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Ergodic control of a heterogeneous population and application to
electricity pricing

Quentin Jacquet, Wim van Ackooij, Clémence Alasseur and Stéphane Gaubert

Abstract— We consider a control problem for a heterogeneous
population composed of customers able to switch at any time
between different contracts, depending not only on the tariff
conditions but also on the characteristics of each individual.
A provider aims to maximize an average gain per time unit,
supposing that the population is of infinite size. This leads to
an ergodic control problem for a “mean-field” MDP in which
the state space is a product of simplices, and the population
evolves according to a controlled linear dynamics. By exploiting
contraction properties of the dynamics in Hilbert’s projective
metric, we show that the ergodic eigenproblem admits a
solution. This allows us to obtain optimal strategies, and to
quantify the gap between steady-state strategies and optimal
ones. We illustrate this approach on examples from electricity
pricing, and show in particular that the optimal policies may be
cyclic –alternating between discount and profit taking stages.

I. INTRODUCTION
A. Motivation and Context

Most OECD1 members have engaged a reform of their
retail electricity markets. Historical providers are now fac-
ing competition with new entrants. Opening up markets to
competition aims to improve their efficiency and to lower the
prices for consumers, proposing a wider choice of offers.

In theory, consumers are often supposed to be fully
rational, and their reactions to price to be instantaneous.
However, many studies highlight that switching costs and
limited awareness conjointly lead to inertia in retail elec-
tricity market, which hinders efficient choices, see [1, 2,
3]. Inertia in imperfect markets impacts the decision of the
providers and modifies their pricing strategies. Then, what is
the optimal tariff strategy for a company ? In general, two
opposing forces arise: a harvesting motive and a incentive
motive. Either the company favors immediate rewards by
taking advantage of the static market power, either the firm
proposes attractive offers to increase its market share and
secure greater harvest in the future [4]. Studies also tend to
show the importance of promotions in the pricing behaviors
of firms, see [5, 6]. In particular, empirical analyses show
how the depth and frequency of promotions are linked with
the level of inertia.

B. Contributions
We consider a population of customers, that have different

types (consumption profiles). Each customer chooses be-
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tween several energy contracts, taking into account the price
offers of a provider, who aims at optimizing a mean reward
per time unit. This is represented by an ergodic control
problem, in which the state –the population– belongs to a
product of simplices. We suppose that the population evolves
according to the Fokker-Planck equation of a controlled
Markov chain. In this work, we directly study the “mean-
field” model where the population is supposed to be of
infinite size. This choice is motivated by our application
where the population is in fact the whole set of French
households (around 30 millions), leading to untractable
model without such mean-field hypothesis. Our first main
result, Theorem 2.2, shows that the ergodic eigenproblem
does admit a solution. This entails that the value of the
ergodic control problem is independent of the initial state,
and this also allows us to determine optimal stationary
strategies. Theorem 2.2 requires a primitivity assumption on
the semigroup of transition matrices; it applies in particular
to positive transition matrices, such as the ones arising from
logit based models. The proof relies on contraction properties
of the dynamics in Hilbert’s projective metric, which allow
us to establish compactness estimates which guarantee the
existence of a solution.

We then study stationary pricing strategies. Owing to the
contraction properties of the dynamics, these are such that the
population distribution converges to a stationary state. Then,
we refine a result from [7], providing a bound on the loss of
optimality arising from the restriction to stationary pricing
strategy. We define a family of Lagrangian functions, whose
duality gap provides an explicit bound on the optimality
loss, see Proposition 3.3. In particular, a zero duality gap
guarantees that stationary pricing policies are optimal.

Finally, we apply these results to a problem of electricity
pricing, inspired by a real case study (French contracts). An
essential feature of this model is to take into account the
inertia of customers, i.e., their tendency to keep their current
contract even if it is not the best offer. This is represented
by a logit-based stochastic transition model with switching
costs. Theorem 4.1 provides a closed-form formula for the
stationary distribution. We present numerical tests on exam-
ples of dimension 2 and 4. These reveal the emergence of
optimal cyclic policies for large switching costs, recovering
the empirical notion of “promotions” of [8] and [9].

C. Related works

As mentioned above, several studies brought to light
complex phenomena that emerge when considering pricing
on imperfect markets with inertia. However, this dynamic
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pricing problem has been theoretically studied only recently:
Pavlidis and Ellickson [9] focus on the discounted infinite
horizon pricing problem, and numerically solved it in small
dimension. They directly suppose a continuum of customers
in each segment of the (heterogeneous) population, leading to
a “mean-field” system. In the context of discounted horizon,
and in absence of common-noise, the derivation of this
model as a limit of a large finite population is achieved
in [10]. In particular, Gast and Gaujal provide guarantees
on the speed of convergence of order 1

√
N . Motte and

Pham [11] generalize the results in the presence of common-
noise. In [12], Bauerle focuses on a different criteria: the
average long-term reward. This criteria has been widely
studied in control processes, but much less in the mean-field
context. Biswas studied mean-field games in discrete time,
and proved that, under particular conditions, the optimum is
characterized by an ergodic eigenproblem [13].

