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A KINETIC MODEL OF POLYATOMIC GAS WITH RESONANT COLLISIONS
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We propose a kinetic model describing a polyatomic gas undergoing resonant collisions, in which the microscopic internal and kinetic energies are separately conserved during a collision process. This behaviour has been observed in some physical phenomena, for example in the collisions between selectively excited CO2 molecules. We discuss the model itself, prove the related H-theorem and show that, at the equilibrium, two temperatures are expected. We eventually present a numerical illustration of the model and its main properties.

Introduction

The Boltzmann equation [START_REF] Boltzmann | Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen[END_REF], which is the starting point of kinetic theory, studies systems of gaseous particles at the mesoscopic level through the formalism of distribution functions defined in the phase space. Despite its importance at the theoretical level, the Boltzmann equation only describes monatomic gases, such as the noble gases. However, when dealing with polyatomic gases -for example, nitrogen or carbon dioxide -the standard Boltzmann equation cannot properly capture all physical phenomena at the microscopic level, mainly because it does not take into account the vibrational and rotational degrees of freedom of polyatomic molecules and their effects on the internal energy of the system.

Because of the relevance of internal energy in understanding several physical and chemical phenomena, such as combustion, or when dealing with the study of gases under extreme temperatures and pressure conditions, it is necessary to provide a theoretical framework which takes into account the behaviour of the internal energy in a kinetic system.

At the level of the macroscopic description, the study of internal energy is one of the purposes of rational extended thermodynamics [START_REF] Ruggeri | Rational extended thermodynamics beyond the monatomic gas[END_REF]. On the other hand, when dealing with the mesoscopic description, a first popular approach consists in dealing with systems with discrete energy levels, as in [START_REF] Giovangigli | Multicomponent flow modeling[END_REF][START_REF] Groppi | Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas[END_REF][START_REF] Rossani | A note on the kinetic theory of chemically reacting gases[END_REF][START_REF] Bisi | On kinetic models for polyatomic gases and their hydrodynamic limits[END_REF]. In that case, the effects of the internal structure of a molecule are taken into account by introducing a set of distribution functions, each of them representing the (molar) fraction of the gaseous molecules at a given discrete energy level. The binary interactions conserve momentum and, when no energy is lost during the collision process, i.e. when the collisions remain elastic, the kinetic and internal energies of the colliding molecules are modified in such a way that the total energy is conserved. This choice leads to handle systems of Boltzmann-type equations, with cross interactions between the different distribution functions describing each internal energy level.

Another strategy consists in using the so-called ellipsoidal statistics (ES) model, which was first introduced in [START_REF] Holway | Kinetic theory of shock structure using an ellipsoidal distribution function[END_REF]. This research direction has gained much attention at the beginning of the 21st century in the context of BGK equations, see for instance [START_REF] Andries | The Gaussian-BGK model of Boltzmann equation with small Prandtl number[END_REF][START_REF] Andries | Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases[END_REF][START_REF] Brull | On the ellipsoidal statistical model for polyatomic gases[END_REF], or [START_REF] Mathiaud | A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases[END_REF] for Fokker-Planck models. Let us also point out that, in [START_REF] Dauvois | An ES-BGK model for polyatomic gases in rotational and vibrational nonequilibrium[END_REF], the authors works with a continuous rotational energy variable and a discrete vibrational one. However, in the context of the full Boltzmann equation, several questions are still open. In particular, it is emphasized in [START_REF] Aoki | Shock wave structure for polyatomic gases with large bulk viscosities[END_REF][START_REF] Aoki | Two-temperature Navier-Stokes equations for a polyatomic gas derived from kinetic theory[END_REF] that the kinetic modelling of carbon dioxide is quite intricate, and induces two kinds of temperatures, related to translational and rotational energies, respectively. In order to deal with the Boltzmann equation with a continuous internal energy variable, one can be led to use the phenomenological model of [START_REF] Borgnakke | Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[END_REF] for binary microscopic collisions in a gaseous mixture. This strategy, nowadays known as the Borgnakke-Larsen procedure, allows to handle the energy exchanges after a binary collision. The first step of the Borgnakke-Larsen strategy consists in identifying the total energy of a colliding pair in the mass center. Then a proportion of this total energy is attributed to the internal energy of the post-collisional molecules and the remainder is provided to the kinetic energy of the outgoing molecules. The internal energy of the pair is itself allocated between both molecules. This procedure and its consequences on the underlying Boltzmann equation have been widely investigated during the last thirty years, see for example [START_REF] Bourgat | Microreversible collisions for polyatomic gases and Boltzmann's theorem[END_REF][START_REF] Desvillettes | Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non linéaires en température pour les gaz parfaits polyatomiques[END_REF][START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF][START_REF] Djordjić | Polytropic gas modelling at kinetic and macroscopic levels[END_REF] which offer further physical discussions about the model, and [START_REF] Pavić-Čolić | Moment equations for polyatomic gases[END_REF][START_REF] Baranger | On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases[END_REF][START_REF] Gamba | On the Cauchy problem for Boltzmann equation modelling a polyatomic gas[END_REF][START_REF] Anwasia | On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting[END_REF], where various mathematical properties of the Borgnakke-Larsen approach are studied.

