation loss is not satisfactory.
Additional features are used: node degrees, distribution of 1-hop and 2-hop neighbor nodes’ features, etc.

2nd place winner. The 2nd winner is from team PASA_NJU. Their code is open source here3. They also split the
solution in two stages: offline stage and online stage. In the offline stage, the authors train a decision tree based on
public data and other self collected datasets to classify graph type into one of three classes. Then they use GraphNAS
[Gao et al., 2020] to search massively optimal GNN architectures including aggregation function, activation, number of
heads in attention, hidden units, etc. In the online stage, the authors rapidly classify the dataset and fine tune the offline
searched model.

3rd place winner. The 3rd winner is from team qqerret. Their code is open source here4. The core model is a variant
of spatial based GNN, which aggregates 2-hop neighbors of a node with additional linear parts for the node itself.
Basically, the new embedding of node i is ĥ(i) =

∑
j∈N2(i)

ajh(j) + α(wh(i) + b). Additionally, in the GNN output
layer, a few features per node are concatenated for final fully connected layer, including number of edges, whether this
node connects to a central node who has a lot of edges, label distribution of 1-hop neighbor nodes, and label distribution
of 2-hop neighboring nodes.

2https://github.com/aister2020/KDDCUP_2020_AutoGraph_1st_Place
3https://github.com/Unkrible/AutoGraph2020
4https://github.com/white-bird/kdd2020_GCN

4

https://github.com/aister2020/KDDCUP_2020_AutoGraph_1st_Place
https://github.com/Unkrible/AutoGraph2020
https://github.com/white-bird/kdd2020_GCN

AutoGraph Analyses A PREPRINT

4 Results

We conduct additional experiments after the AutoGraph challenge to further analyze the results. We first reproduce
winning solutions and then we compare with academia solutions. Three gaps are concluded. The first gap is presented
as follows and two other gaps are concluded in Sec 4.2.

Gap #1: Modeling scope is the first gap of AutoGraph between academia and industry. In academia, researchers
focus mainly on Neural Architecture Search methods to find better GNN architectures. Their contributions differ in
their search space, search strategy and evaluation methods. However, industrial solutions, e.g. 1st solution, focus more
on the feature engineering and model ensemble. For GNN architectures, they prefer existing found ones with little
modification. In other words, industrial people provide a full pipeline solution including data preprocessing, feature
engineering, model architecture, hyperparameter optimization, model ensemble, while academia researchers focus
on model architecture part only. The gap is also illustrated in Figure 1. It might be an interesting direction for both
groups to merge, i.e. AutoGraph researchers could explore the automated feature engineering, automated ensemble and
AutoGraph practitioners could adopt NAS methods for GNN.

4.1 Reproducing winning solutions

We reproduce all winning methods on all the datasets and include their results in Table 3. We observe that all three
winning solutions are close in performance and all significantly beat the GCN baselines. On the other hand, in the
AutoGraph challenge, due to the nature of the competition, we rank methods based on accuracy, we state that this is not
sufficient to evaluate comprehensively solutions from the scientific perspective. We add balanced accuracy here just to
show that for some methods that show close performance in accuracy, they could diverge a lot in balanced accuracy.
Regarding both accuracy and balanced accuracy, we conclude that 1st solution which comes from Meituan Dianping
Company, is indeed best among top winners. Thus, we will later use their solutions for comparing with academia
solutions. These winning solutions are already open sourced, which are reproducible and lower the barriers of using
AutoGraph.

