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We revisit the finite time blow-up for the fourth-order Schrödinger equation with focusing inhomogeneous nonlinearity -|x| -2 |u| 4 n u. By exploiting localized virial estimates and spatial decay of the nonlinearity, we prove the finite time blow-up of non-radial solutions with negative energy. Our result is the first one dealing with the existence of non-radial blow-up solutions to the fourth-order Schrödinger equations.

Introduction

We consider the Cauchy problem for fourth-order nonlinear Schrödinger equations with focusing inhomogeneous nonlinearity

i∂ t u -µ∆ 2 u + ∆u = -|x| -2 |u| 4 n u, (t, x) ∈ R + × R n , u| t=0 = u 0 ∈ H 2 (R n ), (1.1) 
where n ≥ 3, u : R + × R n → C, u 0 : R n → C, and µ > 0. Equation (1.1) belongs to a class of general fourth-order nonlinear Schrödinger equations, namely

i∂ t u -µ∆ 2 u + ∆u = F (x, u)u, (t, x) ∈ R + × R n (1.2)
which was introduced by Karpman [START_REF] Baruch | Singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF] and Karpman-Shagalov [START_REF] Bergé | Soliton stability versus collapse[END_REF] in order to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. The function F (x, u) can be understood as a nonlinear potential affected by electron density (see e.g., [4]).

The local well-posedness for (1.1) was established by Cho-Ozawa-Wang [8] using a regularizing argument and Strichartz estimates. More precisely, there exist T * > 0 and a unique solution (1.1). The maximal time of existence satisfies the blow-up alternative: either T * = ∞ or if T * < ∞, then lim t T * u(t) H 2 = ∞. In addition, there are conservation laws of mass and energy

u ∈ C([0, T * ), H 2 (R n )) ∩ L 2 loc ([0, T * ), W 3, 2n n-2 (R n )) to
M (u(t)) = ˆ|u(t, x)| 2 dx = M (u 0 ) (Mass) and E(u(t)) = 1 2 ˆ|∇u(t, x)| 2 + µ|∆u(t, x)| 2 dx - n 2n + 4 ˆ|x| -2 |u(t, x)| 2+ 4 n dx = E(u 0 ). (Energy) 
In the case of no harmonic term (∆u), equation (1.1) has a scaling invariance

u λ (t, x) = λ n 2 u(λ 4 t, λx), λ > 0.
A direct computation shows that this scaling leaves the L 2 -norm of initial data invariant. Thus due to the mass conservation, equation (1.1) (without the ∆u term) is usually called mass-critical.

After the pioneering work [8], the inhomogeneous biharmonic nonlinear Schrödinger equation has attracted considerable interest in the mathematical community (see e.g., [7,[START_REF] Baruch | Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF][START_REF] Boulenger | Blowup for biharmonic NLS[END_REF] and references therein).

The main purpose of this paper is to study the finite time blow-up for (1.1). Before stating our result, let us recall previous works related to the finite time blow-up for (1.1) and more generally for (1.2).

For the pure power-type nonlinearity, i.e., F (x, u) = |u| p-1 , the first blow-up results was given in a series of works of Baruch-Fibich-Mandelbaum [1-3], where they gave numerical simulations showing the existence of finite time blow-up solutions. In [5], Boulenger-Lenzmann provided rigorous analytical proofs for the existence of blow-up solutions. In particular, they proved that radial H 2 -solutions with negative energy blows up in finite time in both mass-critical and mass-supercritical regimes. In [START_REF] Bonheure | Strong instability of ground states to a fourth order Schrödinger equation[END_REF]10], some finite time blow-up results were proved in the mass-supercritical regime for radial H 2 -solutions with non-negative energy. Still in the mass-supercritical regime, the author [START_REF] Dinh | On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation[END_REF] showed the existence of finite time blow-up solutions with radial Ḣ2 ∩ Ḣγc -data having negative energy, where γ c is the critical regularity exponent.

We now turn to the case of focusing inhomogeneous nonlinearity (1.1) which is the main focus of this paper. In this case, we are only aware of the following blow-up result due to Cho-Ozawa-Wang [8].

