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Abstract—Channel charting is an unsupervised learning method
that aims at mapping wireless channels to a so-called chart,
preserving as much as possible spatial neighborhoods. In this paper,
a model-based deep learning approach to this problem is proposed.
It builds on a physically motivated distance measure to structure
and initialize a neural network that is subsequently trained using a
triplet loss function. The proposed structure exhibits a low number
of parameters and clever initialization leads to fast training. These
two features make the proposed approach amenable to on-the-fly
channel charting. The method is empirically assessed on realistic
synthetic channels, yielding encouraging results.

Index Terms—channel charting, triplet network, dimensionality
reduction, MIMO signal processing, machine learning.

I. INTRODUCTION

Signal processing has greatly benefited from the recent
advent of machine learning and the growth of computing
power. Deep learning in particular has been widely used in
a plethora of domains and only a few are left untouched. In
wireless communication, neural networks have been exploited
to solve many classical problems ranging from physical layer
tasks like channel estimation [2], [3] and symbol decoding
[4] to higher level tasks like end-to-end learning of the transmit
and receive chains [5]. Another prominent example of deep
learning application in wireless systems is user localization
where the objective is to determine the physical locations of
user equipments (UEs) solely based on their uplink channel
measurements by a multi-antenna base station (BS) [6]. Standard
deep models require a dataset of channel measurements and their
corresponding transmit locations to perform supervised learning.

Recently, channel charting has been proposed as an
unsupervised alternative to user positioning where a charting
function (or encoder) is learned in order to project high-
dimensional channel vectors into a low dimensional space (a
chart) that resembles the geometrical space of UEs’ locations.
The challenge consists in providing a map without a priori
location knowledge, only using channel measurements.
Related work. Channel charting was first introduced in [7].
The approach therein builds on projecting precomputed channel
features into a low-dimensional space using manifold learning
techniques such as Sammon’s mapping and autoencoders.
Thereafter, a number of channel charting approaches building on
the same ideas have been proposed. In [8], autoencoders are used
together with representation constraints as a way of injecting
prior knowledge to further guide the learning process. In [9],
the Sammon’s mapping-based approach is reframed as a neural
network model in a siamese configuration. In [10], channel
charting is performed using triplet networks. In order to train the
model, a database of channel vector triplets is constructed based

on travel information of UEs. Similarly, [11] explores the use of
triplet networks for channel charting where an improved triplet
loss is introduced in order to further distill prior information.
Finally, [12] proposes to use a distance measure that better
preserves relative channel distances along with another manifold
learning algorithm, namely Isomap [13], in order to map the
channel observations to their low-dimensional representations.
It is also worth mentioning the work in [14] where a neural
network with a particular structure tackles the task of user
positioning. The model is implicitly based on the adapted
distance measure of [12] and benefits from a smart initialization.
However, the training in [14] is done in a supervised fashion.
Contributions. Building on earlier work [10], [12], [14], a
hybrid approach to channel charting is explored. A model-based
neural network [15] with few parameters is structured as in
[14], allowing a smart initialization of its weights based on
the adapted distance measure of [12] jointly exploited with
Isomap. The network is then trained using a triplet loss as in
[10]. Performance is evaluated on a dataset of synthetic realistic
channels using classical manifold learning metrics.

The idea behind the smart initialization is to exploit as much
prior information as possible in order to put the model in the best
configuration prior to any optimization. This initialization natu-
rally arises from the structure imposed on the network. Training is
expected to gradually lead the network to configurations yielding
even better results. To do so, the triplet loss relies on the way the
channels are collected, bringing another source of information
into the mix. The expected result is a reduction in the computa-
tional cost of both training and inference when compared to ex-
isting models, in an attempt to compute channel charts on the fly.

II. PROBLEM FORMULATION

Channel charting fall within the realm of machine learning
in general, and dimensionality reduction in particular. It aims
at projecting high-dimensional channel observations into a
low-dimensional space, typically of 2 or 3 dimensions, in order
to learn a channel chart. In fact, physical channel models
indicate that channel observations are subject to the manifold
hypothesis [16], meaning that although their original space is of
high dimension, they are in reality governed by a small set of
parameters. Those parameters are directly related to the spatial
locations where the corresponding signals originate from [14].
In this sense, a successfully learned chart is a map between
channel measurements and low-dimensional representations that
preserves the local geometry of the original transmit locations.

We consider a BS equipped with an antenna array of Nr

antennas, and one or more single antenna UEs placed on
a map and sending signals to the BS on S evenly spaced



subcarriers and a central frequency fc. We denote hi ∈ CM

the ith transmitted uplink channel vector, with M = Nr × S,
and pi ∈ RD the corresponding transmit location, where D
corresponds to the number of retained spatial dimension (2
or 3 typically). A database {hi}Ni=1 of N channel vectors is
constructed through the collection of channel observations from
different locations. Channel charting aims at learning a function
F that takes as input the channel vectors hi and produces
low-dimensional representations denoted zi.

