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X-ray photoelectron spectroscopy (XPS) measures electron removal energies, providing direct access to core
and valence electron binding energies, hence probing the electronic structure. In this Letter, we benchmark
the ab initio many-body GW approximation on the complete electron binding energies of noble-gas atoms
(He-Rn), which span 100 keV. Our results demonstrate that GW achieves an accuracy within 1.2% in XPS
binding energies, by systematically restoring the underestimation from density-functional theory (error of 14%)
or the overestimation from Hartree-Fock (error of 4.7%). Such results also imply the correlations of d electrons
are very well described by GW .
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Introduction. The electronic structure of atoms, molecules,
and solids [1] is characterized by neutral excitations, as
measured in optical spectroscopy, and charged electron
removal/addition excitations, as measured in direct/inverse
photoemission spectroscopy. In x-ray photoelectron spec-
troscopy (XPS) [2,3] an x-ray photon of fixed energy interacts
with the electronic structure and removes an electron that
escapes from the system with accurately measurable kinetic
energy. The difference between the energy of the primary
photon and the kinetic energy of the emitted electron pro-
vides the removal energy which coincides with the binding
energy (BE) of the electron into the system. XPS was es-
tablished as one of the most powerful techniques to access
the electronic structure and charged excitations. Binding en-
ergies of electrons in occupied states, either core or valence,
can be measured with an accuracy of up to 10−3 eV by
XPS.

From a theoretical point of view, the calculation of elec-
tron removal/addition energies is challenging [1,4]. An exact
analytic solution of the Schrödinger equation for electron BEs
is only available for one-electron systems, e.g., the hydrogen
atom. Already in helium one should take into account an
electron-electron interaction term in the Hamiltonian which
faces a many-body problem [5,6]. The simplest and histor-
ically the first way to tackle this problem is by mean-field
approaches, e.g., the Hartree or the Hartree-Fock methods, in
which the interaction of one electron with all other electrons
is replaced by a mean-field potential self-consistently calcu-
lated. In Hartree-Fock (HF) the Koopmans’ theorem holds and
states that HF eigenvalues are directly associated with elec-
tron removal/addition energies [1,4]. However, the HF is an
approximated method that neglects correlation energies. On

*valerio.olevano@neel.cnrs.fr
†jing.li@cea.fr

valence and core electron levels, this reflects in a systematic
overestimation of BEs, as we will show.

Today, a more popular approach to tackle the many-body
problem is density-functional theory (DFT) [7–10]. DFT is an
in-principle exact approach to calculate the total ground-state
energy. In DFT, electron removal/addition energies can be
calculated by the so-called Delta self-consistent field (�SCF)
method [9,10] as the total energy differences between the
neutral and ionized systems. However, the �SCF method
is exact only when calculating the highest occupied molec-
ular orbital (HOMO) and the lowest unoccupied (LUMO)
binding energies, that is, the ionization potential (IP) and
the electron affinity (EA). It can be justified for the low-
est levels within a given symmetry [11]. For other levels,
assumptions must be imposed on the relaxation of the ion,
e.g., the localization of the core hole, leading to inaccuracy.
Furthermore, the �SCF method can in principle be applied
only to finite systems [9,10]. In periodic solids some other
assumptions/corrections, such as adding an infinite compen-
sating charge on the background, are required, leading again
to inaccuracies. Nevertheless, even in approximated DFT,
such as in local-density approximation (LDA) or beyond
[Perdew-Burke-Ernzerhof (PBE)] [12,13], the �SCF method
generally compares well with the experiment. For the lightest
elements deviations typically lie in the range 0.3–0.7 eV [14],
but can increase by one order of magnitude [15].

In DFT, Kohn-Sham (KS) eigenvalues are very often
directly used to estimate electron removal/addition ener-
gies [9,10]. This procedure is in principle exact only to
evaluate the IP equal to the last occupied KS energy [16–18].
Indeed, the Koopmans’ theorem does not hold in DFT as in
HF. A physical interpretation of the other DFT KS eigenvalues
as electron removal/addition energies, such as HF eigenval-
ues, would imply that DFT, as HF, is a mean-field theory.
But the DFT exchange-correlation (xc) potential vxc(r) of
the fictitious KS system is not constructed as a mean-field
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approximation of the true self-energy, as is the case for the HF
exchange operator. To this error of principle, we must further
add the error due to the unavoidable approximation on the xc
functional of DFT. As we will show, DFT KS energies in the
PBE (or LDA) approximations systematically underestimate
the core and valence electron BEs, with an error that is larger
than HF for finite systems.

