
HAL Id: hal-03629319
https://hal.science/hal-03629319v1

Submitted on 4 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Security EDA Extension through P1687.1 and 1687
Callbacks

Michele Portolan, V. Reynaud, Paolo Maistri, Régis Leveugle, Giorgio Di
Natale

To cite this version:
Michele Portolan, V. Reynaud, Paolo Maistri, Régis Leveugle, Giorgio Di Natale. Security EDA
Extension through P1687.1 and 1687 Callbacks. IEEE International Test Conference (ITC 2021), Oct
2021, Anaheim (CA), United States. pp.344-353, �10.1109/ITC50571.2021.00050�. �hal-03629319�

https://hal.science/hal-03629319v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

1Institute of Engineering Univ. Grenoble Alpes

Security EDA Extension

through P1687.1 and 1687 Callbacks
Michele Portolan, Vincent Reynaud, Paolo Maistri, Regis Leveugle, Giorgio Di Natale

Univ Grenoble Alpes, CNRS, Grenoble INP1, TIMA, 38000 Grenoble, France

{name.surname}@univ-grenoble-alpes.fr

Abstract— In recent years, the world of VLSI testing has been

living a huge transformation pushed by constraints and

requirements coming from a large variety of sources and

applications. The traditional need for higher accessibility and

controllability led to solutions such as IEEE 1687, while the need

for reuse is pushing for innovations like P1687.1. All the while,

these same features are raising security concerns for malicious

attacks or reverse engineering. Standards usual approach of

relying on Domain-Specific Languages to convey information to

the EDA tools has difficulty in handling such disparate and often

conflicting needs, with the risk of a dangerous proliferation of

custom and incompatible solutions. In this paper, we show how the

usage of Callbacks, defined in P1687.1, can help solve this issue.

Keywords— Automated Test Environments, Domain-Specific

Languages, Callbacks, Reconfigurable Scan Networks, Secure

Access, Authentication

 INTRODUCTION

Today’s System-on-Chips (SoCs) are subject to extremely

different and often contradictory requirements. On the one

hand, their usage in critical applications such as automotive

pushes for functional safety and high reliability, both in terms

of screening for fabrication defaults and in life-time error

detection and handling. During the years, several standards for

Design for Test (DfT) have been developed to help achieve

high testing quality and ease access to embedded resources,

the most important and widespread being the derivation of the

IEEE 1149.1 (JTAG) [1], such as IEEE 1500 [2] and more

recently IEEE 1687 [3] and P1687.1 [4]. These standards

propose both common hardware constructs to allow plug-and-

play composition of resources developed by different actors

and software automation thanks to Domain-Specific

Languages. On the other hand, SoCs are increasingly carrying

confidential or sensitive information: DfT can easily become

an Achilles’ heel for malicious attackers trying to tamper with

the system. While solutions have been proposed to secure

parts of the DfT infrastructure, they often require important

modifications to both the hardware and, more importantly, the

automation flow: the incorporation of non-standard features

requires a huge amount of workaround and/or custom software

patches, considerably slowing down widespread adoption and

time-to-market.

The problem of Security, from a Standard’s point of view, is

its evolution speed: Fault Models depend on physical and

fabrication characteristics of a given technology. Once they

have been specified, they will of course be refined by new

research and characterization, but the basis will remain the

same and therefore the same standard will be able to treat

them with minimal modification. For instance, IEEE 1149.1

[1] did not change much from its first issue in 1991. On the

other hand, new Attacks are developed at an alarming speed

and they purposefully aim the weakest points of a system.

Updating a Standard is a long and fastidious process and it

unfeasible to do it for each new threat. It is therefore

fundamental to provide easy ways of extending it while

maintaining a stable base, so that custom solutions can be

added in a timely fashion : ideally, the best one will eventually

be included in future Revisions. In our previous works, we

showed how the Automated Test Flow itself can be extended

thanks to P1687.1 Callbacks [5], and how a dynamic

challenge/response authentication mechanism can be included

inside an IEEE 1687 flow [4]. In this paper, we will leverage

these approaches to propose a fully unified solution that

allows plug-and-play deployment of integrated Security

features inside a Standard Automated Test Flow.

The paper is organized as follows: first we will provide a

State of the Art of the current solutions, both in terms of

Security and Automated Flow. Section 2 will introduce our

approach, which in Section 3 will be applied to the security

field, most notably by leveraging the Encrypted SIB. Lastly,

Section 4 will draw conclusions and point out future

evolutions.

1 STATE OF THE ART

1.1 Scan Securization methods

The security of the test infrastructure can be addressed

according to two main issues: access control and

confidentiality. In this section, we summarize the latest state

of the art with respect to these two problems.

Access control to the test infrastructure aims at allowing

only authorized users to access the internal state of the scan

chain. This addresses the major issue of using the test port as a

backdoor to the system, without resorting to definitive

techniques such as physically removing the connection (e.g.,

fuse blowing, removing the connector, etc.). Such definitive

techniques are useless facing some categories of attackers and

are not acceptable when the test port is also used for in-field

monitoring or updates. The basic principle of access control is

that only users with an authentication token (usually, a secret

mailto:%7Bname.surname%7D@univ-grenoble-alpes.fr

key) can access the scan chain. Such mechanism should have

minimal impact on the cost and performance of the test

controller, while at the same time being secure and with

adjustable granularity. Several different users (or categories of

users) might require different access privileges to the system.

