Palladium-Catalyzed C-H Bond Arylation and O-to N -Alkyl Migratory Rearrangement of 2-Alkoxythiazoles: One-Pot Access to 2-Alkoxy-5-arylthiazoles or 3-Alkyl-5-arylthiazol-2(3 H)-ones

Hai-Yun Huang, Haoran Li, Marie Cordier, Henri Doucet

To cite this version:

Hai-Yun Huang, Haoran Li, Marie Cordier, Henri Doucet. Palladium-Catalyzed C-H Bond Arylation and O-to N -Alkyl Migratory Rearrangement of 2-Alkoxythiazoles: One-Pot Access to 2-Alkoxy-5arylthiazoles or 3-Alkyl-5-arylthiazol-2(3 H)-ones. Synthesis: Journal of Synthetic Organic Chemistry, 2022, 54 (8), pp.2037-2048. 10.1055/s-0041-1737326 . hal-03629842

HAL Id: hal-03629842

https://hal.science/hal-03629842

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pd-catalyzed C-H Bond Arylation and O - to N -alkyl Migratory Rearrangement of 2-Alkoxythiazoles: A One Pot Access to 2-Alkoxy-5arylthiazoles or 3-Alkyl-5-arylthiazol-2(3H)-ones

Hai-Yun Huang ${ }^{a}$
Haoran Lia
Marie Cordier ${ }^{\text {a }}$
Henri Doucet*,a
${ }^{\text {a }}$ Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
* indicates the main/corresponding author.
henri.doucet@univ-rennes1.fr

Abstract The Pd-catalyzed direct arylation of 2-alkylthiazoles is a well-known reaction affording the corresponding 2-alkyl-5-arylthiazoles in very high yields. Conversely, the reactivity of 2-alkoxythiazoles has not been described yet Herein, we report conditions for the Pd-catalyzed regioselective C5-arylation of 2-alkoxythiazoles. Moreover, we also found reactions conditions allowing to obtain 3-alkyl-5-arylthiazol-2(3H)-ones via a one pot direct arylation with a O to N -alkyl migratory rearrangement. The judicious choice of the reaction temperature and time allows to control the selectivity of the reaction. In general, at $100{ }^{\circ} \mathrm{C}$, the 2 -alkoxy- 5 -arylthiazoles were the major products; whereas, at $120^{\circ} \mathrm{C}$ with a longer reaction time, the 3 -alkyl-5-arylthiazol-2(3H)ones were obtained with good selectivities. The arylation reaction is promoted by a ligand-free air-stable palladium catalyst and a simple and inexpensive base without oxidant or further additives, and tolerates a variety of useful substituents on the aryl bromide and also heteroaryl bromides.

Key words Catalysis, Palladium, C-H functionalization, thiazoles, thiazolones
Metal-catalyzed direct functionalization of 5-membered ring (hetero)arenes is a very powerful synthetic tool for the synthesis of valuable polyheteroaromatics. ${ }^{1}$ However, the presence of specific functional groups on heterocycles may result in selectivity issues potentially challenging to handle with. In the $\mathrm{C}-\mathrm{H}$ bond functionalization of 5 -membered ring heteroarenes such as thiazoles, palladium-catalyzed direct C5arylation is strongly favored. ${ }^{2,3}$ Several procedures for the Pdcatalyzed direct arylation of 2-alkylthiazoles have been reported (Scheme 1, a). ${ }^{4}$ Conversely, only a few examples of Pd-catalyzed direct arylations of thiazoles bearing an heteroelements at C2position have been described. ${ }^{5}$ Some direct arylations of 2amine or 2-amide-substituted thiazoles have been reported. ${ }^{6}$ By sharp contrast, Pd-catalyzed direct arylation reactions with thiazoles containing an OR substituent at C2-position are limited to the use of 2-phenoxythiazole (Scheme 1, b). ${ }^{6}$

In this context, in 2011, Dong et al. also studied the reactivity of 2-(benzyloxy)thiazole in Ru-catalyzed O - to N -alkyl migratory rearrangement. ${ }^{7}$ 3-Benzylthiazol-2(3H)-one was obtained in
55% yields using $5 \mathrm{~mol} \%\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ associated to 20 mol\% PPh_{3} as catalytic system and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base (Scheme 1, c).

Scheme 1. Direct arylations of thiazoles and O - to N -alkyl migratory rearrangement.

Therefore, we were interested in the reactivity of 2 alkoxythiazoles as heteroaryl sources for the access to 2-alkoxy-5-arylthiazoles and also to 3 -alkyl-5-arylthiazol-2(3H)-ones by O - to N -alkyl migratory rearrangement as they exhibit useful physical or biological properties. ${ }^{8}$ (Scheme 1, bottom).

Accordingly, we report herein general and simple conditions for: i) the Pd-catalyzed regioselective C5-arylation of 2 alkoxythiazoles via $\mathrm{C}-\mathrm{H}$ bond functionalization, $i i$) the
preparation of 3-alkyl-5-arylthiazol-2(3H)-ones via one pot C5arylation and O - to N -alkyl migratory rearrangement of 2alkoxythiazoles. We found the decisive role of the reaction temperature at the origin of the O - to N-alkyl migratory rearrangement. The substrate scope for such arylation reactions is described.

Under standard $\mathrm{C}-\mathrm{H}$ bond functionalization conditions, ${ }^{9}$ we examined the reaction outcome of the coupling of 2 ethoxythiazole with 4-(trifluoromethyl)bromobenzene using 1 $\mathrm{mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, and 2 equiv. of KOAc as the base in DMA during 6h (Table 1, entry 4). Under these conditions, an intractable mixture of C5-arylated thiazole 1a, 3-ethyl-5 arylthiazol-2 $(3 H)$-ones $\mathbf{1 b}$, with traces of 5-arylthiazol-2 $(3 H)$ ones 1c was obtained (Ratio 1a:1b:1c 67:24:9). The O - to N alkyl migratory rearrangement at the origin of the formation of $\mathbf{1 b}$ is a known reaction previously reported by Dong et al. (see scheme 1, c). ${ }^{7}$ The structures of $\mathbf{1 a}$ and $\mathbf{1 b}$ was confirmed by Xray analysis. ${ }^{10}$ The C5-arylated thiazole $1 \mathbf{1 a}$ was the major compound using shorter reaction times (1 h-4h) (Table 1, entries 1-3). Conversely, a longer reaction time (16 h) allowed to obtain $\mathbf{1 b}$ in 83% selectivity and in 61% yield (Table 1, entry 5). Using a lower reaction temperature $\left(100{ }^{\circ} \mathrm{C}\right)$, a good selectivity in favor of the formation of 1a was observed (Ratio 1a:1b:1c 90:4:6). At this temperature, the migratory rearrangement products were observed in very low yield. The influence of solvents was examined; however, both pentan-1-ol and cyclopentyl methyl ether led to low yields in 1a due to a poor conversion of the aryl bromide and $\mathbf{1 b}$ was not detected
(Table 1, entries 7 and 8). The use of dry DMA at 100 or $120^{\circ} \mathrm{C}$ gave similar ratio of $\mathbf{1 a}: \mathbf{1 b}: \mathbf{1 c}$ with the use of $99+$ DMA (Table 1, entries 9 and 10)

