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Abstract The heart rate variability signal is a valuable tool for cardiovascu-
lar system diagnostics. Processing this signal detects arrhythmia during long–
term cardiac monitoring. It is also analyzed to recognize abnormalities within
the autonomic nervous system. Processing this signal helps in detecting vari-
ous pathologies, such as atrial fibrillation (AF), supraventricular tachycardia
(SVT), and congestive heart failure (CHF). As a beneficial alternative to the
commonly used HRV spectrum analysis, quadratic time–frequency analysis
of HRV signals could be helpful in heart pathology detection. Indeed, in this
study, we have created a client–server paradigm deployed as a telemedical plat-
form for real–time remote monitoring of the cardiovascular function in patients
suffering from arrhythmia. This platform detects arrhythmia in real-time by
deploying time–frequency analysis, feature extraction, feature selection, and
classification of Heart Rate Variability (HRV) signals. We gathered all these
functionalities in a Graphical User Interface (GUI) in addition to data acqui-
sition. As a client, a Raspberry Pi Zero ensures data acquisition and connects
to a server over TCP/IP that involves a 4G/3G connection encrypted through
the transport layer security (TLS). This telemedical tool continuously moni-
tors the heart rate variability. In the case of an alarm, medical professionals
may immediately interact with their patients in the hospital or at home.
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bution, Support Vector Machine, Mutual Information, Feature Selection,
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1 Introduction

Cardiovascular diseases cause several chronic illnesses and disabilities around
the world. Every year, millions of people die due to cardiac arrhythmias. Car-
diac arrhythmias are due to alterations in the heart’s electrical system that
yield abnormal heart beating. It causes the heart to beat too fast (tachycar-
dia), too slowly (bradycardia), or any other irregular pattern. Some types of
arrhythmia are harmless, but they can induce annoying symptoms like dizzi-
ness and fainting. Numerous types of arrhythmia can lead to complications,
such as cardiac death, stroke, and heart failure. The Autonomic Nervous Sys-
tem (ANS), through its sympathetic and parasympathetic activities, modulate
the beat–to–beat duration and induce a variability of the heart rate (Atalar
et al., 2019; Dorey et al., 2020). Detecting the R–peak within electrocardio-
gram signals generates the heart rate variability (HRV) signal, which contains
two frequency bands associated with the sympathetic and parasympathetic
parts of the autonomic nervous system (ANS). The low–frequency (LF: from
0.04 up to 0.2 Hz) band is related to sympathetic activity, and the high–
frequency (HF: from 0.2 up to 0.6 Hz) band is a marker of parasympathetic
activity in the heart. Spectral analysis of a signal calculates its magnitude over
the frequency domain. Seong et al. (Seong et al., 2004) studied the LF/HF ratio
in 17 healthy subjects to improve the prognostic value of heart rate variability
and the changes of the ANS between mental stress and sympathetic activation
by analyzing their time–varying spectrum over the time–frequency plane.

Numerous studies have shown that HRV signals help in identifying and
characterizing arrhythmias. More precisely, several studies examined the time,
frequency, time–scale, and time-frequency domains in order to extract some
specific features (Anderson et al., 2019),(Joshi et al., 2019; Ardissino et al.,
2019; Geng et al., 2020; Singh et al., 2019). HRV signals were analyzed for diag-
nosis using classification approaches such as Support Vector Machine (SVM),
Artificial Neural Networks (ANN), and decision trees (Poddar et al., 2019;
Kobayashi et al., 2019; Chen et al., 2019; He and Jiang, 2019). These clas-
sifiers classify HRV signals according to features of interest. By plotting the
power of HRV signals in the frequency domain, the spectral analysis may re-
veal their informative content. The frequency–domain representation, on the
other hand, cannot provide any temporal information on the occurrence of
frequency changes within the analyzed signals.

As a solution, time–frequency analysis can generate a three-dimensional
representation of the analyzed signal’s power in the time and frequency do-
mains. Combining the obtained TF representation with an efficient classifi-
cation of HRV signals may provide a viable method for identifying cardiac
arrhythmias.

Additionally, an appropriate classification approach with reliably selected
features effectively detects abnormal patterns within HRV signals. TheWigner–
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Ville distribution (WVD), which is the popular and basic time–frequency anal-
ysis method, can be enhanced to analyze and characterize the HRV signals in
the time–frequency plane. Indeed, the Smoothed Pseudo Wigner–Ville Distri-
bution (SPWVD) method was used to analyze HRV signals to quantify low and
high–frequency bands in regard to sympathetic and parasympathetic systems,
respectively.

To identify cardiac arrhythmia by analyzing heart rate variability (HRV),
several researchers (Chang et al., 2018; Valliappan et al., 2017; Clark et al.,
2019) developed a Raspberry Pi–based portable ECG to offer a diagnostic
aid for arrhythmia detection. The Raspberry Pi acquires the ECG signal from
AD8232 through the analog–digital circuit (MCP3008) and transmits the ECG
data to the station (server or mobile application). A network access security
secures the communication between the Raspberry Pi and the application.

In this paper, we developed a client–server model implemented as a telemed-
ical platform for real–time remote monitoring of the cardiovascular function in
arrhythmia patients. This system allows continuous recording when the ECG
sensor is attached to the patient’s body. The ECG is first acquired using a
data acquisition system designed around the Raspberry Pi Zero, which com-
municates with a server through TCP/IP secured by Transport Layer Security
to secure the exchange of ECG data transmitted over the internet network.
An HRV time series is then extracted from the acquired ECG signals and ana-
lyzed by quadratic time–frequency distributions, to calculate new TF–features
to differentiate between various cardiac pathologies such as Atrial Fibrillation,
Supraventricular Tachycardia, and Congestive Heart Failure by analyzing their
respective HRV signals.

The TF-features of interest are selected using Mutual Information and Fea-
ture Selection with Adaptive Structure Learning. An SVM classifier processes
these features to classify the analyzed case among the various classes within
the training database. According to the classification result, the system notifies
the healthcare professional of any cardiac arrhythmia case. The system sends
a medical report to the cloud server, which issues a warning to the patient.

