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ABSTRACT
The increase in complexity, diversity and scale of high performance
computing environments, as well as the increasing sophistication
of parallel applications and algorithms call for productivity-aware
programming languages for high-performance computing. Among
them, the Chapel programming language stands out as one of the
more successful approaches based on the Partitioned Global Ad-
dress Space programming model. Although Chapel is designed for
productive parallel computing at scale, the question of its com-
petitiveness with well-established conventional parallel program-
ming environments arises. To this end, this work compares the
performance of Chapel-based fractal generation on shared- and
distributed-memory platforms with corresponding OpenMP and
MPI+X implementations. The parallel computation of the Mandel-
brot set is chosen as a test-case for its high degree of parallelism
and its irregular workload. Experiments are performed on a cluster
composed of 192 cores using the French national testbed Grid’5000.
Chapel as well as its default tasking layer demonstrate high per-
formance in shared-memory context, while Chapel competes with
hybrid MPI+OpenMP in distributed-memory environment.
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awareness

1 INTRODUCTION
Nowadays, we observe a dramatic increase in complexity, diversity
and scale of High Performance Computing (HPC) environments.
According to the TOP500 bi-annual ranking of the most powerful
systems [14], modern supercomputers are increasingly large (mil-
lions of cores) and heterogeneous (CPU-GPU). On the other hand,
HPC applications and algorithms also tend to be more and more
sophisticated. Actually, in order to benefit from the parallelism
provided at different levels of the hardware, hybrid hierarchical
parallelism is recommended.

This is a reason why there is an increased research interest in
software development productivity in HPC [5, 8]. Different pro-
gramming models/languages, runtimes and libraries need to be
used together to efficiently exploit all levels of parallelism. As a
consequence, to deal with such complexity, efforts towards produc-
tivity are crucial for harnessing the processing power of modern
supercomputers.

To this end, the DARPA High Productivity Computing System
(HPCS) program represents an effort for creating high-productivity
languages for the next generation of supercomputers [10]. Among
these languages, Chapel stands out, as it is competitive to both
C+OpenMP and MPI+X in terms of performance and scalability [3].

The recent arrival of this language raises the question of its
competitiveness with well-established conventional parallel pro-
gramming environments. For this purpose, this paper provides a
comparison point between Chapel and the widely adopted OpenMP
and MPI+X parallel programming libraries. The focus is put on the
parallel computation of the Mandelbrot set. This embarrassingly
parallel application allows massive parallelism, while facing irregu-
lar workload.

In this paper, we illustrate the main parallel features of Chapel,
MPI and OpenMP using the Mandelbrot test case. Six implementa-
tions are proposed using Chapel, C+OpenMP, C+MPI with different
communication models (two-sided blocking and non-blocking, one-
sided), and a hybrid one, combining C+MPI and OpenMP. Chapel
as well as its default tasking layer demonstrate high performance in
shared-memory context. Moreover, in distributed-memory environ-
ment, it presents similar performance to hybrid MPI+OpenMP, even
though we did not explore other features, such as the distributed
iterators.

The remainder of the paper is structured as follows. Section 2
presents related works. Section 3 defines the Mandelbrot set compu-
tation. Section 4 provides an overview of each parallel programming
environment and describes the corresponding implementations. Ex-
perimental results are reported in Section 5. Finally, we draw the
conclusions in Section 6 and outline some future works.
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2 RELATEDWORKS
In various domains, empirical studies compare different parallel
programming environments for a typical problem in the respective
field of research. In [13], Parenteau et al. develop Chapel-based
alternatives for two CFD applications. These were compared to
conventional MPI-based algorithms, and the competitiveness of
Chapel is highlighted. In [6], Gmys et al. are dealing with three
productivity-aware languages (Chapel, Julia and Python) to solve
the 3D Quadratic Assignment Problem parallel metaheuristic on a
multi-core shared-memory computer. The comparison is done in
terms of performance, scalability and productivity. Moreover, re-
latedworks in the context of irregular applications (like Branch-and-
Bound tree-search algorithms) show that it is possible to achieve
parallel efficiency and performance, but also high productivity, by
using the Chapel language [2].