The opportunity of changing the secret key discourages

hardwiring the access condition into the circuit, as in [6]: their

solution, named Locking SIB, uses a Boolean condition on the

content of additional scan flip-flops, added to the existing scan

chain, to open a Segment Insertion Bit (SIB), but it is

vulnerable to replay attacks as well. This vulnerability is

addressed in solutions based on challenge-response protocols,

such as Fine-Grained Access (FGA) [7] or Segment-Set

Authorization Keys (SSAK) [8]. These solutions exploit a

secret previously shared and generate a session-dependent

access key starting from a random value, generated in the

circuit, and exchanged through the scan chain.

The above solutions, based on a robust protocol, ensure that

the internal state of the circuit is accessible only to authorized

users. In these circumstances, hence, an attacker is not able to

tamper with the circuit but may still be able to eavesdrop and

monitor the exchanges over the scan chain. This can be

addressed by encrypting the scan data transiting over an

insecure channel, such as the test port. Test vectors are

encrypted on the server before sending the values to the test

port, and need to be correctly decrypted in the chip before

being used. Likely, the test results are encrypted before

leaving the sensitive region in the chip, and will be decrypted

off-chip by the tester with the proper key. The choice of the

most suitable cryptographic primitive depends on the targeted

tradeoff between security, flexibility, and cost. Block ciphers

are well-known and robust [9], but their fixed block size is not

suited to encrypt sequences of varying length, such as

Reconfigurable Scan Chains (RSNs)RSNs, and padding is

nonetheless required if the total length does not correspond to

an integer number of blocks. In this respect, stream ciphers are

more flexible [10], as they are able to provide an endless

stream to mask the test vectors, independent of the length or

structure of the scan network. Stream ciphers produce an

encrypted output, bit by bit, starting from a secret key and an

Initialization Vector (IV): while the former is usually chosen

by the user (or the designer), the latter has to be provided by

the circuit in order to avoid potential attacks by a malicious

user. Hardwiring the IV into the circuit is a possibility [11],

but in this case the stream cipher can be broken by analyzing

the stream output. The circuit should hence be able to generate

itself a random IV value, which can be shared to the user by

extending the Instruction Set of the Test Controller [12].

Security is still preserved, as the user can read such value, but

not able to control it.

In general, the encryption process has been proposed on the

full test vector: once inside the SoC, considered as a trusted

region, the data is decrypted and used, and responses are re-

encrypted before reaching the scan-out port. If several blocks

(IPs) are in the same scan chain, each of them can intercept

the decrypted flow. In order to allow testing both secure and

insecure IPs on the same scan path, cryptographic primitives

should be placed at the interface of each protected segment: by

doing so, insecure IPs would not be able to read the protected

parts of the test vector. A first solution has been proposed in

[13], where an Encryption SIB (eSIB) extends the Secure SIB

(SSIB) [7], [8] to include encryption capabilities at negligible

cost, but with an additional dynamic constraint. The cost is

very low due to the reuse of authentication circuitry. In global

approaches, the generation of the key stream is

straightforward, as the encryption process is synchronous with

the test vector; if confidentiality is used at IP-level, then the

encrypted stream has to be properly aligned at the input and

the output of the protected instrument. Moreover, the process

is made even more complex if the structure of the scan chain

is reconfigurable, which requires the tester to have a dynamic

model representative of the internal state of the system. The

approach and tool presented in this paper provide an efficient

solution to this problem.

1.2 Automated Test Flow and Domain-Specific Languages

The term « Automated Test Flow » resumes all the steps that

allow to generate and execute test operations on a given

System Under Test. The principle, depicted in Figure 1, is

pretty simple: a Test Generation Tool (TGT) is given a set of

files containing information about the Design and its Design-

for-Test (DfT) features, combines them with a set of Targets

(typically, the Fault Models) and obtains a set of output files:

these might be both Pattern files and other types of DfT files.

This process can be iterated several times with different TGTs,

and the final set of Output files is sent to the Execution

backend to be applied to the Design Under Test.

DfT
Information

Output Files

Test
Generation

Tool(s)

Test Targets

To DUT

Generation Execution

Figure 1 Traditional Test Generation Flow

As an example, this could be a typical sequence:

1) Input: Synthethised Verilog Netlist

Targets: ATPG Insertion

Output: Verilog with Inserted Scan Chains

2) Input: Verilog with Inserted Scan Chains

Targets: ATPG Generation

Output: STIL pattern file

3) Input: Verilog with Inserted Scan Chains + STIL

pattern file

Targets: Scan Compression

Output: Verilog with Test Compression +

Compressed STIL pattern file

4) Input: Verilog with Test Compression + Compressed

STIL pattern file

Targets: JTAG Wrapping

Output: BSDL + SVF pattern file

The exact sequence depends of course on the DfT/Design

strategies, the EDA Toolchain and the Execution backend, but

there is a common basis: information exchange through files.

For this, the Test Flow provides a multitude of Domain-

Specific Languages (DSL), i.e. languages able to provide

information about a particular step. While each EDA provider

has his own set of DSLs, the necessity of simplification and

inter-operability quickly pushed for a development of a

common set of DSLs. Each standard has at least one: 1149.1

[1] has BSDL, 1500 CTL[2], 1687 ICL and PDL [2], etc.