F : CM → RD

hi 7→ F(hi) = zi.

Note that the learned representations {zi}Ni=1 are not necessarily
of same dimension as the UE locations, but are typically chosen
to be two-dimensional.

III. HYBRID TRIPLET NETWORK

In order to conceive a model capable of learning the function
F , we rely on deep learning methods for what they offer in
terms of capacity and fast adaptation to data. In particular, we
adopt the philosophy of model-based deep learning [15] where
neural network structures are guided by physical principles
yielding hybrid models more capable than generic multilayer
perceptrons (MLPs) for a given task. The same philosophy has
already been applied to channel estimation in an earlier work [3].

A. Distance measure
The first step in our approach is to compute the distance

matrix of the collected channel vectors. The adopted distance
measure needs to correctly reflect the local spatial neighborhoods
of channel observations. The traditional Euclidean distance
is inadequate to the task because of its unusual behavior
in high-dimensional spaces [17]. A more adequate distance
measure is the one introduced in [12]. It is defined as follows:

d?(hi,hj)
2 = 2− 2

|hH
i hj |

‖hi‖2‖hj‖2
. (1)

Based on the plane wave physical model, this distance measure
removes the sensitivity of channel vectors to the fast variations
of the global phase, making it reliable and suitable for retrieval
of local neighborhoods. In addition, a normalization factor is
introduced to mitigate the detrimental effect of signal intensity.
This distance proved useful for channel charting [12] and user
positioning [14].

B. Hybrid encoder
Now that a distance measure has been defined, one could

use a generic manifold learning algorithm to project the channel
vectors into the low-dimensional space. For instance, [12] relies
on Isomap to obtain the channel chart. However, this approach
suffers from two main issues:
(1) Manifold learning algorithms like Isomap are incapable of

directly performing out-of-sample projections, meaning that
projecting new unseen samples would require recomputing
the projection for the whole dataset which is very inefficient
and cumbersome.

(2) These methods depend on the accuracy of the distance mea-
sure and are prone to errors due to its approximative nature.

To fix the first issue, we propose the following strategy (sum-
marized in algorithm 1) that resembles the one introduced in [14].
We begin by selecting a small subset of Ninit collected channel ob-
servations that we organize in a matrix D ∈ CM×Ninit as column
vectors. The more representative it is of the data distribution the
better. We then compute its distance matrix using (1) and feed it
to Isomap to produce an initial channel chart Z according to the
method proposed in [12]. For a given new observation h that we
would like to project, we compute the modulus of its correlation
to each one of the channel vectors in D. We keep the k largest
elements of the obtained vector using the hard thresholding
nonlinear operator denoted HTk(.). We normalize the result using
an l1-norm so that the vector elements sum up to 1. Finally, we
multiply the normalized vector by the matrix Z which amounts
to performing a weighted average of the projections of the k
most correlated channel vectors to the input vector h.

Algorithm 1 Proposed encoder

Input: Subset of channel vectors D, corresponding initial
channel chart Z, channel h to locate on the chart

1: Correlation: a← DHh
2: Modulus: b← |a|
3: Hard thresholding: c← HTk(b)
4: Normalization: d← c/‖c‖1
5: Weighted sum: z← Zd

Output: z = F(h)

This strategy makes it possible to project individual channel
observations independently of the rest of the dataset. Besides
being initialized from a small dataset in conjunction with
Isomap, it comprises two matrix multiplications separated by
nonlinear operations which makes it easily laid out as a neural
network as depicted in Fig. 1.

Isomap

Fig. 1: Hybrid encoder.

The second issue is mitigated with the help of training and
is tackled in the next section. Indeed, the weight matrices D
and Z will be allowed to vary during the training in order to
optimize the whole model.

C. Triplet loss
The main advantage of using neural networks is the ability

to train and improve their performance through gradient descent
with backpropagation [18, Chapter 6]. The main idea is to
calculate a loss function that quantifies the error of the network’s
output and to iteratively “move” its weights in the opposite
direction of the gradient of this loss function as to minimize it.
In a supervised learning setting, this loss function takes as input
both the output of the model and the target value that is ought to
be achieved, hence the need of a training dataset of target values.
However, in the context of channel charting, the objective
is to rely solely on the channel observations themselves. As



a consequence, it is necessary to make use of unsupervised
learning methods. In particular, contrastive learning has been
used extensively for various tasks [19]. Simply put, it aims at
teaching the network which samples are similar and which are
different with the help of a specifically designed loss function
L. Triplet networks (Fig. 2) are an implementation of this
framework where triplets of three samples each are constructed
and fed to a neural network. A single triplet comprises an anchor
sample h, a close sample h+ and a far sample h−. The network
produces their corresponding projections into the channel chart
z, z+ and z− respectively. The loss function is defined as

L(z, z+, z−) = max(0, d+ − d− +m), (2)

where d+ = ‖z− z+‖2, d− = ‖z− z−‖2 and m is a margin
parameter. In essence, minimizing L amounts to maximizing
the difference between d+ and d− by pulling the close sample
closer and pushing the far sample farther until the difference
is greater that m and therefore L = 0.