In this Letter, we calculate the electron binding energies
of noble-gas atoms within the framework of many-body per-
turbation theory (MBPT) and using the GW approximation
on the self-energy [19–23]. MBPT or Green’s function the-
ory is an in-principle exact framework to calculate electron
removal/addition energies which directly correspond to the
poles of the one-particle Green’s function [4]. The Green’s
function can be calculated via the Dyson equation from the
self-energy [4], but the exact form of the latter is too com-
plex for real systems. Although in principle exact, MBPT
must also resort to approximations. The GW approximation
to the MBPT self-energy has demonstrated its validity on the
band gaps of solids [1,24], and of the HOMO-LUMO gaps
of molecules [25–27]. Here, we benchmark GW on the core
levels of atoms. In particular, we choose noble-gas atoms
because they are closed shell and electron energy levels are
unaffected by other complications, such as chemical shifts
due to the molecular or solid-state environment. Previous GW
calculations on atoms [28–30] only studied valence electrons.
There are some GW attempts to study at least shallow core
states in solids [31,32] and molecules [15,33–35]. Here, the
GW approximation is tested at energies as deep as 100 keV.

Methods. The starting point of our ab initio procedure
is a standard HF, or alternatively a DFT-PBE calculation.
Relativistic effects are evaluated by the zero-order regu-
lar approximation (ZORA) [36–38] and also the third-order
Douglas-Kroll (DK3) approximation [39,40]. Their respective
performances have been assessed with respect to experimental
atomic spin-orbit (SO) splits which can be measured accu-
rately without calibration problems such as, for example,
the systematic rigid energy shift due to the sample charging
drawback of photoemission. Table I presents SO splits in the
DK3 and ZORA approximations on top of both DFT-PBE and
HF, together with their overall mean absolute error (MAE in
eV) and mean absolute percentage error (MAPE) with respect
to the experiment. In noble-gas atoms the ZORA is more
accurate than the DK3. Unless differently specified, in the
following we will only present and discuss ZORA results. In
any case, GW corrections depend weakly from the relativistic
approximation [41].

DFT KS or HF eigenvalues Ei and eigenfunctions φi are
then used to build the first-iteration Green’s function,

G(r, r′, ω) =
∑

i

φ(r)φ∗
i (r′)

ω − Ei − iη sgn(μ − Ei )
, (1)

with μ the chemical potential and η a positive infinitesimal.
From G we build the random-phase approximation (RPA) po-
larizability, � = −iGG, and the screened Coulomb potential
W = w + w�W (with w = 1/|r − r′| the bare Coulomb po-
tential), and finally the self-energy in the GW approximation,

�(r, r′, ω) = i

2π

∫
dω′ eiω′ηG(r, r′, ω + ω′)W (r, r′, ω′),

TABLE I. He to Xe spin-orbit (SO) split in the DK3 and ZORA
relativistic approximations on top of DFT-PBE and HF, and their
overall mean absolute error (MAE) and mean absolute percentage
error (MAPE) with respect to the experiment (XPS of Ref. [2], except
Ne 2p, Ar 3p, Kr 4p, and Xe 4p1/2 which are from Ref. [42]).

SO split (eV) DK3 ZORA

Atom Orbit PBE HF PBE HF Expt.

Ne 2p 0.06 0.08 0.10 0.13 0.10
Ar 2p 1.22 1.32 2.17 2.34 2.11

3p 0.10 0.12 0.17 0.21 0.18
Kr 2p 27.9 28.6 52.9 54.3 52.5

3p 4.1 4.4 7.8 8.4 7.8
3d 0.9 0.9 1.3 1.4 1.2
4p 0.33 0.39 0.62 0.73 0.67

Xe 2p 163.1 165.8 322.5 327.6 319.9
3p 31.1 32.4 61.2 63.9 61.5
3d 7.8 8.1 12.9 13.4 12.6
4p 6.2 6.5 12.2 12.8 11.5
4d 1.2 1.3 2.0 2.1 2.0
5p 0.62 0.73 1.22 1.43 1.27