While Hardware Description Languages like Verilog and

VHDL focus on the hardware itself (“What is the Design”)

with synthesis in mind, Test DSLs rather focus on describing

which DfT features described in a given Standard are

implemented (“What is inside the design?”) and TGT tools

aim at using them. This is possible because Test Standards

usually prescribe a set of DfT constructs in their Hardware

parts, so the DSL does not need to explain their functioning.

For instance, 1149.1 dictates that a compliant system must

have a standardized TAP controller connected to one

Instruction Register (IR) and one or more Test Data Registers

(TDR), as depicted in Figure 2. It also specifies the expected

behavior of the System when a set of Instructions is loaded in

the IR.

Figure 2 Schematic of an 1149.1 System, from [1]

As a result, the Boundary Scan Description Language

(BSDL), simply has to enumerate the existing IRs and TDRs

and their decoding, without needing to detail either their

connections, or the Finite State Machine implemented inside

the TAP or the effect of the Instructions, as in the following

snippet:

 attribute INSTRUCTION_LENGTH of Top: entity is 4

 attribute INSTRUCTION_OPCODE of Top: entity is

"EXTEST(0000),"&

 "SAMPLE(0001),"&

 "INTEST(0010),"&

 "ijtag_en(0001),"&

 "IDCODE(00100),"&

 "HIGHZ(1110),"&

 "CLAMP(1111),"&

 "PROBE(0000),"&

 "BYPASS(1111)"

This allows DSL files to be simple to generate and parse,

effectively streamlining the EDA flow.

Unfortunately, this comes with a major limitation: true to

their name, DSLs can only describe what it in their Domain,

i.e. what is in the original scope of the Standard. This puts a

serious strain on evolution. To keep on the 1149.1 example,

BSDL is only able to describe daisy-chain or star topologies,

so when designers started to devise more creative connections

they were forced to make custom modifications to both BSDL

and EDA tools. A famous example is the BSCAN2 Scan

Linker [15]: it is pretty much a “TAP of TAPs”, that can

connect up to 8 TAPs to a single JTAG port, and whose

selection follows the same principles of a normal TAP.

Regardless of its apparent simplicity, to the authors’ best

knowledge there is no Standard support yet for this

component, and each EDA company needs to implement

custom code to use it. This is because the “intent” of BSCAN2

is impossible to express not only in BSDL, but in all existing

DSLs. Even 1687’s Instrument Connection Language (ICL)

cannot be used, because its application domain is behind a

TAP, not before.

Up to now the solution has been to exploit new standards to

add the desired features in new DSLs, but this cat-and-mouse

game is reaching its limits because of fast evolution pace of

DfT solutions. For instance, the upcoming P2654 and P1687.1

Standard Working groups [4] realized that the variability of

Test Interfaces at the system level is so huge that it is

impossible to propose a DSL able to support all possible

solutions, and are moving toward solutions involving

Callbacks, whose principles are described in the following

sub-sections.

1.3 System Verilog PI: Callbacks for Simulation

In Computer Science, the problem of supporting evolutions

in algorithms without a significant impact on source code base

is a classical and well-known issue. It is in fact one of the

main strengths of Object-Oriented programming: Templates

and Software Design Patterns [16] can be used to make the

source code modular and make it easy to write and add new

modules. Anyway, the addition of a new element (class)

requires the recompilation of the whole software.

The concept of Callback takes the process a step further: a

placeholder is put into the executable code, and at run-time it

can be resolved by “calling” a piece of external software,

which will process the input data and give “back” the result, as

depicted in Figure 3. It is what is called “load linking”, to

distinguish it from compilation-time linking. Callbacks are

pretty straightforward when both the Main and the Library

have been compiled from the same Programming Language,

but can become pretty tricky when this is not the case. The

key for the successful implementation of a Callback scheme is

therefore a clear specification of the input and output data

formats.

Figure 3 Callback Scheme, from Wikipedia

A famous example in the EDA world is the System Verilog

Programming Interface [17], that allows RTL (Register

Transfer Level) simulators to execute external code for

testbench purposes. Its simplest expression, the Direct

Programming Interface (DPI), is composed of two layers:

- A SystemVerilog (SV) layer, that defines the data types

and functions calls from the Simulator point of view.

Functions can either be “imported” (external functions

executed in the simulator) or “exported” (SV functions

which can be called from the external code). This takes

the form of import and export pragmas to be used

in the SV testbench file.

- A DPI Foreign Language Layer, that defines the

Application Programming Interface (API) for a given

language to specify argument passing and data type

conversion. This takes the form of a normative

svdpi.h header that must be provided by all

simulators

In the standard, only a C layer is given, with the possibility

for users to add their own. This is a choice both of simplicity

to avoid over-cluttering the standard document and efficiency:

most languages provide interfaces to C, which can be used to

access the DPI layer. The final setup is depicted in Figure 4:

the User source code (left-hand side of the picture) is

compiled and linked against SV DPI libraries (not depicted) to

obtain an Object Code (in the middle), that is then loaded at

run-time by the Simulator into the final SV application (right-

hand side of the picture).

