A Preprint

Zhen Xu
email: xuzhen@4paradigm.com

Lanning Wei
email: weilanning@4paradigm.com

Huan Zhao
email: zhaohuan@4paradigm.com

Rex Ying
email: rexying@stanford.edu

Quanming Yao

Wei-Wei Tu
email: tuweiwei@4paradigm.com

Isabelle Guyon Chalearn

BRIDGING THE GAP OF AUTOGRAPH BETWEEN ACADEMIA AND INDUSTRY: ANALYSING AUTOGRAPH CHALLENGE AT KDD CUP 2020

Keywords: Graph Neural Networks, Automated Machine Learning, Data Challenge, Node Classification

Graph structured data is ubiquitous in daily life and scientific areas and has attracted increasing attention. Graph Neural Networks (GNNs) have been proved to be effective in modeling graph structured data and many variants of GNN architectures have been proposed. However, much human effort is often needed to tune the architecture depending on different datasets. Researchers naturally adopt Automated Machine Learning on Graph Learning, aiming to reduce the human effort and achieve generally top-performing GNNs, but their methods focus more on the architecture search. To understand GNN practitioners' automated solutions, we organized AutoGraph Challenge at KDD Cup 2020, emphasizing on automated graph neural networks for node classification. We received top solutions especially from industrial tech companies like Meituan, Alibaba and Twitter, which are already open sourced on Github. After detailed comparisons with solutions from academia, we quantify the gaps between academia and industry on modeling scope, effectiveness and efficiency, and show that (1) academia AutoML for Graph solutions focus on GNN architecture search while industrial solutions, especially the winning ones in the KDD Cup, tend to obtain an overall solution (2) by neural architecture search only, academia solutions achieve on average 97.3% accuracy of industrial solutions (3) academia solutions are cheap to obtain with several GPU hours while industrial solutions take a few months' labors. Academic solutions also contain much fewer parameters.

Introduction

Graph structured data has been prominent in our life and various tasks are studied based upon, including recommendation on Social Networks [START_REF] Fan | Graph neural networks for social recommendation[END_REF], traffic forecasting on road networks [START_REF] Li | Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[END_REF], drug discovery on molecule graph [START_REF] Torng | Graph convolutional neural networks for predicting drug-target interactions[END_REF], link prediction on knowledge graph [START_REF] Zhang | Relational graph neural network with hierarchical attention for knowledge graph completion[END_REF], etc. Graph Neural Networks (GNN) [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] have been proved to be effective in modeling graph data and tremendous GNN architectures are proposed every year [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF][START_REF] Xu | How powerful are graph neural networks?[END_REF][START_REF] Wu | Simplifying graph convolutional networks[END_REF][START_REF] Veličković | Graph attention networks[END_REF].