2 Related work

Within the context of the Internet of Things, some research groups developed
applications for the health monitoring system of the cardiovascular function
(see Table 1). Francesca Stradolini et al. (Stradolini et al., 2017) developed
an architecture for continuous monitoring of anesthesia with no cloud integra-
tion. Stradolini et al. (Stradolini et al., 2018), on the other hand, describes the
development of an IoT cloud-based solution for anesthesia monitoring during
surgeries. Several studies presented IoT platforms for the prediction of cardio-
vascular disease using an IoT–enabled ECG telemetry system (Hossain and
Muhammad, 2016; Thilakanathan et al., 2014; Abualsaud et al., 2020; Devi
and Kalaivani, 2020). Thilakanathan et al. (Thilakanathan et al., 2014)
have built a remote care system for patients at home using ECG sensors, cloud
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storage providers, and mobile technology. This work consists of finding solu-
tions that allow patients to share their health information with the medical
professional team in a reliable, secure, and confidential manner. M. Shamim
Hossain et al. (Hossain and Muhammad, 2016) have used IoT technologies for
ECG health monitoring, where ECG signals have been recorded via ECG sen-
sors at home and sent the data to smartphones or computers via the Internet.
They describe a cloud–integrated IoT monitoring framework, where ECG–
data is watermarked before being sent to the cloud for security. Smartphones
were used as a client-side that allows the processing of the ECG signal (re-
moving unwanted noise from the recorded signal) and detecting the R–peaks.
The acquired ECG signal was then transmitted to a server for analysis and
characterization; the temporal and spectral characteristics were extracted and
classified using an SVM classifier. Their classification results can be sent to
the medical professional team for analysis and diagnosis, where they will later
transfer the medical report to the cloud server for the patient. R. Lakshmi
Devi et al. (Devi and Kalaivani, 2020) have developed a classification system
for cardiac arrhythmia using IoT that enables the ECG monitoring system
to analyze the signal acquired from the data acquisition system (AD8232 &
Arduino). The statistical features were extracted from the HRV signals in
the temporal domain and used as inputs for an SVM classifier to identify the
cardiac arrhythmia disease. The developed system acquires the ECG signal,
processes, classifies the cases and sends the result to a smartphone. Khalid
Abusalim et al. (Abualsaud et al., 2020) have used an IoT ECG monitoring
system that allows sending the ECG data to a cloud server through wireless
networks with a security system using Multi–Arts with lightweight security.
The developed system includes storing, processing, and classifying cardiac ar-
rhythmia from different healthy subjects available in the MIT–BIH database.
This study deploys features extracted from ECG signals from the time, fre-
quency, and time–frequency domains. K–nearest neighbor is used as a classifi-
cation approach to identify and classify cardiac arrhythmias. However, (Devi
and Kalaivani, 2020), (Stradolini et al., 2017), and (Stradolini et al., 2018) de-
veloped a novel m–Health system for wireless monitoring of patients. however,
these studies do not include any security protocol.

Figure 1 represents a system for the continuous monitoring of the car-
diovascular system that detects in real–time cardiac arrhythmia. Indeed, our
client–server architecture allows the cardiologist to monitor multiple patients
at home or in hospital simultaneously.

3 Research questions

The study presented in this section seeks to answer the following research
questions:

RQ1:”How the proposed study is different or contributes to revamping the
cardiac arrhythmia classification by using the TFD method? ”
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Fig. 1: Architecture for the continuous monitoring of the cardiovascular sys-
tem.

Studies Medical applications Architecture Cloud Security protocol
Hospital (HS)
or Home (HM)
monitoring

(Thilakanathan et al., 2014)
Elderly patients
health monitoring

Cloud storage provider,
ECG sensor,
mobile device app

Yes Yes HM

(Hossain and Muhammad, 2016)
ECG health
monitoring

Cloud system, ECG
sensor, mobile device
app, desktop software

Yes Yes HM

(Devi and Kalaivani, 2020)
IoT-based cardiac
arrhythmia diagnosis

ECG sensor, Cloud system,
Statistical features, HRV
SVM, mobile device app

Yes No HM

(Abualsaud et al., 2020)
IoT-based monitoring,
collecting ECG data

ECG cloud server, for storage
and further processing

Yes Yes HM

(Stradolini et al., 2017) Anesthesia monitoring
Therapeutic and drug monitoring
system, mobile device app,
smartwatch

No No HS

(Stradolini et al., 2018) Anesthesia monitoring
Pryv middleware cloud,
cloud, mobile device app,
smartwatch, webApp

Yes No HS

Our study
Telemedical platform,
cardiac arrhythmia,
classification

ECG sensor, cloud server,
TLS, HRV, TF-analysis,
TF-features, feature selection,
SVM, client-server app

Yes Yes HM & HS

Table 1: Comparison between some IoT solutions in health monitoring

In this paper, we studied the activity of sympathetic and parasympathetic
subsystems of the autonomic nervous system (ANS) through time–frequency
analysis of the heart rate variability (HRV) signal of normal and abnormal
subjects. Indeed, we proposed new classification features of HRV signals to
assess the activity of the autonomic nervous system (ANS). We defined time–
frequency features calculated by the Smoothed Pseudo Wigner–Ville Distri-
bution (SPWVD). This analysis included 44 healthy subjects with a normal
sinus rhythm (NSR), 77 patients with supraventricular tachycardia (SVT), 63
subjects with atrial fibrillation (AF), and 44 CHF. In this study, the extracted
features are the mean, the variance, the coefficient of variation, the skewness,
the kurtosis, the flatness, the Shannon entropy, and the flux. Two algorithms,
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namely the MI-based method and the FSASL based algorithm, are used to
select the more valuable features before an SVM classification step. The SP-
WVD combined with the SVM discriminate the VT, AF, and NSR classes
with Se=95.65%, Sp=98.55%, and Acc=97.82%.