Unfortunately, the Borgnakke-Larsen procedure cannot cover all polyatomic gas behaviours, for example the energy exchanges beween selectively excited carbon dioxide molecules. In [START_REF] Lombardi | Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows[END_REF], the authors show that, under specific temperature and energy conditions, the role of rotational and vibrational degrees of freedom is dominant in the energy exchange, while the average contribution of translations is negligible. On the other hand, in the case of self-pressure broadening of highly polar molecules, such as hydrogen cyanide, collisions in which the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner play a major role [START_REF] Lehmann | Influence of resonant collisions on the self-broadening of acetylene[END_REF]. Such kinds of collisions, in which the internal energy change of one molecule is compensated by the internal energy change of its collision partner and, at the same time, the kinetic energy change of one molecule is compensated by the kinetic energy change of its collision partner are known in the literature as resonant collisions [START_REF] Reetz-Lamour | Prospects of ultracold Rydberg gases for quantum information processing[END_REF].

In that situation, an alternative to the Borgnakke-Larsen procedure to work with a continuous internal energy variable is required. In order to give a first answer to this requirement, we propose a model describing a gas undergoing resonant collisions. In what follows, we consider a non-reactive polyatomic gas composed of molecules with molecular mass m > 0, moving in R d , d = 2 or 3.

Note that the notion of resonance studied in this article does not exactly coincide with the one discussed in [START_REF] Groppi | Euler closure of the Boltzmann equations for resonant bimolecular reactions[END_REF][START_REF] Bisi | Multi-temperature euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions[END_REF], which is focused on reactive mixtures. The authors describe the mixtures through a finite number of densities, each of them representing a gaseous species with a given discrete internal energy level to mimic non-translational degrees of freedom. Indeed, in [START_REF] Groppi | Euler closure of the Boltzmann equations for resonant bimolecular reactions[END_REF][START_REF] Bisi | Multi-temperature euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions[END_REF], the expression resonant collisions describes the interactions between particles of the same species in the case of gaseous mixtures. In their approach, the macroscopic kinetic and internal energies are treated separately, ensuring -as in our case -the existence of two distinct temperatures. However, as these two meanings have coexisted in the literature for many years and are adopted by different communities with little interaction between them, we do not see any risk of confusion in using the expression resonant collisions in this article.

The structure of the article is the following. In Section 2, we describe our microscopic resonant model. Then, in Section 3, we discuss the related collision operator and the associated H-theorem, including the existence of two temperatures. Eventually, we present a numerical illustration of the model.

