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Abstract 
This study focuses on modelling of mechanical behaviour of threadlike woven materials or 

shaped in uniaxial form such as wires, ropes, woven lines, cables, straps, slings etc. The 

proposed one-dimensional model is based on the superimposition of two stress contributions: 

a non-Newtonian visco-elastic stress and a time-independent stress. The time-independent 

stress stands for a particular irreversible behaviour, linked to the loading history. This model 

neglects the thickness of the time independent hysteresis loops during the unloading-reloading 

processes while preserving the irreversible character of elastoplastic type behaviour. The 

model's predictions are compared to a set of experimental results, carried out on polyamide 6-

6 (PA66) straps. The model describes the shape of the stress-strain hysteresis loops very well 

and predicts perfectly the direction of the strain or stress evolution during the creep or 

relaxation periods, regardless of their position in the first load or in the load-unload branches. 
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I) Introduction 
Although the use of textile materials is ancient, nowadays they could be still unique 

efficient solutions to current engineering challenges, because of the great mechanical 

properties of innovative synthetic fibres. Thus, the class of threadlike woven materials or 

shaped in uniaxial form (wires, ropes, woven lines, cables, straps, slings etc.) is of growing 

interest in many areas of industry and everyday life. We can mention some of these 

interesting applications: 1- Firefighters use textile polyamide ropes in case of emergency 

escape from buildings on fire; 1 as well as, in construction and roofing industries, work-

related falls are mitigated by using synthetic fabric; 2  another application in this area is related 

to sport climbing activity and uses widely textile polymer ropes, notably polyamide ropes for 

absorbing the fall energy. 2- In the offshore oil and gas industry, for the heavy-load lifting on 

board of an installation vessel, steel wires are replaced by textile synthetic ropes; this reduces 

the injury risk for the workers, mainly due to their lightness; in the same way, the mooring of 

floating offshore platforms used usually steel-chain and steel-wire mooring lines, but, since 

the 90’s, mooring lines made of textile polyester synthetic ropes were designed and used with 

success for deepwater  moorings,  where the  own weight  of the  steel  lines becomes too  

high; 3-6  more recently, a new mooring  rope is studied as candidate for the floating offshore 

wind turbine,  which corresponds to a laid-strand polyamide synthetic rope. 7,8  3- The French 

space agency (CNES) proposes stratospheric balloons, that can carry scientific measurement 

devices up to altitudes of 40 km.   Its  main  structural  part  is  made  of polymer-fibre woven  

straps,  that  link the  balloon with  the  scientific  devices and  others  necessary  to  pilot  the 

flight; as well as, textile synthetic woven straps are also used as structural mechanical link 

within parachute systems, due to their good strength-to-weight ratio and also to their ability to 

absorb shocks. 9 4- New pulley concepts is recently proposed, where the ball bearing is 
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replaced by an UHMWPE-fibre (e.g. Dyneema, Spectra)  braided loop; this  reduces the  

weight  and increases the  robustness  of the  system. 10,11 5- Some tires need fibre 

reinforcement; nylon, polyester or aramid cords are used. 12-16 6- Manipulator or robot arms 

are designed, such that the transmission of the actuator loads to the parts of the arm are 

performed by aramid yarns 17 ; Kevlar fibre, like Dyneema, Spectra or Vectran, has a great 

stiffness-to-weight ratio, and could be very useful for this type of application by minimizing 

the final weight of the product. 

 

In most applications of threadlike woven materials, the tensile mechanical behaviour has to 

be precisely understood.  For example, the mooring lines of floating platform encounter cyclic 

and also creep tensile loadings. The permanent elongation of these ropes, due to cyclic 

loading or creep, has a negative impact on the platform movements because of a relaxation of 

the mooring tension loads. In other applications, where the material is used as a fall energy 

absorber, the viscous behaviour has to be precisely known for limiting the mechanical 

acceleration undergone by the workers, parachutists or parachuted devices. 

 

For this reason, a lot of authors worked towards the modelling of the cyclic visco-elasto-

plastic behaviour of textile polymer-fibre ropes. The elastic behaviour of laid-strand synthetic 

ropes has been predicted by analytical models. 18-22 Experimental studies on synthetic ropes 

for deep water mooring were performed and properties have been studied such as: axial 

stiffness, hysteresis, creep, recovery, relaxation as a function of the mean load and load range. 

3-5, 23-26 The authors Bles 27 ; Bles et al. 9 ; Dib et al. 28 proposed one-dimensional visco-elasto-

plastic constitutive laws for woven straps and synthetic fibres based on the superimposition of 

stress contributions of different natures. The model of Bles, Nowacki and Tourabi 9 was 

adopted and adapted with success to aramid yarns by Che et al. 17, for modelling the cyclic 
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mechanical behaviour of robot arms. The authors 29-32 proposed constitutive laws for aramid 

and polyester yarns and ropes based on two summed strain contributions: viscoplastic and 

viscoelastic (Schapery’s model). Other authors have proposed a behaviour model pattern for 

polyester mooring ropes of which the strain is a function of the mean and the maximum 

tensions. 6,33-35 Some authors limited their model to elasto-plastic or to damaged elasticity 

behaviour of nylon tire cord, despite the strong viscosity of the material. 15 Based on the 

Flory’s pattern, Chevillotte et al. 8 proposed a visco-elasto-plastic law for polyamide laid-

strand mooring ropes. This model is based on a non-linear dynamic elasticity, a delayed 

elasticity, the moduli of which are linear functions of the tensile stress. 