Theorem 1.1 ( [8]). Let µ > 0 and u 0 ∈ H 2 (R n ) satisfy E(u 0 ) < 0. If one of the following conditions holds:

• n ≥ 7 and |x|u 0 ∈ L 2 ;

• n ≥ 5 and u 0 is radial; then the corresponding solution to (1.1) blows up in finite time, i.e., T * < ∞.

The proof of Theorem 1.1 is based on a virial argument in the same spirit of Glassey's work [11] on finite time blow-up for the standard nonlinear Schrödinger equation. However, due to the appearance of a biharmonic operator, a careful analysis is needed to derive a virial inequality which guarantees the finite time blow-up. More precisely, they proved that for sufficiently smooth solutions (e.g., u ∈ C([0, T * ), H 3 (R n ))), the virial quantity

V(u(t)) := (1 -2µ∆) -1/2 xu(t), (1 -2µ∆) -1/2 xu(t) satisfies V(u(t)) ≤ 16t 2 E(u 0 ) + 4t Im u 0 , x • ∇u 0 + C(M (u 0 )) 1+2/n + V(u 0 ), ∀t ∈ [0, T * ).
This inequality yields the finite time blow-up, i.e., T * < ∞ provided that E(u 0 ) < 0. As the above inequality only holds for sufficiently smooth solutions and it is hard to expect such regularity for solutions of (1.1) with H 2 -initial data due to the singularity and lower power of nonlinearity, the authors implemented an approximation with regularized solutions to overcome the difficulty.

Note that in the above-mentioned works, the radial symmetry (or finite variance) plays a crucial role. To the best of our knowledge, there are no results concerning the finite time blow-up for general (non-radial and infinite variance) H 2 -solutions to (1.2) as well as (1.1) available in the literature. The main purpose of this note is to prove the following result.

Theorem 1.2. Let n ≥ 3, µ > 0, and u 0 ∈ H 2 (R n ) satisfy E(u 0 ) < 0. Then the corresponding solution to (1.1) blows up in finite time.

Theorem 1.2 improves the one in [8] in several directions. First, we prove the existence of finite time blow-up solutions without radial symmetry and finite variance. Second, we show the finite time blow-up for all dimensions n ≥ 3, where the local well-posedness for (1.1) is available. Our result is the first one dealing with the finite time blow-up for fourth-order nonlinear Schrödinger equations with general data.

The proof of Theorem 1.2 relies on a localized virial identity and a spatial decaying property of the nonlinearity. First, we derive a virial identity related to (1.1) using an idea of [5]. Second, by choosing a suitable cutoff function and using the spatial decay of nonlinearity, we carefully estimate each terms of the virial identity. Finally, an ODE argument allows us to show the finite blow-up.

This note is organized as follows. In Section 2, we derive a localized virial identity related to (1.1). Section 3 is devoted to the proof of the finite time blow-up given in Theorem 1.2.

Localized virial identity

In this section, we derive a localized virial identity related to (1.1) which plays a key element in our proof. To this end, we introduce

φ(r) = ˆr 0 ζ(s)ds with ζ(r) :=        2r if 0 ≤ r ≤ 1, 2r -2(r -1) 6 if 1 < r ≤ 1 + 1/ 5 √ 6, smooth and ζ (r) < 0 if 1 + 1/ 5 √ 6 < r < 10, 0 if r ≥ 10. Let R > 0 and define the radial function φ R (x) = φ R (r) := R 2 φ(r/R), r = |x|.
(2.1)

We collect some properties of φ R in the following lemma.

Lemma 2.1. We have

∇ j φ R L ∞ R 2-j , 0 ≤ j ≤ 6, (2.2) and supp(∇ j φ R ) ⊂ {|x| ≤ 10R} if j = 1, 2, {R ≤ |x| ≤ 10R} if 3 ≤ j ≤ 6,
(2.3)

and φ R (r) r ≤ 2, φ R (r) ≤ 2, ∀r ≥ 0.
(2.4)

In addition, we have

φ R (r) r -φ R (r) ≥ 0, ∀r ≥ 0.
(2.5)

Proof. The properties (2.2)-(2.4) follow directly from the choice of ζ. Let us check (2.5). For 0 ≤ r/R ≤ 1, (2.5) holds trivially as

φ R (r) r = φ R (r) = 2. For 1 < r/R ≤ 1 + 1/ 5 √ 6, we have φ R (r) r = ζ(r/R) r/R = 2 -2 (r/R -1) 6 r/R and φ R (r) = ζ (r/R) = 2 -12(r/R -1) 5 . Thus φ R (r) r -φ R (r) = 12(r/R -1) 5 -2 (r/R -1) 6 r/R = 2(r/R -1) 5 6 - r/R -1 r/R = 2(r/R -1) 5 5r/R + 1 r/R ≥ 0. For r/R > 1 + 1/ 5 √ 6, we have φ R (r) r = ζ(r/R) r/R ≥ 0, φ R (r) = ζ (r/R) ≤ 0
which shows (2.5).