Binary resonant collisions

The first step consists in describing a collision between two molecules. In what follows, we denote by v, v * the post-collisional velocities of the interacting particles, by I, I * their post-collisional internal energies, and by v , v * , I , I * the corresponding pre-collisional quantities.

We assume that the collision are elastic. This hypothesis guarantees that the momentum and the total energy of the pair of molecules satisfy

v + v * = v + v * , (1) 1 2 m|v| 2 + I + 1 2 m|v * | 2 + I * = 1 2 m|v | 2 + I + 1 2 m|v * | 2 + I * . (2)
When a collision is resonant, the sum of the post-collisional internal energies of the molecules remains equal to the sum of their pre-collisional ones [START_REF] Lehmann | Influence of resonant collisions on the self-broadening of acetylene[END_REF][START_REF] Lombardi | Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows[END_REF]. Consequently, because of the total energy conservation, the kinetic energy satisfies the same property. That means that (2) is replaced by the following equalities

|v| 2 + |v * | 2 = |v | 2 + |v * | 2 , (3) 
I + I * = I + I * . (4) 
It is then clear that the velocities obey the same collision rules as in the monatomic case. Hence, we can write, for some vector

ω ∈ S d-1 , (5) v = v -[ω • (v -v * )]ω, v * = v * + [ω • (v -v * )]ω.
Besides, the simplest possible choice to distribute the internal energy between both particles consists in introducing an allocation parameter r ∈ (0, 1) and writing ( 6)

I = r(I + I * ), I * = (1 -r)(I + I * ).
Eventually, for the sake of symmetry, we introduce the additional parameter r , which happens to be useful in the Jacobian computations:

(7) r = I I + I * .
The following lemma states that both prime and non-prime variables can be seen indiscriminately as pre-or post-collisional quantities.

Lemma 1. Let ω ∈ S d-1 be fixed. Then the function S ω : (v, v * , I, I * , r) → (v , v * , I , I * , r ) is an involution of the set R d × R d × R * + × R * + × (0, 1)
onto itself, and its Jacobian equals 1. Moreover, the following relationships hold:

v = v -[ω • (v -v * )]ω, v * = v * + [ω • (v -v * )]ω, I = r (I + I * ), I * = (1 -r )(I + I * ), r = I I + I * .
Proof. First note that Equations ( 5)-( 7) do not depend on each other. Since ( 5) exactly provides the collision rules for the velocities in the monatomic case, we already know that (v, v * ) → (v , v * ) is an involution and that its associated Jacobian equals 1. So we need to focus on the internal energies and the allocation parameters. Because of (4), (I, I * , r) → (I , I * , r ) is clearly an involution too, and the straightforward computation of the associated Jacobian gives again 1. Then the Jacobian of S ω is equal to 1, being the product of unit Jacobians.

Remark 2.1. A variant of this microscopic resonant collision model is discussed in Appendix A, where the sum of the internal energies is conserved during a collision up to a small correction; and the same goes for the sum of the kinetic energies, remembering that the total energy is still conserved. Such a model can be called a quasi-resonant model and can be seen as intermediate between the resonant and Borgnakke-Larsen models.

Resonant collision operator and H-theorem

The quadratic collision operator Q can be described through its weak form. More precisely, the associated bilinear operator is given by 

(8) Q(f, g), φ = R d ×R * + R d ×R * + S d-1 ×(0,1) f (v, I)g(v * , I * ) φ(v , I ) -φ(v, I) B(v,
β lb (r)b(cos θ) B(|v -v * |, I + I * ) ≤ B(v, v * , I, I * , r, ω) ≤ β ub (r)b(cos θ) B(|v -v * |, I + I * ),
where b is L 1 (-1, 1) (Grad's cutoff assumption), the β functions satisfy β(r) = β(1 -r) > 0, and B equals, for instance, (m|v

-v * | 2 ) γ + (I + I * ) γ for γ ∈ [0, 1]
, in the same spirit as in [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modelling a polyatomic gas[END_REF], which deals with the Borgnakke-Larsen procedure.

