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Abstract

Movement data from athletes are useful to quantify performance or more specifically the
workload. Inertial measurement units (IMUs) are useful sensors to quantify body move-
ments. Sensor placement on human body is still an open question that this paper focuses
on. A method that develops synthesized inertial data is proposed for determining optimal
sensors placement. Comparison between virtual and real inertial data is achieved. Training
motion recognition algorithm on synthesized and real inertial data exhibits less than 7%
difference. This method highlights the ability of the numerical model to determine rele-
vant sensor placement of IMUs on human body for motion recognition algorithm using
virtual sensors.

1 INTRODUCTION

Sensors are widely used in sports [1], they allow the measure-
ment and monitoring of performance to prevent injuries or to
adjust training content. Sensors evaluating physical and physi-
ological parameters can quantify the workload (WL) or train-
ing load of athletes. Also, measurements related to the move-
ments and actions performed by the athlete help to estimate
the external WL. Automatic activity assessment is possible via
several tools such as video monitoring [2, 3] or signal process-
ing algorithms [4]. However, video and radio-based local posi-
tioning systems require equipping the gym, which is restrictive.
Individual wearable sensors overcome the gym constraints and
bring more flexibility in sports monitoring.

The synthesis of data such as accelerations or angular veloci-
ties relative to the movements of the human body brings a real
added value in terms of time and the possibility of experimenta-
tion. The use of technology such as inertial measurement units
(IMUs) allows the recognition of movements and actions.
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An IMU is a sensor that collects at least acceleration and
angular velocity data. IMUs are widely used because of their
integration capabilities, low economic cost, and simple imple-
mentation [5, 6]. IMUs with the appropriate bindings [7] are
developed by manufacturers. The combination of several IMU
reduces the inherent sensor errors and improves the informa-
tion of performed actions [8]. When these data are intended to
train classification algorithms for motion recognition purposes,
an extensive dataset of all possible positions is needed to evalu-
ate the best placement of sensors [9].

Thus, the difficulty comes from the combinatorial explosion
of the number of trials with the different activities and the dif-
ferent sensor positions considered. The Firat University [10]
proposes a method of co-recognition of the human activity
and the positioning of an inertial unit because they are more
advantageous than cameras. The strength of the approach is to
estimate both the sensor location on the human body and the
motion recognition. Only one inertial unit was used, 14 activ-
ities were performed with 10 repetitions and three subjects. A
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total of 98 combination activity-sensor locations are recorded.
All sensor locations were not investigated because of the high
number of experiments needed. This would require the imple-
mentation of too many experiments.

Another work [11] presents a similar study. In this case, two
IMUs are used at the same time. The effect of sensor positioning
on human activity recognition is illustrated. The study is con-
ducted in the context of health monitoring, sedentary activities.
Different sensor positions are investigated. Experimental limi-
tations persist: not all combinations and positions are tested.

However, there are methods based on biomechanical models
that can overcome these limitations. Xu et al. [12] have devel-
oped an approach to recognize human activity based on biome-
chanical analysis. Their method is based on the use of a cam-
era (Kinect) sampled at 30 frames per second (FPS) to build a
labelled pose database with three different movements repeated
30 times by five subjects. The Kinect biomechanical model is
used to extract 2D locations and velocities of 15 markers on the
human body. The data were used for motion classification. This
approach based on a biomechanical model to extract motion
data for classification is validated. Nevertheless, this study does
not find the best locations of real wearable IMUs, accelerations
are not evaluated. Moreover, this method requires constraining
experimental conditions such as the distance from the camera,
so it is not applicable to all situations.

In this context, our study tends to go further by recovering
via a biomechanical model the data of inertial units called syn-
thesized inertial data (SID) on the whole human body with a
minimum number of experiments. This allows us to test several
combinations of sensors but also to study various positions on
the human body in order to recognize the activity.

In the first part, a biomechanical model is established via
motion capture and synthesized data are generated on the whole
human body. As the subject is also equipped with real IMUs, this
paper compares the real and synthesized data in time and fre-
quency domain. The main objective is to use IMUs for motion
recognition, the two types of data using typical statistical fea-
tures of motion recognition are compared. In the last part, we
present an application of these synthesized data for motion
recognition.

2 MATERIALS AND METHODS

Optimal IMU placement on human body requires a design
method that must be validated. This tool synthesizes IMUs
data – named Synthesized IMU Data (SID) – on the whole
human body. The core of the tool is a biomechanical model
based on motion capture. SID data is compared to real IMU
data (RID) through statistical and frequency feature analysis.
The limitation of the proposed tool is assessed by motion recog-
nition algorithm on both SID and RID.