The parallel Mandelbrot set computation is a well-studied prob-
lem. Some authors use this test-case to describe how the fundamen-
tals of task parallel programming are dealt with different efficient
parallel environments, like Chapel, OpenMP, X10, OpenCL, etc [9].
However, the latter focus on illustrating the fundamentals of task
parallel programming without performing a performance analysis.
Another study conducts performance evaluation on shared-memory
architecture using MPI and OpenMP [7], but doesn’t include PGAS-
based environments.

Our paper aims at providing a useful data point using shared-
and distributed-memory multi-core systems for supercomputer pro-
grammers. The well-known parallel Mandelbrot set computation is
chosen because it is a complete application (not a microbenchmark
kernel) that allows easy decomposition into a large number of irreg-
ular subproblems, while retaining a relative simplicity. The latter
allows us to illustrate the programming effort in each environment
by short but complete code snippets and thereby provide to the
reader a sense of "productivity", which is a hard-to-evaluate and
necessarily somewhat subjective measure.

3 MANDELBROT SET COMPUTATION
In this paper, we consider the parallel computation of the Mandel-
brot set as a test-case. It is defined as the set of complex numbers
𝑐 = 𝑎 + 𝑖𝑏 ∈ C such that the sequence (𝑧𝑛)𝑛∈N ⊂ C defined by

𝑧0 = 0, 𝑧𝑛+1 = 𝑧2𝑛 + 𝑐, (1)

remains bounded in C (see Figure 1). In practice, we can prove
that a point 𝑐 of the complex plan belongs to the Mandelbrot set
if and only if |𝑧𝑛 | ≤ 2, ∀𝑛 ∈ N. This observation directly yields a
simple "escape time" algorithm shown in Algorithm 1. Considering
a bounded domain Ω (hereafter called image) uniformly cut into
pixels. For each pixel (𝑎, 𝑏) ∈ Ω the algorithm determines the
smallest integer 𝑛 required for observing divergence of (𝑧𝑛)𝑛∈N.
Then the luminous intensity 𝐼 of pixel (𝑎, 𝑏) is defined as

𝐼 (𝑎, 𝑏) = 1
𝑁

min
𝑛=0,...,𝑁

{𝑛 : |𝑧𝑛 | > 2}, (2)

where 𝑁 ∈ N is an arbitrary maximum number of allowed itera-
tions.

This well-known parallel application allows to illustrate the
main parallel features and to investigate the parallel efficiency of
the programming environments considered in this paper. As we can

Figure 1: Monochrome Mandelbrot set.

Algorithm 1: Pseudo implementation of the Mandelbrot
set computation
1 function Compute_pixel(𝑎, 𝑏) :
2 𝑥 = 𝑦 = 0;
3 𝑛 = 0;
4 while 𝑥2 + 𝑦2 < 4 and 𝑛 < 𝑁 do
5 𝑡 = 𝑥 ;
6 𝑥 = 𝑥2 − 𝑦2 + 𝑎;
7 𝑦 = 2𝑡𝑦 + 𝑏;
8 𝑛 = 𝑛 + 1;
9 end

10 𝐼 (𝑎, 𝑏) = 𝑛/𝑁 ;
11 end

12 function Compute_image() :
13 for 𝑎 = 0 to 𝑛𝑏_𝑙𝑖𝑛𝑒𝑠 do
14 for 𝑏 = 0 to 𝑛𝑏_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
15 Compute_pixel(𝑎, 𝑏);
16 end
17 end
18 end

see in Algorithm 1, the nested for-loops can be easily andmassively
parallelized due to the independence of each pixel. The granularity
of the application (amount of work performed per pixel/line of the
image) can be controlled by adjusting the maximum number of
iterations 𝑁 . However, one has to deal with the irregular workload
resulting from the drastically different amount of work performed
per pixel (see Figure 2).