Let u : [0, T * ) × R n → C be a H 2 -solution to (1.1). We define the virial quantity

M φ R (t) := 2 Im ˆ∇φ R • ∇u(t)u(t)dx. (2.6)
Lemma 2.2 (Localized virial identity). Let n ≥ 3 and µ > 0. Then we have for all t ∈ [0, T * ),

d dt M φ R (t) = µ ˆ∆3 φ R |u(t)| 2 dx -2µ ˆ∆2 φ R |∇u(t)| 2 dx + 8µ k,l,m ˆ∂2 lm φ R ∂ 2 kl u(t)∂ 2 mk u(t)dx -4µ k,l ˆ∂2 kl ∆φ R ∂ k u(t)∂ l u(t)dx -ˆ∆2 φ R |u(t)| 2 dx + 4 k,l ˆ∂2 kl φ R ∂ k u(t)∂ l u(t)dx - 4 n + 2 ˆ∆φ R |x| -2 |u(t)| 2+ 4 n dx + 2n n + 2 ˆ∇φ R • ∇(|x| -2 )|u(t)| 2+ 4 n dx.
(2.7)

Proof. We follow an idea of [5, Lemma 3.1]. We only provide formal computations, the desired identity follows from an approximation argument (see [5, Lemma 3.1] for more details). We rewrite M φ R (t) as

M φ R (t) = u(t), Γ φ R u(t) , where Γ φ R := -i(∇φ R • ∇ + ∇ • ∇φ R ). Recall that if u solves the equation i∂ t u = Hu, then d dt u, Au = u, [H, iA]u ,
where [H, A] = HA -AH is the commutator operator. Thanks to this identity, we have

d dt M φ R (t) = u(t), µ[∆ 2 , iΓ φ R ]u(t) -u(t), [∆, iΓ φ R ]u(t) -u(t), [|x| -2 |u| 4 n , iΓ φ R ]u(t) =: (I) -(II) -(III).
We have from [5, (3.9)] that

[∆ 2 , iΓ φ R ] = 8 k,l,m ∂ 2 kl (∂ 2 lm φ R )∂ 2 mk + 4 k,l ∂ k (∂ 2 kl ∆φ R )∂ l + 2 k,l ∂ k (∆ 2 φ R )∂ l + ∆ 3 φ R which implies (I) = 8µ k,l,m ˆ∂2 lm φ R ∂ 2 kl u(t)∂ 2 mk u(t)dx -4µ k,l ˆ∂2 kl ∆φ R ∂ k u(t)∂ l u(t)dx -2µ ˆ∆2 φ R |∇u(t)| 2 dx + µ ˆ∆3 φ R |u(t)| 2 dx.
We also have (see [5, (3.8

)]) that [∆, iΓ φ R ] = 4 k,l ∂ k (∂ 2 kl φ R )∂ l + ∆ 2 φ R which gives (II) = -4 k,l ˆ∂2 kl φ R ∂ k u(t)∂ l u(t)dx + ˆ∆2 φ R |u(t)| 2 dx.
Finally, we have

[|x| -2 |u(t)| 4 n , iΓ φ R ] = [|x| -2 |u(t)| 4 n , ∇φ R • ∇ + ∇ • ∇φ R ] = -2∇φ R • ∇(|x| -2 |u(t)| 4 n ) which yields (III) = -2 ˆ∇φ R • ∇(|x| -2 |u(t)| 4 n )|u(t)| 2 dx.
Using the identity

∇(|x| -2 |u| 2+ 4 n ) = n + 2 2 ∇(|x| -2 |u| 4 n )|u| 2 - n 2 ∇(|x| -2 )|u| 2+ 4 n ,
we get

∇(|x| -2 |u| 4 n )|u| 2 = 2 n + 2 ∇(|x| -2 |u| 2+ 4 n ) + n n + 2 ∇(|x| -2 )|u| 2+ 4 n .
Thus we obtain

(III) = 4 n + 2 ˆ∆φ R |x| -2 |u(t)| 2+ 4 n dx - 2n n + 2 ˆ∇φ R • ∇(|x| -2 )|u(t)| 2+ 4 n dx.
Collecting the above identities, we prove the result.