2.1 Synthetized inertial data (SID)

A biomechanical model is established by motion capture
experimentations. First, the data from the inertial units of the

FIGURE 1 Subject equipped with inertial measurement units (IMUs).
Sensor’s locations: Hands, lower arms, upper arms, feet, lower legs, upper legs,
pelvis and sternum

Xsens MVN Link suit equipped by the subject are captured by
wireless communication to establish the biomechanical model.
The Xsens suit has 17 sensors, they are fixed on the body thanks
to self-gripping bands. These data are then processed by the
Xsens MVN Animate software. Proprietary fusion and recon-
struction algorithms allow for generating accurate numerical
avatar motions at 240 FPS [13]. This model is an osteoartic-
ular model composed of 23 rigid segments and 22 kinematic
links of 6 degrees of freedom [14]. Once the biomechanical
model is created, it is exported from the Xsens environment
to be analysed and processed under CUSTOM (Customizable
Toolbox for Musculoskeletal simulation) [15], a Mathworks
MATLAB library allowing the simulation of biomechanical
models. The segments of this model are linearly discretized to
increase the number of points where IMU data are synthesized.
This discretized model is presented in Figure 2. To the authors’
knowledge, such discretized modelling of IMU has not been
studied before. The SID system is calibrated between each set
of 10 repetitions.

2.2 Real inertial data (RID)

The RID consists of a set of 14 IMUs originated from Delsys
Incorporated (https://delsys.com/), the IMU range is 16 g for
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538 HOAREAU ET AL.

FIGURE 2 Discretized biomechanical model. (a) Synthesized inertial data
(SID) positions where each green circle represents a sensor location (b) real
inertial data (RID) sensor location with the corresponding numbering

the accelerometer and 2000 deg/s for the gyroscope, the data
are sampled at 370 Hz. These IMUs are placed accordingly to
Figure 1.

2.3 Data collection procedure

Experiments are performed in a gym. The subject performs 10
repetitions of three types of movements:

∙ Countermovement vertical jump: The subject jumps on the
spot trying to go as high as possible, the movement starts
with a squat.

∙ Left-side sprint: The subject starts from a static standing
position; at the start, he performs a sprint with great accel-
eration in the left lateral direction from his initial position.

∙ Right-side sprint: The subject starts from a static standing
position; at the start, he performs a sprint with great accel-
eration in the right lateral direction of his initial position.

The final database is therefore composed of 30 trials for SID
and RID.

2.4 SID and RID comparison

SID and RID are compared to validate the use of only SID for
assessing the relevance of a sensor location for motion recogni-
tion.

SID and RID acquisitions are processed. The data is tem-
porally synchronized to match the beginning and the end of
the SID and RID acquisitions. Each acquisition performed

TABLE 1 List of features used for signal characterization (PSD for power
spectral density)

Number Feature

1 Mean

2 Standard deviation

3 Root mean square

4 Max

5 Min

6 Skewness of PSD

7 Kurtosis of PSD

8 First quartile

9 Second quartile

10 Third quartile

11 Mean crossing rate

12 Mean of PSD

13 Standard deviation of PSD

is labelled with the corresponding name (counter movement
vertical jump, left-side sprint or right-side sprint). Differences
between the two data sets are evaluated through statistical and
frequency parameters called features. The considered features
are listed in Table 1. This selection corresponds to the most
widely used features in literature.

These features are applied to the temporal data of each axis
of the IMU data, but the results presented in this paper focus on
features applied to the norm of acceleration and angular veloc-
ity. The alignment between the axes is not constant during the
experiments, the norm does not consider this possible misalign-
ment between the SID and RID reference frames. A 0.5 s win-
dow and a 50% overlapping are selected for feature extraction.
The frequency study is done with the fast Fourier transform
(FFT). Equation (1) presents how the normalized relative error
between SID and RID is calculated:

RMSE =

√
1

N

∑
N

(RID − SID)2

√
1

N

∑
N

RID2
(1)

In the equation, N stands for the number of windows for all
samples.