The parallelization of Algorithm 1 is thus based on a domain
decomposition. In order to preserve the relative simplicity of the
implementation, the decomposition is assumed only along the lines,
i.e. only the first for-loop in Algorithm 1 (line 13) is parallelized.
Moreover, in order to achieve some workload regularization, lines
are mapped to processing elements in round-robin fashion. For
comparison purposes, we require that the computation is determin-
istic. It means that the domain decomposition is done statically and
we know in advance which thread computes which lines.

2



A performance-oriented comparative study of Chapel to conventional programming environments

4 PARALLEL PROGRAMMING
ENVIRONMENTS

This section presents the studied parallel programming environ-
ments and highlights their main features. Six parallel implemen-
tations of the Mandelbrot set computation are described using
Chapel, OpenMP, MPI with different communication models (two-
sided blocking and non-blocking, one-sided), and a hybrid one,
combining MPI and OpenMP.

4.1 OpenMP
The OpenMP API (Open Multi-Processing Application Program-
ming Interface) [12] is a collection of compiler directives, library
routines and environment variables for shared-memory parallelism
in C, C++ and Fortran programs. It is portable across different ar-
chitectures and supported by numerous compilers. It relies on the
Single Program Multiple Data (SPMD) execution model, where a
set of tasks share a common address space and are executed in an
asynchronous way.

OpenMP directives are added to the code using the #pragma pre-
processor mechanism. The most common way to introduce paral-
lelism is the omp parallel directive which creates a parallel region
where concurrent threads execute the same code. The omp forwork
sharing directive allows to distribute iterations of a for-loop among
threads. Several clauses can be employed to modify the behavior of
the work sharing construct, for instance whether loop iterations are
distributed using a static scheduling (Master-Worker model) or a
dynamic one (Work-Pool model). Round-robin static distribution of
lines onto threads is achieved by the schedule(static,1) clause,
where the parameter 1 represents the chunk size. Another impor-
tant point is that OpenMP relies on a fork-joinmodel, where a set of
threads is created entering a parallel region (fork), and is destroyed
at the end (join). This model thus implies implicit synchroniza-
tion mechanisms. A more complete documentation of OpenMP is
available in [12].

The OpenMP parallel Mandelbrot generation is described in
Algorithm 2. One can see that parallelization is achieved through
a minimal and incremental modification of the sequential code
(addition of line 2). The composite omp parallel for directive is
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Figure 2: Computation time per line of pixels for an im-
age of size 1024x768 and 𝑁 = 1000, on AMD EPYC 7301 CPU
@2.20GHz.

Algorithm 2: Pseudo OpenMP parallel implementation of
the Mandelbrot set computation
1 function Compute_image_omp() :
2 #pragma omp parallel for schedule(static, 1);
3 for 𝑎 = 0 to 𝑛𝑏_𝑙𝑖𝑛𝑒𝑠 do
4 for 𝑏 = 0 to 𝑛𝑏_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
5 Compute_pixel(𝑎, 𝑏);
6 end
7 end
8 end

added in order to distribute the iterations of the first for-loop (line
3) onto threads.

4.2 Chapel
Chapel (Cascade High Productivity Language) [4] is an open-source
high-productivity and high-performance programming language
that follows the Partitioned Global Address Space (PGAS) program-
ming model. Chapel allows shared- and distributed-memory execu-
tions, and runs on top of the GASNet one-sided communication and
active message library. Furthermore, as Chapel belongs to the PGAS
class of languages, the application has a global memory addressing
space, and each segment of this space is assigned to a different
locale [1]. In turn, a locale refers to a unit of the machine resources
that can store variables and run Chapel tasks, which is similar to
an MPI process. It is also worth to say that the language supports
object-oriented design and C or Fortran interoperability features.

In Chapel, parallelism is expressed in terms of tasks, which can be
run on one or several locale(s). The program is started with a single
task, and parallelism is added through data or task-parallel features,
such as the coforall statement, which is a parallel version of the
for-loop, introducing task parallelism by creating a distinct task per
loop iteration. This feature is suitable to create concurrent tasks,
especially when the loop iterations are independent, like in the
Mandelbrot set computation. Moreover, it is possible to explicitly
control locality via the on clause that allows to migrate a task
on the specified locale. The number of locales is passed to the
implementation using the command line parameter -nl 𝐿, where 𝐿
is the number of locales on which the application is executed. The
detailed Chapel documentation is available in [4].