When applying GNN on graph structured data, expertise and domain knowledge is often required and numerous human effort is required to adapt to new datasets. Automated Machine Learning (AutoML) [START_REF] Hutter | Automated machine learning: methods, systems, challenges[END_REF][START_REF] Yao | Taking human out of learning applications: A survey on automated machine learning[END_REF] aims to reduce human efforts in deploying on various applications. AutoML, especially Neural Architecture Search (NAS), has been successfully explored on tremendous applications, including Image Classification [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], Object Detection [START_REF] Tan | Efficientdet: Scalable and efficient object detection[END_REF], Semantic Segmentation [START_REF] Nekrasov | Fast neural architecture search of compact semantic segmentation models via auxiliary cells[END_REF], Language Modeling [START_REF] Jiang | Improved differentiable architecture search for language modeling and named entity recognition[END_REF], Time Series Forecasting [START_REF] Chen | Scale-aware neural architecture search for multivariate time series forecasting[END_REF], etc. As a result, researchers start to explore Automated Graph Neural Networks (AutoGraph). AutoGraph researchers focus mainly on automatically designing GNN architectures by NAS. The majority of these methods focus on designing the aggregation functions/layers in GNNs with different search algorithms [START_REF] Gao | Graph neural architecture search[END_REF][START_REF] Zhou | Auto-gnn: Neural architecture search of graph neural networks[END_REF][START_REF] Yoon | Autonomous graph mining algorithm search with best speed/accuracy trade-off[END_REF], Li et al., 2021, Peng et al., 2020]. Other works, SANE [START_REF] Zhao | Search to aggregate neighborhood for graph neural network[END_REF] and AutoGraph [START_REF] Li | Autograph: Automated graph neural network[END_REF], provide the extra layer-wise skip connections design dimension; GNAS [START_REF] Cai | Rethinking graph neural network search from message-passing[END_REF], DeepGNAS [START_REF] Feng | Search for deep graph neural networks[END_REF] and Policy-GNN [START_REF] Lai | Policy-gnn: Aggregation optimization for graph neural networks[END_REF] learn to design the depth of GNNs. DiffMG [START_REF] Ding | Diffmg: Differentiable meta graph search for heterogeneous graph neural networks[END_REF] proposed to use NAS to search data-specific meta-graphs in heterogeneous graph, and PAS [START_REF] Wei | Pooling architecture search for graph classification[END_REF] is proposed to search data-specific pooling architectures for graph classification. The recently proposed F 2 GNN [START_REF] Wei | Designing the topology of graph neural networks: A novel feature fusion perspective[END_REF] method decouples the design of aggregation operations with architecture topology, which is not considered before.

Despite the rich literature from academia, we ask the question of how AutoGraph is used in industrial practitioners. Towards this end, we organize the first AutoGraph challenge at KDD Cup 2020, collaborated with 4Paradigm, ChaLearn and Stanford University. This challenge asks participants to provide AutoGraph solutions for node classification task. The code is executed by the platform on various graph datasets without any human intervention. Through the AutoGraph challenge, we wish to push forward the limit of AutoGraph as well as to understand the gap between industrial solutions and academia ones. In this paper, we first introduce the AutoGraph challenge setting. Then, we present the winning solutions which are open sourced for everyone to use. At last, we experiment further and compare with NAS methods for GNN methods and quantify empirically the gap with respect to top solutions. We conclude three gaps of AutoGraph between academia and industry: Modeling scope, Effectiveness and Efficiency.

2 Challenge background

General statistics

The AutoGraph challenge lasted for two months. We received over 2200 submissions and more than 140 teams from both high-tech companies (Ant Financial, Bytedance, Criteo, Meituan Dianping, Twitter, NTT DOCOMO, etc.) and universities (MIT, UCLA, Tsinghua University, Peking University, Nanyang Technological University, National University of Singapore, IIT Kanpur, George Washington University, etc.), coming from various countries. The top three teams are: aister, PASA_NJU, qqerret. Top 10 winners' information are shown in Table 1. The 1st winner aister comes from Meituan Dianping, a company on location-based shopping and retailing service. This makes the challenge particularly valuable since we can compare academic solutions with industrial best AutoGraph practices.

Table 1: General information about winning teams. Two teams tie on the 6th and 10th place. We list them both.

Place Team Name Institute Place Team

Problem formulation

The task of AutoGraph challenge is node classification under the transductive setting. Formally speaking, consider a graph G = (V, E), where V = {v 1 , • • • , v N } is the set of nodes, i.e. |V| = N and E is the set of edges, which is usually encoded by an adjacency matrix A ∈ [0, 1] N ×N . A ij is positive if there is an edge connecting from node v i to node v j . Additionally, a feature matrix X ∈ R N ×D gives features of each node. Each node v i has a class label y i ∈ L = {1, • • • , c}, resulting in the label vector Y ∈ L N . In the transductive semi-supervised node classification task, part of labels are available during training and the goal is to learn a mapping F : V → L and predict classes of unlabeled nodes.