2.5 Motion recognition algorithm

As a proof of concept, a very common and simple support vec-
tor machine (SVM) classifier with a second-order polynomial
kernel is implemented. The classifier is trained on each sensor
location. Its inputs are features of Table 1. The evaluation of
the motion recognition is done by fivefold cross-validation. To
determine the classifier accuracy, the classification score is com-
puted, which is 1 minus the average classification loss overall
folds. The classification loss is obtained by calculating the mis-
classification rate. The data set is composed of 10 repetitions of
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HOAREAU ET AL. 539

FIGURE 3 Norm of acceleration of an inertial measurement unit (IMU)
on the left hand for a jump for synthesized inertial data (SID) and real inertial
data (RID)

three movements. For each sample consisting of a 0.5 s window
of the norm of acceleration and norm of angular velocity, the
13 previously defined features are extracted, leading to a total
of 26 features. So far, the dataset is composed of 702 samples
with 226 samples for the countermovement jump, 234 samples
for the left-side sprint and 242 samples for the right-side sprint.
The duration of each movement differs, which is why we obtain
a different number of samples after extraction of the features
via the 0.5 s windowing.

3 RESULTS

Temporal and frequencies studies focus on the entire signals.
Features used for comparison and classification are then calcu-
lated on windowed signals.

3.1 Temporal waveforms

Figure 3 shows SID and RID temporal waveforms. The data
correspond to the norm of the acceleration of an IMU located
on the left hand during a jump; this is a classical movement in
motion classification. The SID and RID acceleration match, as
visible in Figure 3. This is a general result for all sensors. Corre-
lation in the frequency domain was also checked.

3.2 Frequency domain

Figure 4 is the FFT of the norm of acceleration on the left hand
for a jump. While signals match at low frequencies, the RID
signals have a larger frequency bandwidth than the SID signals.

However, the frequency of human motions is mainly between
4 and 26 Hz [16]. To compare temporally each sample of the
two signals, RID and SID are filtered using a fifth-order Butter-

FIGURE 4 Fast Fourier transform (FFT) of the norm of acceleration of
an IMU on the left hand for a jump for synthesized inertial data (SID) and real
inertial data (RID) for the entire signal

FIGURE 5 Bland–Altman plot of the filtered RID and SID acceleration
data. The observed distribution is not normal, the quantiles of 2.75% and
97.5% were calculated

worth IIR 10 Hz low pass filter. Figure 5 illustrates the differ-
ence between temporal filtered RID and SID data with Bland–
Altman plot. This plot presents in log scale the instantaneous
difference between RID and SID as a function of the averaged
log value, for each time sample.

The average difference between RID and SID acceleration is
about 0.1 g. We observe that for 95% of the values, the error is
<17% on the average acceleration of 1.4 g.

The differences observed at each moment come not only
from the oscillations linked to the different measurements but
also from the temporal synchronization between RID and SID.

To comfort these matching results, the following part focuses
on the comparison between RID and SID via the use of
features.
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FIGURE 6 Box plot of normalized error of the
norm of acceleration (top) and angular velocity
(bottom) between synthesized inertial data (SID) and
real inertial data (RID) for all sensors versus features.
The line inside of each box is the sample median.
The left and right edges of each box are the upper
and lower quartiles, respectively. Outliers are values
that are more than 1.5. Interquartile range (IQR)
away from the top or bottom of the box using an ‘o’
symbol. The whiskers are lines that extend above and
below each box. One whisker connects the upper
quartile to the nonoutlier maximum (the maximum
value that is not an outlier), and the other connects
the lower quartile to the nonoutlier minimum (the
minimum value that is not an outlier)

3.3 Synthetized IMU validation

The signals processed here are segmented into windows of
0.5 s.

Statistical features introduced in Table 1 are extracted for the
whole data set of RID and SID windows. Figure 6 shows the rel-
ative normalized RMS error (RMSE) between the SID and RID
data as a function of the features extracted. The error is calcu-
lated on all accelerations and angular velocities for each sensor.
The results are presented as boxplots. This presents the distri-
bution of the error values according to the features.

Figure 6 comparing the features shows that the ‘Mean of
PSD’ presents a higher error than ‘Skewness’. Focusing on
these two examples, Figure 7a corresponds to the least rele-
vant feature with an RMSE that has a third quartile below 250%
and 75% for angular velocity and acceleration, respectively. On
some outliers of the ‘Mean of PSD’ on sensor S1, the angu-
lar velocity has errors of >1000%. Figure 7b shows a more
relevant feature with errors below 20%. Despite this diversity
of errors, the results of the classification comparison on the
SID and RID show the same trend, as will be explained later
in Figure 9. We recall that the main objective of this paper
is to evaluate the effect of position on motion recognition.
We thus observe a robustness of the proposed method with
respect to the errors between the features extracted on the SID
and RID.

3.4 Application for motion recognition

SVM classifiers have been trained on each SID position, using
the previously mentioned features on velocity and acceleration
amplitudes.