MAE 17.6 17.1 0.35 1.18
MAPE 44.2% 38.4% 3.1% 10.0%

where the ω′ integral is carried on by contour deformation and
we did not carry an analytic continuation on � which would
lead to large errors on the deep core states. The GW charged
excitation quasiparticle energies are calculated by

EGW
i = EH

i + 〈φi|�
(
ω = EGW

i

)|φi〉, (2)

where the EH
i are the Hartree energies, i.e., the eigenvalues

of the Hamiltonian only containing kinetic, nucleus external
potential, and Hartree classical repulsion terms. The proce-
dure can stop here to get the first iteration G0W 0 energies,
or a self-consistency can be carried on by recalculating G
in Eq. (1) with the new energies Eq. (2) (eigenvalue self-
consistency). Then the new G can be used to recalculate
directly only � (evGW 0 self-consistency), or also � and so W
(evGW ). In our work we used evGW , but both flavors reduce
the dependence from the starting point [43], although more
complete self-consistency would require us to recalculate also
the wave functions, and even the full G, i.e., including the
noncoherent part. All the calculations were performed using
Gaussian basis sets. To access the deep core states and their
relativistic effect, we used x2c-TZVPPall-2c [44] segmented
contracted Gaussian basis sets optimized at the one-electron
exact two-component level. Also, a Coulomb-fitting resolu-
tion of the identity technique (RI-V) [45] is employed with the
auxiliary basis def2-universal-JKFIT [46] for He-Kr and the
auxiliary basis generated by AUTOAUX [47] for Xe and Rn. We
used the codes NWCHEM [48] for the HF and DFT calculations,
and FIESTA [49–51] with some checks by TURBOMOLE [52] for
GW .

Results. Figure 1 shows the relative magnitude of GW
many-body and ZORA scalar relativistic (SR) corrections to
the HF and DFT-PBE energies of the 1s level as a function
of the atomic number Z . ZORA scalar relativistic corrections
do not depend on whether they are applied on top of PBE or

L081125-2



ELECTRON REMOVAL ENERGIES IN NOBLE-GAS ATOMS … PHYSICAL REVIEW B 106, L081125 (2022)

FIG. 1. GW vs ZORA scalar relativistic (SR) corrections to the
PBE and HF energies of the 1s level of noble-gas atoms.

HF, since the two curves overlap (same for DK3 [41]). They
undergo a large increase with Z , going beyond 3 keV in Xe
(20 keV in Rn). In contrast, GW corrections on top of HF have
small negative values, not going beyond −100 eV, to reduce
the slight overestimation of HF energies. On the other hand,
GW corrections on top of PBE have a large increase with Z ,
so to reduce the large underestimation of PBE energies. GW
corrections are larger than SR at small Z , and become smaller
at large Z , although still not negligible (360 eV correction at
Xe, 700 eV for Rn). They can never be neglected.

Figure 2 shows the error with respect to the experiment on
the electronic binding energies calculated within the ZORA
relativistic scheme in all exchange-correlation approxima-
tions. Overall MAE and MAPE are presented in Table II
and full detailed results on the electronic binding energies in
Table III [41]. As experimental reference values we have taken
the XPS binding energies reported in Ref. [2], except for Ne
2p, Ar 3p, Kr 1s and 4p, Xe 1s and 4p1/2, and Rn which are
taken from Ref. [42]. We consider the former more direct and

FIG. 2. Noble-gas atoms’ ZORA PBE, HF, and GW electronic
energy absolute (left, 0–400 eV) and relative (right, from 400 to
105 eV) errors with respect to the experiment [2,42].

TABLE II. Noble-gas atoms (He to Xe) electronic binding ener-
gies in the DFT-PBE, HF, GW (on top of PBE and HF), ZORA, and
DK3 approximations: mean absolute error (MAE in eV) and mean
absolute percentage error (MAPE) with respect to the experiment.

MAE MAPE

BE (binding energies) ZORA DK3 ZORA DK3

PBE 44.5 39.9 14.0% 14.1%
HF 16.2 20.6 4.7% 4.8%
GW @PBE 6.0 10.4 1.2% 1.4%
GW @HF 6.3 10.0 1.2% 1.4%

accurate, but values from the latter are not far when both are
available. In any case, our conclusions do not change if we use
the similar values of Refs. [3,53,54] (see also Ref. [55]).