An essential quantity of our model is the nonnegative measure ϕ(I) dI, which is a parameter of the model (typically, one can take ϕ(I) = I a for some a ≥ 0). A careful choice of the measure ϕ(I) dI makes the model automatically consistent, at the macroscopic level, with the energy law of any type of polyatomic gas [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF].

Let us provide other weak formulations of the collision operator.

Lemma 2. Let φ : R d × R * + → R be a function such that the following equality makes sense. Then we have Note that the standard conservation properties of the collision operator are consequences of [START_REF] Brull | On the ellipsoidal statistical model for polyatomic gases[END_REF]. Indeed, if φ is chosen as 1, v (k) (the k-th coordinate of v in R d , 1 ≤ k ≤ d), |v| 2 /2 and I, we obtain the conservation of the number of molecules, the conservation of the momentum and the conservations of the kinetic and internal energies (separately) during the collision process, that is

(12) Q(f, f ), φ = - 1 4 R d ×R * + R d ×R * + S d-1 ×(0,1) [f (v , I )f (v * , I * ) -f (v, I)f (v * , I * )] × φ(v , I ) + φ(v * , I * ) -φ(v, I) -φ(v * , I * ) B(v,
Q(f, f ), 1 = 0, Q(f, f ), v (k) = 0, Q(f, f ), |v| 2 = 0, Q(f, f ), I = 0.
We can now focus on the H-theorem corresponding to the collision operator [START_REF] Bisi | On kinetic models for polyatomic gases and their hydrodynamic limits[END_REF]. Before stating it, we need the following lemma, which is used during the proof of the H-theorem. It describes the collision invariants in the resonant case. Proof. For the sake of simplicity, we assume that all the functions are smooth. However, the computations also hold in the distributional sense. Let us first differentiate [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF] with respect to I to get

∂ d+1 g(v, I) = ∂ d+2 P (v + v * , |v| 2 + |v * | 2 , I + I * )
, with obvious notations, ∂ d+1 being for instance the partial derivative with respect to the internal energy variable of g. In the same way, we differentiate [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF] with respect to I * and obtain

∂ d+1 g(v * , I * ) = ∂ d+2 P (v + v * , |v| 2 + |v * | 2 , I + I * ).
Consequently, we have, for any v, I, v * , I * ,

∂ d+1 g(v, I) = ∂ d+1 g(v * , I * ),
which means that ∂ d+1 g is constant. Hence there exists c ∈ R and a function h of v such that, for any v, I, g(v, I) = cI + h(v). Then [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF] becomes

h(v) + h(v * ) = P (v + v * , |v| 2 + |v * | 2 , I + I * ) -c(I + I * ).
Consequently, the right-hand side of the previous equality does not depend on I + I * anymore, so that h satisfies

h(v) + h(v * ) = P (v + v * , |v| 2 + |v * | 2 )
for another function P . We are hence led back to the standard monatomic case [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Truesdell | Fundamentals of Maxwell's kinetic theory of a simple monatomic gas[END_REF], which means that h(v) has the form a + p • v + b|v| 2 , as expected.

Before writing in detail the H-theorem, we denote by q the Laplace transform of ϕ, that is

q(T ) = +∞ 0 ϕ(I) e -I/K B T dI,
where K B is the Boltzmann constant.

Proposition 1. Assume that the cross section B and the weight function ϕ are positive almost everywhere. Then, for any nonnegative function g := g(v, I) such that the following quantity is defined, we have

R d ×R * + Q(g, g)(v, I) log g(v, I) dv ϕ(I) dI ≤ 0.
Moreover, the three following properties are equivalent.

(i) Q(M, M ) = 0.