 

Bles et al. 9 carried out cyclic tests on PA66 straps and revealed their visco-elastoplastic 

behaviour under cyclic loading, using a visco-elasto-hysteresis 1D model. This model is based 

on the superimposition of three stress contributions, respectively: non-Newtonian viscoelastic, 

nonlinear elastic and time independent hysteresis. In 2018, Dib et al. 28 have proposed a 2D 

model to take into account the visco-elastoplastic behaviour of woven materials constituted by 

1D fibres arranged in warp and weft, as well as a protection coating. The model used by the 

authors to describe the visco-elastoplastic behaviour of the fibres is a simplification of the 1D 

model of Bles et al. 9 Indeed, on one hand, this model neglects the thickness of the time 

independent hysteresis loops during the unloading-reloading processes while preserving the 

irreversible character of elastoplastic type behaviour. On the other hand, the non-Newtonian 

viscous part of the behaviour has a simpler definition, independent of the fibre deformation. 

The objective of the present work is to propose a simplified visco-elastoplastic 1D model, 

inspired of the Dib et al. 28 model and to compare its predictions with the experimental results 

obtained by Bles et al. 9 in order to appraise its validity and the relevance of its assumptions. 
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II) Experimental aspects 
In the present paper, we get inspired of previous works where experimental aspects were fully 

described in Bles et al. 9 This paragraph reminds the context and is a summary of the 

mentioned paper where more details can be found. It concerns experimental study of straps 

samples manufactured by weaving polyamide 6-6 (PA66) strands, a semi-crystalline polymer. 

Three groups of straps were tested and were called A, B and C. The tests are identified with a 

three-character code such as Axy, Bxy or Cxy, where A, B and C correspond to the strap 

groups and the both last characters xy correspond to the test serial number. In this paper, we 

put forward results from tests performed mainly on the group A. A full description of the 

geometric parameters of the straps and also of the experimental device can be found in Bles et 

al. 9 We consider that the straps material studied in the present paper can be seen as a 

homogeneous continuum and it can be likened to a particular one-dimensional behaviour (1D) 

whose rigidity in compression is negligible. Thus, according to the assumptions of continuum 

mechanics, we put forward the Cauchy stress 𝜎 defined as: 𝜎 = 𝐹/𝑆 where 𝐹 is the applied 

load and 𝑆 is the cross-section of the strap. The experimental device is equipped with an 

extensometer in order to get a measure of local strain 𝜀 in the central part of sample, such as 

𝜀 =  (𝑏 − 𝑏଴)/𝑏଴, where 𝑏 and 𝑏଴ are respectively the current length and the initial length 

measured by the extensometer.  

 

III) Constitutive Model 

1) Modelling hypotheses 

Previous works (Dib et al. 28) put forward a 2D model in order to describe heterogeneous 

material behaviour such as complex woven materials, with different fibres orientations and a 

coating; in the aim of predicting the mechanical behaviour of coated woven fabric and 
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application to finite element analysis of structures such as complete boat sails. It could take 

into account the individual behaviour of the warp yarns, the weft yarns, the coating and also 

their interaction, depending on the yarns orientation, by focusing on the non-Newtonian 

viscous behaviour, the time-independent irreversibility, the anisotropy and the cyclic loading 

behaviour. This model was presented in using the notion of specific stress in order to 

overcome the difficulty of the cross-section measurement of a woven material. In the present 

paper, we intend to introduce a 1D visco-elastoplastic model inspired by the 1D model 

proposed by the authors to describe the behaviour of the fibres and in order to model the 1D 

experimental results obtained by Bles et al. 9 This model corresponds to a simplification of the 

model proposed by Bles et al. 9, to analyse their experimental results. Indeed, the hysteresis 

loops linked to the time independent irreversibility during the unloading/reloading processes 

are neglected. This leads to an elastoplastic type model which keeps its time independent 

irreversible character with the addition of a reversible behaviour assumption during the 

unloading/reloading processes. In addition, we consider here, a second simplification 

compared to the model of Bles et al. 9 which concerns the viscous part of the behaviour. This 

part will be modelled by a contribution of non-Newtonian visco-elastic stress, independent of 

the strain. Finally, the model keeps a non-Newtonian viscous character with an irreversible 

time-independent contribution. Taking into account the assumption of homogeneity of the 

material of the strap and the choice used to express of the experimental results in Bles et al. 9 , 

the simplified model proposed within this framework will be expressed using the Cauchy 

stress. 
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2) Main properties of the one-dimensional constitutive model 

 

In the proposal, the straps mechanical behaviour is described by a one-dimensional model 

inspired of the works of Dib et al. 28 To analyse the experimental data and characterize the 

complex cyclic behaviour of the straps, Bles et al. 9 adopted a visco-elasto-hysteresis model. 

This relatively complex model enables the analysis of the behaviour of the strap material, 

without requiring phenomenological simplifications compared to experimental observations. 

Thus, all the characteristics of the behaviour observed experimentally can be taken into 

account by this model. 

Figure 1 summaries the rheological model of Bles et al. 9 It put forward the assumption of 

stress superimposition, corresponding to different physical phenomena that occur when the 

straps undergo mechanical actions. The total stress σ(𝜀, 𝜀̇, 𝜉) appears as the sum of two terms: 

(i) σ୴(𝜀, 𝜀̇)  a non-Newtonian visco-elastic stress contribution, described by a Maxwell-like 

model depending on strain 𝜀 and strain rate 𝜀̇ and (ii) σ୲୧(𝜀, 𝜉) = σ୰(𝜀) + σ୦(𝜀, 𝜉), a time-

independent elasto-hysteresis stress contribution, constituted by the superimposition of σ୰(𝜀), 

a reversible stress contribution of non-linear elastic type and σ୦(𝜀, 𝜉) an hysteresis stress 

contribution, with an elastoplastic character, depending on reference states indexed by a 

parameter 𝜉. 
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Figure 1: Summary of the rheological model adopted in Bles et al. 9 