The implementation of the Mandelbrot written in Chapel is de-
picted in Algorithm 3. First of all, a coforall statement is used to
create as much tasks as locales (line 2). Then, each allocated task is
migrated on its associated locale (line 3). Following this, another
coforall statement is used to create as much tasks as threads per
locale (line 4). Finally, each task thus created computes sequentially
its lines of pixels. Unlike the OpenMP implementation, the distri-
bution of lines onto threads is done manually, by computing the
corresponding indices (line 5).

4.3 MPI
MPI (Message-Passing Interface) [11] is a library interface speci-
fication for message-passing on shared- and distributed-memory
multi-core computers. MPI is widely used in academic and industrial

3



Helbecque et al.

Algorithm 3: Pseudo Chapel parallel implementation of
the Mandelbrot set computation
1 function Compute_image_chpl() :
2 coforall 𝑙𝑜𝑐 = 0 to 𝑛𝑏_𝑙𝑜𝑐𝑎𝑙𝑒𝑠 do
3 on loc do
4 coforall 𝑟𝑎𝑛𝑘 = 0 to 𝑛𝑏_𝑡𝑎𝑠𝑘𝑠 do
5 for 𝑎 = 𝑙𝑜𝑐.𝑖𝑑 + 𝑟𝑎𝑛𝑘 ∗ 𝑛𝑏_𝑙𝑜𝑐𝑎𝑙𝑒𝑠 to

𝑛𝑏_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 by 𝑛𝑏_𝑡𝑎𝑠𝑘𝑠 ∗ 𝑛𝑏_𝑙𝑜𝑐𝑎𝑙𝑒𝑠 do
6 for 𝑏 = 0 to 𝑛𝑏_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
7 Compute_pixel(𝑎, 𝑏);
8 end
9 end

10 end
11 end
12 end
13 end

areas for its portability, standardization and its high performance.
MPI defines a set of subroutines, usable in C or Fortran. Typically,
a SPMD model is used, where a set of MPI processes, having their
own exclusive address space, execute the same program.

Executing an MPI program in parallel consists in launching mul-
tiple copies of the same program on a set of specified hosts. The
MPI environment can be initialized using the MPI_Init routine,
enabling interprocess communications. MPI_Finalize shuts down
the environment and cleans up all MPI-related state. Other process
management operations like MPI_Comm_size and MPI_Comm_rank
allow to query the number of MPI processes in a given MPI com-
municator and the rank of the calling MPI process, respectively.

Initially, the MPI standard (MPI-1) specifies a point-to-point com-
munication model through send and receive operations. Since this
latter implies both sender and receiver sides, we usually refer to this
model as two-sided. Later, MPI-2 introduces new functionalities, like
one-sided communications, also known as Remote Memory Access
(RMA). MPI one-sided communications are limited to accessing
only a specifically declared memory area on the target, called a win-
dow. Unlike with two-sided operations, the target process doesn’t
perform any action. The detailed MPI documentation is available
in [11].

In the remainder of this section, four MPI implementations
are described using different communication models: two-sided
with blocking and non-blocking operations, one-sided, and hybrid
MPI+OpenMP. Each MPI process will perform the computation
of its lines, while only the master process stores the image. This
implies communication of data between processes.

4.3.1 Two-sided communications. The two main routines for MPI
two-sided communications are MPI_Send and MPI_Recv. The send/receive
buffers, sender/receiver ranks and data types must be explicitly
specified by the programmer. Moreover, these are blocking commu-
nications involving implicit synchronizations.