Figure 4 Inclusion of object code into a SystemVerilog

application, from [17]

The two layers allow easy symbolic referencing, as depicted

in Figure 5 (based on a code example from [17]): on the right-

hand side, the SystemVerilog layer defines an import and an

export point thanks to the related pragmas. On the left-hand

side, the C DPI Layer does the same: the import of the svdpi.h

layer ensures the usage of compatible types and references.

SystemVerilog Simulator

export "DPI-C" function

exported_sv_func;

import "DPI-C" function

void f1(input int i1, pair i2,

output logic [63:0] o3);

#include "svdpi.h"

[…]

extern void

exported_sv_func(int, int *);

void f1(const int i1, const pair

i2, svLogicVecVal o3)

{

[…]}

SV Testbench

DPI Library

Figure 5 Symbolic referencing in SV DPI

While the DPI object Library final itself is not directly inter-

operable, all EDA Tools provide examples and compilation

Makefiles and the Standard mandates specific command-line

options for the SV compilers, making porting between

simulators trivial.

Of particular interest in this context is one evolution of the

PI concept: the Verification Programming Interface (VPI)

[17]. While applying the DPI principle to allow bidirectional

communication between the Simulator and the External Code,

VPI also proposes a series of data constructs and functions

that allow the user to directly interact with the Simulation

Model by accessing a common abstraction (the “Model

Diagram”) and extracting and modifying internal values from

individual RTL elements.

1.4 P1687.1 and P2654: Callbacks for test

The P1687.1 and P2654 Working Groups have both been

investigating the issue of Access to the Test infrastructure,

even if from different points of view: as an extension of chip-

level DfT for the former, and as a system-level Test Access

Management for the latter. Both came to the same

conclusions: current DSLs are insufficient for the task, and the

high variability of solutions makes it close to impossible to

define a “one-solution-fits-all” new language. Even though

neither standard is yet complete, the general consensus is to

move to a callback-based solution [4], where each Interface

implements one or more “Transformations” on the stream of

data and commands. The WGs are converging over the

definition of the exchange format for these transformations as

a derivation of the Relocatable Vector Format introduced in

[5], but no decision has been made yet on the exact form the

Callbacks method will look like.

2 EDA EXTENSIONS THROUGH CALLBACKS

In this section, we show how by embracing the Callback

model and applying it extensively to the Test Flow it is

possible to obtain a complete and flexible support for any

arbitrary DfT solution. The solution has been implemented

and validated on the MAST tool [18], which is capable of

supporting both 1687 and P1687.1.

The starting point is an extension of the abstraction of the

System Under Test as a set of configurable resources

presented in [18] and it is depicted in Figure 6.

Register

Register

Li
n

ke
r

A

Li
n

ke
r

Register

Register

Li
n

ke
r

Register

Register

In
te

rf
ac

e

Tr
an

sl
at

o
r

C
h

ai
n

Register

System Model

EDA TOOL

Interface Linker Linker LinkerInterfaceTranslator

Tool Kernel

Callback Layer

Figure 6 SUT Functional Abstraction

In the upper half of Figure 6, the Tool Kernel interacts with

the System Model, obtained from the DSL files, to perform its

operation. Traditionally, this interaction is completely Tool-

specific, and it is the reason why any non-standard-compliant

solution needs custom code modifications.

This modeling must be seen as the first step towards

standardization: it is the basis of the DSL that will actually be

used by P1687.1 tools.

In this paper, we propose to introduce a Callback Layer, on

the model of SystemVerilog DPI, allowing users to provide

custom code (in the bottom half of the Figure) to extend the

support of the EDA tool to any custom elements. This is done

in two steps: first, a unified Functional Abstraction Model is

provided to represent the system, and then a standardized set

of callbacks is associated with the relevant nodes. This can be

seen as a novel application of Model Diagram VPI concept to

the domain of testing.

2.1 Functional Abstraction Model

We define a “Functional Abstraction Model” as the Minimal

Information Set needed by the Tool Kernel to access the SUT,

configure its topology and generate Operations on the

interface. For this, we need 5 types of nodes:

The first two nodes are passive, i.e. they are the target of

read/write operations but do not modify the state of the

system. For this reason, they do not have any callback

associated with them.

- A REGISTER (in green): it is the base element

of any topology. It can be, for instance, a 1687

Scan register connected to an Instrument. It is

the final destination of all write operations and

the source of all read operations.

- A CHAIN (in yellow): it represents a set of

registers connected in sequence (daisy-chain)

and that are therefore always accessed together.

The other nodes are active, i.e., they can directly modify the

state of the SUT either by changing its topology or by issuing

operations. They each have a standardized set of callbacks

associated with them, which will be detailed in the next

section.

- A LINKER (in red): it is a hierarchy-enabling

element, which allows to select one or more of

its child nodes by changing its configuration. It

can be, for instance, a 1687 ScanMux.

- An INTERFACE (in blue): while the previous

three nodes are used for retargeting, an Interface

role is to translate the chain-level vectors into

one or more operations. It could be, for instance,

an 1149.1 TAP. In P1687.1 terms, it is often

called a DPIC (Device Port Interface Controller)

and its role is to generate a flow of RVF packets

[5].

- A TRANSLATOR (in brown): its role is to

translate operations from one Interface to

another. An example could be an I2C-to-JTAG

converter.