 

We intent to resume the Bles et al. 9 model and perform major simplifications that lie in two 

considerations; on the one hand, for the viscous stress part, the elastic modulus 𝐸௩(𝜀) and the 

viscosity 𝜂(𝜀, 𝜀̇) will be considered as independent of strain 𝜀; consequently, 𝐸௩(𝜀) remains 

constant and will be denoted 𝐾 and 𝜂(𝜀, 𝜀̇)  that depends only on 𝜀̇  will be denoted 𝜂(𝜀̇) 

(Figure 2); on the other hand, for the time independent stress part, the hysteresis loop during 

unloading/reloading process is neglected and replaced by a reversible unloading/reloading 

hypothesis; then during this process, the behaviour is described by a non-linear elastic 

behaviour. Indeed, σ୰(𝜀) and σ୦(𝜀, 𝜉) branches merge to only one branch σ୲୧(𝜀), assigned to 

a non-linear elastic behaviour. It means that the branches a-b-a and c-d-c of the Figure 1 are 

replaced by the branches a-b-a and c-d-c displayed on Figure 2. Figure 2 summarizes this new 

model that can be considered as a Zener-like rheological model defined by two stress 

contributions corresponding to: (i) σ୴(𝜀̇), a non-Newtonian visco-elastic stress and (ii) σ୲୧(𝜀), 
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a time-independent stress, that stands for a particular irreversible behaviour, linked to the 

loading history, which presents an irreversible non-linear behaviour during first loading 

(branch 0-a-c-e in Figure 2) and a non-linear elastic behaviour during unloading-reloading 

processes (branches a-b-a and c-d-c in Figure 2). Then, the total Cauchy stress σ(𝜀, 𝜀̇) in the 

strap can be expressed by: 

σ(𝜀, 𝜀̇) = σ୴(𝜀̇) + σ୲୧(𝜀)   (1)  

The detailed structure of the model for  σ୲୧(𝜀) will be provided in the next section. This 

section will give the complete definition of the Zener-like rheological model, used to describe 

the behaviour of the straps. 

 

Figure 2: Zener-like one-dimensional model adopted for the description of the mechanical 

behaviour of the straps. The total stress σ(𝜀, 𝜀̇) is composed of a non-Newtonian visco-elastic 

contribution σ୴(𝜀̇) and an irreversible time-independent stress σ୲୧(𝜀). 
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3) Definition of the stress contributions of the model 

In this paragraph, we propose to precisely define the contributions σ୲୧(𝜀) and σ୴(𝜀̇) which are 

involved in the Zener-like rheological model adopted in the context of this paper. This model 

is inspired by the one-dimensional model proposed by Dib et al. 28 to describe the behaviour 

of the fibres. 

a) Irreversible time-independent contribution 

According to Dib et al. 28 , the irreversible time independent behaviour is defined with the sum 

of two non-linear elastic-type laws ℒଵ(𝜀ோ) and ℒଶ(∆𝜀) ; where ℒଵ(𝜀ோ) stands for the stress 

state during first load and is a function of a reference strain 𝜀ோ, that is equal to the model 

strain 𝜀 in the case of monotonic loading; ℒଶ(∆𝜀) describes the stress state part during a cycle 

(unloading/reloading steps) and depends on the variation ∆𝜀 between the reference strain 𝜀ோ 

and the actual strain 𝜀 such as ∆𝜀 = 𝜀 − 𝜀ோ ; the reference strain 𝜀ோ represents the memorised 

strain at load-inversion point during a first load. This means that 𝜀ோ remains constant during 

the unloading/reloading sequences and its value can only increase, with deformation (𝜀ோ =

𝜀), when returning to first loading curve. In fact, 𝜀ோ is the maximum of actual strain 𝜀 along 

its time evolution. Thus, we define the irreversible time independent stress σ୲୧(𝜀) such as: 

σ୲୧(𝜀) = ℒଵ(𝜀ோ) + ℒଶ(∆𝜀)  (2) 

During the first load, as the reference strain corresponds to the actual strain (𝜀ோ = 𝜀) the 

variation ∆𝜀 is null (∆𝜀 = 0) which implies that  ℒଶ(∆𝜀) = 0 and that the irreversible time-

independent stress becomes: 

σ୲୧(𝜀) = ℒଵ(𝜀ோ) and        𝜀ோ = 𝜀  (3) 
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Dib et al. 28 proposed a general formulation of ℒଵ(𝜀ோ) (in their Eq. 32), which can be adapted 

to different kind of behaviours: 

ℒଵ(𝜀ோ) = (𝐺 − 𝐿). 𝜀∗. tanh ቀ
ఌೃ

ఌ∗
ቁ + 𝐿. 𝜀ோ + 𝐻. (𝜀ோ)ଶ + 𝑁. (𝜀ோ)ଷ       (4) 

Where 𝐺, 𝐿, 𝐻,𝑁 and 𝜀∗ are five material constants. In the present case, we consider a simpler 

modelling where 𝐺 = 𝐿 and  𝑁 = 0. Thus, the irreversible time-independent stress, during the 

first loading, depends only on two parameters 𝐺 and 𝐻 such as (Figure 3): 

ℒଵ(𝜀ோ) = 𝐺. 𝜀ோ + 𝐻. (𝜀ோ)ଶ and 𝜀ோ = 𝜀      (5) 

During cyclic sequences, 𝜀ோ is constant and corresponds to the strain at inversion point on the 

first load. Consequently, ℒଵ(𝜀ோ) remains constant whereas  ℒଶ(∆𝜀) becomes different from 

zero, thus:  