The MPI parallel implementation with two-sided blocking com-
munications is described in Algorithm 4. First, the MPI environment
is initialized, and each process reads its rank and the number of MPI
processes (lines 1-3), which are used to explicitly map processes

Algorithm 4: Pseudo MPI parallel implementation of the
Mandelbrot set computation with two-sided blocking com-
munications
1 MPI_Init();
2 MPI_Comm_size(𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒);
3 MPI_Comm_rank(𝑟𝑎𝑛𝑘);
4 for 𝑙 = 𝑟𝑎𝑛𝑘 to 𝑛𝑏_𝑙𝑖𝑛𝑒𝑠 by 𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒 do
5 Compute_line(𝑙 );
6 if rank ≠ 0 then
7 MPI_Send(/*args*/);
8 else
9 MPI_Recv(/*args*/);

10 end
11 end
12 MPI_Finalize();

onto work items (lines of the image). Each MPI process sequentially
computes the lines it is assigned to (lines 4-5). Completed lines are
send to the master process (rank 0) introducing synchronization
points between the latter and all non-zero ranks. When the work is
finished, the MPI environment is shut down and the master process
writes the image to an output file (not included in time measurings).

The previous MPI algorithm represents the most basic MPI par-
allel implementation of the Mandelbrot set computation. However,
implicit synchronization could induce communication overheads
that become significant for fine-grained computations. This is why
MPI also includes non-blocking operations. The most basic ones are
MPI_Isend and MPI_Irecv. The use of non-blocking communica-
tions leave the user responsible for explicit synchronization, for in-
stance by using the MPI_Waitall routine. A variant of Algorithm 4
using non-blocking communications is shown in Algorithm 5.

Algorithm 5: Pseudo MPI parallel implementation of the
Mandelbrot set computation with two-sided non-blocking
communications
1 MPI_Init();
2 MPI_Comm_size(𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒);
3 MPI_Comm_rank(𝑟𝑎𝑛𝑘);
4 for 𝑙 = 𝑟𝑎𝑛𝑘 to 𝑛𝑏_𝑙𝑖𝑛𝑒𝑠 by 𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒 do
5 Compute_line(𝑙 );
6 if rank ≠ 0 then
7 MPI_Isend(/*args*/);
8 else
9 MPI_Irecv(/*args*/);

10 end
11 MPI_Waitall();
12 end
13 MPI_Finalize();

4.3.2 One-sided communications. When dealing with one-sided
communications, the main calls are MPI_Put to send data to the
window of another process, MPI_Get to fetch data from the win-
dow of another process, and MPI_Accumulate to update data by
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combining the existing data and the data sent. Moreover, like in
two-sided non-blocking operations, explicit synchronizations are
required. It can be achieved via the MPI_Fence routine.

Algorithm 6: Pseudo MPI parallel implementation of the
Mandelbrot set computation with one-sided communica-
tions
1 MPI_Init();
2 MPI_Comm_size(𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒);
3 MPI_Comm_rank(𝑟𝑎𝑛𝑘);
4 MPI_Win_create(𝑤𝑖𝑛);
5 MPI_Fence();
6 for 𝑙 = 𝑟𝑎𝑛𝑘 to 𝑛𝑏_𝑙𝑖𝑛𝑒𝑠 by 𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒 do
7 Compute_line(𝑙 );
8 if rank ≠ 0 then
9 MPI_Put(/*args*/);

10 end
11 MPI_Fence();
12 end
13 MPI_Win_free(𝑤𝑖𝑛);
14 MPI_Finalize();

Algorithm 6 shows a variant of the previous MPI-based algo-
rithms using one-sided communications. Similarly, the implemen-
tation begins with the initialization steps, followed by the window
creation procedure MPI_Win_create (line 4). Synchronization on
the window (line 5), effectively acting as a global barrier, is required
to ensure that the window is completely accessible by every process
before performing any operations. The mapping of processes onto
work items is identical to the previous MPI-based algorithms. The
difference is that the master process is no more involved in the com-
munications. At the end, the windows is freed with MPI_Win_free
(line 13) and the MPI environment is closed.

4.3.3 Hybrid MPI+OpenMP. In this last section, we focus on a hy-
brid MPI+OpenMP program to combine the distributed features
of MPI with the multi-threaded execution model of OpenMP. The
MPI environement is initialized using the MPI_Init_thread sub-
routine with the MPI_THREAD_FUNNELED multi-threading support,
indicating that MPI calls will only be issued from the master thread
of each process.