Protocol

The protocol of AutoGraph challenge is straightforward. Participants should submit a python file containing a Model class with required fit and predict method. We prepare an ingestion program reading dataset and instantiate the class and call fit and predict method until prediction finishes or the running time has reached the budget limit. Ingestion program outputs model's prediction on test data and save to a shared space. Then, another scoring program reads the prediction and ground truth and outputs evaluation scores. The execution of the program is totally on the challenge platform. When developing locally, we provide script to call model.py file methods directly.

Metric

We use Accuracy (Acc) and Balanced Accuracy (BalAcc) as evaluation metrics, defined as

Acc = 1 |Ω| i∈Ω 1 ŷi=yi , BalAcc = 1 |C| i∈C Recall i ,
where Ω is the set of test nodes indexes, y i is the ground truth label for node v i and ŷi is the predicted label, C is the set of classes and Recall i is the recall score for class i. Accuracy (Acc) is used in the challenge to rank participants and Balanced Accuracy (BalAcc) is applied for additional analyses since it takes into account the imbalanced label distribution of datasets.

Datasets

Fifteen graph datasets were used during the competition: 5 public datasets were directly downloadable by the participants so they could develop their solutions offline. Five feedback datasets were made available on the platform during the feedback phase to evaluate AutoGraph algorithms on the public leaderboard. Finally, the AutoGraph algorithms were evaluated with 5 private datasets, without human intervention. These dataset are quite diverse in domains, shapes, density and other graph properties because we expect AutoGraph solutions to have good generalization ability. On the other hands, we intentionally keep the characteristics of 5 feedback datasets and 5 private datasets similar to enable transferability. We summarize dataset statistics in Table 2. The licenses and original sources of these datasets are also provided1 .

Solutions

In this part, we introduce various methods suitable for the AutoGraph challenge, including the provided challenge baseline and solutions from top-3 winners. We conclude the first gap at the end.

Baselines (GCN(L2)). In the provided baselines, there is no feature engineering except for using the raw node features.

For graph without node features, e.g. dataset i,j, one hot encoding is used to unroll the node lists to a dummy feature 1st placed winner. The 1st winner is from team aister. Their code is open source here2 . The authors use four GNN models, two spatial ones: GraphSage [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF] and GAT [START_REF] Veličković | Graph attention networks[END_REF], two spectral ones: GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] and TAGConv [START_REF] Du | Topology adaptive graph convolutional networks[END_REF] to process node features collectively. For each GNN model, a heavy search is applied offline to determining the important hyperparameters as well as the boundaries. In the online stage, they use a smaller search space to determine the hyperparameters. In order to accelerate the search, they do not fully train each configuration but instead early stop in 16 epochs if the validation loss is not satisfactory. Additional features are used: node degrees, distribution of 1-hop and 2-hop neighbor nodes' features, etc.

2nd place winner. The 2nd winner is from team PASA_NJU. Their code is open source here3 . They also split the solution in two stages: offline stage and online stage. In the offline stage, the authors train a decision tree based on public data and other self collected datasets to classify graph type into one of three classes. Then they use GraphNAS [START_REF] Gao | Graph neural architecture search[END_REF] to search massively optimal GNN architectures including aggregation function, activation, number of heads in attention, hidden units, etc. In the online stage, the authors rapidly classify the dataset and fine tune the offline searched model.

3rd place winner. The 3rd winner is from team qqerret. Their code is open source here4 . The core model is a variant of spatial based GNN, which aggregates 2-hop neighbors of a node with additional linear parts for the node itself.

Basically, the new embedding of node i is ĥ(i) = j∈N2(i) a j h(j) + α(wh(i) + b). Additionally, in the GNN output layer, a few features per node are concatenated for final fully connected layer, including number of edges, whether this node connects to a central node who has a lot of edges, label distribution of 1-hop neighbor nodes, and label distribution of 2-hop neighboring nodes.

