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NON-RADIAL FINITE TIME BLOW-UP FOR THE FOURTH-ORDER NONLINEAR

SCHRÖDINGER EQUATIONS

VAN DUONG DINH

Abstract. We revisit the finite time blow-up for the fourth-order Schrödinger equation with focusing inhomogeneous

nonlinearity −|x|−2|u|
4
n u. By exploiting localized virial estimates and spatial decay of the nonlinearity, we prove the

finite time blow-up of non-radial solutions with negative energy. Our result is the first one dealing with the existence of
non-radial blow-up solutions to the fourth-order Schrödinger equations.

1. Introduction

We consider the Cauchy problem for fourth-order nonlinear Schrödinger equations with focusing inhomogeneous
nonlinearity {

i∂tu− µ∆2u+ ∆u = −|x|−2|u| 4nu, (t, x) ∈ R+ × Rn,
u|t=0 = u0 ∈ H2(Rn),

(1.1)

where n ≥ 3, u : R+ × Rn → C, u0 : Rn → C, and µ > 0. Equation (1.1) belongs to a class of general fourth-order
nonlinear Schrödinger equations, namely

i∂tu− µ∆2u+ ∆u = F (x, u)u, (t, x) ∈ R+ × Rn (1.2)

which was introduced by Karpman [13] and Karpman-Shagalov [14] in order to take into account the role of small
fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. The
function F (x, u) can be understood as a nonlinear potential affected by electron density (see e.g., [4]).

The local well-posedness for (1.1) was established by Cho-Ozawa-Wang [8] using a regularizing argument and
Strichartz estimates. More precisely, there exist T ∗ > 0 and a unique solution

u ∈ C([0, T ∗), H2(Rn)) ∩ L2
loc([0, T

∗),W 3, 2n
n−2 (Rn))

to (1.1). The maximal time of existence satisfies the blow-up alternative: either T ∗ =∞ or if T ∗ <∞, then

lim
t↗T∗

‖u(t)‖H2 =∞.

In addition, there are conservation laws of mass and energy

M(u(t)) =

ˆ
|u(t, x)|2dx = M(u0) (Mass)

and

E(u(t)) =
1

2

ˆ
|∇u(t, x)|2 + µ|∆u(t, x)|2dx− n

2n+ 4

ˆ
|x|−2|u(t, x)|2+ 4

n dx = E(u0). (Energy)

In the case of no harmonic term (∆u), equation (1.1) has a scaling invariance

uλ(t, x) = λ
n
2 u(λ4t, λx), λ > 0.

A direct computation shows that this scaling leaves the L2-norm of initial data invariant. Thus due to the mass
conservation, equation (1.1) (without the ∆u term) is usually called mass-critical.

After the pioneering work [8], the inhomogeneous biharmonic nonlinear Schrödinger equation has attracted consider-
able interest in the mathematical community (see e.g., [7, 12,15] and references therein).

The main purpose of this paper is to study the finite time blow-up for (1.1). Before stating our result, let us recall
previous works related to the finite time blow-up for (1.1) and more generally for (1.2).

For the pure power-type nonlinearity, i.e., F (x, u) = |u|p−1, the first blow-up results was given in a series of works of
Baruch-Fibich-Mandelbaum [1–3], where they gave numerical simulations showing the existence of finite time blow-up
solutions. In [5], Boulenger-Lenzmann provided rigorous analytical proofs for the existence of blow-up solutions. In
particular, they proved that radial H2-solutions with negative energy blows up in finite time in both mass-critical and
mass-supercritical regimes. In [6, 10], some finite time blow-up results were proved in the mass-supercritical regime for
radial H2-solutions with non-negative energy. Still in the mass-supercritical regime, the author [9] showed the existence

of finite time blow-up solutions with radial Ḣ2 ∩ Ḣγc-data having negative energy, where γc is the critical regularity
exponent.

We now turn to the case of focusing inhomogeneous nonlinearity (1.1) which is the main focus of this paper. In this
case, we are only aware of the following blow-up result due to Cho-Ozawa-Wang [8].
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Theorem 1.1 ( [8]). Let µ > 0 and u0 ∈ H2(Rn) satisfy E(u0) < 0. If one of the following conditions holds:

• n ≥ 7 and |x|u0 ∈ L2;
• n ≥ 5 and u0 is radial;

then the corresponding solution to (1.1) blows up in finite time, i.e., T ∗ <∞.

