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Abstract— In recent years, the world of VLSI testing has been 

living a huge transformation pushed by constraints and 

requirements coming from a large variety of sources and 

applications. The traditional need for higher accessibility and 

controllability led to solutions such as IEEE 1687, while the need 

for reuse is pushing for innovations like P1687.1. All the while, 

these same features are raising security concerns for malicious 

attacks or reverse engineering. Standards usual approach of 

relying on Domain-Specific Languages to convey information to 

the EDA tools has difficulty in handling such disparate and often 

conflicting needs, with the risk of a dangerous proliferation of 

custom and incompatible solutions. In this paper, we show how the 

usage of Callbacks, defined in P1687.1, can help solve this issue.   

Keywords— Automated Test Environments, Domain-Specific 

Languages, Callbacks, Reconfigurable Scan Networks, Secure 

Access, Authentication  

     INTRODUCTION 

Today’s System-on-Chips (SoCs) are subject to extremely 

different and often contradictory requirements. On the one 

hand, their usage in critical applications such as automotive 

pushes for functional safety and high reliability, both in terms 

of screening for fabrication defaults and in life-time error 

detection and handling. During the years, several standards for 

Design for Test (DfT) have been developed to help achieve 

high testing quality and ease access to embedded resources, 

the most important and widespread being the derivation of the 

IEEE 1149.1 (JTAG) [1], such as IEEE 1500 [2] and more 

recently IEEE 1687 [3] and P1687.1 [4]. These standards 

propose both common hardware constructs to allow plug-and-

play composition of resources developed by different actors 

and software automation thanks to Domain-Specific 

Languages. On the other hand, SoCs are increasingly carrying 

confidential or sensitive information: DfT can easily become 

an Achilles’ heel for malicious attackers trying to tamper with 

the system. While solutions have been proposed to secure 

parts of the DfT infrastructure, they often require important 

modifications to both the hardware and, more importantly, the 

automation flow: the incorporation of non-standard features 

requires a huge amount of workaround and/or custom software 

patches, considerably slowing down widespread adoption and 

time-to-market.  

The problem of Security, from a Standard’s point of view, is 

its evolution speed: Fault Models depend on physical and 

fabrication characteristics of a given technology. Once they 

have been specified, they will of course be refined by new 

research and characterization, but the basis will remain the 

same and therefore the same standard will be able to treat 

them with minimal modification. For instance, IEEE 1149.1 

[1]  did not change much from its first issue in 1991. On the 

other hand, new Attacks are developed at an alarming speed 

and they purposefully aim the weakest points of a system. 

Updating a Standard is a long and fastidious process and it 

unfeasible to do it for each new threat. It is therefore 

fundamental to provide easy ways of extending it while 

maintaining a stable base, so that custom solutions can be 

added in a timely fashion : ideally, the best one will eventually 

be included in future Revisions. In our previous works, we 

showed how the Automated Test Flow itself can be extended 

thanks to P1687.1 Callbacks [5], and how a dynamic 

challenge/response authentication mechanism can be included 

inside an IEEE 1687 flow [4]. In this paper, we will leverage 

these approaches to propose a fully unified solution that 

allows plug-and-play deployment of integrated Security 

features inside a Standard Automated Test Flow.  

The paper is organized as follows: first we will provide a 

State of the Art of the current solutions, both in terms of 

Security and Automated Flow. Section 2 will introduce our 

approach, which in Section 3 will be applied to the security 

field, most notably by leveraging the Encrypted SIB. Lastly, 

Section 4 will draw conclusions and point out future 

evolutions.  

 

1 STATE OF THE ART 

1.1 Scan Securization methods 

The security of the test infrastructure can be addressed 

according to two main issues: access control and 

confidentiality. In this section, we summarize the latest state 

of the art with respect to these two problems. 

Access control to the test infrastructure aims at allowing 

only authorized users to access the internal state of the scan 

chain. This addresses the major issue of using the test port as a 

backdoor to the system, without resorting to definitive 

techniques such as physically removing the connection (e.g., 

fuse blowing, removing the connector, etc.). Such definitive 

techniques are useless facing some categories of attackers and 

are not acceptable when the test port is also used for in-field 

monitoring or updates. The basic principle of access control is 

that only users with an authentication token (usually, a secret 
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key) can access the scan chain. Such mechanism should have 

minimal impact on the cost and performance of the test 

controller, while at the same time being secure and with 

adjustable granularity. Several different users (or categories of 

users) might require different access privileges to the system. 