Results

We conduct additional experiments after the AutoGraph challenge to further analyze the results. We first reproduce winning solutions and then we compare with academia solutions. Three gaps are concluded. The first gap is presented as follows and two other gaps are concluded in Sec 4.2.

Gap #1: Modeling scope is the first gap of AutoGraph between academia and industry. In academia, researchers focus mainly on Neural Architecture Search methods to find better GNN architectures. Their contributions differ in their search space, search strategy and evaluation methods. However, industrial solutions, e.g. 1st solution, focus more on the feature engineering and model ensemble. For GNN architectures, they prefer existing found ones with little modification. In other words, industrial people provide a full pipeline solution including data preprocessing, feature engineering, model architecture, hyperparameter optimization, model ensemble, while academia researchers focus on model architecture part only. The gap is also illustrated in Figure 1. It might be an interesting direction for both groups to merge, i.e. AutoGraph researchers could explore the automated feature engineering, automated ensemble and AutoGraph practitioners could adopt NAS methods for GNN.

Reproducing winning solutions

We reproduce all winning methods on all the datasets and include their results in Table 3. We observe that all three winning solutions are close in performance and all significantly beat the GCN baselines. On the other hand, in the AutoGraph challenge, due to the nature of the competition, we rank methods based on accuracy, we state that this is not sufficient to evaluate comprehensively solutions from the scientific perspective. We add balanced accuracy here just to show that for some methods that show close performance in accuracy, they could diverge a lot in balanced accuracy.

Regarding both accuracy and balanced accuracy, we conclude that 1st solution which comes from Meituan Dianping Company, is indeed best among top winners. Thus, we will later use their solutions for comparing with academia solutions. These winning solutions are already open sourced, which are reproducible and lower the barriers of using AutoGraph. We further adopt NAS methods for GNN and compare with the baseline and 1st solution coming from industry. We choose the recent F 2 GNN [START_REF] Wei | Designing the topology of graph neural networks: A novel feature fusion perspective[END_REF], which searches for data-specific GNN topology, in our experiment. To compare fairly with GCN baselines, we fix the aggregation to GCN and search only the GNN topology, which we call F 2 GCN. Since F 2 GCN requires at least 4 layers, we also run a 4 layer GCN baseline for better comparison. The results are given in Table 4. Gap #2: Effectiveness is the second gap of AutoGraph between academia and industry. We observe from Table 4 and Figure 2 that all baselines and F 2 GCN methods are not as good as 1st winning solution. However, for many datasets, e.g. e, f, g, i, j, F 2 GCN is very close to the best industrial solution. On average, F 2 GCN which focuses only on architecture search, reaches 97.3% of best solution. Note that the 1st solution constructs additional node features and uses multiple GNN architectures for ensemble while F 2 GCN does not use any feature engineering or model ensemble. This shows the effectiveness of winner's engineering practices as well as F 2 GCN's adaptive NAS search. Winning teams also have access to public datasets and public leaderboard to iteratively fine tune their methods. F 2 GCN does not assume any prior knowledge of the datasets, which shows further its effectiveness.

To better understand the solutions, we calculate the number of parameters of baseline, F 2 GCN, and 1st solution, as shown in Table 5.

Gap #3: Efficiency is the third gap of AutoGraph between academia and industry. From Table 5 and Figure 3, F 2 GCN uses significantly fewer parameters than the best industrial solution on most datasets (13 out of 15