Based on the conditions for selective C5-C-H thiazole arylation without migration: $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, KOAc base at 100 ${ }^{\circ} \mathrm{C}$ during 6 h , the substrate scope and the functional group tolerance using 2-ethoxythiazole as the reaction partner was investigated (Scheme 2). First, the influence of parasubstituents on the aryl bromide was determined (Scheme 2). Using 4-bromonitrobenzene or 4-bromobenzonitrile as the aryl sources, good yield of 63% and 78% in 2a and 3a were obtained. The reaction tolerates several other functional groups on the aryl bromide such as acetyl, formyl, propionyl, chloro, fluoro orphenyl, affording the 5-arylthiazoles 4a-9a in 63-88\% yields. For the reaction with 4 -bromochlorobenzene, the $\mathrm{C}-\mathrm{Cl}$ bond remained untouched potentially allowing for further functionalization. Conversely, the electron-rich 4-bromotoluene led to 10a in a lower yield of 54%, and 4 -bromoanisole gave the expected product 11a in a very low yield due to a poor conversion of this aryl bromide. With this substrate, the use of $100{ }^{\circ} \mathrm{C}$ as the reaction temperature is not sufficient to promote efficiently the oxidative addition to palladium, but the use of a higher reaction temperature afforded the product 11b in larger amount; whereas, 11a was still obtained in very low yield. Formyl, acetyl or fluoro meta-substituents on the aryl bromide were well tolerated, and the expected 5-aryl thiazoles 12a-14a were obtained in 56-77\% yields

Table 1. Influence of the reaction conditions on the selectivity of the C-H bond arylation of 2-ethoxythiazole. ${ }^{\text {a }}$

Entry	Solvent ${ }^{\text {b }}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Conv. (\%) ${ }^{\text {c }}$	Ratio ${ }^{\text {d }} 1 \mathrm{a}: 1 \mathrm{lb}$:1c	Yield in 1a or 1b (\%)
1	DMA	120	1	27	98:0:2	nd
2	DMA	120	2	48	96:0:4	nd
3	DMA	120	4	78	89:5:6	nd
4	DMA	120	6	96	67:24:9	nd
5	DMA	120	16	100	3:83:14	61 of 1b
6	DMA	100	6	94	90:4: 6	66 of 1a
7	pentan-1-ol	120	16	<15	100:0:0	nd
8	CPME	120	16	<15	100:0:0	nd
9	Dry DMA	120	16	94	68:21:11	nd
10	Dry DMA	100	6	92	92:3:5	nd

a Reaction conditions: $\operatorname{Pd}(\mathrm{OAc})_{2} 1 \mathrm{~mol} \%$, 2-ethoxythiazole (1.5 equiv), 4-bromobenzotrifluoride (1 equiv).
b DMA = dimethylacetamide; CPME = cyclopentyl methyl ether .
c Conv = conversion, based on consumption of 4-bromobenzotrifluoride determined by GC/MS analysis of the crude mixtures.
d Product ratio determined by GC/MS analysis of the crude mixtures.
e Yield of isolated product; nd = not determined.

The presence of ortho-substituents on the aryl bromide may significantly influence the arylation yields due to steric factors; however, the use of 2-bromobenzonitrile, 2-bromonitrobenzene or 2-bromobenzaldehyde gave the 5 -arylthiazoles 15a-17a in notably high yields. The arylation of 2-ethoxythiazole by 2fluorobromobenzene also proceeded in high yield. Conversely the use of 2 -bromotoluene gave the product 19 a in only 16% yield due to a very low conversion of this aryl bromide. Using the heteroaryl bromides, 3-bromopyridine and 3bromoquinoline, the yields in the desired coupling products 21a and 22a were moderate to good.

Scheme 2. Scope of C5-arylation of 2-ethoxythiazole.
The scope of the one pot preparation of 3-ethyl-5-arylthiazol$2(3 H)$-ones \mathbf{b} was also studied using $120{ }^{\circ} \mathrm{C}$ as the reaction temperature and again $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and KOAc base during 16-48 h (Scheme 3). Pleasingly, under these conditions in most cases, high selectivities favoring the formation of the desired 3-ethyl-5-arylthiazol-2(3H)-ones b were observed. Direct arylation with O - to N -alkyl migratory rearrangement from bromoarenes bearing nitro, cyano, acetyl, formyl, propionyl, chloro or fluoro para-substituents, gave the expected 5-arylthiazol-2(3H)-ones 2b-8b in 54-77\% yields. The structure of $\mathbf{6 b}$ was confirmed by X-Ray analysis. ${ }^{10}$ Again, the use of the electron-rich aryl bromide 4-bromotoluene led to a lower yield in the desired product $\mathbf{1 0 b}$ and a higher reaction temperature $\left(140{ }^{\circ} \mathrm{C}\right)$ had to be employed, as at $120{ }^{\circ} \mathrm{C}$ a mixture of $\mathbf{1 0 a}$ and 10b was obtained. Substituents at meta position on the aryl bromide were also well tolerated, with 3 bromoacetophenone and 3-fluorobenzene giving the products 13b and 14b in 57% and 55% yield, respectively. In general, the use of more hindered aryl bromides afforded the 5 arylthiazol-2(3H)-ones in high yields. 2-Cyano-, 2-nitro- and 2 fluoro substituted aryl bromides gave the products 15b, 16b and 18b in $74-84 \%$ yields. We examined the opportunity to extend the reaction to heteroaryl bromides. Both 3 bromopyridine and 3-bromoquinoline gave the desired biheteroaryls 21b and 22b with high selectivity and good yields.

Scheme 3. Scope of C5-arylation of 2-ethoxythiazole with a O - to N -ethyl migratory rearrangement

Several reactions using 2-methoxythiazole as the reaction partner were also performed at $120{ }^{\circ} \mathrm{C}$ in order to prepare 3-methyl-5-arylthiazol-2(3H)-ones (Scheme 4). Similar or lower yields in the desired products 23b-28b than with 2 ethoxythiazole were obtained. However, the methyl migration step was slower and a long reaction time (48 h) was generally required to reach complete migration.