Fig. 2: Triplet network structure. θ is the set of parameters (i.e.
weights) that the neural network learns throughout training.

Instead of using a generic MLP as in [10], we propose to use
the hybrid encoder presented in Section III-B initialized with a
small subset of channel observations following the proposed strat-
egy. The parameters (i.e. weights) of the network θ = {D,Z}
are then optimized through the training of the encoder in the
triplet configuration. The learned charting function is denoted Fθ .

It is important to note that constructing triplets obviously
requires knowledge of positive and negative samples for a given
anchor sample. In the unsupervised setting, this knowledge has
to come from the dataset of inputs itself. Section IV-B describes
how channel triplets are extracted from such a dataset.

IV. EXPERIMENTS

A. DeepMIMO channels

To assess the performance of the proposed method, we rely
on synthetic data generated from the DeepMIMO “O1” outdoor
ray-tracing scenario [20]. A total of N = 5910 channels
are generated and their transmit locations are geographically
distributed along a path representing the route of a pedestrian
(Fig. 3). The pedestrian starts their journey at the lower
rightmost point of the path and navigates counterclockwise. The
pedestrian walks at a speed of v = 1.4 m/s. The sampling rate
fs is set at 7 samples/s which means that consecutive samples
are separated, on average, by 1.4/7 = 20 cm along the path.
In addition, mild noise is added perpendicularly to the direction

of travel to better emulate the walking of a real person that
would not follow a perfectly straight line.

A single BS (BS 16 in the original scenario) equipped with a
UPA of Nr = 64 half-wavelength spaced antennas collects the
uplink channels at a central frequency of fc = 3.5 GHz, with
S = 16 evenly spaced subcarriers spanning a band of 20 MHz.
The resulting complex channels are of dimension M = 1024.

B. Triplet dataset construction
Special care should be taken when constructing the triplet

dataset as it is a critical component of the model. In the
unsupervised setting, mining close and far examples w.r.t each
anchor sample can be challenging in the absence of meaningful
information to guide the process. However, the time-correlated
nature of channel observations can be exploited. In [10], a
timestamp-based approach is used for extracting close and
far samples for each anchor sample. Indeed, each channel
observation is accompanied by a timestamp corresponding to
the exact moment at which it was collected by the BS. It is
then legitimate to consider two observations close in time to
correspond, with high probability, to transmit locations spatially
close to each other. An inner temporal threshold Tc can then be
set to define an interval around the anchor sample’s timestamp;
close samples lie inside the interval and far samples outside of
it. In addition, an outer temporal threshold Tf can be defined
to set the limits of the interval inside of which far samples lie.

The DeepMIMO dataset not providing timestamps, we
rely on both the sampling rate and the temporal thresholds
to deduce a threshold expressed in terms of the number of
preceding and following samples w.r.t. the anchor sample. The
inner and outer thresholds are expressed as Sc = Tc × fs and
Sf = Tf × fs respectively. For example, with fs = 7 samples/s
and Tc = 100 s, Sc amounts to 700 samples, meaning that the
700 preceding samples and the 700 following ones, distributed
over a total distance of 2 × v × Tc = 280 m, are considered
close samples for the triplet construction. The same procedure
is used to determine valid far candidates.

Knowing that samples are indexed in the order that their
corresponding locations appear on the path, a single triplet
(i, j, k), where i, j and k are the indices of the anchor
sample, the close sample and the far sample respectively, is
constructed so that i ∈ [0, N − 1], j ∼ U[i−Sc,i[∪]i,i+Sc] and
k ∼ U[i−Sf ,i−Sc[∪]i+Sc,i+Sf ].

Note that we can generate multiple triplets for each anchor
sample simply by sampling different close and far samples,
allowing us to greatly expend the dataset with no added cost.