σ୲୧(𝜀) = ℒଵ(𝜀ோ) +   ℒଶ(∆𝜀) ; 𝜀ோ and ℒଵ(𝜀ோ) are constant and ℒଶ(∆𝜀) ≠ 0     (6) 

We propose in this framework an original law for  ℒଶ(∆𝜀) : 

  ℒଶ(∆𝜀) =
ఊ.ℒభ൫ఌೃ൯

୲ୟ୬୦൬
ഁ.ഄೃ

೑∗൫ഄೃ൯
൰

. tanh ቀ
ఉ.∆ఌ

௙∗(ఌೃ)
ቁ +

(ଵିఊ).ℒభ൫ఌೃ൯

୲ୟ୬୦൬
(భషഁ).ഄೃ

೑∗൫ഄೃ൯
൰

. tanh ቀ
(ଵିఉ).∆ఌ

௙∗(ఌೃ)
ቁ  (7) 

Where 𝛽 and 𝛾 are two material parameters which evolve between 0 and 1 and  𝑓∗(𝜀ோ) is a 

function of reference strain 𝜀ோ, previously defined in Dib et al. 28 in their Eq. 35.  

This function is expressed such as: 

                                   
ଵ

௙∗(ఌೃ)
= 𝐴.

ఌೃ

ℒభ(ఌೃ)
.

ௗℒభ

ௗఌ
(𝜀ோ)   (8) 

Where 𝐴 is a non-unit parameter.  
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This modelling for ℒଶ(∆𝜀) requires three parameters that have to be identified (𝐴, 𝛽 and 𝛾). 

Considering the behaviour during first loading and during the loading/unloading process, the 

irreversible time independent stress σ୲୧(𝜀) , requires the identification of five parameters 

(𝐺, 𝐻, 𝐴, 𝛽 and 𝛾). Figure 3 (a), (b) and (c) gives respectively the influence of parameters 𝛽, 𝛾 

and 𝐴, on the shape of the unloading/reloading curve. Figure 3 illustrates the shape of the 

irreversible time independent stress σ୲୧(𝜀), defined by the relations from (2) to (8), during a 

first load 0-a and a-b, and also during an unloading/reloading sequence a-0-a. According to 

definition (7) of law  ℒଶ(∆𝜀), which defines the cycle behaviour, Figure 3 shows that, when 

strain 𝜀 = 0 , the cycle stress and its tangent modulus are null ( σ୲୧(0) = 0, horizontal 

asymptote). On these three figures, we adopt the same first load, characterized by relation (5) 

and by parameters 𝐺 = 50 𝑀𝑃𝑎  and 𝐻 = 200 𝑀𝑃𝑎 . Likewise, the dashed curve for the 

unloading/reloading sequence is the same in the three figures and is defined by relations (5) to 

(8) with  𝐴 = 20, 𝛼 = 𝛽 = 0,01. 

Taking into account relations (6) and (7), the derivative 
  ௗℒమ

ௗఌ
(∆𝜀) at the inversion point such 

as ∆𝜀 = 0 , denoted
  ௗℒమ

ௗఌ
(∆𝜀 = 0)   corresponds to the tangent modulus of σ୲୧(𝜀)  at the 

inversion point, at the beginning of the unloading curve, and is expressed by: 

  ௗℒమ

ௗఌ
(∆𝜀 = 0) = ℒଵ(𝜀ோ). ൝

ఊ.ఉ

୲ୟ୬୦൬
ഁ.ഄೃ

೑∗൫ഄೃ൯
൰

+
(ଵିఊ).(ଵିఉ)

୲ୟ୬୦൬
(భషഁ).ഄೃ

೑∗൫ഄೃ൯
൰
ൡ .

ଵ

௙∗(ఌೃ)
 (9) 

Function 𝑓∗(𝜀ோ) takes into account the fact that the tangent modulus at the inversion point 

evolves as a function of the reference strain 𝜀ோ , the value of strain at inversion point (8). 

Indeed, (8) and (9) define an increasing monotonous evolution of the tangent modulus at 

inversion point  
  ௗℒమ

ௗఌ
(∆𝜀 = 0) , as a function of the ratio between the modulus just before the 



13 
 
 

inversion point 
ௗℒభ

ௗఌ
(𝜀ோ) and the sequent modulus 

ℒభ൫ఌೃ൯

ఌೃ
. This aspect is indicated by Figure 4 

at inversion points A, B, C, D and E and on the evolution curve of modulus 
  ௗℒమ

ௗఌ
(∆𝜀 = 0). 

 

Figure 3: Influence of parameters 𝛽 (a), 𝛾 (b) and 𝐴 (c) on the unloading curve shape when 

strain at the load-inversion point is 𝜀ோ = 28 % and the parameters of the first loading curve 

are maintained at the same value 𝐺 = 50 𝑀𝑃𝑎 and 𝐻 = 200 𝑀𝑃𝑎. The dashed curve is a 

common curve to the three figures (a), (b), (c) such as the parameters values are 𝐴 =20, 𝛽 =

𝛾 = 0,01. 
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Figure 4 illustrates the behaviour of the irreversible time independent stress σ୲୧(𝜀) with five 

unloading/reloading cycles: A0A, B0B, C0C, D0D and E0E. This figure describes the 

evolution of the modulus at the right of the inversion point 
  ௗℒమ

ௗఌ
(∆𝜀 = 0), as a function of 

strain 𝜀. This evolution is a monotonic increasing function, which is characterized by relations 

(8) and (9). 