As we already anticipated in the Introduction, we can see
from Fig. 2 and Table III that DFT-PBE KS energies systemat-
ically underestimate experimental BEs. The underestimation
can be as large as 500 eV in Xe 1s and 800 eV in Rn 1s.
However, since the Xe 1s level is already 34.5 keV deep,
the relative error is only 1.4%. Starting from the deepest
levels, the PBE underestimation relative error systematically
increases, so to achieve almost 40% in the shallowest levels.
This error precisely corresponds to the DFT-PBE (or LDA)
systematic underestimation of the HOMO-LUMO gap for
finite systems, and of the band gap in infinite periodic solids.
On the other hand, in general, HF eigenvalues overestimate
removal energies, though less systematically (for instance, Xe
and Rn 1s levels are underestimated). However the HF error
is smaller. We can conclude that HF is better than DFT-PBE
on noble-gas atoms at all binding energies.

In Fig. 2, we then immediately remark on the net improve-
ment brought by GW calculations, both on top of PBE and HF
(GW @PBE and GW @HF, respectively). First note that our
data are not the results of a single iteration G0W 0 calculation,
but we have performed a self-consistency on the quasiparticle
energies only, whereas wave functions have been kept at their
iteration 0 level, that is, PBE or HF wave functions. So,
regardless of the starting point, self-consistent GW energies
surprisingly achieve almost the same value. GW @PBE and
GW @HF are distant by only a few tenths of an eV on the
shallowest energies and a few tenths of a percentage on the
deepest energies. GW self-consistency on energies only is
then sufficient to get a result that is almost independent on the
starting point. Also, PBE and HF are among the most distant
starting points, in practice, the two extremes in hybrid theo-
ries [56]. Our data indicate that PBE and HF wave functions
are very close for noble-gas atoms, with the main difference
being in energies.

For a fair evaluation of the validity of the GW approxima-
tion with respect to the experiment, we believe that a correct
interpretation should take into account from one side the ab-
solute error, �E = ETH − E expt., for the shallowest levels, as
it is done in the left part from 0 to 400 eV of Fig. 2; and from
another side, the relative error, �E/E expt., for the lowest-lying
core levels which are placed thousands of eV deep, as it is
done in the right part of Fig. 2 from 400 eV to 100 keV. In-
deed, the 0.1–0.2 eV accuracy achieved by GW on low-energy
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TABLE III. ZORA electron binding energies (eV) and errors with respect to the experiment (Ref. [2], except [†] from Ref. [42]).

Atom Orbital PBE: E �E �E/E GW @PBE: E �E �E/E Expt.: E GW @HF: E �E �E/E HF: E �E �E/E

He 1s 15.6 −9.0 −36.4% 24.7 0.1 0.3% 24.59 24.5 −0.1 −0.2% 24.9 0.4 1.5%
Ne 1s 830.4 −39.8 −4.6% 872.0 1.8 0.2% 870.2 872.4 2.2 0.3% 892.7 22.5 2.6%

2s 36.2 −12.2 −25.3% 48.2 −0.2 −0.5% 48.42 47.8 −0.6 −1.3% 52.6 4.2 8.6%
2p1/2 13.2 −8.5 −39.1% 21.8 0.1 0.4% †21.66 21.2 −0.4 −1.9% 23.2 1.5 7.0%
2p3/2 13.1 −8.5 −39.2% 21.7 0.1 0.4% †21.56 21.1 −0.4 −2.1% 23.0 1.5 6.9%

Ar 1s 3116.0 −89.9 −2.8% 3197.8 −8.1 −0.3% 3205.9 3209.1 3.2 0.1% 3237.9 31.9 1.0%
2s 296.3 −30.0 −9.2% 323.2 −3.1 −0.9% 326.3 325.2 −1.1 −0.3% 337.3 11.0 3.4%

2p1/2 230.9 −19.7 −7.8% 251.1 0.6 0.2% 250.56 251.9 1.4 0.5% 261.9 11.3 4.5%
2p3/2 228.7 −19.7 −7.9% 249.0 0.5 0.2% 248.45 249.6 1.1 0.5% 259.5 11.1 4.5%

3s 24.1 −5.2 −17.7% 30.9 1.6 5.5% 29.3 31.1 1.8 6.1% 34.9 5.6 19.3%
3p1/2 10.2 −5.7 −35.8% 15.7 −0.3 −1.6% †15.94 15.8 −0.1 −0.9% 16.2 0.2 1.4%
3p3/2 10.1 −5.7 −36.1% 15.5 −0.2 −1.5% †15.76 15.6 −0.2 −1.1% 16.0 0.2 1.2%