Table 3: Accuracy and Balanced accuracy of top methods on all datasets (%). Baseline is a two layer GCN.
Dataset Phase Baseline (GCN(L2)) 1st solution 2nd solution 3rd solution

Acc BalAcc Acc BalAcc Acc BalAcc Acc BalAcc

a Public 85.7 84.9 88.5 87.8 88.2 87.2 87.2 85.5
b Public 71.4 67.8 75.2 71.2 75.8 71.2 75.6 69.0
c Public 86.5 72.0 94.3 87.5 94.2 90.9 95.4 91.3
d Public 93.7 6.1 96.5 48.7 95.1 28.8 94.6 21.0
e Public 59.6 38.8 88.7 92.8 88.5 90.7 88.8 92.8
f Feedback 86.6 78.2 92.8 92.1 92.3 92.1 92.4 91.4
g Feedback 94.7 92.8 95.3 93.5 95.6 93.8 95.8 94.2
h Feedback 90.4 8.8 93.5 26.3 92.2 17.6 92.1 16.6
i Feedback 88.2 59.2 88.4 87.5 88.4 92.6 88.5 91.1
j Feedback 90.7 68.1 95.9 89.0 96.1 93.7 96.6 93.3

k Private 93.5 92.2 95.5 94.4 95.5 94.4 94.8 93.1
l Private 90.9 84.5 94.9 92.6 94.7 91.8 94.5 92.6

m Private 85.5 24.5 98.1 79.7 95.7 69.0 98.0 79.4
n Private 85.6 47.3 99.0 97.3 99.0 98.4 98.9 97.0
o Private 49.6 15.6 91.0 84.6 91.3 90.6 91.4 88.5

4.2 Neural Architecture Search for GNN

We further adopt NAS methods for GNN and compare with the baseline and 1st solution coming from industry. We
choose the recent F2GNN [Wei et al., 2022], which searches for data-specific GNN topology, in our experiment. To
compare fairly with GCN baselines, we fix the aggregation to GCN and search only the GNN topology, which we call
F2GCN. Since F2GCN requires at least 4 layers, we also run a 4 layer GCN baseline for better comparison. The results
are given in Table 4.

5

AutoGraph Analyses A PREPRINT

Dataset GCN(L2) GCN(L4) F2GCN(L4) 1st solution

a 85.7 84.4 84.4 (95.4) 88.5 (100)
b 71.4 70.5 71.3 (94.8) 75.2 (100)
c 86.5 82.3 92.8 (98.4) 94.3 (100)
d 93.7 93.6 93.9 (97.3) 96.5 (100)
e 59.6 87.5 88.4 (99.7) 88.7 (100)

f 86.6 87.6 92.1 (99.2) 92.8 (100)
g 94.7 93.4 95.3 (100) 95.3 (100)
h 90.4 90.3 90.1 (96.4) 93.5 (100)
i 88.2 87.6 88.3 (99.9) 88.4 (100)
j 90.7 83.6 95.3 (99.4) 95.9 (100)

k 93.5 93.2 93.4 (97.9) 95.5 (100)
l 90.9 89.1 92.9 (97.9) 94.9 (100)

m 85.5 86.1 86.1 (87.8) 98.1 (100)
n 85.6 95.2 96.7 (97.7) 99.0 (100)
o 49.6 71.8 88.8 (97.6) 91.0 (100)

Avg - (97.3) - (100)

Table 4: Accuracy comparison of GCN baselines, F2GCN and
industrial best solution (%). L2, L4 means 2 and 4 layers for the
GNN architecture. Numbers in parentheses are relative accuracy
w.r.t 1st solution. We regard 1st solution as 100%. Last line is the
average percentage.

Figure 2: Accuracy improvement with respect
to baseline.

Gap #2: Effectiveness is the second gap of AutoGraph between academia and industry. We observe from Table
4 and Figure 2 that all baselines and F2GCN methods are not as good as 1st winning solution. However, for many
datasets, e.g. e, f, g, i, j, F2GCN is very close to the best industrial solution. On average, F2GCN which focuses only on
architecture search, reaches 97.3% of best solution. Note that the 1st solution constructs additional node features and
uses multiple GNN architectures for ensemble while F2GCN does not use any feature engineering or model ensemble.
This shows the effectiveness of winner’s engineering practices as well as F2GCN’s adaptive NAS search. Winning
teams also have access to public datasets and public leaderboard to iteratively fine tune their methods. F2GCN does not
assume any prior knowledge of the datasets, which shows further its effectiveness.