(ii)

R d ×R * + Q(M, M )(v, I) log M (v, I) dv ϕ(I) dI = Q(M, M ), log (M ) = 0.
(iii) There exist n ≥ 0, u ∈ R d , T vel , T ie > 0 such that, for any v ∈ R d and I > 0, ( 14)

M (v, I) = n q(T ie ) m 2 π K B T vel d/2 exp - m|v -u| 2 2K B T vel - I K B T ie .
Note that Property (i) of the previous proposition must first be understood in a weak sense, i.e. Q(M, M ), φ = 0 for any suitable φ. But if we define the strong formulation of Q, it would also hold pointwise.

Proof. To obtain the inequality, we use Lemma 2 for φ = log f and observe, as classically, that

[f (v , I )f (v * , I * ) -f (v, I)f (v * , I * )][log f (v , I ) + log f (v * , I * ) -log f (v, I) -log f (v * , I * )] ≥ 0.
Let us now focus on the equivalences. Implication (i) ⇒ (ii) is straightforward. We obtain Implication (iii) ⇒ (i) using Lemma 2. For the last implication, let g := g(v, I) an almost everywhere positive function such that Q(g, g), log g = 0. The integrand in the corresponding integral in v * , I * , ω and r, which, as we already know, has a constant sign, is consequently zero almost everywhere. That ensures that, for almost every (v, v * , I, I * , ω, r),

log f (v, I) + log f (v * , I * ) = log f (v , I ) + log f (v * , I * ).
Then we integrate with respect to ω ∈ S d-1 and r ∈ (0, 1) to obtain the existence of a function T such that, for almost every (v, v * , I, I * ),

log f (v, I) + log f (v * , I * ) = T (v + v * , |v| 2 + |v * | 2 , I + I * ).
Thanks to Lemma 3, we know then that log f has the form a + p • v + b|v| 2 + cI, for some constants a, b, c ∈ R, p ∈ R d . That eventually leads to the Maxwellian form [START_REF] Dauvois | An ES-BGK model for polyatomic gases in rotational and vibrational nonequilibrium[END_REF].

To conclude this section, we can now write down the Boltzmann equation with resonant collisions in a weak sense. The unknown of the model is the distribution function f := f (t, x, v, I), depending on time t ≥ 0, space position x ∈ R d , velocity v ∈ R d and internal energy I > 0. The time evolution of f is then governed by the following partial differential equation, written in a distributional sense, (

R d ×R * + (∂ t f + v • ∇ x f ) (t, x, v, I) φ(v, I) ϕ(I) dI dv = Q(f, f ), φ . 15) 

Numerical illustration

In this last section, we just briefly present some numerical results allowing to confirm Proposition 1, i.e. the form of the Maxwellian equilibrium.

For the sake of simplicity, we work in a two-dimensional space-homogeneous setting, i.e. we drop the dependence with respect to the space variable in [START_REF] Desvillettes | Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non linéaires en température pour les gaz parfaits polyatomiques[END_REF]. We choose B equal to 1, which satisfies [START_REF] Bourgat | Microreversible collisions for polyatomic gases and Boltzmann's theorem[END_REF] with β = 1, b = 1, and γ = 0 in B, and ϕ = 1. We take T fin = 10. We used a standard particle method involving 10 6 numerical particles to solve the homogeneous Boltzmann equation. All those particles are assumed to have the same molecular mass m = 1.

We choose as an initial datum for f the probability density function f 0 := f 0 (v, I) = f 0 vel (v)f 0 ie (I), where f 0 vel is the probability density of the uniform law on v ∈ (-4, 4) 2 , and f 0 ie is the probability density of the uniform law on I ∈ (0, 10). Note that this choice leads to a distribution with respect to the (particle) total energy E = 1 2 |v| 2 + I given in Figure 1, i.e. The distribution function f fastly reaches its equilibrium, which is described in Proposition 1. The form [START_REF] Dauvois | An ES-BGK model for polyatomic gases in rotational and vibrational nonequilibrium[END_REF] of f is confirmed in Figure 2, where the graphs of the following functions, drawn in the semilog scale, Eventually, in Figure 3, we plot the semilog-scaled graph (b) of