The proof of Theorem 1.1 is based on a virial argument in the same spirit of Glassey’s work [11] on finite time
blow-up for the standard nonlinear Schrödinger equation. However, due to the appearance of a biharmonic operator, a
careful analysis is needed to derive a virial inequality which guarantees the finite time blow-up. More precisely, they
proved that for sufficiently smooth solutions (e.g., u ∈ C([0, T ∗), H3(Rn))), the virial quantity

V(u(t)) :=
〈

(1− 2µ∆)−1/2xu(t), (1− 2µ∆)−1/2xu(t)
〉

satisfies

V(u(t)) ≤ 16t2E(u0) + 4t
(

Im 〈u0, x · ∇u0〉+ C(M(u0))1+2/n
)

+ V(u0), ∀t ∈ [0, T ∗).

This inequality yields the finite time blow-up, i.e., T ∗ < ∞ provided that E(u0) < 0. As the above inequality only
holds for sufficiently smooth solutions and it is hard to expect such regularity for solutions of (1.1) with H2-initial data
due to the singularity and lower power of nonlinearity, the authors implemented an approximation with regularized
solutions to overcome the difficulty.

Note that in the above-mentioned works, the radial symmetry (or finite variance) plays a crucial role. To the best of
our knowledge, there are no results concerning the finite time blow-up for general (non-radial and infinite variance)
H2-solutions to (1.2) as well as (1.1) available in the literature. The main purpose of this note is to prove the following
result.

Theorem 1.2. Let n ≥ 3, µ > 0, and u0 ∈ H2(Rn) satisfy E(u0) < 0. Then the corresponding solution to (1.1) blows
up in finite time.

Theorem 1.2 improves the one in [8] in several directions. First, we prove the existence of finite time blow-up
solutions without radial symmetry and finite variance. Second, we show the finite time blow-up for all dimensions
n ≥ 3, where the local well-posedness for (1.1) is available. Our result is the first one dealing with the finite time
blow-up for fourth-order nonlinear Schrödinger equations with general data.

The proof of Theorem 1.2 relies on a localized virial identity and a spatial decaying property of the nonlinearity.
First, we derive a virial identity related to (1.1) using an idea of [5]. Second, by choosing a suitable cutoff function
and using the spatial decay of nonlinearity, we carefully estimate each terms of the virial identity. Finally, an ODE
argument allows us to show the finite blow-up.

This note is organized as follows. In Section 2, we derive a localized virial identity related to (1.1). Section 3 is
devoted to the proof of the finite time blow-up given in Theorem 1.2.

2. Localized virial identity

In this section, we derive a localized virial identity related to (1.1) which plays a key element in our proof. To this
end, we introduce

φ(r) =

ˆ r

0

ζ(s)ds

with

ζ(r) :=


2r if 0 ≤ r ≤ 1,

2r − 2(r − 1)6 if 1 < r ≤ 1 + 1/ 5
√

6,

smooth and ζ ′(r) < 0 if 1 + 1/ 5
√

6 < r < 10,
0 if r ≥ 10.

Let R > 0 and define the radial function

φR(x) = φR(r) := R2φ(r/R), r = |x|. (2.1)

We collect some properties of φR in the following lemma.

Lemma 2.1. We have

‖∇jφR‖L∞ . R2−j , 0 ≤ j ≤ 6, (2.2)

and

supp(∇jφR) ⊂
{

{|x| ≤ 10R} if j = 1, 2,
{R ≤ |x| ≤ 10R} if 3 ≤ j ≤ 6,

(2.3)

and

φ′R(r)

r
≤ 2, φ′′R(r) ≤ 2, ∀r ≥ 0. (2.4)

In addition, we have

φ′R(r)

r
− φ′′R(r) ≥ 0, ∀r ≥ 0. (2.5)
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Proof. The properties (2.2)–(2.4) follow directly from the choice of ζ. Let us check (2.5). For 0 ≤ r/R ≤ 1, (2.5) holds

trivially as
φ′R(r)
r = φ′′R(r) = 2. For 1 < r/R ≤ 1 + 1/ 5

√
6, we have

φ′R(r)

r
=
ζ(r/R)

r/R
= 2− 2

(r/R− 1)6

r/R

and
φ′′R(r) = ζ ′(r/R) = 2− 12(r/R− 1)5.