The opportunity of changing the secret key discourages 

hardwiring the access condition into the circuit, as in [6]: their 

solution, named Locking SIB, uses a Boolean condition on the 

content of additional scan flip-flops, added to the existing scan 

chain, to open a Segment Insertion Bit (SIB), but it is 

vulnerable to replay attacks as well. This vulnerability is 

addressed in solutions based on challenge-response protocols, 

such as Fine-Grained Access (FGA) [7] or Segment-Set 

Authorization Keys (SSAK) [8]. These solutions exploit a 

secret previously shared and generate a session-dependent 

access key starting from a random value, generated in the 

circuit, and exchanged through the scan chain. 

The above solutions, based on a robust protocol, ensure that 

the internal state of the circuit is accessible only to authorized 

users. In these circumstances, hence, an attacker is not able to 

tamper with the circuit but may still be able to eavesdrop and 

monitor the exchanges over the scan chain. This can be 

addressed by encrypting the scan data transiting over an 

insecure channel, such as the test port. Test vectors are 

encrypted on the server before sending the values to the test 

port, and need to be correctly decrypted in the chip before 

being used. Likely, the test results are encrypted before 

leaving the sensitive region in the chip, and will be decrypted 

off-chip by the tester with the proper key. The choice of the 

most suitable cryptographic primitive depends on the targeted 

tradeoff between security, flexibility, and cost. Block ciphers 

are well-known and robust [9], but their fixed block size is not 

suited to encrypt sequences of varying length, such as 

Reconfigurable Scan Chains (RSNs)RSNs, and padding is 

nonetheless required if the total length does not correspond to 

an integer number of blocks. In this respect, stream ciphers are 

more flexible [10], as they are able to provide an endless 

stream to mask the test vectors, independent of the length or 

structure of the scan network. Stream ciphers produce an 

encrypted output, bit by bit, starting from a secret key and an 

Initialization Vector (IV): while the former is usually chosen 

by the user (or the designer), the latter has to be provided by 

the circuit in order to avoid potential attacks by a malicious 

user. Hardwiring the IV into the circuit is a possibility [11], 

but in this case the stream cipher can be broken by analyzing 

the stream output. The circuit should hence be able to generate 

itself a random IV value, which can be shared to the user by 

extending the Instruction Set of the Test Controller [12]. 

Security is still preserved, as the user can read such value, but 

not able to control it. 

In general, the encryption process has been proposed on the 

full test vector: once inside the SoC, considered as a trusted 

region, the data is decrypted and used, and responses are re-

encrypted before reaching the scan-out port. If several blocks 

(IPs) are in the same scan chain, each of them can intercept 

the decrypted flow. In order to allow testing both secure and 

insecure IPs on the same scan path, cryptographic primitives 

should be placed at the interface of each protected segment: by 

doing so, insecure IPs would not be able to read the protected 

parts of the test vector. A first solution has been proposed in 

[13], where an Encryption SIB (eSIB) extends the Secure SIB 

(SSIB) [7], [8] to include encryption capabilities at negligible 

cost, but with an additional dynamic constraint. The cost is 

very low due to the reuse of authentication circuitry.  In global 

approaches, the generation of the key stream is 

straightforward, as the encryption process is synchronous with 

the test vector; if confidentiality is used at IP-level, then the 

encrypted stream has to be properly aligned at the input and 

the output of the protected instrument. Moreover, the process 

is made even more complex if the structure of the scan chain 

is reconfigurable, which requires the tester to have a dynamic 

model representative of the internal state of the system. The 

approach and tool presented in this paper provide an efficient 

solution to this problem. 

1.2 Automated Test Flow and Domain-Specific Languages 

The term « Automated Test Flow » resumes all the steps that 

allow to generate and execute test operations on a given 

System Under Test. The principle, depicted in Figure 1, is 

pretty simple: a Test Generation Tool (TGT) is given a set of 

files containing information about the Design and its Design-

for-Test (DfT) features, combines them with a set of Targets 

(typically, the Fault Models) and obtains a set of output files: 

these might be both Pattern files and other types of DfT files. 

This process can be iterated several times with different TGTs, 

and the final set of Output files is sent to the Execution 

backend to be applied to the Design Under Test.  

DfT
Information

Output Files

Test 
Generation

Tool(s)

Test Targets

To DUT

Generation Execution

 
Figure 1 Traditional Test Generation Flow 

As an example, this could be a typical sequence:  

1) Input: Synthethised Verilog Netlist 

Targets: ATPG Insertion 

Output: Verilog with Inserted Scan Chains 

2) Input: Verilog with Inserted Scan Chains 

Targets: ATPG Generation 

Output: STIL pattern file 

3) Input: Verilog with Inserted Scan Chains + STIL 

pattern file 

Targets: Scan Compression 

Output: Verilog with Test Compression + 

Compressed STIL pattern file 



 

4) Input: Verilog with Test Compression + Compressed 

STIL pattern file 

Targets: JTAG Wrapping 

Output: BSDL + SVF pattern file 

The exact sequence depends of course on the DfT/Design 

strategies, the EDA Toolchain and the Execution backend, but 

there is a common basis: information exchange through files. 