Scheme 4. Scope of C5-arylation of 2-methoxythiazole with a O to N -methyl migratory rearrangement.

The reactivity of 2 -nbutoxythiazole is quite similar to 2 ethoxythiazole (Schemes 5 and 6). At $100-120{ }^{\circ} \mathrm{C}$, the C5arylated thiazoles 29a and 30a were obtained in 53\% and 78\% yield, respectively.

Scheme 5. Scope of C5-arylation of 2-nbutoxythiazole.
Again, using more elevated temperatures ($120-140{ }^{\circ} \mathrm{C}$), the O to N-butyl migratory rearrangement occurred, giving rise to the products 29b-31b. Better yields were obtained using electrondeficient aryl bromides. The migration of the phenethyl group of 2-phenethoxythiazole was slower, and the product $\mathbf{3 2 b}$ was only obtained in 38% yield. The structure of $\mathbf{3 2 b}$ was confirmed by X-Ray analysis. ${ }^{10}$

Scheme 6. Scope of the C5-arylation of 2-nbutoxythiazole or 2phenethoxythiazole with a O - to N -alkyl migratory rearrangement
Since benzyl is common protecting group of heteroarenes, ${ }^{11}$ the reactivity 2-(benzyloxy)thiazole was examined (Scheme 7). In the presence of 2 - or 4-bromobenzonitriles, the products $\mathbf{3 3 b}$ and $\mathbf{3 4 b}$ were obtained in moderate yields; whereas with 4bromotoluene, the desired product was detected in very low yield. The reaction tolerated a 4-fluorobenzyl group on thiazole.

Scheme 7. Scope of the C5-arylation of 2-benzyloxythiazole with a O - to N -benzyl migratory rearrangement.

The reactivity of 2-(benzyloxy)thiazole in the absence of aryl bromide using the direct arylation conditions was also examined and provided the O - to N-alkyl migratory rearrangement product 3-benzylthiazol-2(3H)-one 36b in 81% yield, indicating that during the direct arylation reaction, a partial O - to N -alkyl rearrangement may occur (Scheme 8, a). ${ }^{12}$ We thus examined the reactivity of 3-benzylthiazol-2(3H)-one $\mathbf{3 6 b}$ in Pd-catalyzed direct arylation. In the presence of 4bromobenzonitrile, the expected product 33b was obtained in 76% yield (Scheme 8, b), revealing that the formation of the 3-alkyl-5-arylthiazol-2(3H)-ones b may arise from the direct arylation of both 2-alkylthiazoles and 3-alkylthiazol-2(3H)-ones. As expected the use of an equimolar mixture of 2(benzyloxy)thiazole and 3-benzylthiazol-2(3H)-one 36b also afforded the product 33b. (Scheme 8, c).

Scheme 8. 2-(Benzyloxy)thiazole O - to N-alkyl migratory rearrangement and Pd -catalyzed direct arylation of 3-benzylthiazol-2(3H)-one $\mathbf{3 6 b}$.
In summary, we disclosed simple general conditions for the palladium-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization of 2alkoxythiazoles allowing the access to i) 2-alkoxy-5arylthiazoles via direct C5-arylation or ii) 3-alkyl-5-arylthiazol$2(3 H)$-ones via one pot C5-arylation with a O - to N -alkyl migratory rearrangement. The selectivity of the reaction was found to strongly depend on the reaction temperature and time, as the O - to N-alkyl migratory rearrangement required a temperature $>100{ }^{\circ} \mathrm{C}$. This temperature-dependent selectivity was applied to the synthesis of 2-alkoxythiazoles and 3-alkyl-5arylthiazolones using a wide scope of aryl bromides including heteroaryl bromides. With ligand-free air-stable $\operatorname{Pd}(\mathrm{OAc})_{2}$ catalyst and inexpensive KOAc base in DMA, the C5-arylated thiazoles and 3-alkyl-5-arylthiazolones were obtained in good yields with aryl bromides bearing nitrile, nitro, acetyl, formyl, trifluoromethyl, chloro or fluoro substituents. Due to the wide availability of diversely substituted aryl bromides at an affordable cost, such simple reaction conditions should be very
attractive for synthetic chemists, giving a robust access to both 2-alkoxy-5-arylthiazoles and 3-alkyl-5-arylthiazol-2(3H)-ones.

Experimental section

General: $\mathrm{Pd}(\mathrm{OAc})_{2}$ (99\%) was purchased from Aldrich. DMA (99+\%) extra pure and KOAc (99\%) were purchased from ACROS. 2Methoxythiazole and 2-ethoxythiazole were purchased from Fluorochem. These compounds were not purified before use.

Procedure A, typical experiment for the synthesis of C5-arylated thiazoles: (products 1a-30a): The reaction of the aryl bromide (1 mmol), thiazole derivative (1.5 mmol) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 1 \mathrm{~mol} \%)$ in DMA (5 mL) under argon at $100-120{ }^{\circ} \mathrm{C}$ (see schemes) during 6-64 h (see schemes), affords the C5arylated thiazoles after cooling, evaporation of the solvent and filtration on silica gel (pentane/Et 2_{2}).

Procedure B, typical experiment for the synthesis of C5-arylated thiazoles: (products $\mathbf{1 b} \mathbf{- 3 5 b}$): The reaction of the aryl bromide (1 mmol), thiazole derivative (1.5 mmol) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 1 \mathrm{~mol} \%)$ in DMA (5 mL) under argon at $120-140{ }^{\circ} \mathrm{C}$ (see schemes) during 16-48 h (see schemes), affords the C5arylated thiazoles after cooling, evaporation of the solvent and filtration on silica gel (pentane/Et2O).

2-Ethoxy-5-(4-(trifluoromethyl)phenyl)thiazole (1a)

Following procedure A, 4-bromobenzotrifluoride ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 a}$ in $66 \%(0.180 \mathrm{~g})$ yield as a white solid: mp 101-103 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.6,135.7,133.8,129.5(\mathrm{q}, J=32.8 \mathrm{~Hz}$), 129.4, $126.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.5,124.1(\mathrm{q}, J=272.0 \mathrm{~Hz}), 68.0,14.6$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]+\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NOSNa} 296.0327$, found: 296.0327.

3-Ethyl-5-(4-(trifluoromethyl)phenyl)thiazol-2(3H)-one (1b)

Following procedure B, 4-bromobenzotrifluoride ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 b}$ in $61 \%(0.166 \mathrm{~g}$) yield as a white solid: $\mathrm{mp} 91-93^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,135.2,129.5(\mathrm{q}, J=32.8 \mathrm{~Hz}), 126.1$ ($q, J=3.8 \mathrm{~Hz}$), 124.9, $124.0(\mathrm{q}, J=272.0 \mathrm{~Hz}), 120.8,117.2,40.8,14.8$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NOSNa} 296.0327$, found: 296.0330.