Thus

φ′R(r)

r
− φ′′R(r) = 12(r/R− 1)5 − 2

(r/R− 1)6

r/R

= 2(r/R− 1)5
(

6− r/R− 1

r/R

)
= 2(r/R− 1)5

5r/R+ 1

r/R
≥ 0.

For r/R > 1 + 1/ 5
√

6, we have
φ′R(r)

r
=
ζ(r/R)

r/R
≥ 0, φ′′R(r) = ζ ′(r/R) ≤ 0

which shows (2.5). �

Let u : [0, T ∗)× Rn → C be a H2-solution to (1.1). We define the virial quantity

MφR(t) := 2 Im

ˆ
∇φR · ∇u(t)u(t)dx. (2.6)

Lemma 2.2 (Localized virial identity). Let n ≥ 3 and µ > 0. Then we have for all t ∈ [0, T ∗),

d

dt
MφR(t) = µ

ˆ
∆3φR|u(t)|2dx− 2µ

ˆ
∆2φR|∇u(t)|2dx

+ 8µ
∑
k,l,m

ˆ
∂2lmφR∂

2
klu(t)∂2mku(t)dx− 4µ

∑
k,l

ˆ
∂2kl∆φR∂ku(t)∂lu(t)dx

−
ˆ

∆2φR|u(t)|2dx+ 4
∑
k,l

ˆ
∂2klφR∂ku(t)∂lu(t)dx

− 4

n+ 2

ˆ
∆φR|x|−2|u(t)|2+ 4

n dx+
2n

n+ 2

ˆ
∇φR · ∇(|x|−2)|u(t)|2+ 4

n dx.

(2.7)

Proof. We follow an idea of [5, Lemma 3.1]. We only provide formal computations, the desired identity follows from an
approximation argument (see [5, Lemma 3.1] for more details). We rewrite MφR(t) as

MφR(t) = 〈u(t),ΓφRu(t)〉,
where

ΓφR := −i(∇φR · ∇+∇ · ∇φR).

Recall that if u solves the equation i∂tu = Hu, then

d

dt
〈u,Au〉 = 〈u, [H, iA]u〉,

where [H,A] = HA−AH is the commutator operator. Thanks to this identity, we have

d

dt
MφR(t) = 〈u(t), µ[∆2, iΓφR ]u(t)〉 − 〈u(t), [∆, iΓφR ]u(t)〉 − 〈u(t), [|x|−2|u| 4n , iΓφR ]u(t)〉

=: (I)− (II)− (III).

We have from [5, (3.9)] that

[∆2, iΓφR ] = 8
∑
k,l,m

∂2kl(∂
2
lmφR)∂2mk + 4

∑
k,l

∂k(∂2kl∆φR)∂l + 2
∑
k,l

∂k(∆2φR)∂l + ∆3φR

which implies

(I) = 8µ
∑
k,l,m

ˆ
∂2lmφR∂

2
klu(t)∂2mku(t)dx− 4µ

∑
k,l

ˆ
∂2kl∆φR∂ku(t)∂lu(t)dx

− 2µ

ˆ
∆2φR|∇u(t)|2dx+ µ

ˆ
∆3φR|u(t)|2dx.

We also have (see [5, (3.8)]) that

[∆, iΓφR ] = 4
∑
k,l

∂k(∂2klφR)∂l + ∆2φR
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which gives

(II) = −4
∑
k,l

ˆ
∂2klφR∂ku(t)∂lu(t)dx+

ˆ
∆2φR|u(t)|2dx.

Finally, we have

[|x|−2|u(t)| 4n , iΓφR ] = [|x|−2|u(t)| 4n ,∇φR · ∇+∇ · ∇φR] = −2∇φR · ∇(|x|−2|u(t)| 4n )

which yields

(III) = −2

ˆ
∇φR · ∇(|x|−2|u(t)| 4n )|u(t)|2dx.

Using the identity

∇(|x|−2|u|2+ 4
n ) =

n+ 2

2
∇(|x|−2|u| 4n )|u|2 − n

2
∇(|x|−2)|u|2+ 4

n ,

we get

∇(|x|−2|u| 4n )|u|2 =
2

n+ 2
∇(|x|−2|u|2+ 4

n ) +
n

n+ 2
∇(|x|−2)|u|2+ 4

n .