2.2 Standardized Callback Sets

As introduced earlier, each of the 3 active nodes have a set

of callbacks associated with them for interaction with the Tool

Kernel. The set depends on their functionality in the System

Model

2.2.1 Linkers: the Path Selector

A topology-enabling element has the role to modify the

active path of the circuit depending on its internal status. For

instance, a 1687 ScanMux will be connected to another

element depending on the value of the register identified by

the “SelectedBy” statement and the truth table associated with

it. Our Linker abstraction depicted in Figure 7, is an extension

of this behavior.

Li
n

ke
r Register

Register

Path 1

Path n

Select(path i)

DeSelect(path i)

isActive(path i)

PathSelector

Register

Control

Figure 7 Linker Abstract Model

The Linker commands one ore mode Paths (in this example,

connected to a Register each), numbered from 1 to n. The

Control Register is saved as a reference, while instead of using

a Truth Table like in ICL, we propose a set of 3 standardized

callbacks, called a “Path Selector”.

- Select(path i): changes the value of the Control

Register so that path “i” is selected. When i=0,

the Linker is considered to be closed, like for a

SIB;

- DeSelect(path i): changes the value of the

Control Register so that path “i” is no longer

selected. If no path is selected anymore, it is

equivalent to Select(0);

- isActive (path i): returns 1 if path i is already

selected by Control. It allows the Tool Kernel to

query the state of the Linker without needing

internal knowledge of it.

2.2.2 Interfaces: the Access Protocol

The role of an Interface, or DPIC in P1687.1 terms, is to

provide an interface between two domains: on one side there

are one or more retargeting domains, i.e. a series of chains for

which it is possible to define input and output vectors, and a

Transaction domain, where operations are performed on the

Interface itself to deliver the afore-mentioned vectors. The

most famous example is the 1149.1 TAP, depicted in Figure 8:

a Retargeter can compute vectors to its right-hand side border,

which can be applied on the left-hand side by issuing SIR or

SDR Operation to deliver them either to the Instruction or

Data branch respectively. Please note that the selection of the

target Data Register is done inside the retargeting domain

thanks to the Linker node defined previously: the TAP itself

has no direct mean of choosing it.

1
1

4
9

.1
 T

A
P

Instruction Register

Data Register

Data Register

Retargeting DomainTransaction Domain

IR Vectors

DR Vectors

SIR/SDR
Operations

Li
n

ke
r

Figure 8 Functional Representation of an 1149.1 TAP

We therefore propose as Model an extension of this

behavior, depicted in Figure 9: an Interface node can have one

or more Endpoints, each one connected to a retargeting

domain. Vectors can be delivered to endpoint ‘i’ by calling the

related callback with its cardinal number as input parameter.

Retargeting DomainTransaction Domain

In
te

rf
ac

e

Endpoint 1

Enpoint n

Callback(endpoint i)

Reset()

…

InterfaceProtocol

RVF Operations

Figure 9 Interface Abstract Model

A Callback will have as effect to generate one or more

Operations in the Transaction domain, each one represented

by a RVF packet [5]. The synchronization of this RVF stream

with the retargeting domain is left to the Tool. An example of

this process can be found in [4].

2.2.3 Translators: the Translator Protocol

In the context of a complete system, being it a board with

discrete components or an integrated System-on-Chip, it is

often not possible to directly access the first Interface. This

can be because of the need to reduce the pin count and

therefore share the same resources [15] or because the system

requires a completely different access infrastructure [4]. In

these cases, the internal Interface is therefore connected with

one or more adapters that effectively transform the Operations

issued (i.e., the stream of RVF packets) into a different stream.

For instance, it could be possible to operate a JTAG interface

through an I2C adapter. In all cases, the procedure is always

the same: the RVF operations need to be transformed, either

by changing their internal data or by altering the stream itself.

We therefore propose the model of Figure 10 : conceptually, it

is almost the same as an Interface, with the only important

difference that the Translator already works on RVF

operations, and is not on the boundaries of a Retargeting

domain.

Endpoint 1

Enpoint n

Callback(endpoint i)

Reset()

…

Translator Protocol

RVF Operations
Tr

an
sl

at
o

r
RVF Operations

Figure 10 Translator Abstract Model

2.3 Optional Callbacks and Nodes

Up to now, we only considered vector-related Operations. In

reality, both Interfaces and Translators will have also other

types of operations, like Reset or configuration (e.g., setting

clock frequency). These operations will of course need to be

part of the two protocols, but at this moment in time no clear

consensus has been reached in the Working Groups about the

nature and number of them. Anyway, another advantage of the

Callback method is that it is extremely easy to add new

methods that will simply be ignored by older Tools, therefore

guaranteeing backward compatibility. Similarly, it is possible

to define generic callback-bearing nodes for special behaviors,

which will simply be ignored by Tools not supporting them.

These solutions would be of course non-standard compliant,

but they would still be supported by a P1687.1 Tool with

minimal modification. This extensibility capability can be

extremely useful to adapt the Flow to sudden changes in the

application environment (e.g., the discovery of a new security

threat) without waiting for a full Standard Revision, which

could take years. We will present an example of this usage in

Section 3.