 

 

Figure 4: Illustration of the irreversible time independent stress σ୲୧(𝜀) during the first load 

and during the unloading/reloading processes with the inversion point 𝜀ோ (0.12 to 0.28 by step 

of 0.04 stood for by the points A, B, C, D and E). The parameters of the unloading curve are 

𝛾 = 𝛽 = 0.01 and 𝐴 = 20 and the parameters of the first load are 𝐺 = 50 𝑀𝑃𝑎 and 𝐻 =

200 𝑀𝑃𝑎. A second curve in dashed line is given to show the evolution of modulus 

  ௗℒమ

ௗఌ
(∆𝜀 = 0) as a function of strain. This evolution is also illustrated on the inversion points 

A, B, C, D and E on the curve of σ୲୧(𝜀). 
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Note that the formula 
  ௗℒమ

ௗఌ
(∆𝜀 = 0)  defined by relation (9) tends towards 𝐺 when the strain 

tends towards zero (the value of 𝐺 is indicated on the right axis of Figure 4). This leads to a 

quasi-elastic behaviour with a modulus that equals to 𝐺, to the right of the origin, taking into 

account definition (5) of the first load ℒଵ(𝜀ோ).  

b) Viscous contribution 

The visco-elastic stress σ𝒗(𝜀̇)   is described by a Maxwell-like rheological model with a 

variable viscosity 𝜂(𝜀̇) depending on strain rate 𝜀̇, and appears under the form of a scalar 

differential equation (Dib et al. 28): 

஢𝒗
∘

௄
+

஢𝒗

ఎ(𝜀̇)
= 𝜀̇   (10) 

where, σ𝒗

∘
(𝜀̇) stands for the viscous stress rate and 𝐾 denotes a constant elastic modulus of 

the viscous contribution (in Figure 2). The viscosity evolution 𝜂(𝜀̇) follows a five parameters 

Carreau-Yasuda model. 36 This model puts forward three main regimes: in the case of a weak 

strain rate, a Newtonian plateau where the viscosity is considered as constant and equals to 

𝜂଴, and for higher values of the strain rate, a linear regime that corresponds to a Ostwald and 

De Waele power law. 37 The third regime corresponds to the case where 𝜀̇ tends to the infinite, 

then the viscosity tends to a limit value denoted  𝜂ஶ . The viscosity 𝜂(𝜀̇) can be finally 

expressed by: 

𝜂(ఌ̇)ିఎಮ

ఎబିఎಮ
= {1 + (𝜆. |𝜀̇|)௔}

೙షభ

ೌ    (11) 

where, 𝜂଴ denotes the Newtonian plateau constant viscosity, 𝜂ஶ stands for the viscosity value 

for an infinite strain rate; 𝜆 and 𝑛 are the parameters that define respectively the threshold and 
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the slope of the Ostwald and De Waele power law ; 𝑎 is a parameter that models the transition 

between the constant and the linear parts of the behaviour.  

Therefore, the definition of the viscous part σ𝒗(𝜀̇) of the stress needs six parameters (𝐾, 𝜂଴, 

𝜂ஶ, 𝜆, 𝑛, 𝑎). By taking into account the irreversible time independent behaviour represented 

by σ୲୧(𝜀), the whole model for the global stress σ(𝜀, 𝜀̇) depends on eleven parameters that will 

be identified in the next part. 

IV) Parameter-law identification 

1) Identification of the irreversible time independent contribution during first 
load 

Figure 5 illustrates the identification of the irreversible time independent behaviour during the 

first loading, defined by relations (3) and (5). This figure gives the comparison between 

ℒଵ(𝜀ோ), whose identified parameter values are in Table 1, and the time independent stress 

σ୲୧(𝜀 , ζ = 0) in the previous works of Bles et al. 9 , obtained by fitting multiple experimental 

results of the stress at the ends of relaxation and creep stages for the straps of group A. In the 

paper of Bles et al. 9, σ୲୧(𝜀 , ζ = 0) is defined by relation (16), its evolution is illustrated by 

figure (26) and the values of the parameters for the straps of group A are given in Table 1. 
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Figure 5: Comparison between σ୲୧(𝜀) once the parameters 𝐺 and 𝐻 are identified and the 

time independent stress σ୲୧(𝜀 ; ζ = 0) obtained by fitting multiple experimental results of the 

stress at the ends of relaxation and creep stages for the straps of group A (Bles et al. 9). 

2) Identification of the irreversible time independent contribution during 
loading/unloading sequences 

In order to identify the parameters present in the non-linear elastic contribution  ℒଶ(∆𝜀) 

defined by relation (7), we used the experimental data of stress obtained at the end of creep 

and relaxation periods during cycles. These experimental results were obtained by Bles et al. 9  

during tests A36, A38 and are presented respectively in Figures 29 to 31 of their paper. Figure 

6 gives the comparison of the irreversible time independent contribution identified and the 

experimental results. The values for the identified parameters 𝐴, 𝛽 and 𝛾 involved in (7) and 

(8) appear in Table 1. 
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Figure 6: Diagram showing the stress state at the end of relaxation (A38) and creep (A36) 

tests (circle and square points respectively) and the fitting of the irreversible time-independent 

stress σ୲୧(𝜀 ) once the parameters 𝐴, 𝛽 and 𝛾 are identified (thick line). 