RQ2:”How effective is the proposed approach in protecting the transmit-
ted data from the client to the server?”

The profile proposed in this work represents how the client–server archi-
tecture establishes communication between the different stations under the
TCP/IP protocol secured by the TLS protocol. The acquired ECG signals
can be transmitted to a server for further advanced digital signal process-
ing through TCP/IP protocol secured by the transport layer security (TLS).
The TLS secures the client–server application by transmitting ECG data from
Raspberry Pi Zero (client) to another remote station by establishing an en-
crypted connection for private communication over the public Internet.

4 Materials and Methods

Our system is composed of two main blocks (see figure 2): a hardware block,
named the client block, devoted to the acquisition and transmission of the
ECG; and a software block, called the server block, dedicated to HRV extrac-
tion, analysis, and classification (features extraction, features selection, and
patient classification) (see figure 16). Three essential parts form the client
block : (1) the analog shaping circuit ECG AD8232, (2) the analog–to–digital
converter MCP3008, and (3) the data acquisition card (Raspberry Pi zero) for
acquiring ECG signals. Through a clock signal, the internal analog–to–digital
(ADC) converter of the MCP3008 sets up the sampling frequency to 100 Hz,
following the Nyquist rate theorem.

4.1 Dataset

To select the best features for the SVM classifier, we collected data of normal
and abnormal subjects from several databases, namely, the PhysioNet research
repository (Goldberger et al., 2000): the congestive heart failure RR inter-
val database (chf2db), the BIDMC congestive heart failure database (chfdb),
the MIT–BIH Arrhythmia database (MITdB), the LongTerm AF database
(LTAFdB), the Supraventricular tachycardia (SVDB), the St. Petersburg In-
stitute of Cardiological Technics 12–lead Arrhythmia (INCARTdB), and the
MIT–BIH normal sinus rhythm database (NSRDB). We considered 44 NSR, 77
SVT, 63 AF, and 44 CHF ECGs. Collected data, shown in Table 2, is formed
by 228 signals, which we reorganized into four classes, namely: SVT, NSR,
AF, and CHF. The length of ECG recordings varies from one database to an-
other (see 2). In this study, we concerned the whole data processing (long–term
HRV) to analyze all the durations of the HRV signal to capture various cardio-
vascular pathological cases and achieve more accuracy than by portraying the
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Fig. 2: Block diagram of a Telemedical platform for real–time monitoring and
classifying cardiac arrhythmias

condition of the subjects using lower samples. Long–term HRV analysis is a
stable tool for assessing autonomic function and can reliably predict prognosis
in patients with cardiovascular diseases. Indeed, long–term spectral analysis
can effectively capture high–frequency and low–frequency components, while
short–recordings are unstable owing to the constant fluctuation of HRV pa-
rameters and cannot estimate lower–frequency components.

4.2 Detection of Heart Rate Variability (HRV)

We generated HRV signals by detecting QRS–complexes within Electrocardio-
gram (ECG) signals using the Pan–Tompkins algorithm (Pan and Tompkins,
1985). The Pan–Tompkins’ algorithm is summarized in figure 3.

Notch filtering of the 50 Hz interference, baseline removal, and T–wave
interference filtering improves the signal-to-noise ratio of ECG signals. The
bandpass digital filter from 5 Hz to 15 Hz boosts the ECG signal’s QRS
strength while reducing muscle noise. Then the filtered ECG signal is de-
rived to highlight the slope of the R wave. Then, the signal is squared and
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Table 2: ECG Database collected from Physionet.

Classes
Data base details

Data base Number of ECG Sampling Frequency (Hz) Duration (h/min)

INCARTdB 4 257 30 min
Atrial Fibrillation (AF) MITdB 6 360 30 min

LTAFdB 53 128 24 h

INCARTdB 3 257 30 min
Normal sinus rhythm (NSR) MITdB 23 360 30 min

NSRDB 18 128 24 h

Supraventricular tachycardia (SVT) SVDB 77 128 30 min

chf2db 29 128 24 h
Congestive Heart Failure (CHF) chfdb 15 250 20 h

filtered through a moving average filter to favor the slope of the R wave. Two
thresholds are automatically adjusted to float over the noise.

Fig. 3: QRS detector based on the Pan–Tompkins algorithm.

4.3 Quadratic Time–Frequency Analysis

Time-frequency (TF) representations of non-stationary signals such as HRV
signals help overcome the limitations of temporal and spectral analysis meth-
ods. More specifically, QTFDs represent the energy of a signal in time and fre-
quency domains at a high joint time–frequency resolution (Boashash, 2015).
QTFDs mainly satisfy time–shift and frequency–shift invariance properties.
Therefore, QTFDs provide appropriate representations of multicomponent
non–stationary signals. Formally, QTFDs can be expressed as given in (1)
(Boashash, 2015; Boashash and Ouelha, 2017);

ρz(t, f) =

+∞∫∫
−∞

AF (ν, τ) g(ν, τ) ej2π(tν−fτ)dνdτ (1)
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where g(ν, τ) is the smoothing kernel defined in the Doppler–lag domain as
given in (2);

g(ν, τ) = G1(ν) g2(τ) (2)

where G1(ν) is the Doppler window, and g2(τ) is the lag window. The Ambi-
guity Function (AF) is defined as given in (3);

AF (µ, τ) =

+∞∫
−∞

R (t, τ) e−j2πνtdt (3)

where,

R(t, τ) represents the time–dependent instantaneous auto–correlation of z(t),
as given in (4).

z(t) is the analytic version of the analyzed signal s(t).
s(t) represents the HRV signal, therefore, the HRV signals were created by

identifying QRS complexes in the time–domain of an Electrocardiogram
(ECG).

R (t, τ) = z
(
t+

τ

2

)
z∗

(
t− τ

2

)
(4)

Because of their quadratic structure, the conventional QTFDs approaches
may suffer from the cross–terms that can blur the TF plane. Time and fre-
quency filtering reduce these interferences.