Thus we obtain

(III) =
4

n+ 2

ˆ
∆φR|x|−2|u(t)|2+ 4

n dx− 2n

n+ 2

ˆ
∇φR · ∇(|x|−2)|u(t)|2+ 4

n dx.

Collecting the above identities, we prove the result. �

Lemma 2.3. Let n ≥ 3 and µ > 0. Then we have for all t ∈ [0, T ∗),

d

dt
MφR(t) = µ

ˆ
∆3φR|u(t)|2dx− 2µ

ˆ
∆2φR|∇u(t)|2dx

− 4µ
∑
k,l

ˆ
∂2kl∆φR∂ku(t)∂lu(t)dx−

ˆ
∆2φR|u(t)|2dx

+ 8µ

ˆ
φ′R
r

∑
k

|∇∂ku(t)|2 +

(
φ′′R
r2
− φ′R
r3

)∑
k

|x · ∇∂ku(t)|2dx

+ 4

ˆ
φ′R
r
|∇u(t)|2 +

(
φ′′R
r2
− φ′R
r3

)
|x · ∇u(t)|2dx

− 4

n+ 2

ˆ (
φ′′R + (2n− 1)

φ′R
r

)
|x|−2|u(t)|2+ 4

n dx.

(2.8)

Proof. As φR is radial, we use the fact that

∂2klφR =
(
δkl −

xkxl
r2

) φ′R
r

+
xkxl
r2

φ′′R

to have ∑
k,l

∂2klφR∂ku(t)∂lu(t) =
∑
k,l

φ′R
r
δkl∂ku(t)∂lu(t) +

∑
k,l

(
φ′′R
r2
− φ′R
r3

)
xkxl∂ku(t)∂lu(t)

=
φ′R
r
|∇u(t)|2 +

(
φ′′R
r2
− φ′R
r3

)
|x · ∇u(t)|2.

We also have∑
k,l,m

∂2lmφR∂
2
klu(t)∂2mku(t) =

∑
k,l,m

φ′R
r
δlm∂

2
klu(t)∂2mku(t) +

∑
k,l,m

(
φ′′R
r2
− φ′R
r3

)
xlxm∂

2
klu(t)∂2mku(t)

=
φ′R
r

∑
k

|∇∂ku(t)|2 +

(
φ′′R
r2
− φ′R
r3

)∑
k

|x · ∇∂ku(t)|2.

Furthermore, as ∆φR = φ′′R + (n− 1)
φ′R
r , we have

∆φR +
n

2
∇φR · ∇(|x|−2)|x|2 = φ′′R + (2n− 1)

φ′R
r
.

From (2.7) and the above identities, we obtain (2.8). �



BLOW-UP FOURTH-ORDER NLS 5

3. Finite time blow-up

We are now able to show our main result given in Theorem 1.2.

Proof of Theorem 1.2. The proof is divided into two steps.
Step 1. A localized virial estimate. We first show that for all t ∈ [0, T ∗),

d

dt
MφR(t) = 32E(u(t))− 8‖∇u(t)‖2L2 + CR−2 + CR−2‖∇u(t)‖2L2 (3.1)

for some constant C > 0 depending only on µ and M(u0). Thanks to (2.8), we have for all t ∈ [0, T ∗),

d

dt
MφR(t) = 16µ‖∆u(t)‖2L2 + 8‖∇u(t)‖2L2 −

16n

n+ 2

ˆ
|x|−2|u(t)|2+ 4

n dx

− 8µ

ˆ (
2− φ′R

r

)∑
k

|∇∂ku(t)|2dx+ 8µ

ˆ (
φ′′R
r2
− φ′R
r3

)∑
k

|x · ∇∂ku(t)|2dx

− 4

ˆ (
2− φ′R

r

)
|∇u(t)|2dx+ 4

ˆ (
φ′′R
r2
− φ′R
r3

)
|x · ∇u(t)|2dx

+
4

n+ 2

ˆ (
(2− φ′′R) + (2n− 1)