2.4 Simplified ICL Tree: Callbacks-based DSL

As previously stated, the abstraction presented in this

Section will ultimately be used as the basis of the P1687.1

DSL, which could be a revision of ICL or a completely new

language. For experimentation, we developed a “Simplified

ICL Tree” (SIT) language that is in fact a direct representation

of this model, and that has already been used for instance in

[4]. Without going into the details of a language that is in fact

just a sandbox, we will present and comment some examples

of its usage in the rest of the paper.

3 SECURITY EXTENSIONS

The domain of Security is an ideal candidate for our

Abstraction: the solutions are often based on complex

algorithms and precise sequences, which are difficult to

express in traditional DSL because their “intent” is

purposefully obfuscated and hidden. For this reason, while

hardware solutions are relatively widespread, their support by

the standard EDA flow is almost non-existent, and they all

rely on either heavy pre- and post-processing steps or custom

modules inside EDA tools. We will show here how thanks to

our abstraction it is possible to have a P1687.1-capable tool

handle a completely custom solution, by using our MAST tool

[18] as an example platform. All the following examples were

validated against RTL simulations.

3.1 Dynamic Authentication through Callbacks

The problem of Authentication-based access like [7], is that

the handling of keys is not part of the IEEE 1687 standard,

and must therefore be added by the user through custom pre

and/or post-processing of the vectors. The solution proposed

in [8], and depicted in Figure 11 is radically different: the

authentication is part of the configuration algorithm itself

thanks to an “SSAK Protocol” that is added to the Tool

Kernel.

RegHI

S2IBSIB

SSAK
Controller

Figure 11: Fully Automated Authentication [8]

The SSAK protocol is actually divided in two parts: the

SSAK Controller that is responsible for the challenge/response

itself, and one or more S2IB muxes associated to critical

elements (RegHI) , identified by a cardinal number, that can

be opened only when the authentication has been successful

[7]. This type of complex inter-dependency is extremely

difficult, if not close to impossible, to express in traditional

DSL.

In our modeling, we followed exactly the SSAK protocol:

we defined two PathSelectors, one responsible for the

Controller, and the other for the S2IB. For the Controller,

Select/Deselect will trigger an Authentication sequence. The

S2IB PathSelector will query the status of the Controller and

either trigger a Challenge/Response or directly open the Mux.

The SIT representation of the system of Figure 11is a direct

mirror of this scheme, as shown below.

1. SIB SSAK_SIB POST HIGH

2. (

3. LINKER SSAK_Controller SSAK SSAK_CONTROL_REG

1 "0x72c4358f5a8a07af3d0f7d560a872a2b 13"

4. (

5. REGISTER SSAK_CONTROL_REG 128)

6.)

7. REGISTER S2IB_1_ctrl 1

8. LINKER S2IB_1

 S2IB SSAK_Controller,S2IB_1_ctrl 1 "1"

9. (

10. REGISTER regHI 12
11.)
12.)

Line 3 defines the “SSAK_Controller” Path Selector,

notably providing the SSAK key and the maximal number of

supported S2IBs. Line 8 instantiates a S2IB, providing both the

link to the SSAK_Controller to which it depends on and its

cardinal position in the secure chain.

The MAST tool exploits the two identifiers in line 3 and 8 to

look for the right callbacks following the same principles of

SystemVerilog DPI introduced in Section 1.3.

3.2 Scan Encryption Through Callbacks

The other typical solution to provide security is to encrypt

the stream of data being exchanged over the TAP. Even

though conceptually simple, this solution is quite complex to

implement in terms of software: the coding/encoding

operation depends on the length of the scan chains and

therefore requires some important pre and post processing

steps to correctly adapt the bitstream [19]. In P1687.1 terms,

on the other hand, the solution is quite simple: a stream cypher

is in fact a Translator node whose callback modifies the data

content of each RVF packet. The setup is depicted in Figure

12, using the Trivium stream cypher.

TA
PTDI

TDO

Extern
al

In
terface

TMS

TCK

Trivium

Is_shifting

Figure 12 Trivium Stream Cypher

Its SIT description is straightforward, as in the following

snippet:
1. TRANSLATOR top Simulation

2. (

3. TRANSLATOR Secure Trivium

"0F62B5085BAE0154A7FA 288FF65DC42B92F960C7"

4. (

5. JTAG_TAP […]

6. […]

7.)

The Protocol is identified by the symbol “Trivium” and it is

initialized by providing the Secret Key and the Initialization

Vector. The Tool will simply have to call the Transformation

Callback to provide security: the integration with the standard

flow is complete.

3.3 Encryption SIB: custom callbacks

The Encryption SIB (eSIB), introduced in [13], is probably

the first attempt to combine Authentication and IP-level

Encryption. It only requires two more gates with respect to a

S2IB, as illustrated in Figure 13.

Figure 13 Scheme of an Encryption SIB

The XOR gates are controlled by the encryption stream

provided by the Trivium coprocessor (or another encryption

processor) used for the global securisation scheme. The

overhead is therefore negligible, but in case of malicious IP

inserted in the circuit, the flow of data is protected as

illustrated in Figure 14.