5-(4-(Trifluoromethyl)phenyl)thiazol-2(3H)-one (1c)

Following procedures A or B , this compound was isolated as a sideproduct in low yield as a side-product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.24(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}$ $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 175.2,137.3,130.3(\mathrm{q}, J=32.8 \mathrm{~Hz}), 127.1$ ($\mathrm{q}, ~ J=3.8 \mathrm{~Hz}$), 126.2, 125.6 ($\mathrm{q}, ~ J=272.0 \mathrm{~Hz}$), 120.4, 120.0.

LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{3}$ NOS 245 , found 245 .

2-Ethoxy-5-(4-nitrophenyl)thiazole (2a)

Following procedure A, 4-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 2a in $63 \%(0.157 \mathrm{~g})$ yield as a yellow solid: mp $174-176{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.5,146.7,138.7,135.3,128.0,125.9$, 124.6, 68.3, 14.6.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa} 273.0304$, found: 273.0302.

2-Ethyl-5-(4-nitrophenyl)thiazol-2(3H)-one (2b)

Following procedure B, 4-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{2 b}$ in $65 \%(0.162 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp}>200^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,146.7,138.1,124.9,124.6,122.4$, 116.4, 41.0, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa} 273.0304$, found: 273.0306.

4-(2-Ethoxythiazol-5-yl)benzonitrile (3a)

Following procedure $\mathrm{A}, 4$-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 3a in $78 \%(0.179 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 105-107^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.8,136.5,134.6,132.8,128.9,125.8$, 118.7, 110.6, 68.0, 14.5 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa} 253.0406$, found: 253.0405.

4-(3-Ethyl-2-oxo-2,3-dihydrothiazol-5-yl)benzonitrile (3b)

Following procedure B, 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{3 b}$ in $68 \%(0.156 \mathrm{~g})$ yield as a yellow solid: mp 101-103 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,136.2,132.8,125.0,121.8,118.6$, 116.6, 110.7, 40.9, 14.7 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa} 253.0406$, found: 253.0407.

1-(4-(2-Ethoxythiazol-5-yl)phenyl)ethan-1-one (4a)

Following procedure A, 4-bromoacetophenone ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 4 4a in $80 \%(0.198 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 85-87^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.3,174.7,136.7,135.9,134.1,129.8$, 129.3, 125.6, 68.0, 26.7, 14.6 .

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa} 270.0559$, found: 270.0562.

5-(4-Acetylphenyl)-3-ethylthiazol-2(3H)-one (4b)

Following procedure B, 4-bromoacetophenone ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{4 b}$ in $71 \%(0.175 \mathrm{~g})$ yield as a yellow solid: mp $166-168{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.2,170.5,136.2,136.0,129.2,124.6$, 121.0, 117.5, 40.8, 26.7, 14.8.

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa} 270.0559$, found: 270.0560.

4-(2-Ethoxythiazol-5-yl)benzaldehyde (5a)

Following procedure A, 4-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{5 a}$ in $88 \%(0.205 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 90-92^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.95$ ($\mathrm{s}, 1 \mathrm{H}$), $7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.3,174.9,138.0,135.1,134.5,130.5$, 129.5, 125.9, 68.0, 14.5.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{SNa} 256.0403$, found: 256.0404.

4-(3-Ethyl-2-oxo-2,3-dihydrothiazol-5-yl)benzaldehyde (5b)

Following procedure B, 4-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{5 b}$ in $55 \%(0.128 \mathrm{~g})$ yield as a yellow solid: mp $138-140{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.3,170.4,137.6,135.3,130.6,124.9$, 121.6, 117.4, 40.9, 14.8 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{SNa} 256.0403$, found: 256.0406.

1-(4-(2-Ethoxythiazol-5-yl)phenyl)propan-1-one (6a)

Following procedure A , 4-bromopropiophenone ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{6 a}$ in $84 \%(0.219 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.9,174.6,136.4,135.6,133.9,129.8$, 128.9, 125.5, 67.9, 31.8, 14.6, 8.35.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SNa} 284.0716$, found: 284.0718.

3-Ethyl-5-(4-propionylphenyl)thiazol-2(3H)-one (6b)

Following procedure B, 4-bromopropiophenone ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{6 b}$ in $77 \%(0.201 \mathrm{~g})$ yield as a yellow solid: mp $125-127^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.9,170.4,136.0,135.7,128.8,124.6$, 120.9, 117.5, 40.8, 31.8, 14.8, 8.3.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SNa} 284.0716$, found: 284.0714.

5-(4-Chlorophenyl)-2-ethoxythiazole (7a)

Following procedure A, 4-bromochlorobenzene ($0.191 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 7 a in $83 \%(0.198 \mathrm{~g})$ yield as a white solid: mp 79-81 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.9,133.4,132.6,130.6,129.7,129.3$, 127.1, 67.8, 14.6.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10}$ ClNOSNa 262.0064, found: 262.0065 .

5-(4-Chlorophenyl)-3-ethylthiazol-2(3H)-one (7b)

Following procedure B, 4-bromochlorobenzene ($0.191 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{7 b}$ in $54 \%(0.129 \mathrm{~g})$ yield as a white solid: mp $101-103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,133.5,130.3,129.3,126.1,119.4$, 117.6, 40.7, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{CINOSNa} 262.0064$, found: 262.0063.

2-Ethoxy-5-(4-fluorophenyl)thiazole (8a)

Following procedure A, 4-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{8 a}$ in $63 \%(0.140 \mathrm{~g})$ yield as a white solid: mp $67-69^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{dd}, J=8.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{~s}, 1 \mathrm{H})$, $7.05(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,162.3(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 132.1,129.9$, $128.3,127.7(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 67.8,14.6$.

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10}$ FNOSNa 246.0359 , found: 256.0359 .

3-Ethyl-5-(4-fluorophenyl)thiazol-2(3H)-one (8b)

Following procedure B, 4-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{8 b}$ in $62 \%(0.138 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 81-83^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31$ (dd, $J=8.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.05(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,162.4(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 118.8,117.8,116.1(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 40.6$, 14.8 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNOSNa} 246.0359$, found: 256.0361.

5-([1,1'-Biphenyl]-4-yl)-2-ethoxythiazole (9a)

Following procedure A, 4-bromobiphenyl ($0.233 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 9 a in $68 \%(0.191 \mathrm{~g})$ yield as a yellow solid: mp $137-139{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,140.5,140.4,132.2,131.1,130.6$ $129.0,127.7,127.6,127.0,126.3,67.6,14.6$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NONa}$ 304.767, found: 304.0767.