3) Identification of the viscous contribution 

The viscous threshold in monotonous-loading tensile tests at a constant strain rate, 

characterized experimentally by Bles et al. 9 , can be expressed by the following form: 

𝜎௏
ஶ(𝜀, 𝜀̇) = 𝑏ஶ(𝜀). 𝑙𝑜𝑔 ቀ

ఌ̇

ఌ̇బ
+ 1ቁ      and      𝑏ஶ(𝜀) = 𝑏଴. ൤ቀ

ఌ

ఌ್
ቁ

ଷ

+ 1൨          (12) 

Where, 𝜀଴̇ = 10
ି

഑భ
್బ   and 𝜎ଵ = 34.21 𝑀𝑃𝑎 , 𝜀௕ = 20% , 𝑏଴ = 4.6 𝑀𝑃𝑎/𝑑𝑒𝑐𝑎𝑑𝑒 are constants 

for the straps of group A. Relation (12) can be obtained by combining Eq. 7 and 8 of Bles et 

al. 9 This relation shows that the viscous threshold depends both on the strain, through the 

𝑏ஶ(𝜀) term, and on the strain rate. In the modeling framework adopted here, the viscosity 

only depends on the strain rate ((10) and (11)). Therefore, we adopt an approximate 

expression for the viscous threshold, characterized experimentally by neglecting the 
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dependence on strain. For that, the 𝑏ஶ(𝜀) function is approximated by a constant mean value 

denoted  𝑏ஶ, between 𝑏ஶ (0) and 𝑏ஶ (15%), such as: 

𝑏ஶ = 5.6 𝑀𝑃𝑎/𝑑𝑒𝑐𝑎𝑑𝑒               (13) 

Consequently, the expression of the viscosity of the strap, characterized experimentally, is 

written: 

𝜂(𝜀̇) =
ఙೇ

ಮ(ఌ̇)

ఌ̇
=

௕ಮ.௟௢௚ቀ
ഄ̇

ഄ̇బ
ାଵቁ

ఌ̇
         (14) 

In Figure 7, this expression is illustrated by the experimental points placed in the experimental 

zone scanned by the authors between 𝜀̇ = 3.10ିଵ𝑠ିଵ and  𝜀̇ = 10−5𝑠−1𝑠 . Figure 7 also 

illustrates the identification of the Carreau-Yasuda model whose parameter values are given 

in Table 1. 

 

Figure 7. Identification of Carreau-Yasuda model by using the experimental data obtained by 

Bles et al. 9 



20 
 
 

In Bles et al. 9 , the elasticity modulus 𝐸௏(𝜀) of the Maxwell-like viscoelastic model exhibits a 

nonlinear evolution as a function of the strain. This evolution is characterized by Figure 35 of 

the authors. In the context of the present study, a constant value is adopted for this modulus, 

denoted by 𝐾 (Figure 2). This value corresponds to an average located between the beginning 

and the end of the evolution 𝐸௏ in Figure 35 of the authors, such as: 

𝐾 = 3,5 𝐺𝑃𝑎               (15) 

Stress contribution Parameter Value Unit 

σ୲୧(𝜀) 

G 391 MPa 

H 3 GPa 

A 10 - 

β 0,12 - 

𝛾 0,14 - 

𝜎௏(𝜀̇) 

𝜂ஶ 10 MPa/s 

𝜂଴ 107 MPa/s 

𝜆 1,7.107 s 

𝑎 1 - 

𝑛 0,2 - 

𝐾 3,5 GPa 

 

Table 1: Identified parameter values. 

V) Exploitation of the constitutive model 

1) Monotonous and cyclic tensile tests with different strain rates 
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Figure 8a shows the response of the model for the total stress σ(𝜀, 𝜀̇)  in the case of 

monotonous tensile tests with different strain rates 𝜀̇ (from 10-5 s-1 to 10-1 s-1). We obtain a 

behaviour close to the experimental observations in the case of monotonous tensile tests at 

different constant strain rates, for samples of group A performed in the works of Bles et al. 9 

(Figure 8b). 

 

Figure 8: Comparison between model (a) and experiment (b) in the case of monotonous 

tensile tests, for strap samples of group A with different strain rates (from 10-5 s-1 to 10-1 s-1); 

some experimental results (b) were ended by a relaxation sequence AR, at a constant strain. 

Figure 9 shows on the same graph, the total stress σ(𝜀, 𝜀̇)  and the irreversible time 

independent stress σ୲୧(𝜀) given by the model in the case of cyclic tensile tests (0abcdefg) with 

different strain rates 𝜀̇ (from 10-4 s-1 to 10-2 s-1). During these cyclic tests, the absolute value of 

the strain rate remained constant and its sign changed at the reversal of the cycles. At the 

inversion points a, c and e, the stress-strain loops were limited by a given value of strain, and 

at the inversion points b, d and f by a stress value equal to zero. The result shows that the 

model is able to predict the typical bean shape of the stress-strain loops. This particular bean 
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shape is relatively pronounced in Figure 9a, for a relatively low strain rate (𝜀̇ =10-4 s-1). This 

aspect of the behaviour of the model is qualitatively confirmed by all the experimental results 

of Bles et al. 9  and particularly by those of the C35 test on the straps of the group C (Figure 9 

of Bles et al. 9). Let us note that the stress-strain cycles shape is very sensitive to viscosity 

effects and to the shape of σ୲୧. 

 

 

Figure 9: Response of the model for total stress in the case of cyclic tensile tests 0abcdefg 

with different strain rates; (a) 10-4 s-1, (b) 10-3 s-1 and (c) 10-2 s-1. 

2) Mean stress relaxation during repeated cycles 
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During a loading made up of a monotonous loading followed by a series of repeated cycles 

between two fixed strains, the mean stress per cycle decreases with the number of cycles. 

There is a link between this phenomenon and the one of the time evolution of the stress during 

a relaxation stage. Figure 10 illustrates this behaviour. 

 

 
Figure 10: Qualitative comparison model-experiment during repeated cycles between two 

given strains: (a) Not published experimental result on a strap of group C in stress-strain 

diagram and the corresponding loading program in a strain-time diagram; (b) Modelling 

behaviour of a group-A strap, under the same type of loading; the loading program, with a 

duration of 3s, is composed of a monotonous tensile test 0A followed by a sinusoidal loading 

AB at a frequency of  7.6Hz. 