(
2− φ′R

r

))
|x|−2|u(t)|2+ 4

n dx

+ µ

ˆ
∆3φR|u(t)|2dx− 2µ

ˆ
∆2φR|∇u(t)|2dx

− 4µ
∑
k,l

ˆ
∂2kl∆φR∂ku(t)∂lu(t)dx−

ˆ
∆2φR|u(t)|2dx

= 32E(u(t))− 8‖∇u(t)‖2L2 + E1(u(t)) + E2(u(t)) + E3(u(t)) + E4(u(t)),

where

E1(u(t)) = −8µ

ˆ (
2− φ′R

r

)∑
k

|∇∂ku(t)|2dx+ 8µ

ˆ (
φ′′R
r2
− φ′R
r3

)∑
k

|x · ∇∂ku(t)|2dx

− 4

ˆ (
2− φ′R

r

)
|∇u(t)|2dx+ 4

ˆ (
φ′′R
r2
− φ′R
r3

)
|x · ∇u(t)|2dx

and

E2(u(t)) =
4

n+ 2

ˆ (
(2− φ′′R) + (2n− 1)

(
2− φ′R

r

))
|x|−2|u(t)|2+ 4

n dx,

E3(u(t)) = −2µ

ˆ
∆2φR|∇u(t)|2dx− 4µ

∑
k,l

ˆ
∂2kl∆φR∂ku(t)∂lu(t)dx,

E4(u(t)) = µ

ˆ
∆3φR|u(t)|2dx−

ˆ
∆2φR|u(t)|2dx.

From (2.4) and (2.5), we see that E1(u(t)) ≤ 0.
From (2.2) and the conservation of mass, we have

E4(u(t)) .
(
µ‖∆3φR‖L∞ + ‖∆2φR‖L∞

)
‖u(t)‖2L2 . R−2,

where the implicit constant depends only on µ and M(u0).
We also have from (2.2) that

E3(u(t)) . R−2‖∇u(t)‖2L2 .

Finally, using (2.3), we have supp
{

(2− φ′′R) + (2n− 1)
(

2− φ′R
r

)}
⊂ {|x| ≥ R}. Thus, using (2.2) and the standard

Gagliardo-Nirenberg inequality, we get

E2(u(t)) . R−2‖u(t)‖2+
4
n

L2+ 4
n
. R−2‖∇u(t)‖2L2‖u(t)‖

4
n

L2 . R
−2‖∇u(t)‖2L2 .

Collecting the above estimates, we prove (3.1).
Step 2. An ODE argument. We will show the finite time blow-up under the assumption that E(u0) < 0. Assume

by contradiction that T ∗ =∞. By the energy conservation, we have from (3.1) that

d

dt
MφR(t) ≤ 32E(u0)− 8‖∇u(t)‖2L2 + CR−2 + CR−2‖∇u(t)‖2L2 , ∀t ∈ [0,∞).

As E(u0) < 0, we take R > 0 sufficiently large so that

d

dt
MφR(t) ≤ 16E(u0)− 4‖∇u(t)‖2L2 , ∀t ∈ [0,∞). (3.2)
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Integrating this inequality, we have

MφR(t) =MφR(0) +

ˆ t

0

d

ds
MφR(s)ds

≤ |MφR(0)|+ 16E(u0)t, ∀t ≥ 0.

This shows that MφR(t) ≤ 0 for all t ≥ t0 :=
|MφR

(0)|
16|E(u0)| . Integrating (3.2) over [t0, t], we get

MφR(t) =MφR(t0) +

ˆ t

t0

d

ds
MφR(s)ds

≤ −4

ˆ t

t0

‖∇u(s)‖2L2ds, ∀t ≥ t0.

On the other hand, we have

|MφR(t)| ≤ ‖∇φR‖L∞‖∇u(t)‖L2‖u(t)‖L2 ≤ C(R,M(u0))‖∇u(t)‖L2 , ∀t ≥ 0

which implies

MφR(t) ≤ −A
ˆ t

t0

|MφR(s)|2ds, ∀t ≥ t0

for some constant A = A(R,M(u0)) > 0. Now set

Z(t) :=

ˆ t

t0

|MφR(s)|2ds, t ≥ t0.

We see that Z(t) is non-decreasing, non-negative, and satisfies

Z ′(t) = |MφR(t)|2 ≥ A2Z(t), ∀t ≥ t0.

For t1 > t0, we integrate this inequality over [t1, t] to get

Z(t) ≥ Z(t1)

1−A2Z(t1)(t− t1)
, ∀t ≥ t1.

In particular, Z(t)→∞ as t↗ t∗ := t1 + 1
A2Z(t1)

. Thus MφR(t) ≤ −AZ(t)→ −∞ as t↗ t∗. Therefore the solution

cannot exist for all t ≥ 0, hence it must blow up in finite time. �
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