For this, the Test Flow provides a multitude of Domain-

Specific Languages (DSL), i.e. languages able to provide 

information about a particular step. While each EDA provider 

has his own set of DSLs, the necessity of simplification and 

inter-operability quickly pushed for a development of a 

common set of DSLs. Each standard has at least one: 1149.1 

[1] has BSDL, 1500 CTL[2], 1687 ICL and PDL [2], etc.  

While Hardware Description Languages like Verilog and 

VHDL focus on the hardware itself (“What is the Design”) 

with synthesis in mind, Test DSLs rather focus on describing 

which DfT features described in a given Standard are 

implemented (“What is inside the design?”) and TGT tools 

aim at using them. This is possible because Test Standards 

usually prescribe a set of DfT constructs in their Hardware 

parts, so the DSL does not need to explain their functioning.  

For instance, 1149.1 dictates that a compliant system must 

have a standardized TAP controller connected to one 

Instruction Register (IR) and one or more Test Data Registers 

(TDR), as depicted in Figure 2. It also specifies the expected 

behavior of the System when a set of Instructions is loaded in 

the IR.  

 
Figure 2 Schematic of an 1149.1 System, from [1] 

As a result, the Boundary Scan Description Language 

(BSDL), simply has to enumerate the existing IRs and TDRs 

and their decoding, without needing to detail either their 

connections, or the Finite State Machine implemented inside 

the TAP or the effect of the Instructions, as in the following 

snippet: 

  attribute INSTRUCTION_LENGTH of Top: entity is 4 

  attribute INSTRUCTION_OPCODE of Top: entity is 

"EXTEST(0000),"& 

  "SAMPLE(0001),"& 

  "INTEST(0010),"& 

   "ijtag_en(0001),"& 

  "IDCODE(00100),"& 

  "HIGHZ(1110),"& 

  "CLAMP(1111),"& 

  "PROBE(0000),"& 

  "BYPASS(1111)" 

 

This allows DSL files to be simple to generate and parse, 

effectively streamlining the EDA flow.  

Unfortunately, this comes with a major limitation: true to 

their name, DSLs can only describe what it in their Domain, 

i.e. what is in the original scope of the Standard. This puts a 

serious strain on evolution. To keep on the 1149.1 example, 

BSDL is only able to describe daisy-chain or star topologies, 

so when designers started to devise more creative connections 

they were forced to make custom modifications to both BSDL 

and EDA tools. A famous example is the BSCAN2 Scan 

Linker [15]: it is pretty much a “TAP of TAPs”, that can 

connect up to 8 TAPs to a single JTAG port, and whose 

selection follows the same principles of a normal TAP. 

Regardless of its apparent simplicity, to the authors’ best 

knowledge there is no Standard support yet for this 

component, and each EDA company needs to implement 

custom code to use it. This is because the “intent” of BSCAN2 

is impossible to express not only in BSDL, but in all existing 

DSLs. Even 1687’s Instrument Connection Language (ICL) 

cannot be used, because its application domain is behind a 

TAP, not before.  

Up to now the solution has been to exploit new standards to 

add the desired features in new DSLs, but this cat-and-mouse 

game is reaching its limits because of fast evolution pace of 

DfT solutions. For instance, the upcoming P2654 and P1687.1 

Standard Working groups [4] realized that the variability of 

Test Interfaces at the system level is so huge that it is 

impossible to propose a DSL able to support all possible 

solutions, and are moving toward solutions involving 

Callbacks, whose principles are described in the following 

sub-sections.  

1.3 System Verilog PI: Callbacks for Simulation 

In Computer Science, the problem of supporting evolutions 

in algorithms without a significant impact on source code base 

is a classical and well-known issue. It is in fact one of the 

main strengths of Object-Oriented programming: Templates 

and Software Design Patterns [16] can be used to make the 

source code modular and make it easy to write and add new 

modules. Anyway, the addition of a new element (class) 

requires the recompilation of the whole software.  