Figure 10 gives a qualitative comparison between an experimental result on a group-C strap 

(Figure 10-a) and a modelling result obtained with the parameters identified in Table 1, for 

the group-A strap (Figure 10-b). The loading program, shown in Figures 10-a and 10-b, 

consists typically of a monotonic tensile test 0A followed by a sinusoidal loading AB at a 

frequency of 7.6Hz. In the stress-strain diagram, the model response shows a crawling closed 

cycle (𝜎ା, 𝜎ି), so that the mean stress per cycle decreases with the number of cycles. This 

phenomenon is confirmed by the experimental result of Figure 10-a. Let us note however, that 
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the program of loading of the experimental result presents a slight drift in strain A’B, during 

the phase of sinusoidal loading. Indeed the amplitude and the frequency of the cycle are 

constant, but the mean value of deformation exhibits a linear drift as a function of time 

between A and B. In the stress-strain diagram of Figure 10-a, we have indeed a closed cycle 

creeping vertically from point A to point A', so that the mean stress per cycle decreases with 

the number of cycles. However, there is also a horizontal sliding of the cycle, from point A' to 

point B, given the drift A'B of the strain in the loading program.  

In order to understand the phenomenon of mean stress relaxation during repeated cycles, let 

us consider the loading OAB in Figure 11, composed of a first load OA and a series of cycles 

AB. Let us split this strain loading into a monotonous loading followed by a relaxation 

(loading OAR in Figure 11) and a symmetric cyclic loading between two fixed opposite 

strains (loading CB in Figure 11) ; so the time evolution of strain is the sum of the one of 

relaxation loading OAR and the one of symmetric cyclic loading CB.  

 

Figure 11: Splitting of strain loading OAB, into a monotonous loading followed by a 

relaxation (loading OAR) and a symmetric cyclic loading (loading CB). 
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The behaviour observed in Figure 10 seems to be linked to the Boltzmann’s superposition 

principle: the stress response to the sum of two strain loading cases, of Figure 11, is then the 

sum of the two stress corresponding responses OAR and CB given on Figure.12-a. Figure 12-

b gives, on one hand, the time evolution of the resulting superimposition of these two 

responses; on the other hand, this figure gives the time evolutions of  and the stresses 

at the inversion points, which result of vertical translation of the temporal evolution of stress 

during the relaxation sequence. As a result, the evolution of mean stress, during cyclic loading 

CB, is merged with the evolution of stress during relaxation. 

For this reason, the mean stress relaxation during repeated cycles is very close to the time 

evolution of the stress during the similar relaxation stage, as Figures 12b illustrates it. 

 

 
Figure 12: Superimposition of two responses to two loading sequences, in order to analyse 

the behaviour observed on Figure 10: (a) stress-strain responses to relaxation loading OAR 

and to symmetric cyclic loading CB, respectively; (b) time evolution of the superimposition 

of the two responses in stress to the two loading sequences OAR and CB; The two extreme 

dotted lines correspond to the temporal evolution AR translated vertically to reveal  and 

 that are the stresses at the inversion points. 
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Figure 13 gives more details about the modelling given by Figure 10b of repeated cycles 

between two given strains. On the stress-strain diagram of Figure 13-a, we superimpose the 

total stress and time independent stress. Figure 13-b gives the evolution of total stress as a 

function of time. The stress-strain cycle exhibits an important mean stress relaxation and 

finally evolves towards a stabilized cycle. When the strain amplitude is low and the strain rate 

is relatively high, the stabilized cycle tends towards an instantaneous elastic behaviour 

characterized by a modulus 𝐾௜௡௦(𝜀) defined such as: 
 

𝐾௜௡௦(𝜀) = 𝐾 +
ௗఙ೟೔

ௗఌ
(𝜀)         (11) 

For weaker frequency values (less than 1 Hz), the cycle presents a quite open hysteresis loop. 

For higher frequencies, loops are rather closed. This can be explained by the fact that for high 

frequencies, the behaviour is mainly characterized by the instantaneous elasticity, whereas for 

lower frequencies, the visco-elastic behaviour is preponderant with a more and more active 

role of the damping.  The mean stress or cycle relaxation observed on Figure 13-a is a viscous 

phenomenon. Indeed, the cycle gradually tends to centre around the σ୲୧ threshold.  

 

Figure 13: Modelling of the behaviour of a strap sample of group A during the repeated 

cycles between two given strains, presented in Figure 10-b and illustrated by Figure 12-b: (a) 
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stress-strain diagram with total stress and time independent stress; (b) total stress as a function 

of time. 

 

Therefore, we can conclude that, in this loading case and to a certain extent, the nylon strap 

behaviour follows the Boltzmann’s superposition principle, even though its visco-elasto-

plastic behaviour is irreversible and nonlinear. This behaviour is well reproduced by the 

proposed model. This property is confirmed by the experimental results shown in Figure 14.  

Figures 14-a gives a not published experimental result, on a strap of group A, which 

corresponds to monotonous loading followed by a series of repeated cycles between two fixed 

strains, at constant strain rates (test A08). Test A07 is a monotonic OA test at constant strain 

rate (𝜀̇ =10-2 s-1), which ends with an AR relaxation. The result of this test is a part of the 

results presented in Figure 8 and it is represented by the evolution as a function of time of the 

OAR stress in Figure 14-b. In this figure, we also give the evolution of stress as a function of 

time OAB of the cyclic test A08. This figure makes it possible to compare qualitatively the 

time evolution of the average stress of the AB cycle with the time evolution of the stress 

during relaxation. Figures 14-c and 14-d give more precise comparisons of stress evolution at 

right and left inversion (test A08) and stress during the relaxation sequence (test A07). 