4.3.1 Smoothed Pseudo Wigner–Ville Distribution (SPWVD)

According to (refeq:R), the quadratic character of smoothed Wigner–Ville
distributions results in cross-terms within the TF plane. Smoothing the TF
plane in time and frequency domains improves auto–term representation. A
separable time and frequency smoothing kernel can provide high time and
frequency resolution. The SPWVD (Smoothed Pseudo Wigner–Ville Distribu-
tion) is given in (5);

SPWVD(t, f) =

+∞∫
−∞

g2(τ)

+∞∫
−∞

g1(s− t)z
(
s+

τ

2

)
z∗

(
s− τ

2

)
se−2πντdτ (5)

Smoothing carried out by the SPWVD is achieved at the price of spread
auto–terms bursts within the TF plane. Therefore, smoothing windows have
to be set to keep a representative TF distribution of the analyzed signal.
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Spectrogram

Arranging spectra of a Welch PSD estimator by considering the central instant
of each weighting window as a time position within the time–frequency plane
leads to the spectrogram (SP). Indeed, the STFT–spectrogram is the squared
magnitude of the Short–time Fourier transform (STFT) as defined in (6);

SPEC(t, ω) = |STFT (t, ω)|2 (6)

where the STFT can be expressed as in (7);

STFT (t, ω) =

+∞∫
−∞

z(τ) h(τ − t) e−jωτdτ (7)

where h(t) represents the analysis window smooths cross–terms through the
frequency–domain. The STFT uses a weighting window h(t) to subdivide the
signal into overlapping segments. The spectrogram is the squared magnitude
of the obtained STFT (Barkat and Boashash, 2001).

4.4 Feature extraction

We are particularly interested in two frequency bands of HRV signals: the
LF and HF bands. We examined these bands by computing their cumulative
properties, including flux, flatness, Shannon entropy, mean, variance, skewness,
kurtosis, and coefficient of variation. To quantify each frequency band, we
calculate energy-based features of the HRV signal across the LF and HF bands
in the TF plane (contrary to most existing studies, which exploit the frequency
domain). To be more specific, we extract eight features from the TF plane of
the analyzed HRV signals for both the LF and HF bands: (i) three TF energy–
based features and (ii) five TF statistical–based features.

4.4.1 TF energy–based features

Flux Squaring the magnitudes of Fourier transforms of two neighboring frames
within the power spectrum to estimate the signal’s spectral change defines the
spectral flux. This parameter gives an estimate of the energy within time–
frequency distributions, as given in (8);

FL(t,f) =
N−l∑
n=1

M−m∑
k=1

| ρz[n+ l, k +m]− ρz[n, k] | (8)

where ρz[n, k] represents the TF representation of the analyzed HRV signal
(size NxM) of the analytic version z[n] of the analyzed signal s[n], and l rep-
resents the time duration between the two slices. The spectral flux measures
changes in the power spectrum of a signal.
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Flatness Spectral flatness is the ratio between the geometric mean and the
arithmetic mean of the power spectrum of a signal within the time domain. The
spectral flatness of TF representations of size NxM is calculated by measuring
the ratio between the geometric mean and the arithmetic mean of the energy
distribution over the TF plane, as given in (9) (Boashash et al., 2015; Löfhede
et al., 2010);

SF(t,f) = MN

∏N
n=1

∏M
k=1 | ρz[n, k] |

1

NM∑N
n=1

∑M
k=1 ρz[n, k]

(9)

Normalized Shannon Entropy The normalized Shannon entropy is a concen-
tration measure which can be extended to a TF representation as given in
(10);

SE(t,f) = −
N∑

n=1

M∑
k=1

ρz[n, k]∑
n

∑
k ρz[n, k]

log2
ρz[n, k]∑

n

∑
k ρz[n, k]

(10)

The Shannon entropy is an extension of spectral entropy by replacing the
Fourier Transform (FT) of a non–stationary signal with the TFD (Boashash,
2016).

Statistical–based features

Mean The mean value calculated for the TF distribution (Boashash, 2015) is
given by (11);

m(t,f) =
1

NM

∑
n

∑
k

ρz(n, k) (11)

Variance The TF variance, which represents the spread of the TF distribution
(Boashash, 2015), is given by (12);

σ2
(t,f) =

1

NM

∑
n

∑
k

(
ρz(n, k)−m(t,f)

)2

(12)

Skewness The skewness represents the asymmetry of the probability distribu-
tion of the energy from its mean. This parameter can be defined in the TF
plane (Boashash, 2015) by (13);

γ(t,f) =
1

NMσ3
(t,f)

∑
n

∑
k

(
ρz[n, k]−m(t,f)

)3

(13)

Kurtosis The kurtosis measures whether the data points are heavy-tailed or
light–tailed relative to a normal distribution. In the TF plane (Boashash,
2015), it is given by the following equation (14);

k(t,f) =
1

NMσ4
(t,f)

∑
n

∑
k

(ρz[n, k]−m(t,f))
4 (14)
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Coefficient of variation The coefficient of variation is defined as the ratio
between the variance and the mean in the TF plane (Boashash, 2015), and is
given by (15);

c(t,f) =
σ(t,f)

m(t,f)
(15)

4.5 Feature selection

Filter methods, wrapper methods, and embedded methods are feature selec-
tion techniques that improve the classification (Kohavi and John, 1997). Filter
methods are based on ranking features to select highly ranked features con-
sidered as inputs for classifiers. Wrapper methods search for the best feature
subsets to get high–performance metrics from the predictor. Embedded meth-
ods focus on the training process without segmentation of data into training
and test data to select relevant features (Guyon and Elisseeff, 2003). In this
study, we used two efficient methods: the MI algorithm and the FSASL method
(Peng et al., 2005; Du and Shen, 2015).