E → R 2 f 0 v, E - 1 2 |v| 2 dv.
E → R 2 f T fin , v, E - 1 2 |v| 2 dv .
It is clear that its graph is not close to a straight line at all. This behavior confirms that there are two distinct temperatures associated to the kinetic and internal energies in the equilibrium. In this section, we propose an extension of the resonant collisions discussed in 2, towards a model for partially resonant collisions. The conservation laws of momentum and total energy for elastic collisions are still given by ( 1)-( 2). We then compute the total energy of the colliding molecules in the mass center reference frame, i.e.

(16) E = m 4 |v -v * | 2 + I + I * = m 4 |v -v * | 2 + I + I * .
When the collisions are only partially resonant, we consider that the sum of the internal energies of the molecules after collision equals its counterpart before collision up to a small correction, and the same goes for the sums of the kinetic energies of the two molecules. Nevertheless, of course, (16) must still hold. More precisely, we write, for any η, ν > 0, assumed to be small compared to 1,

I + I * = (1 -η)(I + I * ) + νm |v -v * | 2 4 (17) m 4 |v -v * | 2 = (1 -ν) m 4 |v -v * | 2 + η(I + I * ). (18) 
The parameters η and ν are the resonance coefficients of the model. When η = ν = 0, we obviously recover the model for resonant collisions. In what remains, we shall denote

E η,ν = (1 -ν) m 4 |v -v * | 2 + η(I + I * ).
We need a model to allocate the energies to the two colliding particles after interaction to obtain the collision rules.

To deal with the internal energies, the simplest choice consists in introducing a parameter r ∈ (0, 1), and then attribute the fraction r of the internal energy to one of the two outgoing particles and the remaining fraction (1 -r) to the other one, that is

I = r E η,ν , I * = (1 -r)E η,ν .
We can also link the pre-and post-collisional velocities by proceeding in the following way. From (18), we deduce that

|v -v * | = 2 E η,ν m .
Then the pre-collisional velocity v -v * can be written with the help of a parameter ω ∈ S d-1 , so that

v -v * = 2 E η,ν m T ω v -v * |v -v * | ,
where T ω : z → z -2(ω • z)ω is the orthogonal symmetry with respect to {ω} ⊥ . We finally find

v = 1 2 (v + v * ) + E η,ν m T ω v -v * |v -v * | , v * = 1 2 (v + v * ) - E η,ν m T ω v -v * |v -v * | .
Unfortunately, the inversion of the previous equations, which would allow to write the non-prime quantities in terms of the prime ones, is not always possible. In fact, given the values of the postcollisional velocities and internal energies of an interacting pair of particles, it is not guaranteed that there exists an admissible pair of pre-collisional velocities and internal energies generating the considered post-collisional values. Indeed, from ( 17)-( 18 A natural way to handle this difficulty would be to work in a weak sense, which is not discussed any further here. These partially resonant models will be discussed in upcoming contributions in the framework of Thomas Borsoni's PhD thesis.
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 1 Figure 1. Initial distribution w.r.t. the molecular total energy.

(a) I → R 2 f

 2 (T fin , v, I) dv, (b) |v| 2 2 → R * + ×(0,2π) f (T fin , |v| cos α, |v| sin α, I) dα dI,are very close to straight lines.

Figure 2 .

 2 Figure 2. Semilog-scaled distributions w.r.t. the molecular internal (a) and kinetic (b) energies at final time.

Figure 3 .

 3 Figure 3. Standard-scaled (a) and semilog-scaled (b) distributions w.r.t. the molecular total energy at final time.

  ), we can deduce that|v -v * | 2 = (1 -η) 1 -η -ν |v -v * | 2 -4η m(1 -η -ν) (I + I * ),and notice that the right-hand side of the previous equation becomes negative as soon as|v -v * | 2 < 4η m(1 -η) (I + I * ).
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