The concept of Callback takes the process a step further: a 

placeholder is put into the executable code, and at run-time it 

can be resolved by “calling” a piece of external software, 

which will process the input data and give “back” the result, as 

depicted in Figure 3. It is what is called “load linking”, to 

distinguish it from compilation-time linking. Callbacks are 

pretty straightforward when both the Main and the Library 

have been compiled from the same Programming Language, 

but can become pretty tricky when this is not the case. The 

key for the successful implementation of a Callback scheme is 



 

therefore a clear specification of the input and output data 

formats.  

 
Figure 3 Callback Scheme, from Wikipedia 

A famous example in the EDA world is the System Verilog 

Programming Interface [17], that allows RTL (Register 

Transfer Level) simulators to execute external code for 

testbench purposes. Its simplest expression, the Direct 

Programming Interface (DPI), is composed of two layers: 

- A SystemVerilog (SV) layer, that defines the data types 

and functions calls from the Simulator point of view. 

Functions can either be “imported” (external functions 

executed in the simulator) or “exported” (SV functions 

which can be called from the external code). This takes 

the form of import and export pragmas to be used 

in the SV testbench file.  

- A DPI Foreign Language Layer, that defines the 

Application Programming Interface (API) for a given 

language to specify argument passing and data type 

conversion. This takes the form of a normative 

svdpi.h header that must be provided by all 

simulators 

In the standard, only a C layer is given, with the possibility 

for users to add their own. This is a choice both of simplicity 

to avoid over-cluttering the standard document and efficiency: 

most languages provide interfaces to C, which can be used to 

access the DPI layer. The final setup is depicted in Figure 4: 

the User source code (left-hand side of the picture) is 

compiled and linked against SV DPI libraries (not depicted) to 

obtain an Object Code (in the middle), that is then loaded at 

run-time by the Simulator into the final SV application (right-

hand side of the picture).  

 
Figure 4 Inclusion of object code into a SystemVerilog 

application, from [17] 

The two layers allow easy symbolic referencing, as depicted 

in Figure 5 (based on a code example from [17]): on the right-

hand side, the SystemVerilog layer defines an import and an 

export point thanks to the related pragmas. On the left-hand 

side, the C DPI Layer does the same: the import of the svdpi.h 

layer ensures the usage of compatible types and references.  

SystemVerilog Simulator

export "DPI-C" function

exported_sv_func;

import "DPI-C" function

void f1(input int i1, pair i2,

output logic [63:0] o3);

#include "svdpi.h"

[…]

extern void

exported_sv_func(int, int *); 

void f1(const int i1, const pair 

*i2, svLogicVecVal* o3) 

{

[…]}

SV Testbench

DPI Library

 
Figure 5 Symbolic referencing in SV DPI 

While the DPI object Library final itself is not directly inter-

operable, all EDA Tools provide examples and compilation 

Makefiles and the Standard mandates specific command-line 

options for the SV compilers, making porting between 

simulators trivial.   

Of particular interest in this context is one evolution of the 

PI concept: the Verification Programming Interface (VPI) 

[17]. While applying the DPI principle to allow bidirectional 

communication between the Simulator and the External Code, 

VPI also proposes a series of data constructs and functions 

that allow the user to directly interact with the Simulation 

Model by accessing a common abstraction (the “Model 

Diagram”) and extracting and modifying internal values from 

individual RTL elements. 

1.4 P1687.1 and P2654: Callbacks for test 

The P1687.1 and P2654 Working Groups have both been 

investigating the issue of Access to the Test infrastructure, 

even if from different points of view: as an extension of chip-

level DfT for the former, and as a system-level Test Access 

Management for the latter. Both came to the same 

conclusions: current DSLs are insufficient for the task, and the 

high variability of solutions makes it close to impossible to 

define a “one-solution-fits-all” new language. Even though 

neither standard is yet complete, the general consensus is to 

move to a callback-based solution [4], where each Interface 

implements one or more “Transformations” on the stream of 

data and commands. The WGs are converging over the 

definition of the exchange format for these transformations as 

a derivation of the Relocatable Vector Format introduced in 

[5], but no decision has been made yet on the exact form the 

Callbacks method will look like. 

2 EDA EXTENSIONS THROUGH CALLBACKS 

In this section, we show how by embracing the Callback 

model and applying it extensively to the Test Flow it is 

possible to obtain a complete and flexible support for any 

arbitrary DfT solution. The solution has been implemented 

and validated on the MAST tool [18], which is capable of 

supporting both 1687 and P1687.1.  

The starting point is an extension of the abstraction of the 

System Under Test as a set of configurable resources 

presented in [18] and it is depicted in Figure 6.    
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Figure 6 SUT Functional Abstraction 

In the upper half of Figure 6, the Tool Kernel interacts with 

the System Model, obtained from the DSL files, to perform its 

operation. Traditionally, this interaction is completely Tool-

specific, and it is the reason why any non-standard-compliant 

solution needs custom code modifications. 