Mutual information (MI)

We used the MI as a feature selection criterion. The aim of this approach is to
distinguish between relevant features within a particular class in order to create
a subset formed by highly ranked features. The mutual information between
two random variables X and Y is a measure of their mutual dependence (Peng
et al., 2005), and is defined as given in (16);

I(X,Y ) =
∑
x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
(16)

where pX and pY represent probability density functions (pdf) of X and Y,
respectively, and pX,Y is the joint pdf of X and Y. The mutual information
between features V = (v1, v2, ..., vd) and class variables C = (c1, c2, ..., ck) is
expressed as given in (17);

I(V,C) =
∑
c

p(v)
∑
c

p(v/c) log
p(v/c)

p(v)
(17)

The MI is based on the measure of dependency between the variables to
reduce the number of features. This type of feature selection method is sym-
metric and non–negative. The MI can be equal to zero when the variables are
independent.
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Feature Selection with Adaptive Structure Learning (FSASL)

Unsupervised feature selection methods identify features that can reveal and
sustain the underlying structure of data (Du and Shen, 2015). The feature
selection with adaptive structure learning (FSASL), based on linear regression,
has a high computational complexity, which is costly for high dimensional data.
The FSASL is formulated as given in 18;

min
W,S,P

(∥ WTX −WTXS ∥2 +α ∥ S ∥1)

+ β
n∑
i,j

(∥ WTxi −WTxj ∥2 Pij + µP 2
ij) + γ ∥ W ∥21 (18)

Subject to, Sii = 0, P1n = 1n, P ≥ 0,WTXXTW = I.
Where β, α, γ, and µ are regularization parameters used to balance the

adjustment error of global and local structure learning.

X : considered as input Feature
set X ∈ Rd×n,
xi = is the data sample.
For each data sample xi, the entire set of data points xj

nj = 1 is treated
as the neighborhood of xi = with probability P (i, j).

S : Weight matrix of the data matrix.
W : Feature selection and transformation matrix.

4.6 Classification: Support vector machine(SVM)

The SVM is used for binary classification. The set of examples and their corre-
sponding labels is called the learning set. An effective learning machine learns
features of the training set to minimize classification errors.

D = {(x1, y1), .., (xn, yn)} represents the training set, with xi ∈ Rm and
yi = ±1. The objective of SVM is to maximize the margin between two classes
by distinguishing them by a hyperplane. The optimal hyperplane requires the
determination of the Euclidean distance between the hyperplane and the clos-
est training of the two classes (Abe, 2005; Hong and Cho, 2008). The optimal
hyperplane can also be solved by calculating the following classification func-
tion (19);

H(x) = sign(
m∑
i=1

αiyiK(x, xi) + b) (19)

And ∀ (xi, yi) ∈ S, 0 ≤ αi ≤ C.
Where;

yi is the class label of support vector xi

x is a test tuple
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αi is a Lagrangian multiplier
b is a numeric parameter
m is the number of support vectors
C is the coefficient of regularization
S is of dimension m
K is the kernel function

The radial basis function (RBF) kernel (σ is a positive parameter for con-
trolling the radius) is the default kernel used within the SVM classification
algorithm and is expressed as follows:

K(xi, xj) = exp−∥ xi − xj ∥2

2σ2
(20)

4.7 Multi–class extensions

The support vector machine (SVM) is binary in its origin. However, in most
cases, real world problems are multi–layered. The SVM algorithm is one of
the lazy learning techniques used for multi–class as well as a relatively recent
design learning model (Mamouni El Mamoun, 2019). Therefore, multi–class
SVM reduces the problem to a composition of many two–class hyperplanes to
draw the decision boundaries between the different classes.

The main function is to decompose the examples into several subsets; each
of them represents a binary classification problem.

In recent literature, the SVM multi–class case can be done in four different
ways, which depend on the size of the dataset: Directed Acyclic Graph (DAG),
Binary Tree (BT), One–Against–One (OAO), and One–Against–All (OAA)
classifiers. In this study, one–against–one (OAO) of SVM multiclass using the
radial basis function kernel (RBF) has been chosen to discriminate between
pathological cases. This method of multiclass is much faster to train and seems
preferable for problems with a very large number of classes (Chamasemani and
Singh, 2011).

4.7.1 One–against–one SVM (OAOSVM)

One–against–one SVM, also called pair–wise combinations of the N classes,
consists of using a classifier for each pair of classes (Chamasemani and Singh,
2011). The One-against-One support vector machine (OAOSVM) method dis-
criminates against each of the other classes, resulting in the construction of
an N(N − 1)/2 binary classifier with N(N − 1)/2 decision functions. The
OAOSVM defines a binary classifier as hNs(x) : ℜ → {+1,−1} based on the
Radial Basis Function (RBF) kernel for every two classes (N,s) (Mamouni
El Mamoun, 2019). The assignment of a new example used for training is
based on a voting list. An example is tested by applying the decision function
(Equation 19) to each hyperplane. For each test, there is a vote for the class
to which the example belongs.

Accepted manuscript / Final version



Telemedical Transport Layer Security based Platform for Cardiac Arrhythmia Classification15

Fig. 4: Approach One–against–one (Mamouni El Mamoun, 2019).

4.8 Performances evaluation

The performance of the classifier is estimated by calculating the Sensitivity
(Se), the Specificity (Sp), and the Accuracy (Acc). The sensitivity defines the
true positive rate (21);

Se =
TP

TP + FN
(21)

The specificity defines the true negative rate as given in (22);

Sp =
TN

FP + TN
(22)

The accuracy is defined as the ratio of correct predictions over the total
number of predictions (23);

Acc =
TP + TN

TP + TN + FP + FN
(23)

TP True positive: correctly classified as positive.
FP False positive: falsely classified as positive.
TN True negative: correctly classified as negative.
FN False negative: falsely classified as negative.
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4.9 Client–server architecture

The communication mechanism in the client–server application allows ex-
changing data between them via the Internet using the secured TCP/IP proto-
col (Transport Layer Security). So, the client–server architecture is developed
around the use of sockets and threading. All communication between client and
server is processed via sockets, which can be reliable. These sockets can be used
in connected mode (TCP: Transmission Control Protocol) or non–connected
mode (UDP: User Datagram Protocol). The standard protocols used by the
Transport Layer to enhance its functionalities are TCP, UDP. TCP is a se-
cure, connection–oriented protocol that uses a handshake protocol to establish
a strong connection between different stations, ensuring that messages are de-
livered reliably. On the other hand, UDP is a stateless and unreliable protocol
that ensures best–effort delivery. UDP is suitable for applications that have
little concern with flow or error control and require transmission of the bulk
of data. The communication process using sockets in connected mode (TCP)
that is used in the current study is presented in figure 5.