Conclusion

We organized the first Automated Graph Learning (AutoGraph) Challenge at KDD Cup 2020. We presented in this paper its settings, dataset, and solutions, which are all open sourced. We ran additional post-challenge experiments to compare the baseline (Graph Convolution Network (GCN)), the winning solution (feature engineering-based ensemble of various Graph Neural Networks), and a recent and efficient Neural Architecture Search (NAS) for GNN method called F 2 GCN. This paper provides results that could bridge the gap between academic research and industry practices, by correcting bias favoring certain approaches. This gap is currently at 3 aspects: Gap #1 modeling scope. (academia focuses more on model-centric approaches, emphasizing NAS; industry emphasizes data centric approaches and feature engineering); Gap #2 effectiveness. (academic solutions are perceived by industry to be less effective than their industry counterpart); Gap #3 efficiency. (academic solutions are perceived to be parsimonious or slower than industry solutions). Our results indicate that the "academic" NAS-based approach that we applied attains performances closely matching those of the winning industry solution, while being both faster and more parsimonious in number of parameters, therefore closing Gap #2 and #3. Moreover, we hope that these results will help reducing Gap #1, by encouraging industry practitioners to apply NAS methods (and particularly F 2 GCN), eventually combining the best of both approaches. We believe the results we obtained are significant, since they involve a benchmark on 15 datasets.

Figure 1 :

 1 Figure 1: Illustraion of AutoGraph scope. Industrial people provide a full pipeline solution that covers from data preprocessing to evaluation. Academic researchers focus mainly on model architecture and hyperparameter optimization.

Figure 2 :

 2 Figure 2: Accuracy improvement with respect to baseline.

Figure 3 :

 3 Figure 3: Comparison on number of parameters of baseline, 1st solution and F 2 GCN.

Table 2 :

 2 Statistics

	Dataset Phase	Domain	#Node	#Edge #Feature #Class Avg Deg Directed? Weighted? Skewness
	a	Public	Citation	2.7K	5.3K	1.4K	7	1.9	F	F	5
	b	Public	Citation	3.3K	4.6K	3.7K	6	1.4	F	F	3
	c	Public	Social	10K	733K	0.6K	41	73.3	F	F	81
	d	Public	News	10K 2,917K	0.3K	20	291.7	T	T	467
	e	Public	Finance	7.5K	7.8K	0	3	1.0	F	F	111
	f	Feedback Sales	10K	194K	0.7K	10	19.4	F	F	18
	g	Feedback Citation	10K	41K	8K	5	4.1	F	F	6
	h	Feedback Medicine	10K 2,461K	0.3K	23	246.1	T	T	1,773
	i	Feedback Finance	15K	16K	0	3	1.1	F	F	213
	j	Feedback Medicine	11K	22K	0	9	2.0	F	F	227
	k	Private	Sales	8K	119K	0.7K	8	14.9	F	F	6
	l	Private	Citation	10K	40K	7K	15	4	F	F	34
	m	Private	News	10K 1,425K	0.3K	8	142.5	T	T	360
	n	Private	Finance	14K	22K	0	10	1.6	F	F	61
	o	Private	Social	12K	19K	0	19	1.6	F	F	62

of all datasets. "Avg Deg" is the average number of edges per node. "Directed" and "Weighted" indicate the two properties of a graph. "Skewness" here is calculated by number of nodes in the largest class divided by number of nodes in the smallest class.

 table. During model training, a MLP is first used to map node features to the same embedding dimension. Then a two layer vanilla GCN is applied for learning node embeddings. Another MLP with softmax outputs the final classification. Dropout is used. All the hyperparameters are fixed by experience. No time management since the model is simple and one full training will not cost more than the allowed time budget.

Table 3 :