Figures 14-c and 14-d show that mean stress evolution, during cyclic loading, is very close to 

the evolution of stress during relaxation. This result confirms that, in this loading case, the 

nylon strap behaviour follows the Boltzmann’s superposition principle. 
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Figure 14: Comparison of stress evolution during relaxation AR (test A07) and at inversion 

points (, ) of repeated cycles between two given strains (test A08), at constant strain rate 

(𝜀̇ =10-2 s-1): (a) not published experimental result, on a strap of group A; monotonous 

loading followed by a series of repeated cycles between two fixed strains (test A08); (b) time 

evolution of stress during tests A07 and A08; (c) comparison between the time evolutions of 

stress at right inversion (test A08) and during relaxation (test A07); (d) comparison between 

the time evolutions of stress at left inversion (test A08) and during relaxation (test A07). 
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3) Cyclic tensile tests with creep and relaxation sequences 

Figure 15 gives a model-experiment comparison of test A38. This test corresponds to a cyclic 

tensile loading interrupted by relaxation periods, of one-hour duration, during which the strain 

is constant. Test A38 presents one loading–unloading cycle 0gngs. The absolute value of 

strain rate is maintained constant during the loading and unloading processes, at a value of 

 10ିଷ𝑠ିଵ. During the relaxation periods, the stress may decrease or increase according to the 

location of the relaxation sequence in loading–unloading process. Thus, for example, if we 

consider the relaxation sequence hi during the unloading sequence gn, the stress decreases, 

but on the other hand, during the relaxation sequences jk and lm, the stress increases. This 

result shows that the model forecasts the correct shape of stress-strain hysteresis loop and 

predicts perfectly the direction of stress evolution during relaxation periods, whatever their 

position in the first loading or in loading/unloading process. 

 
Figure 16 gives a model-experiment comparison of test A36. This test corresponds to a cyclic 

tensile loading interrupted by creep periods, of one-hour duration, during which the stress is 

constant. Test A36 presents one loading–unloading cycle 0eleq and finished with a creep 

sequence qr. The absolute value of stress rate is maintained constant during the loading and 

unloading processes, at a value of  32.9 𝑀𝑃𝑎/𝑠. Similarly to the case of relaxation sequences, 

during the creep periods, strain may decrease or increase according to the location of the 

creep sequence in loading–unloading process. Indeed, during creeps fg and hi, for example, 

Figure 16 shows a change in the strain evolution direction. Taking into account the coupling 

between the viscous effects and the time-independent effects, the behaviour during the creep 

sequences is complex and non-intuitive. Indeed, we note that during the creep sequences hi 

and jk, the test sample shortens despite the tensile stress is positive. In the same way, during 

the creep sequence mn, the sample is shortened even though the stress is almost zero. 
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Figure 15: Model-Experiment comparison in cyclic loadings with relaxation sequences: 

𝜀̇ =10-3 s-1 and relaxation sequence with a duration of 1h (Test A38 in Bles et al. 9). 

 

Figure 16: Model-Experiment comparison in cyclic loadings with creep sequences: 𝜎̇ =32,9 

MPa.s-1 and creep sequence with a duration of 1h (Test A36 in Bles et al. 9). 

This result shows that the model forecasts the correct shape of stress-strain hysteresis loop 

and predicts perfectly the direction of the strain evolution during creep periods, whatever their 

position in the first loading or in loading/unloading process.  
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For the same test A36, Figure 17 gives the model – experiment comparison of time evolution 

of strain. This figure allows us to observe the shape of the time evolution of strain during 

creep periods for strap material. Once again, this result shows that the model forecasts the 

correct shape of time evolution of strain during creep periods, with a quite good precision. 

 

Figure 17: Model – experiment comparison; diagram strain versus time (test A36). 

VI) Conclusion 
An original one-dimensional model is proposed to describe the mechanical behaviour of 

woven materials, shaped in uniaxial form. This model is based on the superimposition of two 

stress contributions: a non-Newtonian visco-elastic stress and a time-independent stress. The 

non-Newtonian visco-elastic stress is described by a Maxwell-like rheological model, with a 

constant elastic modulus and a variable viscosity depending on strain rate. To describe the 

visco-elastic behaviour, we adopt the Carreau-Yasuda’s model. The time-independent stress 

stands for a particular irreversible behaviour, linked to the loading history, which presents an 

irreversible non-linear behaviour during first loading and a non-linear elastic behaviour during 

unloading-reloading processes. This model neglects the thickness of the time independent 

hysteresis loops during the unloading-reloading processes while preserving the irreversible 

character of elastoplastic-type behaviour. The proposed model depends on eleven parameters; 
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which can be identified by monotonic tensile tests at different strain rates and cyclic tensile 

tests with relaxation and/or creep sequences. 

The model was validated by comparing its predictions with a set of experimental results, 

carried out on polyamide 6-6 (PA66) woven straps. 

Despite the simplifying assumptions adopted for its definition, the model presents 

relevant modelling results of strap behaviour. Indeed, the model provides a good description 

of the stress as function of the strain rate, in first load as well as in load/unload loops. During 

which, the stress-strain cycles shape is very sensitive to viscosity effects and to the shape of 

σ୲୧(𝜀).  Furthermore, the model is able to predict the typical bean shape of stress-strain loops, 

generally observed in the behaviour of synthetic polymer ropes. In addition, it should be noted 

that the phenomenon of mean stress relaxation during repeated cycles, is well taken into 

account by the model. 

Finally, we note that the model forecasts in a satisfactory manner the shape of stress-strain 

hysteresis loops and predicts perfectly the direction of strain or stress evolution during creep 

or relation periods, whatever their position in the first load or in loading/unloading process.  
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