A Challenge/Response protocol, as introduced in Section

3.1, is used to initialize the Encryption module positioned

behind the S2IB. As previously explained, this local

encryption requires a dynamic adaptation of the authorization

streams, for each IP, depending on the scan chain

configuration and the user rights. Since the chain

configuration can be changed at any time for e.g., better

coverage of a given IP, it is not possible to define a standard

access configuration for each IP, while scan chain lengths are

modified.

Figure 14 Impact of eSIBs in a global SoC

From the software point of view, there are two challenges:

- The handling of the Trivium Streamer, which

needs to receive the SSAK Challenge as the

Initialization Value, and which needs to be used

by all the eSIBs as the source of the

encryption/Decryption KeyStream;

- The phase alignment of the streamer flow, in the

middle of the chain.

The second point is of particular importance: traditionally,

streamers are put at the root of the Scan Chain as in Figure 12.

In this position, they are perfectly symmetrical: all bits going

into the SUT will be decrypted once with the corresponding

keystream bit passing through the TDI port of the streamer,

and all bits coming from the SUT will be encrypted once

before exiting the TDO port. This is not true anymore when

the streamer acts in the middle of the chain: the symmetry is

broken, and each bit will be treated differently depending on

its position relative to the streaming module. Figure 15

provides a graphical representation of the analytical equations

given in [13]. In relation to Figure 15-a), the “Protected” bits

are treated as usual: data coming “fromSUT” and going

“toSUT” is encrypted/decrypted when passing through the

XOR gates at the input/output if the Streamer ‘(in this case,

the eSIB). The only notable difference is the synchronization

with respect to the Keystream, which is generated for the

whole scan chain and not only for the Protected Segment,

which will need only a subset of it. In the “fromSUT”

direction, data is scanned out just after the Capture stage, so

the Mask starts at the first bit of Keystream. On the other

hand, in the “toSUT” direction, the bits positioned After the

Protected section will be scanned first, and the Mask will start

after them. This is depicted in Figure 15-b) and Figure 15-c)

respectively, with the Keystream depicted as the grey “XOR-

MASK”, and the Mask as the purple XOR-MASK-PRO.

Figure 15-b) and Figure 15-c) also allow for an easy

understanding of the impact of the asymmetric positon of the

Streamer. In the “fromSUT” direction, data positioned “After”

the streamer is of course not impacted by it, but the data

positioned “Before” the streamer will actually have to pass

through both XORs of the streamer, being effectively

encrypted but at different stages of the Keystream. This is

expressed in Figure 15-b) by the MASK_IN_BEFORE and

MASK_OUT_BEFORE which depict the segments of the

Keystream that need to be used to decrypt the data once

received. The same principle is applied in the “toSUT”

direction, as depicted in Figure 15-c).

ProtectedStreamer

Decode

After

Before
IN

OUT

Encode

a) Inline Streamer setup

ProtectedBefore

XOR MASK

XOR MASK PRO

0

After

MASK_IN_After

N

N

MASK_IN_After

MASK_OUT_After

c) To SUT (Decode) direction

ProtectedBefore

XOR MASK

XOR MASK PRO

0

After N

MASK_IN_Before

MASK_OUT_Before

b) from SUT (Encode) direction

MASK_OUT_Before

Figure 15 Asymmetric Masking for an Encryption SIB

This masking can therefore be resolved by knowing the

length of the scan the length of the three Before, Protected and

After sections. This behavior is outside of the scopes of both

1687 and P1687.1: even though the topology itself is quite

simple, it is not directly describable in ICL. On the other hand,

the Callback approach of Section 2 can be extended by

defining two new modules:

- An Optional Callback “get_challenge()” inside

the SSAK Controller, that returns the Challenge

Value

- A “Streamer” node, similar to a P1687.1

Translator node put in the middle of the scan

chain, but with different Callbacks

The Optional Callback does not need any particular

modification: as explained previously and in reference to the

solution of Section 3.1, it can be simply added to the

PathSelector Callback wrapper for the SSAK Linker: it will be

ignored by Tools not supporting this feature.

As for the Streamer, it just needs four Callbacks:

- CurrentMask(), NewMask(MaskBits) and

ApplyMask(PlainText, Mask), which can be used

by the Tool to implement the masking following

the equation of [13] and Figure 12

- ResetProtocol(InitializationVector), that the

Tool can use to synchronize its own Cypher with

the one inside the SUT.

The last step is the position of the Encrypted SIB inside the

scan chain. This is easily achieved by instantiating the

Streamer node in SIT:
1. REGISTER Before

2. SIB SSAK_SIB POST HIGH

3. (

4. LINKER SSAK_Controller SSAK SSAK_CONTROL_REG

1 "0x72c4358f5a8a07af3d0f7d560a872a2b 13"

5. (

6. REGISTER SSAK_CONTROL_REG 128)

7.)

8. REGISTER S2IB_1_ctrl 1

9. LINKER S2IB_1

 S2IB SSAK_Controller,S2IB_1_ctrl 1 "1"

10. (
11. STREAMER Online Trivium SSAK_Controller

"0F62B5085BAE0154A7FA"

12. REGISTER Protected
13.)
14.)
15. REGISTER After

The “Streamer”, as well as the “Encrypted SIB” are not

standard features, so a purely P1687.1 Tool won’t of course be

able to support it, but thanks to the Callback abstraction it can

be added with limited effort while preserving complete

compatibility with standard features, something that is not

possible with legacy approaches as in [19].