To better understand the solutions, we calculate the number of parameters of baseline, F2GCN, and 1st solution, as
shown in Table 5.

Gap #3: Efficiency is the third gap of AutoGraph between academia and industry. From Table 5 and Figure 3,
F2GCN uses significantly fewer parameters than the best industrial solution on most datasets (13 out of 15). On average,
F2GCN consumes 45.1% of the 1st solution in terms of parameter size, which is quite resource efficient. Note that
feature engineering and ensemble do not contain additional parameters and basically, F2GCN searches one GNN model
to compete with ensemble of 4 types of GNN models in 1st solution. As for time devotion, winning solutions come
from a team’s months of work, which consists of 5 or more members. F2GCN only runs for a few GPU hours per
dataset, demonstrating its time efficiency compared to industrial solutions.

6

AutoGraph Analyses A PREPRINT

Dataset GCN(L2) F2GCN(L4) 1st solution

a 0.023 0.908 (75.7) 1.199 (100)
b 0.059 0.700 (44.2) 1.583 (100)
c 0.011 1.598 (98.0) 1.631 (100)
d 0.006 0.042 (3.20) 1.296 (100)
e 0.121 0.354 (31.8) 1.114 (100)

f 0.013 0.039 (2.30) 1.688 (100)
g 0.134 0.313 (13.1) 2.389 (100)
h 0.006 0.271 (20.9) 1.294 (100)
i 0.241 2.269 (113.0) 2.013 (100)
j 0.171 0.834 (60.6) 1.376 (100)

k 0.012 1.478 (108.0) 1.395 (100)
l 0.108 0.614 (25.6) 2.395 (100)

m 0.005 0.010 (0.80) 1.278 (100)
n 0.218 0.488 (27.8) 1.756 (100)
o 0.192 0.822 (52.5) 1.565 (100)

Avg - (45.1) - (100)

Table 5: Number of parameters of baseline, 1st solu-
tion and F2GCN (Unit: Millions). Numbers in paren-
theses are relative # parameters w.r.t 1st solution. We
regard 1st solution as 100%. Last line is the average
percentage.

Figure 3: Comparison on number of parameters of baseline,
1st solution and F2GCN.

5 Conclusion

We organized the first Automated Graph Learning (AutoGraph) Challenge at KDD Cup 2020. We presented in this paper
its settings, dataset, and solutions, which are all open sourced. We ran additional post-challenge experiments to compare
the baseline (Graph Convolution Network (GCN)), the winning solution (feature engineering-based ensemble of various
Graph Neural Networks), and a recent and efficient Neural Architecture Search (NAS) for GNN method called F2GCN.
This paper provides results that could bridge the gap between academic research and industry practices, by correcting
bias favoring certain approaches. This gap is currently at 3 aspects: Gap #1 modeling scope. (academia focuses more
on model-centric approaches, emphasizing NAS; industry emphasizes data centric approaches and feature engineering);
Gap #2 effectiveness. (academic solutions are perceived by industry to be less effective than their industry counterpart);
Gap #3 efficiency. (academic solutions are perceived to be parsimonious or slower than industry solutions). Our results
indicate that the “academic” NAS-based approach that we applied attains performances closely matching those of the
winning industry solution, while being both faster and more parsimonious in number of parameters, therefore closing
Gap #2 and #3. Moreover, we hope that these results will help reducing Gap #1, by encouraging industry practitioners
to apply NAS methods (and particularly F2GCN), eventually combining the best of both approaches. We believe the
results we obtained are significant, since they involve a benchmark on 15 datasets.