Lemma 2.3. Let n ≥ 3 and µ > 0. Then we have for all t ∈ [0, T * ),

d dt M φ R (t) = µ ˆ∆3 φ R |u(t)| 2 dx -2µ ˆ∆2 φ R |∇u(t)| 2 dx -4µ k,l ˆ∂2 kl ∆φ R ∂ k u(t)∂ l u(t)dx -ˆ∆2 φ R |u(t)| 2 dx + 8µ ˆφ R r k |∇∂ k u(t)| 2 + φ R r 2 - φ R r 3 k |x • ∇∂ k u(t)| 2 dx + 4 ˆφ R r |∇u(t)| 2 + φ R r 2 - φ R r 3 |x • ∇u(t)| 2 dx - 4 n + 2 ˆ φ R + (2n -1) φ R r |x| -2 |u(t)| 2+ 4 n dx.
(2.8)

Proof. As φ R is radial, we use the fact that

∂ 2 kl φ R = δ kl - x k x l r 2 φ R r + x k x l r 2 φ R to have k,l ∂ 2 kl φ R ∂ k u(t)∂ l u(t) = k,l φ R r δ kl ∂ k u(t)∂ l u(t) + k,l φ R r 2 - φ R r 3 x k x l ∂ k u(t)∂ l u(t) = φ R r |∇u(t)| 2 + φ R r 2 - φ R r 3 |x • ∇u(t)| 2 .
We also have

k,l,m ∂ 2 lm φ R ∂ 2 kl u(t)∂ 2 mk u(t) = k,l,m φ R r δ lm ∂ 2 kl u(t)∂ 2 mk u(t) + k,l,m φ R r 2 - φ R r 3 x l x m ∂ 2 kl u(t)∂ 2 mk u(t) = φ R r k |∇∂ k u(t)| 2 + φ R r 2 - φ R r 3 k |x • ∇∂ k u(t)| 2 . Furthermore, as ∆φ R = φ R + (n -1) φ R r , we have ∆φ R + n 2 ∇φ R • ∇(|x| -2 )|x| 2 = φ R + (2n -1) φ R r .
From (2.7) and the above identities, we obtain (2.8).

Finite time blow-up

We are now able to show our main result given in Theorem 1.2.

Proof of Theorem 1.2. The proof is divided into two steps.

Step 1. A localized virial estimate. We first show that for all t ∈ [0, T * ),

d dt M φ R (t) = 32E(u(t)) -8 ∇u(t) 2 L 2 + CR -2 + CR -2 ∇u(t) 2 L 2 (3.1)
for some constant C > 0 depending only on µ and M (u 0 ). Thanks to (2.8), we have for all t ∈ [0, T * ),

d dt M φ R (t) = 16µ ∆u(t) 2 L 2 + 8 ∇u(t) 2 L 2 - 16n n + 2 ˆ|x| -2 |u(t)| 2+ 4 n dx -8µ ˆ 2 - φ R r k |∇∂ k u(t)| 2 dx + 8µ ˆ φ R r 2 - φ R r 3 k |x • ∇∂ k u(t)| 2 dx -4 ˆ 2 - φ R r |∇u(t)| 2 dx + 4 ˆ φ R r 2 - φ R r 3 |x • ∇u(t)| 2 dx + 4 n + 2 ˆ (2 -φ R ) + (2n -1) 2 - φ R r |x| -2 |u(t)| 2+ 4 n dx + µ ˆ∆3 φ R |u(t)| 2 dx -2µ ˆ∆2 φ R |∇u(t)| 2 dx -4µ k,l ˆ∂2 kl ∆φ R ∂ k u(t)∂ l u(t)dx -ˆ∆2 φ R |u(t)| 2 dx = 32E(u(t)) -8 ∇u(t) 2 L 2 + E 1 (u(t)) + E 2 (u(t)) + E 3 (u(t)) + E 4 (u(t))
, where