Kr 1s 14098.2 −228.8 −1.6% 14314.3 −12.7 −0.1% †14327 14310.9 −16.1 −0.1% 14355.9 28.9 0.2%
2s 1858.2 −66.4 −3.4% 1928.1 3.5 0.2% 1924.6 1928.4 3.8 0.2% 1954.8 30.2 1.6%

2p1/2 1684.3 −46.6 −2.7% 1738.0 7.1 0.4% 1730.9 1738.5 7.6 0.4% 1765.3 34.4 2.0%
2p3/2 1631.4 −47.0 −2.8% 1685.1 6.7 0.4% 1678.4 1684.2 5.8 0.3% 1711.1 32.7 1.9%

3s 263.1 −29.7 −10.1% 294.9 2.1 0.7% 292.8 297.2 4.4 1.5% 304.5 11.7 4.0%
3p1/2 200.5 −21.7 −9.8% 224.2 2.0 0.9% 222.2 225.5 3.3 1.5% 234.6 12.4 5.6%
3p3/2 192.8 −21.6 −10.1% 216.5 2.1 1.0% 214.4 217.1 2.7 1.3% 226.3 11.9 5.5%
3d3/2 82.4 −12.5 −13.2% 95.1 0.2 0.2% 94.9 94.9 0.0 0.0% 102.9 8.0 8.4%
3d5/2 81.1 −12.6 −13.4% 93.8 0.1 0.1% 93.7 93.6 −0.1 −0.2% 101.5 7.8 8.4%

4s 22.8 −4.6 −16.7% 28.4 1.0 3.7% 27.4 28.6 1.2 4.5% 32.1 4.7 17.3%
4p1/2 9.6 −5.0 −34.4% 14.3 −0.4 −2.5% †14.67 14.4 −0.3 −1.7% 14.7 0.1 0.4%
4p3/2 9.0 −5.0 −35.7% 13.7 −0.3 −2.3% †14 13.7 −0.3 −2.2% 14.0 0.0 −0.1%

Xe 1s 34078.5 −486.5 −1.4% 34443.0 −122.0 −0.4% †34565 34429.0 −136.0 −0.4% 34483.5 −81.5 −0.2%
2s 5314.9 −138.3 −2.5% 5443.0 −10.2 −0.2% 5453.2 5444.0 −9.2 −0.2% 5479.6 26.4 0.5%

2p1/2 5019.9 −87.3 −1.7% 5113.8 6.6 0.1% 5107.2 5118.5 11.3 0.2% 5165.2 58.0 1.1%
2p3/2 4697.4 −89.9 −1.9% 4791.4 4.1 0.1% 4787.3 4790.9 3.6 0.1% 4837.6 50.3 1.1%

3s 1088.6 −60.1 −5.2% 1137.2 −11.5 −1.0% 1148.7 1142.9 −5.8 −0.5% 1165.5 16.8 1.5%
3p1/2 958.7 −43.4 −4.3% 1006.2 4.1 0.4% 1002.1 1010.2 8.1 0.8% 1025.7 23.6 2.4%
3p3/2 897.5 −43.1 −4.6% 945.1 4.5 0.5% 940.6 946.4 5.8 0.6% 961.8 21.2 2.3%
3d3/2 661.2 −27.8 −4.0% 695.8 6.8 1.0% 689 692.6 3.6 0.5% 709.1 20.1 2.9%
3d5/2 648.3 −28.1 −4.2% 682.9 6.5 1.0% 676.4 679.2 2.8 0.4% 695.6 19.2 2.8%

4s 196.2 −17.0 −8.0% 213.7 0.5 0.2% 213.2 215.5 2.3 1.1% 228.4 15.2 7.1%
4p1/2 149.6 −7.4 −4.7% 163.5 6.5 4.2% †157 162.8 5.8 3.7% 175.7 18.7 11.9%
4p3/2 137.4 −8.1 −5.5% 151.4 5.9 4.0% 145.5 150.0 4.5 3.1% 162.9 17.4 11.9%
4d3/2 60.5 −9.0 −12.9% 69.2 −0.3 −0.4% 69.5 69.3 −0.2 −0.3% 73.9 4.4 6.3%
4d5/2 58.6 −8.9 −13.2% 67.3 −0.2 −0.4% 67.5 67.1 −0.4 −0.5% 71.8 4.3 6.3%