This modeling must be seen as the first step towards 

standardization: it is the basis of the DSL that will actually be 

used by P1687.1 tools.  

In this paper, we propose to introduce a Callback Layer, on 

the model of SystemVerilog DPI, allowing users to provide 

custom code (in the bottom half of the Figure) to extend the 

support of the EDA tool to any custom elements. This is done 

in two steps: first, a unified Functional Abstraction Model is 

provided to represent the system, and then a standardized set 

of callbacks is associated with the relevant nodes. This can be 

seen as a novel application of Model Diagram VPI concept to 

the domain of testing.  

2.1 Functional Abstraction Model 

We define a “Functional Abstraction Model” as the Minimal 

Information Set needed by the Tool Kernel to access the SUT, 

configure its topology and generate Operations on the 

interface. For this, we need 5 types of nodes:  

The first two nodes are passive, i.e. they are the target of 

read/write operations but do not modify the state of the 

system. For this reason, they do not have any callback 

associated with them.  

- A REGISTER (in green): it is the base element 

of any topology. It can be, for instance, a 1687 

Scan register connected to an Instrument. It is 

the final destination of all write operations and 

the source of all read operations.  

- A CHAIN (in yellow): it represents a set of 

registers connected in sequence (daisy-chain) 

and that are therefore always accessed together.  

The other nodes are active, i.e., they can directly modify the 

state of the SUT either by changing its topology or by issuing 

operations. They each have a standardized set of callbacks 

associated with them, which will be detailed in the next 

section.  

- A LINKER (in red): it is a hierarchy-enabling 

element, which allows to select one or more of 

its child nodes by changing its configuration. It 

can be, for instance, a 1687 ScanMux.  

-  An INTERFACE (in blue): while the previous 

three nodes are used for retargeting, an Interface 

role is to translate the chain-level vectors into 

one or more operations. It could be, for instance, 

an 1149.1 TAP. In P1687.1 terms, it is often 

called a DPIC (Device Port Interface Controller) 

and its role is to generate a flow of RVF packets 

[5].  

- A TRANSLATOR (in brown): its role is to 

translate operations from one Interface to 

another. An example could be an I2C-to-JTAG 

converter. 

2.2 Standardized Callback Sets 

As introduced earlier, each of the 3 active nodes have a set 

of callbacks associated with them for interaction with the Tool 

Kernel. The set depends on their functionality in the System 

Model 

2.2.1 Linkers: the Path Selector 

A topology-enabling element has the role to modify the 

active path of the circuit depending on its internal status. For 

instance, a 1687 ScanMux will be connected to another 



 

element depending on the value of the register identified by 

the “SelectedBy” statement and the truth table associated with 

it. Our Linker abstraction depicted in Figure 7, is an extension 

of this behavior.  
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Figure 7 Linker Abstract Model 

The Linker commands one ore mode Paths (in this example, 

connected to a Register each), numbered from 1 to n. The 

Control Register is saved as a reference, while instead of using 

a Truth Table like in ICL, we propose a set of 3 standardized 

callbacks, called a “Path Selector”.  

- Select(path i): changes the value of the Control 

Register so that path “i” is selected. When i=0, 

the Linker is considered to be closed, like for a 

SIB;  

- DeSelect(path i): changes the value of the 

Control Register so that path “i” is no longer 

selected. If no path is selected anymore, it is 

equivalent to Select(0);   

-  isActive (path i): returns 1 if path i is already 

selected by Control. It allows the Tool Kernel to 

query the state of the Linker without needing 

internal knowledge of it.  

 

2.2.2 Interfaces: the Access Protocol 

The role of an Interface, or DPIC in P1687.1 terms, is to 

provide an interface between two domains: on one side there 

are one or more retargeting domains, i.e. a series of chains for 

which it is possible to define input and output vectors, and a 

Transaction domain, where operations are performed on the 

Interface itself to deliver the afore-mentioned vectors. The 

most famous example is the 1149.1 TAP, depicted in Figure 8: 

a Retargeter can compute vectors to its right-hand side border, 

which can be applied on the left-hand side by issuing SIR or 

SDR Operation to deliver them either to the Instruction or 

Data branch respectively. Please note that the selection of the 

target Data Register is done inside the retargeting domain 

thanks to the Linker node defined previously: the TAP itself 

has no direct mean of choosing it.  
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Figure 8 Functional Representation of an 1149.1 TAP 

We therefore propose as Model an extension of this 

behavior, depicted in Figure 9: an Interface node can have one 

or more Endpoints, each one connected to a retargeting 

domain. Vectors can be delivered to endpoint ‘i’ by calling the 

related callback with its cardinal number as input parameter.   