As a first step, the creation of a socket is done using socket () function.
Once the socket has been created, it has to be linked to a communication
point defined by an address and a port, this is the role of the bind() function.
In connected mode, the listen() function is used to put the socket in passive
mode (listening to messages). In case of an incoming message, the connection
can be accepted with the accept() function. When the connection has been
accepted, the server receives the data using the recv() function. The end of
the connection is done with the close() function.

As a first step, the creation of a socket is done using the socket () function.
Once the socket has been created, it has to be linked to a communication point
defined by an address and a port, which is the role of the bind() function. In
connected mode, the listen() function is used to put the socket in passive mode
(listening to messages). In the case of an incoming message, the connection
can be accepted with the accept() function. When the connection has been
accepted, the server receives the data using the recv() function. The end of
the connection is done with the close() function.

In this study, we used socket programming to illustrate the client-server
model using Multi–threading in Python. According to the multi–threading
function, the server side accepts or handles multiple clients (an unlimited
number of clients) connected simultaneously (Kim et al., 2019). The server
can keep track of the threads or the clients that connect to it. The server
uses the instances of a client object and individual threads to listen to the
data that is being sent by each client while establishing new connections with
the server. The main thread of the server creates a thread and forwards the
client’s request to this thread with its ID. The thread will start processing the
client request, generate the report, and send it back to the client. The figure
6 represents the process of the Threading function.
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Fig. 5: Client–server architecture.

Fig. 6: Socket Server with Multiple Clients: implementing a Multi–threaded
Python Server.
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5 Results and discussion

In this study, we built a client-server application as a telemedical platform for
real-time remote monitoring of cardiac arrhythmia illness diagnosis.

As depicted in Figure 2, the client block hardware consists of an analog
shaping circuit and a Raspberry Pi Zero acting as a data collection card. The
Raspberry Pi Zero is small and inexpensive, making it ideal for low-budget
applications. Its compact dimensions, low energy usage, and inexpensive price
set it apart.

The element parameters of the ECG sensor, the analog circuit, the com-
munication system, and the server are listed in Table 3. ECG–data will be
transmitted over an Internet network (TCP/IP) between the client and the
server station using a Transport Layer Security protocol (TLS) that ensures
the security of the transmitted data (see figure 4).

Concerning the server block (software part) (see figure 2), we developed
a Graphical User Interface (GUI) to record the data acquisition task. The
recorder ECG signal is then analyzed: we first estimate the HRV times series,
then an SPWVD is applied on this HRV signal to extract features of interest.
Finally, the learned SVM is applied to classify and label the analyzed ECG as
AF and SVT, NSR and CHF.

5.1 Real–time QRS complex–based detection of the HRV signal

In this study, we used the online implementation of the Pan–Tomkins algo-
rithm to detect the HRV from real–time acquired ECG signal (see figure 7(a)).
The HRV signal illustrated in figure 7(c) is detected by localizing R–peaks
in relation to cardiac cycles within real–time ECG signal as represented in
figure 7(b). The amplitude within HRV signals refers to the consecutive du-
ration between R–peaks within ECG signals. Therefore, HRV signals will be
amplitude–centered around the cardiac cycle mean value. We performed de-
tection of the R–peaks within the ECG through regular real–time localization
of the consecutive maxima which we used as cardiac cycles.

5.2 Identification of features of interest and SVM parameters learning

The Physionet database is used to help us to choose the best features and to
learn the SVM parameters. More precisely, 228 ECG signals divided into four
classes, namely SVT, NSR, AF, and CHF. (See Data set section) are exploited.
Time–frequency representations of HRV in Figures 8(a) & 8(b) calculated
by the STFT–spectrogram and the SPWVD, respectively. The Short–time
Fourier Transform–based Spectrogram (SP) was calculated to show the high
time and frequency joint resolution of the SPWVD. Spectrogram of the HRV
signal of Figure 8(a) was calculated with a Hamming window at duration
of 171 samples. Specify 169 samples of overlap between adjoining sections.
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Table 3: Element Parameters of the cardiac arrhythmia monitoring system.

Parameters Vlaues

ECG sensor Type AD8232
Supply Voltage 2.0V–3.5V

Analog circuit Type Amplification, Filtering

ADC Type MCP3008
Interface SPI, Serial
Supply Voltage 2.7V–5.5V
Output Voltage 4.1V
Number of Bits 10

Raspberry Pi Type Raspberry pi zero
Power voltage 1.24A–5V
Core 32 bit ARM1176JZF–S

single–core
GPU Broadcom Video–Core IV
CPU clock 1 GHz
Memory 512 MB

Communication Wireless transmission 3G/4G
system protocols

communications security TLS Protocol

Server CPU Intel(R) Core(TM) i53230M
Operation system Windows 10, 64 bit

We found out that the TF calculated from Spectrogram (SP) ensures both
time and frequency resolutions trade–off. Figure 8(b) demonstrate that the
SPWVD outperformed the SP in localizing the non stationary multicomponent
content of HRV signals at a high joint time–frequency resolution with a reduced
amount of cross–terms within the time–frequency plane. Figure 9 shows an
example the SPWVD calculated for the four different classes. Clearly, the
shape and the TF distribution of the amplitude of the spectra are different
between the four classes, which confirm that the analysis of HRV signals in
TF domain is a good choice instead of the frequency domain. In addition, we
can also remark that SPWVD provides a good resolution in both time and
frequency domains, with less cross–terms.