5s 19.6 −3.7 −16.0% 24.4 1.1 4.7% 23.3 24.6 1.3 5.7% 27.4 4.1 17.6%
5p1/2 9.1 −4.3 −32.3% 13.0 −0.4 −3.2% 13.4 13.3 −0.1 −0.7% 13.4 0.0 0.3%
5p3/2 7.9 −4.3 −35.3% 11.7 −0.4 −3.2% 12.13 11.9 −0.3 −2.1% 12.0 −0.1 −1.0%

Rn 1s 97593.1 −810.9 −0.8% 98353.6 −50.4 −0.1% †98404 98276.9 −127.1 −0.1% 98308.1 −95.9 −0.1%
2s 17780.2 −274.8 −1.5% 18061.5 6.5 0.0% †18055 18051.8 −3.2 0.0% 18085.7 30.7 0.2%

2p1/2 17207.9 −126.1 −0.7% 17217.7 −116.3 −0.7% †17334 17228.4 −105.6 −0.6% 17480.7 146.7 0.8%
2p3/2 14464.8 −150.2 −1.0% 14474.6 −140.4 −1.0% †14615 14459.8 −155.2 −1.1% 14712.0 97.0 0.7%

3s 4370.1 −112.9 −2.5% 4501.8 18.8 0.4% †4483 4499.7 16.7 0.4% 4521.5 38.5 0.9%
3p1/2 4078.6 −83.4 −2.0% 4136.1 −25.9 −0.6% †4162 4142.9 −19.1 −0.5% 4215.0 53.0 1.3%
3p3/2 3458.5 −83.5 −2.4% 3516.0 −26.0 −0.7% †3542 3510.0 −32.0 −0.9% 3582.1 40.1 1.1%
3d3/2 2961.7 −57.3 −1.9% 3037.2 18.2 0.6% †3019 3037.2 18.2 0.6% 3064.0 45.0 1.5%
3d5/2 2830.7 −59.3 −2.1% 2906.2 16.2 0.6% †2890 2904.0 14.0 0.5% 2930.8 40.8 1.4%

4s 1041.6 −54.4 −5.0% 1120.5 24.5 2.2% †1096 1120.1 24.1 2.2% 1120.1 24.1 2.2%
4p1/2 909.5 −41.5 −4.4% 954.2 3.2 0.3% †951 957.4 6.4 0.7% 980.1 29.1 3.1%
4p3/2 753.9 −44.1 −5.5% 798.5 0.5 0.1% †798 796.4 −1.6 −0.2% 819.1 21.1 2.6%
4d3/2 535.0 −32.0 −5.6% 574.3 7.3 1.3% †567 575.0 8.0 1.4% 586.6 19.6 3.5%
4d5/2 505.7 −32.3 −6.0% 545.0 7.0 1.3% †538 544.2 6.2 1.1% 555.8 17.8 3.3%
4 f5/2 219.5 −22.5 −9.3% 235.3 −6.7 −2.8% †242 235.2 −6.8 −2.8% 249.9 7.9 3.2%
4 f7/2 212.5 −22.5 −9.6% 228.2 −6.8 −2.9% †235 228.0 −7.0 −3.0% 242.7 7.7 3.3%

5s 199.7 −12.3 −5.8% 215.0 3.0 1.4% †212 215.2 3.2 1.5% 228.0 16.0 7.6%
5p1/2 151.3 −15.7 −9.4% 168.4 1.4 0.8% †167 169.2 2.2 1.3% 174.3 7.3 4.3%
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TABLE III. (Continued.)

Atom Orbital PBE: E �E �E/E GW @PBE: E �E �E/E Expt.: E GW @HF: E �E �E/E HF: E �E �E/E

5p3/2 118.9 −15.1 −11.3% 136.0 2.0 1.5% †134 135.7 1.7 1.3% 140.9 6.9 5.1%
5d3/2 48.7 −6.3 −11.5% 56.1 1.1 2.1% †55 56.7 1.7 3.1% 59.7 4.7 8.6%
5d5/2 44.2 −6.8 −13.3% 51.7 0.7 1.3% †51 51.9 0.9 1.7% 54.9 3.9 7.6%