Retargeting DomainTransaction Domain
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Enpoint n

Callback(endpoint i)

Reset()

…

InterfaceProtocol

RVF Operations

 
Figure 9 Interface Abstract Model 

A Callback will have as effect to generate one or more 

Operations in the Transaction domain, each one represented 

by a RVF packet [5]. The synchronization of this RVF stream 

with the retargeting domain is left to the Tool. An example of 

this process can be found in [4].  

 

2.2.3 Translators: the Translator Protocol 

In the context of a complete system, being it a board with 

discrete components or an integrated System-on-Chip, it is 

often not possible to directly access the first Interface. This 

can be because of the need to reduce the pin count and 

therefore share the same resources [15] or because the system 

requires a completely different access infrastructure [4]. In 

these cases, the internal Interface is therefore connected with 

one or more adapters that effectively transform the Operations 

issued (i.e., the stream of RVF packets) into a different stream. 

For instance, it could be possible to operate a JTAG interface 

through an I2C adapter. In all cases, the procedure is always 

the same: the RVF operations need to be transformed, either 

by changing their internal data or by altering the stream itself. 

We therefore propose the model of Figure 10 : conceptually, it 

is almost the same as an Interface, with the only important 

difference that the Translator already works on RVF 

operations, and is not on the boundaries of a Retargeting 

domain.  
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Figure 10 Translator Abstract Model 

2.3 Optional Callbacks and Nodes 

Up to now, we only considered vector-related Operations. In 

reality, both Interfaces and Translators will have also other 

types of operations, like Reset or configuration (e.g., setting 

clock frequency). These operations will of course need to be 

part of the two protocols, but at this moment in time no clear 

consensus has been reached in the Working Groups about the 

nature and number of them. Anyway, another advantage of the 

Callback method is that it is extremely easy to add new 

methods that will simply be ignored by older Tools, therefore 

guaranteeing backward compatibility. Similarly, it is possible 

to define generic callback-bearing nodes for special behaviors, 

which will simply be ignored by Tools not supporting them.  

These solutions would be of course non-standard compliant, 

but they would still be supported by a P1687.1 Tool with 

minimal modification. This extensibility capability can be 

extremely useful to adapt the Flow to sudden changes in the 

application environment (e.g., the discovery of a new security 

threat) without waiting for a full Standard Revision, which 

could take years. We will present an example of this usage in 

Section 3.  

2.4 Simplified ICL Tree: Callbacks-based DSL 

As previously stated, the abstraction presented in this 

Section will ultimately be used as the basis of the P1687.1 

DSL, which could be a revision of ICL or a completely new 

language. For experimentation, we developed a “Simplified 

ICL Tree” (SIT) language that is in fact a direct representation 

of this model, and that has already been used for instance in 

[4]. Without going into the details of a language that is in fact 

just a sandbox, we will present and comment some examples 

of its usage in the rest of the paper.  

3 SECURITY EXTENSIONS 

The domain of Security is an ideal candidate for our 

Abstraction: the solutions are often based on complex 

algorithms and precise sequences, which are difficult to 

express in traditional DSL because their “intent” is 

purposefully obfuscated and hidden. For this reason, while 

hardware solutions are relatively widespread, their support by 

the standard EDA flow is almost non-existent, and they all 

rely on either heavy pre- and post-processing steps or custom 

modules inside EDA tools. We will show here how thanks to 

our abstraction it is possible to have a P1687.1-capable tool 

handle a completely custom solution, by using our MAST tool 

[18] as an example platform. All the following examples were 

validated against RTL simulations.  

3.1 Dynamic Authentication through Callbacks 

The problem of Authentication-based access like [7], is that 

the handling of keys is not part of the IEEE 1687 standard, 

and must therefore be added by the user through custom pre 

and/or post-processing of the vectors. The solution proposed 

in [8], and depicted in Figure 11 is radically different: the 

authentication is part of the configuration algorithm itself 

thanks to an “SSAK Protocol” that is added to the Tool 

Kernel.  

RegHI

S2IBSIB

SSAK 
Controller

 
Figure 11: Fully Automated Authentication [8]  

The SSAK protocol is actually divided in two parts: the 

SSAK Controller that is responsible for the challenge/response 

itself, and one or more S2IB muxes associated to critical 

elements (RegHI) , identified by a cardinal number, that can 

be opened only when the authentication has been successful 

[7]. This type of complex inter-dependency is extremely 

difficult, if not close to impossible, to express in traditional 

DSL.  