Figure 10 depicts the mean and standard deviation values of eight fea-
tures (see Feature extraction section ), calculated from the TF distributions
of HRV signals, for NSR, CHF, AF, and SVT. We can observe that mean
and standard deviation values of each feature are clearly different between the
different classes. However, the manual selection of the best set of features is
not straightforward and the testing all combinations will be very times con-
suming. The automatic selection of the best features using FSASL and MI
methods is reported in Table 4. It is interesting to see that the MI method is
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(a) Acquired ECG signal from data acqui-
sition system
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(b) Cardiac cycles detected from an ac-
quired ECG signal
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(c) AC component of the detected HRV
signal from the ECG signal of Figure 7(a)

Fig. 7: ECG and HRV signals.
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(a) Spectrogram (SP)
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(b) SPWVD

Fig. 8: MIT–BIH database ECG datafile, the ECG Record 100: Time–
frequency representation of HRV signals using SPWVD and SP.

not able to select a set of features between the eight ones, whereas the FSASL
algorithm select just three valuable feature, namely Coef.variation, Skewness
and Shannon Entropy. Regarding the classification rate, we can observe that
our approach combining SPWVD and SVM, seems to be very effective in dis-
criminating between SVT, AF, CHF, and NSR classes (see the results of Table
4). In addition, the best classification rate is yield using the FSASL features
selection algorithm: i) Se= 95.65 %, Sp=98.55 % and Acc=97.82 %, and ii)
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(a) HRV times series and SPWVD of nor-
mal sinus rhythm (NSR)
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(b) HRV times series and SPWVD of
atrial fibrillation (AF)
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(c) HRV times series and SPWVD of
supraventricular tachycardia (SVT)
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(d) HRV times series and SPWVD of con-
gestive heart failure (CHF)

Fig. 9: Time–frequency analysis of the detected HRV signal for different classes.

(a) Mean value (b) Standard deviation value

Fig. 10: Statistical result of various Features extraction from TF–
representation of HRV signal for different classes.
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Se=91.30 %, Sp=95.65 % and Acc=94.20 % (using MI). Table 5 presents, in
detail, the classification rate of AF and SVT among CHF and NSR, using the
features selected by the FSASL. The global proposed procedure seems to be
very efficient whatever the classified pathology. Note that, all the previous re-
sults are obtained by randomly dividing the database into a training set (90 %
of ECG) and a testing set (10 % ECG) using a bootstrap strategy. Confusion
matrix (MCTFD ) for the 4 classes (AF, SVT, CHF, NSR) classification, is
defined in figure 11;

AF NSR SVT CHF
Predicted labels

AF
NS

R
SV

T
CH

F
Tr

ue
 la

be
ls

9 0 0 0

0 2 0 0

0 1 5 0

0 0 0 6

Confusion Matrix

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Fig. 11: Confusion matrix (MCTFD)for the 4 classes (AF, SVT, CHF, NSR).

Table 4: Result of classification using MI and FSASL as feature selection meth-
ods.

FSM
Metrics performance

NF FS Sensitivity (%) Specificity (%) Accuracy (%)

MI 08 Mean, Variance, Coef.variation, Kurtosis 91.30 95.65 94.20
Shannon Entropy , Skewness, Flux, Flatness

FSASL 03 Coef.variation, Skewness, Shannon Entropy 95.65 98.55 97.82

5.3 Secure transmission of ECG data via the internet

In this study, the server and the client could initiate a communication via
the Graphical user interface (GUI) by using one IP address, the following
procedure explains how the client connects to the server in different cases:
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Table 5: Classification metrics of cardiac arrhythmia (AF and SVT) among
NSR and CHF using FSASL..

Classes
Metrics performance

Sensitivity (%) Specificity (%) Accuracy (%)

Atrial Fibrillation (AF) 100 100 100

Supraventricular Tachycardia (SVT) 83.33 100 95.65

Normal Sinus Rhythm (NSR) 100 95.23 95.65

Congestive Heart Failure (CHF) 100 100 100

Overall Accuracy 95.65 98.55 97.82

– Run the client on the same computer as the server, it uses the IP address
as the host name.

– Run the client in the same network as the server’s (local network), it uses
the local server IP address in the client interface.

– The port can be any 16–bit number, but must be forwarded to the router
where the client is located, if the server and client are located in a different
network, the client uses the IP address (internet IP) of the network under
which the server is running (contrary to the local network). The internet
IP is extracted from the web: google what is my ip .

The Tele–vigilance station can communicate with the various remote sta-
tions through a secure communication system to exchange the data and the
processing results of the data collected. Transport Layer Security has been
widely recognized as one of the most widely used cryptography protocols to
protect and secure data transmitted between client and server. TLS protocol
uses a certificate and key to establish encryption between server and client. For
this, the hacker retrieves only the encrypted data. The following steps describe
the the TLS handshake step by step, as shown in figure 12 (Pukkawanna et al.,
2014).

– The client sends (1) a Client ”Hello message” to the server for a secure
session.

– The server replies with (2) a Server Hello message.
– The server responds by sending its X.509 digital certificate to the client,

with (3) a Certificate message to the client.
– The server (4) sends a ”Server Hello Done” message to notify the client

that the server is waiting response.
– The client uses the server certificate to authenticate the server, then sends

(5) a ”Client Key Exchange” message containing a generated premaster
secret key to the server.
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– The client transfers (6) ”Change Cipher Spec” and (7) ”Client Finished”
messages to inform the server that future messages will be encrypted using
the session key.

– Finally, the server sends (8) ”Change Cipher Spec” and (9) ”Server Fin-
ished” messages to end the process of handshake. Now, data can be ex-
changed between client and server.