E 1 (u(t)) = -8µ ˆ 2 - φ R r k |∇∂ k u(t)| 2 dx + 8µ ˆ φ R r 2 - φ R r 3 k |x • ∇∂ k u(t)| 2 dx -4 ˆ 2 - φ R r |∇u(t)| 2 dx + 4 ˆ φ R r 2 - φ R r 3 |x • ∇u(t)| 2 dx and E 2 (u(t)) = 4 n + 2 ˆ (2 -φ R ) + (2n -1) 2 - φ R r |x| -2 |u(t)| 2+ 4 n dx, E 3 (u(t)) = -2µ ˆ∆2 φ R |∇u(t)| 2 dx -4µ k,l ˆ∂2 kl ∆φ R ∂ k u(t)∂ l u(t)dx, E 4 (u(t)) = µ ˆ∆3 φ R |u(t)| 2 dx -ˆ∆2 φ R |u(t)| 2 dx.
From (2.4) and (2.5), we see that E 1 (u(t)) ≤ 0. From (2.2) and the conservation of mass, we have

E 4 (u(t)) µ ∆ 3 φ R L ∞ + ∆ 2 φ R L ∞ u(t) 2 L 2 R -2 ,
where the implicit constant depends only on µ and M (u 0 ). We also have from (2.2) that

E 3 (u(t)) R -2 ∇u(t) 2 L 2 .
Finally, using (2.3), we have supp (2

-φ R ) + (2n -1) 2 - φ R r
⊂ {|x| ≥ R}. Thus, using (2.2) and the standard Gagliardo-Nirenberg inequality, we get

E 2 (u(t)) R -2 u(t) 2+ 4 n L 2+ 4 n R -2 ∇u(t) 2 L 2 u(t) 4 n L 2 R -2 ∇u(t) 2 L 2 .
Collecting the above estimates, we prove (3.1).

Step 2. An ODE argument. We will show the finite time blow-up under the assumption that E(u 0 ) < 0. Assume by contradiction that T * = ∞. By the energy conservation, we have from (3.1) that

d dt M φ R (t) ≤ 32E(u 0 ) -8 ∇u(t) 2 L 2 + CR -2 + CR -2 ∇u(t) 2 L 2 , ∀t ∈ [0, ∞).
As E(u 0 ) < 0, we take R > 0 sufficiently large so that We see that Z(t) is non-decreasing, non-negative, and satisfies

d dt M φ R (t) ≤ 16E(u 0 ) -4 ∇u(t) 2 L 2 , ∀t ∈ [0, ∞). ( 3 
Z (t) = |M φ R (t)| 2 ≥ A 2 Z(t), ∀t ≥ t 0 .
For t 1 > t 0 , we integrate this inequality over [t 1 , t] to get

Z(t) ≥ Z(t 1 ) 1 -A 2 Z(t 1 )(t -t 1 )
, ∀t ≥ t 1 .

In particular, Z(t) → ∞ as t t * := t 1 + 1 A 2 Z(t1) . Thus M φ R (t) ≤ -AZ(t) → -∞ as t t * . Therefore the solution cannot exist for all t ≥ 0, hence it must blow up in finite time.

  .2) Integrating this inequality, we haveM φ R (t) = M φ R (0) + ˆt 0 d ds M φ R (s)ds ≤ |M φ R (0)| + 16E(u 0 )t, ∀t ≥ 0.This shows that M φ R (t) ≤ 0 for all t ≥ t 0 :=|M φ R (0)| 16|E(u0)| . Integrating (3.2) over [t 0 , t], we get M φ R (t) = M φ R (t 0 ) +On the other hand, we have|M φ R (t)| ≤ ∇φ R L ∞ ∇u(t) L 2 u(t) L 2 ≤ C(R, M (u 0 )) ∇u(t) L 2 , ∀t ≥ 0 which implies M φ R (t) ≤ -A ˆt t0 |M φ R (s)| 2 ds, ∀t ≥ t 0 for some constant A = A(R, M (u 0 )) > 0.Now set Z(t) := ˆt t0 |M φ R (s)| 2 ds, t ≥ t 0 .

	≤ -4	ˆt t0	ˆt t0 ∇u(s) 2 d ds L 2 ds, ∀t ≥ t 0 . M φ R (s)ds
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