The hybrid approach is illustrated in Algorithm 7. At most one
MPI process is allowed per computer node. This can be done using
the --map-by ppr:1:node mapping policy. Locally to each node,
the computation of lines is done in parallel using OpenMP, like
in Algorithm 2 (line 4). Then, MPI is used for the inter-processes
communications (lines 5-9). As lines computed per process are send
to rank 0 in a single batch, we choose to deal communications with
the basic two-sided blocking communication model.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the implementations
introduced in Section 4. Section 5.1 introduces the experimental
testbed, and Section 5.2 defines the experimental protocol. The per-
formance results in shared- and distributed-memory environments
are presented and analyzed in Section 5.3 and 5.4, respectively.

Algorithm 7: Pseudo MPI+OpenMP parallel implementa-
tion of the Mandelbrot set computation
1 MPI_Init_thread(MPI_THREAD_FUNNELED);
2 MPI_Comm_size(𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒);
3 MPI_Comm_rank(𝑟𝑎𝑛𝑘);
4 Compute_image_omp(𝑟𝑎𝑛𝑘 ,𝑐𝑜𝑚𝑚𝑠𝑖𝑧𝑒);
5 if rank ≠ 0 then
6 MPI_Send(/*args*/);
7 else
8 MPI_Recv(/*args*/);
9 end

10 MPI_Finalize();

5.1 Experimental testbed
The experiments are carried out using the French national Grid’5000
experimental testbed. All computer nodes operate under Debian
GNU/Linux 11 (bullseye), 64 bits and are equipped with 𝑡𝑤𝑜 AMD
EPYC 7301 CPUs@2.20GHz (a total of 32 cores/64 threads per node)
and 192 𝐺𝐵 RAM. All computer nodes are interconnected through
a 25 Gbps Ethernet network Intel Ethernet Controller XXV710. The
number of computer nodes in the experiments ranges from 1 to 6.
Thus, up to 192 processing cores are used in the experiments. Con-
cerning the Chapel implementation, each computer node hosts one
Chapel locale. Table 1 presents the tools/libraries and optimization
flags used for compiling the programs.

Table 1: Summary of the tools/libraries and optimization
flags used for compilation and execution.

Tools/libraries Version
C compiler 𝑔𝑐𝑐 10.2.1
Open MPI 4.1.0
OpenMP 4.5
Chapel 1.25.0
C optimization flag -O2
Chapel optimization flag --fast

Chapel’s multi-locale code runs on top of GASNet, and the run-
time should be built taking account the characteristics of the system
on which the multi-locale code is supposed to run. One can see in
Table 2 a summary of the runtime configurations for multi-locale
execution. The UDP GASNet implementation is the one used for
communication (CHPL_COMM_SUBSTRATE) along with SSH, which is
responsible for getting the executables running on different locales
(GASNET_PSM_SPAWNER).

5.2 Experimental protocol
For each implementation, the computation time is measured while
varying the granularity, controlled by the maximum number of
iterations 𝑁 , that takes its value in {100, 1000, 10000, 100000}. The
image size is fixed to 1024x768 and 5120x3840 for shared- and
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Table 2: Summary of the Chapel environment configuration
for multi-locale execution.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE 64

CHPL_TARGET_CPU 𝑛𝑎𝑡𝑖𝑣𝑒

CHPL_HOST_PLATFORM 𝑙𝑖𝑛𝑢𝑥64
CHPL_LLVM 𝑛𝑜𝑛𝑒

CHPL_COMM 𝑔𝑎𝑠𝑛𝑒𝑡

CHPL_COMM_SUBSTRATE 𝑢𝑑𝑝

GASNET_PSM_SPAWNER 𝑠𝑠ℎ

distributed-memory experiments, respectively. For each experi-
ment, the relative speed-up 𝑆 , defined by

𝑆 (𝑝) = 𝑡 (1)
𝑡 (𝑝) , (3)

is then measured, where 𝑡 (𝑝) corresponds to the execution time
using 𝑝 processing units, and 𝑡 (1) is the corresponding sequential
time. The clock_gettime timer C function is used, since it is valid
for all implementations (using the C interoperability in Chapel).
Experiments are performed multiple times, and the average is con-
sidered.