 3 Accuracy and Balanced accuracy of top methods on all datasets (%). Baseline is a two layer GCN.

	Dataset Phase	Baseline (GCN(L2))	1st solution	2nd solution	3rd solution
			Acc	BalAcc	Acc BalAcc Acc BalAcc Acc BalAcc
	a	Public	85.7	84.9	88.5	87.8	88.2	87.2	87.2	85.5
	b	Public	71.4	67.8	75.2	71.2	75.8	71.2	75.6	69.0
	c	Public	86.5	72.0	94.3	87.5	94.2	90.9	95.4	91.3
	d	Public	93.7	6.1	96.5	48.7	95.1	28.8	94.6	21.0
	e	Public	59.6	38.8	88.7	92.8	88.5	90.7	88.8	92.8
	f	Feedback 86.6	78.2	92.8	92.1	92.3	92.1	92.4	91.4
	g	Feedback 94.7	92.8	95.3	93.5	95.6	93.8	95.8	94.2
	h	Feedback 90.4	8.8	93.5	26.3	92.2	17.6	92.1	16.6
	i	Feedback 88.2	59.2	88.4	87.5	88.4	92.6	88.5	91.1
	j	Feedback 90.7	68.1	95.9	89.0	96.1	93.7	96.6	93.3
	k	Private	93.5	92.2	95.5	94.4	95.5	94.4	94.8	93.1
	l	Private	90.9	84.5	94.9	92.6	94.7	91.8	94.5	92.6
	m	Private	85.5	24.5	98.1	79.7	95.7	69.0	98.0	79.4
	n	Private	85.6	47.3	99.0	97.3	99.0	98.4	98.9	97.0
	o	Private	49.6	15.6	91.0	84.6	91.3	90.6	91.4	88.5
	4.2 Neural Architecture Search for GNN						

Table 4 :

 4 Accuracy comparison of GCN baselines, F 2 GCN and industrial best solution (%). L2, L4 means 2 and 4 layers for the GNN architecture. Numbers in parentheses are relative accuracy w.r.t 1st solution. We regard 1st solution as 100%. Last line is the average percentage.

). On average, F 2 GCN consumes 45.1% of the 1st solution in terms of parameter size, which is quite resource efficient. Note that feature engineering and ensemble do not contain additional parameters and basically, F 2 GCN searches one GNN model to compete with ensemble of 4 types of GNN models in 1st solution. As for time devotion, winning solutions come from a team's months of work, which consists of 5 or more members. F 2 GCN only runs for a few GPU hours per dataset, demonstrating its time efficiency compared to industrial solutions.

	Dataset GCN(L2)	F 2 GCN(L4) 1st solution
	a	0.023	0.908 (75.7) 1.199 (100)
	b	0.059	0.700 (44.2) 1.583 (100)
	c	0.011	1.598 (98.0) 1.631 (100)
	d	0.006	0.042 (3.20) 1.296 (100)
	e	0.121	0.354 (31.8) 1.114 (100)
	f	0.013	0.039 (2.30) 1.688 (100)
	g	0.134	0.313 (13.1) 2.389 (100)
	h	0.006	0.271 (20.9) 1.294 (100)
	i	0.241	2.269 (113.0) 2.013 (100)
	j	0.171	0.834 (60.6) 1.376 (100)
	k	0.012	1.478 (108.0) 1.395 (100)
	l	0.108	0.614 (25.6) 2.395 (100)
	m	0.005	0.010 (0.80) 1.278 (100)
	n	0.218	0.488 (27.8) 1.756 (100)
	o	0.192	0.822 (52.5) 1.565 (100)
	Avg		-(45.1)	-(100)

Table 5 :

 5

Number of parameters of baseline, 1st solution and F 2 GCN (Unit: Millions). Numbers in parentheses are relative # parameters w.r.t 1st solution. We regard 1st solution as 100%. Last line is the average percentage.

https://github.com/AutoML-Research/AutoGraph-KDDCup2020

https://github.com/aister2020/KDDCUP_2020_AutoGraph_1st_Place

https://github.com/Unkrible/AutoGraph2020

https://github.com/white-bird/kdd2020_GCN

Acknowledgments

Funding and support have been received by several research grants, including 4Paradigm, Big Data Chair of Excellence FDS Paris-Saclay, Paris Région Ile-de-France, and ANR Chair of Artificial Intelligence HUMANIA ANR-19-CHIA-0022, ChaLearn, Microsoft, Google. We acknowledge the following people for helping organize AutoGraph challenge: Xiawei Guo, Shouxiang Liu. We also appreciate the following people and institutes for open sourcing datasets which are used in our use cases: Andrew McCallum, C. Lee Giles, Ken Lang, Tom Mitchell, William L. Hamilton, Maximilian