Acknowledgments

Funding and support have been received by several research grants, including 4Paradigm, Big Data Chair of Excellence
FDS Paris-Saclay, Paris Région Ile-de-France, and ANR Chair of Artificial Intelligence HUMANIA ANR-19-CHIA-
0022, ChaLearn, Microsoft, Google. We acknowledge the following people for helping organize AutoGraph challenge:
Xiawei Guo, Shouxiang Liu. We also appreciate the following people and institutes for open sourcing datasets which
are used in our use cases: Andrew McCallum, C. Lee Giles, Ken Lang, Tom Mitchell, William L. Hamilton, Maximilian

7

AutoGraph Analyses A PREPRINT

Mumme, Oleksandr Shchur, David D. Lewis, William Hersh, Just Research and Carnegie Mellon University, NEC
Research Institute, Carnegie Mellon University, Stanford University, Technical University of Munich, AT&T Labs,
Oregon Health Sciences University.

References
Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for

social recommendation. In WWW, 2019.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network: Data-driven
traffic forecasting. In ICLR, 2018.

Wen Torng and Russ B. Altman. Graph convolutional neural networks for predicting drug-target interactions. Journal
of Chemical Information and Modeling, 2019.

Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhi-Ping Shi, Hui Xiong, and Qing He. Relational graph neural network
with hierarchical attention for knowledge graph completion. In AAAI, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. NIPS, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In ICLR, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In ICML, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In ICLR, 2018.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems, challenges.
Springer Nature, 2019.

Quanming Yao, Mengshuo Wang, Hugo Jair Escalante, Isabelle Guyon, Yi-Qi Hu, Yu-Feng Li, Wei-Wei Tu, Qiang
Yang, and Yang Yu. Taking human out of learning applications: A survey on automated machine learning. 2018.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In ICML,
2019.

Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection. In CVPR, 2020.

Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian D. Reid. Fast neural architecture search of compact semantic
segmentation models via auxiliary cells. In CVPR, 2019.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. Improved differentiable architecture search for
language modeling and named entity recognition. In EMNLP-IJCNLP, 2019.

Donghui Chen, Ling Chen, Zongjiang Shang, Youdong Zhang, Bo Wen, and Chenghu Yang. Scale-aware neural
architecture search for multivariate time series forecasting. CoRR, 2021.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search. In IJCAI, 2020.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of graph neural
networks. arXiv preprint arXiv:1909.03184, 2019.

Minji Yoon, Théophile Gervet, Bryan Hooi, and Christos Faloutsos. Autonomous graph mining algorithm search with
best speed/accuracy trade-off. ICDM, 2020.

Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. One-shot graph ne‘ural architecture search with dynamic search
space. 2021.

Wei Peng, Xiaopeng Hong, Haoyu Chen, and Guoying Zhao. Learning graph convolutional network for skeleton-based
human action recognition by neural searching. In AAAI, 2020.

Huan Zhao, Quanming Yao, and Weiwei Tu. Search to aggregate neighborhood for graph neural network. In ICDE,
2021.

Yaoman Li and Irwin King. Autograph: Automated graph neural network. In ICONIP, 2020.

Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang, Zheng-Jun Zha, Li Su, and Qingming Huang. Rethinking graph
neural network search from message-passing. CVPR, 2021.

Guosheng Feng, Chunnan Wang, and Hongzhi Wang. Search for deep graph neural networks. arXiv preprint
arXiv:2109.10047, 2021.

8

AutoGraph Analyses A PREPRINT

Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. Policy-gnn: Aggregation optimization for graph neural
networks. In KDD, 2020.

Yuhui Ding, Quanming Yao, Huan Zhao, and Tong Zhang. Diffmg: Differentiable meta graph search for heterogeneous
graph neural networks. In KDD, 2021.

Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for graph classification. In
CIKM, 2021.

Lanning Wei, Huan Zhao, and Zhiqiang He. Designing the topology of graph neural networks: A novel feature fusion
perspective. 2022.

Jian Du, Shanghang Zhang, Guanhang Wu, José M. F. Moura, and Soummya Kar. Topology adaptive graph convolutional
networks. 2017.

9

	Introduction
	Challenge background
	General statistics
	Problem formulation
	Protocol
	Metric
	Datasets

	Solutions
	Results
	Reproducing winning solutions
	Neural Architecture Search for GNN

	Conclusion