In our modeling, we followed exactly the SSAK protocol: 

we defined two PathSelectors, one responsible for the 

Controller, and the other for the S2IB. For the Controller, 

Select/Deselect will trigger an Authentication sequence. The 

S2IB PathSelector will query the status of the Controller and 

either trigger a Challenge/Response or directly open the Mux. 

The SIT representation of the system of Figure 11is a direct 

mirror of this scheme, as shown below. 

 
1. SIB SSAK_SIB POST HIGH   

2. (     

3. LINKER SSAK_Controller SSAK SSAK_CONTROL_REG 

1 "0x72c4358f5a8a07af3d0f7d560a872a2b 13"      

4.    (     

5.      REGISTER SSAK_CONTROL_REG 128 )     

6.     )    

7. REGISTER S2IB_1_ctrl 1  

8. LINKER S2IB_1 

    S2IB  SSAK_Controller,S2IB_1_ctrl  1 "1"   

9.   (    

10.    REGISTER regHI 12  
11.   ) 
12. ) 

 

Line 3 defines the “SSAK_Controller” Path Selector, 

notably providing the SSAK key and the maximal number of 

supported S2IBs. Line 8 instantiates a S2IB, providing both the 



 

link to the SSAK_Controller to which it depends on and its 

cardinal position in the secure chain.  

The MAST tool exploits the two identifiers in line 3 and 8 to 

look for the right callbacks following the same principles of 

SystemVerilog DPI introduced in Section 1.3.  

3.2 Scan Encryption Through Callbacks 

The other typical solution to provide security is to encrypt 

the stream of data being exchanged over the TAP. Even 

though conceptually simple, this solution is quite complex to 

implement in terms of software: the coding/encoding 

operation depends on the length of the scan chains and 

therefore requires some important pre and post processing 

steps to correctly adapt the bitstream [19]. In P1687.1 terms, 

on the other hand, the solution is quite simple: a stream cypher 

is in fact a Translator node whose callback modifies the data 

content of each RVF packet. The setup is depicted in Figure 

12, using the Trivium stream cypher.  
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Figure 12 Trivium Stream Cypher 

Its SIT description is straightforward, as in the following 

snippet:  
1. TRANSLATOR top Simulation 

2.  ( 

3.  TRANSLATOR Secure Trivium  

"0F62B5085BAE0154A7FA 288FF65DC42B92F960C7" 

4.  ( 

5.  JTAG_TAP […]  

6.  […] 

7. ) 

The Protocol is identified by the symbol “Trivium” and it is 

initialized by providing the Secret Key and the Initialization 

Vector. The Tool will simply have to call the Transformation 

Callback to provide security: the integration with the standard 

flow is complete.  

3.3 Encryption SIB: custom callbacks  

The Encryption SIB (eSIB), introduced in [13], is probably 

the first attempt to combine Authentication and IP-level 

Encryption. It only requires two more gates with respect to a 

S2IB, as illustrated in Figure 13.  

 
Figure 13 Scheme of an Encryption SIB 

The XOR gates are controlled by the encryption stream 

provided by the Trivium coprocessor (or another encryption 

processor) used for the global securisation scheme. The 

overhead is therefore negligible, but in case of malicious IP 

inserted in the circuit, the flow of data is protected as 

illustrated in Figure 14. 

A Challenge/Response protocol, as introduced in Section 

3.1, is used to initialize the Encryption module positioned 

behind the S2IB. As previously explained, this local 

encryption requires a dynamic adaptation of the authorization 

streams, for each IP, depending on the scan chain 

configuration and the user rights. Since the chain 

configuration can be changed at any time for e.g., better 

coverage of a given IP, it is not possible to define a standard 

access configuration for each IP, while scan chain lengths are 

modified. 

 

 
Figure 14 Impact of eSIBs in a global SoC 

From the software point of view, there are two challenges:  

- The handling of the Trivium Streamer, which 

needs to receive the SSAK Challenge as the 

Initialization Value, and which needs to be used 

by all the eSIBs as the source of the 

encryption/Decryption KeyStream; 

- The phase alignment of the streamer flow, in the 

middle of the chain.  

The second point is of particular importance: traditionally, 

streamers are put at the root of the Scan Chain as in Figure 12. 