Fig. 12: Steps of the TLS Negotiation between Client and Server (Pukkawanna
et al., 2014)

To secure the exchange of data transmitted over the internet network, we
used the TLS 1.2 version. This security protocol has more than 300 cipher
suites registered on the Internet Assigned Numbers Authority (IANA). Each
cipher suite is a combination of the following cryptographic mechanisms:

– A key exchange mechanism, which specifies an exchange algorithm and
possibly the signature algorithm used to authenticate the exchanges. RSA,
ECDHE–RSA and PSK are some examples.

– Mechanisms ensuring the confidentiality and integrity of the data exchanged
after the handshake, defined:
– As the composition of an encryption algorithm and a hash function

used in HMAC mode, such as AES–256–CBC–SHA38.
– Either as an integrated encryption mode, also called combined mode, si-

multaneously offering encryption and integrity, such as AES–256–GCM.
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– Optionally, for suites defined in version TLS 1.2, a hash function used for
the derivation of secrets from the premaster secret. This option is used in
particular by suites using integrated AES–GCM encryption.

Cryptographic suite of the TLS 1.2 is given by ECDHE–RSA–AES–256–
GCM–SHA384 which was referenced by the IANA under code 0xC030. It
indicates the combination of the ECDH handshake, the RSA digital signature,
the AES–256 encryption which has a key length of 256 bits, the SHA256–based
PRF, and the SHA384 (Secure Hash Algorithm 384). The figure 13 present the
combinations of cryptographic suit of TLS protocol used in our application to
secure the transmission of ECG–data from the acquisition system (client) to
remote station (server).

Fig. 13: The output of the server: indicates the establishment of the TLS
protocol and the cipher suites used.

Figure 14 describes the transmission of ECG–data using TLS protocol and
without TLS protocol.

Fig. 14: Transmission process with and without using the security protocol
(TLS).

As a result, we found that there is a loss of information between the trans-
mitter and receiver during transmission of ECG–data without using TLS pro-
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tocol. Further interpretation, the recordings data is obtained from the client
where the acquisition card is located. The analogue signal delivered from the
ECG AD8232 is converted from analog to digital form before transmission to
the attached computer (computers need digital data). Timed sampling for the
ECG recording was digitized at 100 Hz. During transmission of ECG–data ,
the server without security protocol, may miss data from the client because it
does not have the capacity to record and store data every 0.01 sec, and the
data acquisition at the Raspberry Pi is done quickly (Te=0.01 sec). Further,
it takes a certain time which is greater than 0.01 sec to receive another data
Which leads to the loss of one or more points. The causes of packet loss include
inadequate signal strength at the destination and overburdened network nodes
(packet processing problem receive). Without using TLS, the server block re-
ceived less than 25 percent of the overall ECG–data acquired in the client
block.

Table 6: The loss information compared to the original ECG at source to With
TLS at Destination.

Acquired ECG–data (Samples) 500 1000 2000 5000 10000 20000

Received ECG–data without TLS (%) 21 18 21 14 11 15

Received ECG–data with TLS (%) 100 100 100 100 100 100

On the other hand, we received the same length of data (100 % of the
overall ECG–data) in the server as in the client when we used the TLS protocol
(see table 6). Because, the acquired ECG–data will be encrypted one by one
by using Cryptographic suite of TLS 1.2 and sent it to the server to ensure
the confidentiality and integrity of all data exchanged. Finally, the server, in
return, decrypts the received ECG–data. This result confirms the importance
of using the data security protocol during transmission of ECG–data over
wireless interface.

5.4 Client–server application

The graphical user interface (client–server) is dedicated to remote monitoring
of cardiac arrhythmia, display, archiving, digital signal processing, classifi-
cation, and transmission of ECG–data to a remote station under a secured
TCP/IP protocol.

Client application is a graphical interface implemented with python environ-
ment connected with a data acquisition system to acquire the ECG signal for
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transmitting over internet network to the remote station (server). The client
application is represented in figure 15 and involves:

Fig. 15: Client Application: send ECG–signal from the Raspberry PI to the
Server.

– Connection establishment window: relating to the communication phase
between the server and the client (establish and open the connection through
an internet network using the server’s IP address).

Server application is implemented using the python environment, consists of
visualization, archiving, processing of HRV signal, and classification of received
ECG signal. The server application is illustrated in figure 16 and involves:

– Control window for viewing and recording the signal: allows to view and
record the ECG signal and its corresponding HRV in real–time.

– Consultation window: allows measuring some parameters related to the
heart rate such as heart rate (bpm), average HRV value (sec), and ECG
signal values (mv).

– Connection establishment window: this phase establishes the communica-
tion between the server and the client under the secured TCP/IP protocol.

– Digital processing window: is devoted to analyze the HRV times series, by
calculating there TF distribution and extraction of the three best features.

– Classification window: the learned SVM is used to classify the new HRV
signal.

– Message window: used to display and indicate messages corresponding to
the application.
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Fig. 16: Tele–monitoring and classification of cardiac arrhythmia.

6 Conclusion

In our study, we designed a new low–energy consumption, and a very afford-
able price system capable of performing continuous recording of HRV times
series for easy monitoring of the heart rhythm for the detection of arrhythmia.
We used an electronic circuit formed by an analog shaping part and a data ac-
quisition system. As a software part, we developed a Graphical User Interface
(GUI) within a python environment to establish the connection between the
client and the server through the TCP/IP secured by the Transport Layer Se-
curity, to acquire, transmit, monitor, process and classify the hearth rhythm.
We developed a new approach that combines SPWVD and SVM, for analyzing
and classifying HRV signals. More precisely, three features of interest were ex-
tracted from the TF–representation of HRV signal: the coefficient of variation,
the skewness, and the Shannon entropy. The obtained results show clearly that
the proposed system is very efficient to differentiate between cardiac arrhyth-
mia as AF and SVT among CHF and NSR cases. The result of classification
can be sent to the medical professional for analysis and diagnosis.
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