C. Performance metrics
D. Results

The evaluation of the method is done based on the contribution
of three aspects: initialization, structure and training. An
experiment is conducted for each aspect. The base model consists
of the hybrid triplet network introduced in sections III-B and
III-C. The matrix D is initialized using a subset of Ninit = 100
channel observations randomly sampled from {hi}Ni=1. The
matrix Z is computed using Isomap set to keep 5 neighbors per
sample. The hard thresholding nonlinearity HTk is set to pick
the k = 5 largest elements. The thresholds are set to Tc = 100
s and Tf = 290 s, and 5 triplets are generated for each column



Fig. 3: Locations corresponding to a triplet’s close (green) and far
(red) candidates. The anchor location is where the user is placed.

in D. The margin parameter in the triplet loss is set to m = 1.
All models are trained on 70% of the dataset for 30 epochs.
Performance of the base model in particular is evaluated over 100
runs with different columns in D each time, as we have observed
results of high variance compared to the other configurations. The
evaluation is done on the 30% unseen samples. This is in contrast
to previous work where performance is evaluated on training data.

First, the base model is compared to a model with the same
structure with the difference that the weight matrices are ran-
domly initialized using the well-known Xavier initialization [21].
Fig. 4 shows the performance of both models in terms of classical
dimensionality reduction metrics, namely trustworthiness (TW)
and continuity (CT) (see [12] and references therein for a formal
definition). We observe that the smartly initialized model, on
average, achieves performance levels comparable to those of the
randomly initialized one. However, results vary highly between
runs, especially when it comes to TW. This means that choosing
the right combination of columns to keep in D is critical and
is something to be explored in future work. It is interesting
to note that at K = 5%, the CT score begins to degrade for
both models. This behavior has to be linked to the thresholds
Sc and Sf imposed during the triplet selection process.

Next, the base model is compared to an MLP composed of
6 hidden layers of sizes 1024, 512, 256, 128, 64 and 2 (output).
All layers but the last one are followed by a ReLU nonlinearity.
Fig. 4 shows that the base model performs much better both in
terms of TW and CT. Another advantage that the base model has
over the MLP is the low number of parameters. The MLP has
2 793 600 trainable parameters while the hybrid model only has
409 800 parameters. Therefore, the proposed structure is suitable
for applications where computing power and time constraints
are critical, which is often the case in wireless communication
systems. Indeed, this model may be considered for computing
channel charts on the fly to be used by subsequent tasks (e.g.
handover). An additional advantage of using light models
such as the one presented in this paper is the ability to train
the network on the fly (or online) on the continuous stream
of collected channel observations to adapt to the changing
propagation environment. This aspect is yet to be explored.

Finally, the base model’s performance after training is
compared to its performance before training. It is clear that
the training plays a significant role in improving the results
for both TW and CT. Interestingly, the figure clearly shows that
CT’s variance in particular is reduced after training. Another
important observation in favor of the smartly initialized model
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Fig. 4: Comparison of the models in terms of TW and CT. Regard-
ing the smartly initialized model, the lines represent the means
over 100 runs, and the shaded regions represent the one-standard
deviation bounds. Note that the lines of the smartly initialized
model after training and the randomly initialized one overlap.

is that its untrained version still performs better than the trained
MLP. In addition, this untrained model naturally performs better
than its untrained randomly initialized equivalent (not shown on
the figures, near 0.5 for both TW and CT), meaning that less
training is required to achieve a desired level of performance
when the model is smartly initialized.

Fig. 5 shows the learned channel charts of the different
models compared to the real physical locations on the path that
the UE follows. Colors were added for better understanding
of the charts. Although channel chart visualizations are subject
to personal interpretation, we can nonetheless observe that
local neighborhoods are more or less preserved depending on
the model. For example, we observe that the chart learned by
the smartly initialized model better preserves the structure of
long segments of the path (blue, green, orange, brown and pink
points) while points belonging to short segments are more easily
mixed with the other points (purple, olive and red points).

V. CONCLUSION AND PERSPECTIVES

In this paper, a triplet hybrid network was proposed for
the task of channel charting with the aim of reducing the
computation cost, hereby allowing for on-the-fly computation
and update in portable devices. The model benefits from smart
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Fig. 5: Channel charts of the different models compared to the ground-truth locations.

initialization using a small set of channel observations, an
adapted distance measure and a manifold learning algorithm
like Isomap. Training the network using the triplet loss further
improves performance. Furthermore, the model was shown to
require fewer parameters compared to a classical MLP.

The results are encouraging and show great potential for im-
provement in future work. First, initialization could be improved
by judiciously choosing the channel vectors to keep in the initial
subset. Second, the database could be virtually augmented at
no cost by constructing multiple triplets for each anchor sample
by sampling different close and far samples. However, not all
triplets are created equal, and some are more meaningful than
others (e.g. ones containing hard-negative samples). Finding a
way of selecting the optimal triplets for each sample could help
with the training. Finally, extensive hyperparameter tuning could
help discover a better configuration of the model.
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