5.3 Results on shared-memory system
Figure 3 depicts the relative speed-up measured while varying
the number of processing units from 1 to 64. Different maximum
number of iterations 𝑁 are considered in order to see the effect
of the granularity. Hyperthreading is allowed for the Chapel and
OpenMP implementations, but the overloading of MPI processing
elements is disabled (with the -nooversubscribe flag).

We can see that the MPI-based implementations suffer from
high parallel overheads. Indeed, for low granularity, 𝑁 = 100, the
workload is not sufficiently large to counterbalance the MPI com-
munication overheads. This is why speed-up remains bounded by
10. However, when the granularity increases, the MPI implemen-
tations are able to take advantage of parallelism to reach a high
speed-up, very close to the ideal one (𝑁 = 100000). In addition,
we note that the implementation based on two-sided non-blocking
communications performs better than its blocking counterpart. In
these experiments, no difference appears between the one-sided
and the two-sided non-blocking MPI implementations. Concerning
the speed-up of the OpenMP implementation, we observe the same
behavior as in MPI, i.e., the application scales poorly for very fine
granularity. This is explained by the fact that the fork-join model of
OpenMP is costly, and need to be counterbalance by a sufficiently
large workload. When 𝑁 increases, the OpenMP speed-up is getting
closer to the ideal one. We also note that hyperthreading allows
OpenMP to obtain good performance, although the speed-up for
64 threads is quite far from ideal. Finally, interestingly, we can see
that the Chapel implementation doesn’t suffer much from parallel
overheads. Even with a low granularity, we note that Chapel can
easily obtain a speed-up that reached 50 using hyperthreading, and
scales well with the ideal speed-up when 𝑁 is growing.

In order to investigate the high performance of Chapel compared
to the other implementations, we suggest to measure the compu-
tation time when fixing 𝑁 = 1. In accordance with Algorithm 1, it

represents the minimum valid value of 𝑁 for which the workload
for each pixel is negligible, almost zero, and thus the computation
time reflects the parallel overheads. Experiments are performed
fifty times, and the average is considered.

These results are depicted in Figure 4. Firstly, concerning the
MPI-based implementations, we can see that for two-sided com-
munications, the computation time is slightly increasing with the
number of processing cores, and we note that the removal of im-
plicit synchronizations through non-blocking operations allows
a minor gain. Moreover, we observe that the MPI one-sided ap-
proach is more expensive than others, due to the fact that this
model requires the creation of a window, in addition to commu-
nication and synchronization mechanisms. Secondly, we observe
also that the OpenMP computation time is growing with 𝑁 . We
note that OpenMP is faster than all MPI-based implementation,
except when using hyperthreading. Finally, we observe that Chapel
is consistently faster than all others. Interestingly, the computa-
tion time is decaying with the number of processing units. This
behavior can partly explain the very good Chapel performance in
the shared-memory multi-core experiments of Figure 3, whatever
the granularity. The Chapel 𝑞𝑡ℎ𝑟𝑒𝑎𝑑𝑠 default tasking layer, that
provides a lightweight implementation of Chapel tasking as well as
an optimized implementation of synchronization variables, is thus
very appropriate, and allows high performance [15, 16].

5.4 Results on distributed-memory system
In this section, the parallel speed-up is observed while varying the
number of processing units from 1 to 192. MPI processes overload-
ing and hyperthreading are not allowed. The hybrid MPI+OpenMP
implementation uses 1, 2, 3, 4, and 6 MPI process(es) with 32 threads
each. Communications are performed by process 0. The results are
presented in Figure 5.