4 CONCLUSIONS

In this paper, we proposed a complete Abstraction Model for

DfT based on the Callback paradigm, leveraging the

successful experience of EDA solutions such as System

Verilog. We then demonstrated its flexibility by applying it to

the problem of Scan Security, providing a fully standardized

and coherent flow where legacy solutions relied mostly on ad-

hoc workarounds.

ACKNOWLEDGMENTS

This work has been partly funded by the French Government

under the framework of the PENTA HADES (“Hierarchy-

Aware and secure embedded test infrastructure for

Dependability and performance Enhancement of integrated

Systems”) European project.

REFERENCES

[1] IEEE Std 1149.1-2001, “IEEE Standard Test Access Port and Boundary-
Scan Architecture”, IEEE, USA, 2001.

[2] IEEE std 1500, “Standard for Embedded Core Test”, ”, IEEE, USA,
2005

[3] IEEE Std 1687-2014, “IEEE Standard for Access and Control of
Instrumentation Embedded within a Semiconductor Device”, IEEE,
USA, 2014

[4] M. Laisne , A. Crouch, M. Portolan,; M. Keim, H.M. Von Staudt , M.
Abdalwahab, B. Van Treuren, J. Rearick,, “Modeling Novel Non-JTAG
IEEE 1687-Like Architectures”, 2020 International Test Conference
(ITC20), November 2020, Washington DC, US

[5] M. Portolan, “The Automated Test Flow, the Present and the Future”,
IEEE Transactions on Computer-Aided Design (TCAD), DOI:
10.1109/TCAD.2019.2961328, December 2019

[6] Jennifer Dworak, Al Crouch, John Potter, Adam Zygmontowicz, Micah
Thornton, «Don't Forget to Lock your SIB: Hiding Instruments using
P1687», IEEE International Test Conference, 2013.

[7] B. Rafal, K. Michael A and H.-J. Wunderlich, “Fine-Grained Access
Management in Reconfigurable Scan Networks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, pp.
934-947, 2015.

[8] M. Merandat,, V. Reynaud, E. Valea, J. Quevremont, N. Valette, P.
Maistri, R. Leveugle, M.-L. Flottes, S. Dupuis, B. Rouzeyre, G. Di
Natale, “A Comprehensive Approach to a Trusted Test Infrastructure,”
in Internation Verification and Security Whrokshop, Rhodes 2019.

[9] M. Da Silva, M. Flottes, G. Di Natale and B. Rouzeyre, "Preventing
Scan Attacks on Secure Circuits Through Scan Chain Encryption," in
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 38, no. 3, pp. 538-550, March 2019, doi:
10.1109/TCAD.2018.2818722.

[10] S. Kan, J. Dworak and J. G. Dunham, "Echeloned IJTAG data
protection," 2016 IEEE Asian Hardware-Oriented Security and Trust
(AsianHOST), Yilan, 2016, pp. 1-6.

[11] K. Rosenfeld and R. Karri, "Attacks and Defenses for JTAG," in IEEE
Design & Test of Computers, vol. 27, no. 1, pp. 36-47, Jan.-Feb. 2010.

[12] E. Valea, M. da Silva, M.-L. Flottes, G. Di Natale, B. Rouzeyre.
Encryption-Based Secure JTAG. DDECS: Design and Diagnostics of
Electronic Circuits Systems, Apr 2019, Cluj-Napoca, Romania. DOI:
f10.1109/DDECS.2019.8724654.

[13] P. Maistri, V. Reynaud, M. Portolan, R. Leveugle. "Secure Test with
RSNs: Seamless Authenticated Extended Confidentiality," Proceedings
of the 19TH IEEE Interregional NEWCAS Conference, to appear.

[14] Portolan M., Reynaud V., Maistri P., Leveugle R., “Dynamic
Authentication-Based Secure Access to Test Infrastructure”, 2020
European Test Symposium (ETS 2020), Tallin, ESTONIA, 2020

[15] Latttice Semiconductors, “Using Multiple Boundary ScanPort Linker
(BSCAN2)”, Application note AN8081

[16] Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison-Wesley,
1995 ISBN 978-0-201-63361-0.

[17] IEEE std 1800-2012, “SystemVerilog -Unified Hardware Design,
Specification, and Verification Language”, IEEE, USA, 2012.

[18] M. Portolan, "A Novel Test Generation and Application Flow for
Functional Access to IEEE 1687 instruments", Proc European Test
Symp. (ETS), pp. 1-6, 2016.

[19] Thiemann et al , “On Integrating Lightweight Encryption in
Reconfigurable Scan Networks,” , Proc European Test Symp. (ETS
2019)

http://tima.univ-grenoble-alpes.fr/tima/fr/timalaboratory/persopage_id944.html
http://tima.univ-grenoble-alpes.fr/tima/fr/timalaboratory/persopage_id1841.html
http://tima.univ-grenoble-alpes.fr/tima/fr/timalaboratory/persopage_id1236.html
http://tima.univ-grenoble-alpes.fr/tima/fr/timalaboratory/persopage_id682.html
http://tima.univ-grenoble-alpes.fr/tima/fr/mediatheque/artconf/result_2696.html
http://tima.univ-grenoble-alpes.fr/tima/fr/mediatheque/artconf/result_2696.html