Figure 8 presents the results of an avatar based on the biome-
chanical model. The sensor locations are indicated by circles,
which colours indicate the classification scores. Therefore, a

classification score colour map on human body is plotted. The
classification scores of 154 synthetized IMU locations are repre-
sented, which assess a significatively larger number of locations
compared to the only 14 real sensors:

RMSE_C =

√
1
N

∑
N

(RID − SID)2 (2)

SID and RID are also compared (Figure 9), the difference
in classification scores for each sensor is calculated by Equa-
tion (2), which stay below 7%. Equation (2) computes the abso-
lute errors, it is related to Equation (1) through Equation (3):

RMSE =
RMSE_C√
1

N

∑
N

RID2
(3)

Regardless of the quality of the motion recognition, the
trends on SID and RID are similar. Thus, the sensor locations
with the best performance between the two approaches are
close. In this study, the sensors placed on the right leg are the
best for motion recognition.

4 DISCUSSION

The differences between synthesized data and real data can be
explained by elements of biomechanics, signal processing and
machine learning.

First, the method is based on a digital biomechanical model
relying on assumptions. Indeed, the model does not consider
soft bodies. This may explain differences on the thigh as skins
and flesh lead to artefacts as well as sensor misplacement. Soft
tissue can add up to 50% additive noise on acceleration and ori-
entation measurements compared to actual bone motion [17].
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HOAREAU ET AL. 541

FIGURE 7 Box plot of normalized error of the norm of acceleration (top) and angular velocity (bottom) between synthesized inertial data (SID) and real
inertial data (RID). (a) Plot for a non-relevant feature (Mean of PSD, on all sensors). (b) Plot for a relevant feature (Skewness, on all sensors). Sensor numbering
from Figure 2 applies
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542 HOAREAU ET AL.

FIGURE 8 Synthesized inertial data (SID) classification score on
biomechanical model for 154 sensor locations

Some joints are approximated by combinations of kinematic
joints, as it is an osteo-articular model. For instance, shoulders
are described by two rotations while their kinematics are much
more complex [18]. The pelvis is the first kinematic node. It
defines the global location of the body. It is sensitive to digital
noise coming from the solver that minimizes distances between
real and virtual markers for the whole body. So, these locations
require special attention if selected as targets for real sensors.

Second, the biomechanical model computations imply errors.
While signals match at low frequencies, the RID signals have a
larger frequency bandwidth than the SID signals. This is caused

by various filters stabilizing and smoothing trajectories of the
biomechanical model, which are generally low pass filters. This
is responsible for differences in features dynamic-sensitive like
minimum, maximum, standard deviation as well as power spec-
tral density (PSD) based features like Kurtosis or Skewness. One
should keep in mind that highly dynamic-sensitive features are
useful to discriminate motions, while they present a poor suit-
ability between SID and RID.

Finally, the selected classifier used in this paper for motion
recognition is chosen to be simple. Therefore, the results can
be improved significantly, but this is out of the scope of this
publication. SVM classifier with the second-order polynomial
kernel is selected because it is a classic and mostly used algo-
rithm. The modelling of the motion, that is, considering statis-
tical features on 0.5 s window, is not the best fit to describe
motions that can last several seconds decomposed in multiple
sub-steps. The results may benefit from considering multiple
sensors or from more advanced classification algorithms like
Markov Chains considering data history or from the latest arti-
ficial intelligence algorithms such as deep artificial neural net-
works. Other limitations that could be discussed in more detail
are that only one sensor is considered at a time, the kernel bias,
or the unbalance database with the small number of data and
motion diversity.

5 CONCLUSION

Sensors such as IMUs are increasingly used to assess the physi-
cal activity of the human body. Finding the optimal placement of
sensors is an important issue. In this paper, a new method pro-
viding synthesized IMUs is proposed, based on motion capture.
The comparison between synthesized data SID with real data
RID is performed and it validates synthesized IMUs data for
motion classification based on statistical features. This numer-
ical model is applied to a classification algorithm for motion
recognition. A score classification colourmap on human body

FIGURE 9 RMSE_C of classification score between synthesized inertial data (SID) and real inertial data (RID) signals for different sensors locations
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HOAREAU ET AL. 543

has been realized for 10 times more synthetized sensors than
the real available IMUs. The motion recognition is also done on
real data; this comparison with a 7% RMSE validates definitively
synthesized IMUs and open many perspectives for the future.
This method avoids many experiments necessary to evaluate the
optimal placement of sensors for the design of wearable sys-
tems. This is a novelty in the state of the art, which applied to
sports movements will allow the development of wearable sen-
sor systems to monitor and improve sports performance.
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