Firstly, when considering low granularity, 𝑁 = 100, all imple-
mentations suffer from high parallel overheads. Each speed-up
associated to MPI-based implementation remains bounded by 20.
This is also true for the hybrid MPI+OpenMP program. Actually, the
OpenMP parallelism cannot counterbalance the MPI overheads gen-
erated by the distribution of work onto computer nodes. Regarding
Chapel, we observe an almost ideal speed-up for 32 processing units,
since it implies only one locale. Indeed, we have seen in the previous
section that Chapel is particularly efficient in single locale execution.
However, when considering multi-locale executions (more than 32
cores), the performance dramatically drops. When 𝑁 is growing,
each implementation scales well, since the parallel overheads are
counterbalance by the workload. The distributed-memory experi-
ments allow to better see the differences between the MPI-based
implementations. The two-sided blocking communication model is
outperformed by its counterparts, whatever the granularity. More-
over, we note for this application that the one-sided communication
model is not as good as the two-sided non-blocking one. Actually,
it can be explain by the fact that tasks are independent, and thus
few inter-process communications occur. The hybrid MPI+OpenMP
program is as good or better than all others, whatever the value of
𝑁 . In addition, we observe that for high granularity (𝑁 = 100000
for example), Chapel is able to compete with the hybrid program.
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Figure 3: Speed-up achieved by all five shared-memory implementations. The number of processing units varies from 1 to 64
(hyperthreading enabled for Chapel and OpenMP). Results are for different maximum number of iterations 𝑁 .
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Figure 4: Computational overhead measured by all five
shared-memory implementations when considering 𝑁 = 1.
The number of processing units varies from 2 to 64 (hyper-
threading enabled for Chapel and OpenMP)

As we did in the previous section, we investigate the communi-
cation overheads in the distributed-memory experiments by fixing
𝑁 = 1. Again, experiments are performed fifty times, and the aver-
age is considered.

The results are depicted in Figure 6. First of all, we can see that
for two-sided MPI, the communication overheads for both block-
ing and non-blocking communication models are approximately
the same. Moreover, we note a light increase when the number of
processing units growths. For one-sided MPI, this last observation
is also true. The higher the number of processing units, the higher
the communication overheads. However, compared to two-sided
MPI, the latter are 2 times higher for 96 and 128 processing units,
and almost 6 times higher for 192. Like in the shared-memory ex-
periments, it can be attributed to the window management, that
requires creation, communication and synchronizationmechanisms.
Concerning the hybrid MPI+OpenMP approach, we can see that
the overheads remain constant, whatever the number of processing
units. This can be justified by the fact that only one MPI process is
allowed per computer nodes. Finally, we note that the communica-
tion overheads of Chapel in our distributed-memory experiments

are high. Indeed, from 3 computers nodes (96 processing units),
overheads are 10 to 21 times higher than the ones observe using
the hybrid model. Chapel may suffer from the fact that our cluster
is not equipped with high-performance network between nodes.
This last observation can explain the poor performance of Chapel
in distributed-memory when 𝑁 is low (see Figure 5).

6 CONCLUSION
In this paper, we have compared the Chapel high-productivity pro-
gramming language to the well-established conventional parallel
programming libraries OpenMP and MPI+X, in terms of perfor-
mance. Shared- and distributed-memory multi-core experiments
were conducted on a cluster composed of 192 processing cores,
using the French national testbed Grid’5000.

In this work, the embarrassingly parallel computation of the
Mandelbrot set was chosen as a test-case for its high degree of
parallelism and its irregular workload. This study represents a
good comparison element between Chapel and its OpenMP and
MPI counterparts. However, this study should be extended to more
complicated problems, involving dependent tasks, and thus more
communication between processing units.

Chapel outperforms its counterparts in shared-memory context.
This may be explain by its 𝑞𝑡ℎ𝑟𝑒𝑎𝑑𝑠 default tasking layer that pro-
vides a lightweight implementation of Chapel tasking as well as an
optimized implementation of synchronization variables. Moreover,
in distributed-memory environment, Chapel competes with hybrid
MPI+OpenMP, even though its 𝑞𝑡ℎ𝑟𝑒𝑎𝑑𝑠 tasking layer seems to
suffer from the lack of high-performance network of the cluster.

Finally, we plan to investigate the use of Chapel and other high-
productivity languages for more complex applications, in particular
irregular ones (such as tree-search algorithms). Another important
aspect is GPU programming support. Although there exist two
modules that facilitate GPU programming in Chapel (GPUIterator
and GPUAPI), they are not yet mature.
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