5-([1,1'-Biphenyl]-4-yl)-3-ethylthiazol-2(3H)-one (9b)

Following procedure B, 4-bromobiphenyl ($0.233 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{9 b}$ in $58 \%(0.163 \mathrm{~g})$ yield as a yellow solid: mp $162-164{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 5 \mathrm{H})$, $6.88(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,140.7,140.3,130.7,129.0,127.8$, 127.7, 127.0, 125.3, 119.0, 118.5, 40.6, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NOSNa} 304.0767$, found: 304.0764.

2-Ethoxy-5-(p-tolyl)thiazole (10a)

Following procedure A, 4-bromotoluene ($0.171 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 10a in $54 \%(0.118 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 36-38^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.4,137.5,131.6,131.0,129.7,129.2$, 125.9, 67.5, 21.3, 14.6.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOSNa} 242.0610$, found: 242.0611 .

3-Ethyl-5-(p-tolyl)thiazol-2(3H)-one (10b)

Following procedure B at $140^{\circ} \mathrm{C}$, 4 -bromotoluene ($0.171 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 0 b}$ in $43 \%(0.094 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 81-83^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.8,137.8,129.8,128.9,124.9,119.0$, 118.3, 40.5, 21.3, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOSNa} 242.0610$, found: 242.0611.

2-Ethoxy-5-(4-methoxyphenyl)thiazole (11a)

Following procedure A, 4-bromoanisole ($0.187 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 11a in $13 \%(0.030 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 78-80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,159.4,131.0,127.4,124.7,114.5$, 67.5, 55.5, 14.7

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa} 258.0559$, found: 258.0560.

3-(2-Ethoxythiazol-5-yl)benzaldehyde (12a)

Following procedure A, 3-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 12a in $56 \%(0.130 \mathrm{~g})$ yield as a yellow solid: mp $66-68{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.03$ (s, 1H), 7.92 (s, 1H), 7.76 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 4.50$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.0, 174.3, 137.1, 133.3, 133.2, 131.5, 129.8, 129.4, 128.9, 126.4, 67.9, 14.6.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{SNa}$ 256.0403, found: 256.0403.

1-(3-(2-Ethoxythiazol-5-yl)phenyl)ethan-1-one (13a)

Following procedure A, 3-bromoacetophenone ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 13a in $77 \%(0.190 \mathrm{~g})$ yield as a yellow solid: mp $58-60^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,174.0,137.8,132.9,132.7,130.2$, 129.3, 127.4, 125.3, 67.7, 26.7, 14.5.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa} 270.0559$, found: 270.0559.

5-(3-Acetylphenyl)-3-ethylthiazol-2(3H)-one (13b)

Following procedure B, 3-bromoacetophenone ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 3 b}$ in $57 \%(0.141 \mathrm{~g})$ yield as a yellow solid: mp 113-115 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,170.5,137.8,132.4,129.4,129.3$, 127.6, 124.1, 120.0, 117.7, 40.7, 26.8, 14.8 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa} 270.0559$, found: 270.0561.

2-Ethoxy-5-(3-fluorophenyl)thiazole (14a)

Following procedure A, 3-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 14 a in $68 \%(0.151 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 60-62^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,163.1(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}), 133.0,130.6(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 129.6,121.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 114.4(\mathrm{~d}, J$ $=21.3 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 67.8,14.6$.

HRMS calcd for [M+Na] ${ }^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNOSNa} 246.0359$, found: 246.0358.

3-Ethyl-5-(3-fluorophenyl)thiazol-2(3H)-one (14b)

Following procedure $\mathrm{B}, 3$-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 4 b}$ in $55 \%(0.123 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 68-70^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, $3.82(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,163.2(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 119.9,117.6,114.7(\mathrm{~d}, J$ $=21.3 \mathrm{~Hz}$), $111.8(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 40.7,14.8$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNOSNa} 246.0359$, found: 246.0359.

2-(2-Ethoxythiazol-5-yl)benzonitrile (15a)

Following procedure A, 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 5 a}$ in $75 \%(0.172 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 64-66^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, 7.57 (td, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.2,136.7,135.1,134.4,133.1,129.5$, 127.8, 126.1, 118.6, 110.1, 68.0, 14.6.

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa} 253.0406$, found: 253.0408.

2-(3-Ethyl-2-oxo-2,3-dihydrothiazol-5-yl)benzonitrile (15b)

Following procedure $\mathrm{B}, 2$-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 5 b}$ in $84 \%(0.193 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 60-62^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,134.5,133.4,128.5,127.6,124.1$, 118.8, 114.0, 108.6, 40.9, 14.7.

HRMS calcd for [M+Na] ${ }^{+} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa} 253.0406$, found: 253.0406.

2-Ethoxy-5-(2-nitrophenyl)thiazole (16a)

Following procedure A, 2-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 6 a}$ in $72 \%(0.180 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.7,149.4,136.2,132.7,132.4,129.1$, 125.9, 124.3, 123.8, 68.0, 14.6.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa} 273.0304$, found: 273.0305.

3-Ethyl-5-(2-nitrophenyl)thiazol-2(3H)-one (16b)

Following procedure B, 2-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 6 b}$ in $74 \%(0.185 \mathrm{~g})$ yield as a yellow solid: mp $67-69^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,149.2,132.5,131.9,129.1,125.7$, 124.4, 123.2, 112.0, 40.8, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa} 273.0304$, found: 273.0306.

2-(2-Ethoxythiazol-5-yl)benzaldehyde (17a)

Following procedure A, 2-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 7 a}$ in $85 \%(0.198 \mathrm{~g})$ yield as a yellow solid: mp $72-74{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.5,175.6,137.6,134.8,134.6,133.9$, 131.6, 128.7, 128.4, 125.0, 68.0, 14.6 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{SNa} 256.0403$, found: 256.0403.

2-Ethoxy-5-(2-fluorophenyl)thiazole (18a)

Following procedure A, 2-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 18 a in $81 \%(0.180 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,159.0(\mathrm{~d}, \mathrm{~J}=249.0 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $124.0,120.0(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 67.9,14.7$.

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNOSNa} 246.0359$, found: 246.0361.

3-Ethyl-5-(2-fluorophenyl)thiazol-2(3H)-one (18b)

Following procedure B, 2-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 8 b}$ in $76 \%(0.169 \mathrm{~g})$ yield as a yellow solid: mp $54-56^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (s, 1H), $3.82(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,159.4(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 124.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=14.6 \mathrm{~Hz})$, $119.7(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 112.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 40.7$, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNOSNa} 246.0359$, found: 246.0359 .