In this position, they are perfectly symmetrical: all bits going 

into the SUT will be decrypted once with the corresponding 

keystream bit passing through the TDI port of the streamer, 

and all bits coming from the SUT will be encrypted once 

before exiting the TDO port. This is not true anymore when 

the streamer acts in the middle of the chain: the symmetry is 

broken, and each bit will be treated differently depending on 

its position relative to the streaming module.  Figure 15 

provides a graphical representation of the analytical equations 

given in [13]. In relation to Figure 15-a), the “Protected” bits 

are treated as usual: data coming “fromSUT” and going 

“toSUT” is encrypted/decrypted when passing through the 

XOR gates at the input/output if the Streamer ‘(in this case, 

the eSIB). The only notable difference is the synchronization 

with respect to the Keystream, which is generated for the 

whole scan chain and not only for the Protected Segment, 

which will need only a subset of it. In the “fromSUT” 



 

direction, data is scanned out just after the Capture stage, so 

the Mask starts at the first bit of Keystream. On the other 

hand, in the “toSUT” direction, the bits positioned After the 

Protected section will be scanned first, and the Mask will start 

after them. This is depicted in Figure 15-b) and Figure 15-c) 

respectively, with the Keystream depicted as the grey “XOR-

MASK”, and the Mask as the purple XOR-MASK-PRO.  

Figure 15-b) and Figure 15-c) also allow for an easy 

understanding of the impact of the asymmetric positon of the 

Streamer. In the “fromSUT” direction, data positioned “After” 

the streamer is of course not impacted by it, but the data 

positioned “Before” the streamer will actually have to pass 

through both XORs of the streamer, being effectively 

encrypted but at different stages of the Keystream. This is 

expressed in Figure 15-b) by the MASK_IN_BEFORE and 

MASK_OUT_BEFORE which depict the segments of the 

Keystream that need to be used to decrypt the data once 

received. The same principle is applied in the “toSUT” 

direction, as depicted in Figure 15-c).   
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Figure 15 Asymmetric Masking for an Encryption SIB  

This masking can therefore be resolved by knowing the 

length of the scan the length of the three Before, Protected and 

After sections. This behavior is outside of the scopes of both 

1687 and P1687.1: even though the topology itself is quite 

simple, it is not directly describable in ICL. On the other hand, 

the Callback approach of Section 2 can be extended by 

defining two new modules:  

- An Optional Callback “get_challenge()” inside 

the SSAK Controller, that returns the Challenge 

Value 

- A “Streamer” node, similar to a P1687.1 

Translator node put in the middle of the scan 

chain, but with different Callbacks 

The Optional Callback does not need any particular 

modification: as explained previously and in reference to the 

solution of Section 3.1, it can be simply added to the 

PathSelector Callback wrapper for the SSAK Linker: it will be 

ignored by Tools not supporting this feature.  

As for the Streamer, it just needs four Callbacks: 

- CurrentMask(), NewMask(MaskBits) and 

ApplyMask(PlainText, Mask), which can be used 

by the Tool to implement the masking following 

the equation of [13] and Figure 12 

- ResetProtocol(InitializationVector), that the 

Tool can use to synchronize its own Cypher with 

the one inside the SUT.  

The last step is the position of the Encrypted SIB inside the 

scan chain. This is easily achieved by instantiating the 

Streamer node in SIT: 
1. REGISTER Before 

2. SIB SSAK_SIB POST HIGH   

3. (     

4. LINKER SSAK_Controller SSAK SSAK_CONTROL_REG 

1 "0x72c4358f5a8a07af3d0f7d560a872a2b 13"      

5.    (     

6.      REGISTER SSAK_CONTROL_REG 128 )     

7.     )    

8. REGISTER S2IB_1_ctrl 1  

9. LINKER S2IB_1 

    S2IB  SSAK_Controller,S2IB_1_ctrl  1 "1"   

10.   (    
11.    STREAMER Online Trivium  SSAK_Controller 

"0F62B5085BAE0154A7FA"  

12.      REGISTER Protected  
13.   ) 
14.  ) 
15. REGISTER After 

 

The “Streamer”, as well as the “Encrypted SIB” are not 

standard features, so a purely P1687.1 Tool won’t of course be 

able to support it, but thanks to the Callback abstraction it can 

be added with limited effort while preserving complete 

compatibility with standard features, something that is not 

possible with legacy approaches as in [19].  

4 CONCLUSIONS  

In this paper, we proposed a complete Abstraction Model for 

DfT based on the Callback paradigm, leveraging the 

successful experience of EDA solutions such as System 

Verilog. We then demonstrated its flexibility by applying it to 

the problem of Scan Security, providing a fully standardized 

and coherent flow where legacy solutions relied mostly on ad-

hoc workarounds.  
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