6s 21.5 −2.5 −10.3% 26.1 2.1 8.7% †24 26.2 2.2 9.1% 29.0 5.0 20.8%
6p1/2 10.2 −3.8 −26.9% 13.7 −0.3 −2.1% †14 14.3 0.3 2.2% 14.6 0.6 4.4%
6p3/2 6.7 −4.0 −37.0% 10.2 −0.5 −4.6% †10.7 10.1 −0.6 −5.6% 10.4 −0.3 −2.6%

valence and conduction levels is too pretentious in core elec-
tron binding energies whose magnitude can be five orders of
magnitude larger. With this key to understanding, the results
we obtained on noble-gas atoms by the GW approximation
are in very good agreement with the experiment. Indeed, GW
errors on the shallowest valence electrons are always within a
few tenths of eV, as usually found for GW in both chemistry
and solid-state physics. At the same time, GW errors are often
below 1% in deep core levels. The improvement from HF
and PBE is quantified in Table II, which presents statistical
averages over all energies from He to Xe. Both the MAE and
the MAPE are strongly reduced when passing from either PBE
or HF to GW . Most importantly, the GW self-energy contains
the right and valid physics since it is able to both reduce the
PBE underestimation and also the HF overestimation, in both
directions. The present results represent a surprising confirma-
tion of the GW approximation whose validity is thus verified
even at high energies, tens of keV.

Last but not least, GW is surprisingly accurate on the d
electrons, but also on the f . We first notice that, among all
levels, d and f electrons are those where the GW @PBE and
GW @HF values are the closest in energy, indicating that the
PBE and HF wave functions are very close. This is very
surprising for levels where exchange and correlation are sup-
posed to play a major role. The GW quasiparticle renormaliza-
tion factor is Z = 0.87 ± 0.03 on the full set of d and f elec-
trons, except Xe 4d where Z = 0.61. Furthermore, the shal-
lowest d electrons (Kr 3d , Xe 4d , and Rn 5d , see Fig. 2) are
also the levels where GW achieves one of the best agreements
with the experiment in absolute values, whereas on the deepest
the relative error is at 0.5% for Rn (and also Xe) 3d and
rises to 1.3% in Rn 4d . On Rn 4 f electrons GW correlations
correct the HF 3.3% overestimation, but with an overshot, at
the end achieving a −2.9% underestimation. We can conclude
that GW describes quite well the d-electron correlations and
slightly overestimates the f -electron correlation energy.

In general, the largest errors are found at the level of the
outermost s electrons (e.g., Rn 6s, Xe 5s, or Kr 4s) due to
difficult convergence in the GW iterations. Another source of
discrepancy is the fact that our GW is not fully self-consistent

and it is self-consistent only on energies. The order of this
error can be estimated from the difference between GW @PBE
and GW @HF energies which presents also some variability
along with the table. Smaller than this is the error due to the
cutoff on GW parameters (number of unoccupied states in the
calculation for W and �) and on the basis set. The order of
the error due to the relativistic approximation can be estimated
by comparing the two relativistic approaches considered here,
ZORA and DK3 (see Supplemental Material [41] for full DK3
results). However, all Pauli spinor lowest-order v/c relativistic
developments are expected to break down at large Z where
also antimatter negative energies enter into play and one
should solve the full relativistic Dirac equation. Furthermore,
beyond the single-particle approximation considered in this
Letter, many-particle relativistic effects should be taken into
account, e.g., the Breit interaction, spin-of-one-electron orbit-
of-another-electron, orbit-orbit, spin-spin, etc. [57]. These
effects are very difficult to include but should be of the same
order as the single-particle spin orbit. Nuclear finite mass
effects, i.e., the reduced mass of electrons and the mass po-
larization term, are also here neglected but present well in
the experiment, although the recoil energy of the final ion out
of the XPS experiment has already been removed to provide
corrected binding energies [2]. Finally, the experiment also
contains quantum electrodynamics (QED) radiative correc-
tions, but these do not grow with Z . The discrepancy due to the
GW approximation itself, that is, the neglect of vertex correc-
tions in the many-body self-energy and in the polarizability, is
residual once eliminating all previous sources of error.

Conclusions. We benchmarked the GW approximation at
high energies (∼105 eV) with respect to the core and valence
electron removal energies. GW is in very good agreement with
XPS binding energies, with a mean relative error of 1.2%. The
largest discrepancies are observed at the level of the outermost
s levels, whereas correlations in d and even in f electrons are
surprisingly well described by GW .
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