2-Ethoxy-5-(o-tolyl)thiazole (19a)

Following procedure A, 2-bromotoluene ($0.171 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 19 a in $16 \%(0.035 \mathrm{~g})$ yield as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 3 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,136.6,134.6,131.2,130.9,130.6$, 128.3, 126.2, 67.6, 21.2, 14.7.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]+\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOSNa} 242.0610$, found: 242.0609.

3-Ethyl-5-(o-tolyl)thiazol-2(3H)-one (19b)

Following procedure $\mathrm{B}, 2$-bromotoluene ($0.171 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{1 9 b}$ in $18 \%(0.039 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.5,136.5,131.1,131.0,129.9,128.5$, $126.4,121.4,117.9,40.4,21.2,14.8$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]+\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOSNa} 242.0610$, found: 242.0612 .

2-Ethoxy-5-(naphthalen-1-yl)thiazole (20a)

Following procedure A, 1-bromonaphthalene ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 13 a bis in $64 \%(0.164 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.56$ $7.44(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.8,135.5,133.9,132.2,129.2,129.0$, $128.7,128.5,127.8,126.8,126.3,125.5,125.4,67.6,14.7$

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NOSNa} 278.0610$, found: 278.0614

3-Ethyl-5-(naphthalen-1-yl)thiazol-2(3H)-one (20b)

Following procedure $\mathrm{B}, 1$-bromonaphthalene ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 20 b in $51 \%(0.130 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 2 \mathrm{H})$ 7.56-7.44 (m, 4H), $6.71(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.7,134.0,131.9,129.4,129.2,128.7$, $128.2,126.9,126.4,125.5,125.1,122.1,116.6,40.5,14.9$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]+{ }^{+} \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NOSNa} 278.0610$, found: 278.0607 .

2-Ethoxy-5-(pyridin-3-yl)thiazole (21a)

Following procedure A, 3-bromopyridine ($0.158 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 21a in $34 \%(0.070 \mathrm{~g})$ yield as a yellow solid: mp $132-134{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72(\mathrm{bs}, 1 \mathrm{H}), 8.51(\mathrm{bs}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.6,148.3,146.6,133.7,133.3,128.6$, 126.9, 123.9, 68.0, 14.6 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]+{ }^{+} \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa} 229.0406$, found: 229.0404

3-Ethyl-5-(pyridin-3-yl)thiazol-2(3H)-one (21b)

Following procedure B, 3-bromopyridine ($0.158 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{2 1 b}$ in $82 \%(0.169 \mathrm{~g})$ yield as a yellow solid: mp $87-89{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.68(\mathrm{bs}, 1 \mathrm{H}), 8.51(\mathrm{bs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.38(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,148.3,145.6,132.5,128.3,124.0$ 120.5, 115.0, 40.8, 14.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa} 229.0406$, found: 229.0404.

2-Ethoxy-5-(quinolin-3-yl)thiazole (22a)

Following procedure A, 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 22 a in $65 \%(0.166 \mathrm{~g}$) yield as a yellow solid: $\mathrm{mp} 115-117^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.5,147.9,147.0,133.8,131.8,129.7$, 129.3, 128.0, 127.8, 127.6, 127.5, 125.6, 68.0, 14.6.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OSNa} 279.0562$, found: 279.0564.

3-Ethyl-5-(quinolin-3-yl)thiazol-2(3H)-one (22b)

Following procedure B, 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$) and 2ethoxythiazole ($0.194 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{2 2 b}$ in $54 \%(0.138 \mathrm{~g})$ yield as a yellow solid: mp $164-166^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,147.0,146.6,134.3,131.1,129.8$, $129.2,127.9,127.8,125.7,120.7,115.7,40.9,14.8$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OSNa} 279.0562$, found: 279.0563

3-Methyl-5-(4-propionylphenyl)thiazol-2(3H)-one (23b)

Following procedure B, 4-bromopropiophenone ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-methoxythiazole ($0.173 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 23 b in $64 \%(0.158 \mathrm{~g})$ yield as a yellow solid: mp $144-146^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.9,170.9,135.9,135.8,128.9,124.6$, 122.1, 117.5, 32.5, 31.9, 8.4.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa} 270.0559$, found: 270.0559 .

5-(4-Chlorophenyl)-3-methylthiazol-2(3H)-one (24b)

Following procedure B, 4-bromochlorobenzene ($0.192 \mathrm{~g}, 1 \mathrm{mmol}$) and 2methoxythiazole ($0.173 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{2 4 b}$ in $48 \%(0.108 \mathrm{~g}$) yield as a yellow solid: $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.9,133.6,130.2,129.3,126.1,120.7$, 117.5, 32.4 .

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNOSNa} 247.9907$, found: 247.9907

5-(4-Fluorophenyl)-3-methylthiazol-2(3H)-one (25b)

Following procedure B, 4-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2methoxythiazole ($0.173 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{2 5 b}$ in $37 \%(0.77 \mathrm{~g})$ yield as a yellow solid: mp $125-127^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{dd}, J=8.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1,162.3(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 120.2,117.7,116.2(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 32.4$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{8}$ FNOSNa 232.0203, found: 232.0204.

5-(3-Chlorophenyl)-3-methylthiazol-2(3H)-one (26b)

Following procedure B, 3-bromochlorobenzene ($0.192 \mathrm{~g}, 1 \mathrm{mmol}$) and 2methoxythiazole ($0.173 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 26b in $57 \%(0.128 \mathrm{~g}$) yield as a yellow solid: mp $138-140^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,135.1,133.4,130.4,127.8,124.8$, 123.1, 121.3, 117.1, 32.4.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNOSNa} 247.9907$, found: 247.9905.

3-Methyl-5-(3-fluorophenyl)thiazol-2(3H)-one (27b)

Following procedure $\mathrm{B}, 3$-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and 2methoxythiazole ($0.173 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords $\mathbf{2 7 b}$ in $45 \%(0.094 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,163.2(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 121.2,120.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 114.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 111.8(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 32.4$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{8}$ FNOSNa 232.0203, found: 232.0205.

5-(2-Chlorophenyl)-3-methylthiazol-2(3H)-one (28b)

Following procedure B, 2-bromochlorobenzene ($0.192 \mathrm{~g}, 1 \mathrm{mmol}$) and 2methoxythiazole ($0.173 \mathrm{~g}, 1.5 \mathrm{mmol}$) affords 28b in $60 \%(0.135 \mathrm{~g}$) yield as a white solid: $\mathrm{mp} 79-81^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (dd, $J=$ $7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, 1H), 3.40 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4,132.1,130.9,130.4,130.1,129.0$, 127.3, 124.8, 114.8, 32.4.

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNOSNa} 247.9907$, found: 247.9908.

2-Butoxy-5-(p-tolyl)thiazole (29a)

Following procedure A, 4-bromotoluene ($0.171 \mathrm{~g}, 1 \mathrm{mmol}$) and 2nbutoxythiazole ($0.235 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, affords 29a in 53% $(0.131 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 57-59^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (quint., $J=7.2 \mathrm{~Hz}$, 2 H), 1.55 (sext., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,137.5,131.6,131.0,129.7,129.3$, 125.9, 71.5, 31.0, 21.3, 19.2, 13.9.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOSNa} 270.0923$, found: 270.0922.

3-Butyl-5-(p-tolyl)thiazol-2(3H)-one (29b)

Following procedure B , 4-bromotoluene ($0.171 \mathrm{~g}, 1 \mathrm{mmol}$) and 2nbutoxythiazole ($0.235 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $140^{\circ} \mathrm{C}$, affords 29 b in 18% $(0.044 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 61-63^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.71$ (quint., $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.41$ (sext., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,137.8,129.8,128.9,124.9,118.8$, 118.7, 45.3, 31.6, 21.3, 20.0, 13.8.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOSNa} 270.0923$, found: 270.0921.

4-(2-Butoxythiazol-5-yl)benzonitrile (30a)

Following procedure A, 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2nbutoxythiazole ($0.235 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, affords 30a in 78% $(0.201 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 86-88^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.79$ (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.53$ (sext., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.1,136.6,134.7,132.8,128.9,125.9$, 118.7, 110.6, 72.0, 30.9, 19.1, 13.8

HRMS calcd for [$\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OSNa} 281.0719$, found: 281.0720.

4-(3-Butyl-2-oxo-2,3-dihydrothiazol-5-yl)benzonitrile (30b)

Following procedure B, 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2nbutoxythiazole ($0.235 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $130^{\circ} \mathrm{C}$, affords $\mathbf{3 0 b}$ in 74% $(0.191 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.73$ (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ (sext., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,136.2,132.9,125.0,122.2,118.7$, 116.5, 110.8, 45.7, 31.5, 19.9, 13.7.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OSNa} 281.0719$, found: 281.0721.

3-Butyl-5-(4-(trifluoromethyl)phenyl)thiazol-2(3H)-one (31b)

Following procedure B, 4-bromobenzotrifluoride ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-nbutoxythiazole ($0.235 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120{ }^{\circ} \mathrm{C}$, affords 31b in 61% $(0.183 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 98-100^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ (sext., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,135.2,129.5(\mathrm{q}, J=32.8 \mathrm{~Hz}), 126.1$ ($\mathrm{q}, J=3.8 \mathrm{~Hz}$), 124.9, $124.0(\mathrm{q}, J=272.0 \mathrm{~Hz}), 121.2,116.9,45.6,31.5$, 19.9, 13.7.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NOSNa} 324.0640$, found: 324.0642.

4-(2-0xo-3-phenethyl-2,3-dihydrothiazol-5-yl)benzonitrile (32b)
Following procedure B, 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2phenethoxythiazole ($0.308 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, affords $\mathbf{3 2 b}$ in 38% $(0.116 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 146-148^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 5 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,137.5,136.1,132.8,129.0,128.9$, $127.2,125.0,122.5,118.6,115.9,110.8,47.5,35.5$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{ONaS} 329.0719$, found: 329.0720 .

4-(3-Benzyl-2-oxo-2,3-dihydrothiazol-5-yl)benzonitrile (33b)

Following procedure B, 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2(benzyloxy)thiazole ($0.286 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, affords 33b in 43% $(0.126 \mathrm{~g})$ yield as a white solid: $\mathrm{mp}>200^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 7 \mathrm{H})$, $6.90(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,136.0,135.5,132.9,129.3,128.7$, 128.1, 125.1, 121.6, 118.6, 117.1, 111.1, 49.1.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OSNa} 315.0562$, found: 315.0562.

2-(3-Benzyl-2-oxo-2,3-dihydrothiazol-5-yl)benzonitrile (34b)

Following procedure $\mathrm{B}, 2$-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2(benzyloxy)thiazole ($0.286 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, affords $\mathbf{3 4 b}$ in 52% $(0.152 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 98-100^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (dd, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57(\mathrm{td}, J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 8 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,135.5,134.5,134.4,133.4,129.2$, $128.6,128.5,128.2,127.8,124.2,118.6,114.3,108.8,49.2$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OSNa} 315.0562$, found: 315.0564.

4-(3-(4-Fluorobenzyl)-2-oxo-2,3-dihydrothiazol-5-yl)benzonitrile (35b)

Following procedure $\mathrm{B}, 4$-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-((4-fluorobenzyl)oxy)thiazole ($0.313 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, affords $\mathbf{3 5 b}$ in $40 \%(0.124 \mathrm{~g})$ yield as a yellow solid: mp $147-149^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.91$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,162.8(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 135.9,132.9$, 131.3 (d, $J=3.2 \mathrm{~Hz}$), 129.9 (d, $J=8.3 \mathrm{~Hz}$), 125.2, 121.4, 118.6, 117.3, $116.3(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 111.2,48.4$.

HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{ONa} 333.0468$, found: 333.0468.

3-Benzylthiazol-2(3H)-one (36b) ${ }^{13}$

The reaction of 2-(benzyloxy)thiazole ($0.191 \mathrm{~g}, 1 \mathrm{mmol}$) and KOAc $(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of $\mathrm{Pd}(\mathrm{OAc}) 2$ ($2.2 \mathrm{mg}, 1 \mathrm{~mol} \%$) in DMA (5 mL) under argon at $120{ }^{\circ} \mathrm{C}$ during 16 h , affords $\mathbf{3 6 b}$ after cooling, evaporation of the solvent and filtration on silica gel (pentane/ether $4 / 1$) in $81 \%(0.155 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.48(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 172.1,136.0,129.0,128.2,127.9,124.3$, 101.6, 48.7.

Acknowledgment

We thank the CNRS and the Universite de Rennes 1 for financial support. CSC for fellowships to H.-Y. H. and H. L.

Supporting Information

YES (this text will be updated with links prior to publication)

Primary Data

NO.

Conflict of Interest

The authors declare no conflict of interest.

References

(1) For reviews on metal-catalyzed C-H bond functionalization: (a) Ackermann, L. Chem. Rev., 2011, 111, 1315-1345. (b) Rossi, R.; Bellina, F.; Lessi M.; Manzini, C. Adv. Synth. Catal., 2014, 356, 17-117. (c) Djakovitch L.; Felpin, F.-X. ChemCatChem, 2014, 6, 2175-2187. (d) Theveau, L.; Schneider, C.; Fruit C.; Hoarau, C. ChemCatChem, 2016, 8, 3183-3194. (e) Agasti, S.; Dey A.; Maiti, D. Chem. Commun., 2017, 53, 6544-6556. (f) Rajendran M.; Masilamani J. Chem. Commun. 2017, 53, 8931-8947. (g) Gensch, T.; James, M. J.; Dalton T.; Glorius, F. Angew. Chem. Int. Ed., 2018, 57, 2296-2306. (h) Kalepu, J.; Gandeepan, P.; Ackermann L.; Pilarski, L. T. Chem. Sci., 2018, 9, 4203-4216. (i) Hirano K.; Miura, M. Chem. Sci., 2018, 9, 22-32. (j) Prendergast, A. M.; McGlacken, G. P. Eur. J. Org. Chem. 2018, 60686082. (k) Gandeepan, P.; Mueller, T.; Zell, D.; Cera, G.; Warratz S.; Ackermann L. Chem. Rev., 2019, 119, 2192-2452. (l) Hagui, W.; Doucet H.; Soulé, J.-F. Chem, 2019, 5, 2006-2078. (m) Rej, S.; Ano Y.; Chatani, N. Chem. Rev., 2020, 120, 1788-1887. (n) Huang, H.-Y.; Benzai, A.; Shi X.; Doucet, H. Chem. Rec., 2021, 21, 343-356.
(2) Mao, S.; Li, H.; Shi, X.; Soulé J.-F.; Doucet, H. ChemCatChem, 2019, 11, 269-286.
(3) (a) Akita, Y.: Inoue, A.; Yamamoto, K.; Ohta, A.; Kurihara T.; Shimizu, M. Heterocycles, 1985, 23, 2327-2333. (b) Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani N.; Aoyagi, Y. Heterocycles, 1990, 31, 1951-1958. (c) Aoyagi, Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Tokunaga, K.; Gohma, K.; Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J.; Honma, R.; Akita Y.; Ohta, Heterocycles, 1992, 33, 257-272.
(4) For selected examples of Pd-catalyzed direct arylations of thiazole and 2-aryl- or 2-alkyl-thiazoles: (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura M.; Nomura, M. Bull. Chem. Soc. Jpn, 1998, 71, 467-473. (b) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto M.; Ikeda, T. J. Am. Chem. Soc., 2003, 125, 1700-1701. (c) Turner, G. L.; Morris J. A.; Greaney, M. F. Angew. Chem., Int. Ed., 2007, 46, 7996-8000. (d) Gottumukkala A. L.; Doucet, H. Eur. J. Inorg. Chem., 2007, 3629-3632. (e) Liegault, B.; Lapointe, D.; Caron, L.; Vlassova A.; Fagnou, K. J. Org. Chem., 2009, 74, 18261834. (f) Tani, S.; Uehara, T. N.; Yamaguchi J.; Itami, K. Chem. Sci., 2014, 5, 123-135. (g) Mao, S.; Shi, X.; Soulé J.-F.; Doucet, H. Adv. Synth. Catal., 2018, 360, 3306-3317.
(5) For selected examples of Pd-catalyzed direct arylations of 2amide or 2-amine substituted thiazoles: (a) Chiong H. A., Daugulis, 0. Org. Lett., 2007, 9, 1449-1451. (b) Priego, J.; Gutierrez, S.; Ferritto R.; Broughton, H. B. Synlett, 2007, 2957-2960. (c) Schnuerch, M.; Waldner, B.; Hilber K.; Mihovilovic, M. D. Bioorg. Med. Chem. Lett., 2011, 21, 2149-2154. (d) Dao-Huy, T.; Waldner, B. J.; Wimmer, L.; Schnuerch M.; Mihovilovic, M. D. Eur. J. Org. Chem., 2015, 4765-4771.
(6) For Pd-catalyzed direct arylations of 2-phenoxythiazole: Lohrey, L.; Uehara, T. N.; Tani, S.; Yamaguchi, J.; Humpf H.-U.; Itami, K. Eur. J. Org. Chem., 2014, 3387-3394.
(7) Yeung, C. S.; Hsieh T. H. H.; Dong, V. M. Chem. Sci., 2011, 2, 544-551.
(8) (a) Wang, S.-D.; Griffiths, G.; Midgley, C. A.; Barnett, A. L.; Cooper, M.; Grabarek, J.; Ingram, L.; Jackson, W.; Kontopidis, G.; McClue, S. J.; McInnes, C.; McLachlan, J.; Meades, C.; Mezna, M.; Stuart, I.; Thomas, M. P.; Zheleva, D. I.; Lane, D. P.; Jackson, R. C.; Glover, D. M.; Blake D. G.; Fische, P. M. Chem. Biol., 2010, 17, 1111-1121. (b)

Grubb, A. M.; Zhang, C.; Jakli, A.; Sampso P.; Seed, A. J. Liq. Cryst., 2012, 39, 1175-1195. (c) Diab, S.; Teo, T.; Kumarasiri, M.; Li, P.; Yu, M.; Lam, F.; Basnet, S. K. C.: Sykes, M. J.; Albrecht, H.; Milne R.; Wang, S. ChemMedChem, 2014, 9, 962-972. (d) Basnet, S. K. C.; Diab, S.; Schmid, R.; Yu, M.; Yang, Y.; Gillam, T. A.; Teo, T.; Li, P.; Peat, T.; Albrecht H.; Wang, S. Mol. Pharmacol., 2015, 88, 935-948.
(9) Roger, J.; Pozgan F.; Doucet, H. J. Org. Chem., 2009, 7, 11791186.
(10) X-Ray structures: 1a: CCDC 2086175, 1b: CCDC 2086170, 6b: CCDC 2086169, 32b: CCDC 2086176.
(11) (a) Lima, H. M.; Sivappa, R.; Yousufuddin M.; Lovely, C. J. J. Org. Chem., 2014, 79, 2481-2490. (b) Mochizuki, M.; Kori, M.; Kono, M.; Yano, T.; Sako, Y.; Tanaka, M.; Kanzaki, N.; Gyorkos, A. C.; Corrette C. P.; Aso, K. Bioorg. Med. Chem., 2016, 24, 4675-4691.
(12) This reaction performed without catalyst also gave a significant amount of product $\mathbf{3 6 b}$, but we cannot exclude that this Pd-catalyst-free benzyl migration was catalyzed by traces or metals in the substrates, base or glassware.
(13) Das, R.; Banerjee, M.; Rai, R. K.; Karri R.; Roy, G. Org. Biomol. Chem., 2018, 16, 4243-4260.