In contrast, the ergodic eigenproblem studied here is of
a deterministic nature, more degenerate than its stochastic
analogue studied in the context of average cost Markov De-
cision Processes. In particular, the Doeblin-type conditions
generally used in this setting to obtain the existence of an
eigenvector [14, Section 5.5] do not apply. In fact, we end up
with a special case of the “max-plus” or “tropical” infinite
dimensional spectral problem [15], or of the eigenproblem
studied in discrete weak-KAM and Aubry Mather theory [16,
17]. Spectral theory results usually require the Bellman
operator to be compact, see [15, 16]. This holds under
demanding “controllability” conditions, not satisfied in our
setting. Alternative approaches rely on quasi-compactness
techniques [18, 19], which also do not apply to our problem.
Here, we exploit the contraction properties of the dynamics,
to obtain the existence of the eigenvector. This is partly
inspired by a previous work of Calvez, Gabriel and the fourth
author [20], in which contraction techniques in Hilbert metric
were applied to a different problem (growth maximization).
Also, [20] deals with a PDE rather than discrete setting.
Our result should also be compared with [13, Th. 3.1], in
which different conditions, based on geometric ergodicity
are used to guarantee the existence of an eigenvector; these
conditions do not apply to our case, in fact, they entail that
the eigenvector is unique up to an additive constant, and this
is generally not true in our model.

This paper is organized as follows. In Section II, we
first define the model and prove the results on the ergodic
eigenproblem. We study steady-states and their optimality
in Section III, and illustrate the electricity application in
Section IV. The proofs of the main results are given in the
appendix.

II. ERGODIC CONTROL
A. Notations

We denote by ∆n the simplex of Rn, and by 〈·, ·〉n
the scalar product on Rn. We denote by sp(f) :=
maxx∈E f(x) − minx∈E f(x) the span of the function f :
E → R. We say that a matrix P is positive, and we write
P � 0, if all the coefficients of P are positive. The set

of convex functions with finite real values on a space K is
denoted by VexK, and the convex hull of a set K is denoted
by vexK. Moreover, the set of Lipschitz function on E is
denoted by Lip(E), and the relative interior of a set E is
denoted by relint(E).

The Hilbert projective metric dH on Rn>0 is defined as
dH(u, v) = max1≤i,j≤n log(uivi

vj
uj

). see [21]. It is such that
dH(u, v) = 0 iff the vectors u and v are proportional, hence,
the name “projective”. For a set E ⊆ Rn>0, we denote by
DiamH(E) := maxu,v∈E dH(u, v) the diameter of the set
E, and for a matrix P ∈ Rn×n we denote by DiamH(P ) :=
max1≤i,j≤n dH(Pi, Pj) the diameter of P , where Pi denotes
the ith row of P . This can be seen to coincide with the
diameter, in Hilbert’s projective metric, of the image of the
set Rn>0 by the transpose matrix of P .

Finally, for a sequence (at)t≥1, we respectively denote by
as:t, and a:t the subsequences (aτ )s≤τ≤t and (aτ )1≤τ≤t.

B. Model

We consider a large population model composed of K
clusters of indistinguishable individuals. Each cluster k ∈
[K] := {1, . . . ,K} represents a proportion ρk of the overall
population, and is supposed to react independently from the
other clusters.

Let X and A be respectively the state and action spaces.
We suppose in the sequel that X is finite and w.l.o.g.
X = {1, 2, . . . , N}. We suppose also that A is a compact
set (in Section IV, we will consider a subspace of RN ).

For any time t ≥ 0 and any cluster k, we denote by µkt ∈
∆N the distribution of the population of cluster k over [N ].

At every time t ≥ 1, a controller chooses an action at ∈ A.
She obtains a reward r : A×∆K

N → R defined as

r : (at, µt) 7→
∑
k∈[K]

ρk
〈
θk(at), µ

k
t

〉
N

, (1)

where θkn(a) is the unitary reward for the controller coming
from an individual of cluster k in state n after executing
action a.

We suppose that the dynamics of the system are determin-
istic, linear, with a Markov transition matrix. We then denote
by P k(a) the transition matrix for cluster k such that

µkt = µkt−1P
k(at) . (2)

The (deterministic) semi-flow φ of the state µ is then defined
by

φt(a:t, µ0) := µt .

We also denote by Π the set of policies. Then, for a given
policy π = {πt}t≥1, the action taken by the controller at
time t is at = πt(µt).

In the sequel, the following assumptions will be used:
(A1) The transition matrix P k(·) is a continuous function

of the action for any k.
(A2) There exists L ∈ N such that for any sequence of

actions a:L ∈ AL and cluster k,
∏
l∈[L] P

k(ai)� 0.
Recall that in Perron-Frobenius theory, a nonnegative matrix
M is said to be primitive if there is an index l such



that M l � 0, see [22, Ch. 2]. Assumption (A2) holds in
particular under the following elementary condition:
(A2’) For any action a ∈ A, P (a)� 0.
(A3) There exists Mr such that, |θkn(a)| ≤ Mr for every

k ∈ [K], n ∈ [N ] and a ∈ A.
Condition (A2) has appeared in [23] in the context of semi-
group theory, it can be checked algorithmically by reduction
to a problem of decision for finite semigroups, see Rk. 3.8,
ibid. Observe that (A3) is very reasonable in practice.

We equip the product of simplices ∆K
N with the norm

‖µ‖ :=
∑K
k=1 ‖µk‖1. It follows from (A3) that for any action

a, the total reward function µ 7→ r(a, µ) is a Mr-Lipschitz
real-valued function from (∆K

N , ‖ · ‖) to (R, | · |).

C. Optimality criteria

We suppose that the controller aims to maximize her
average long-term reward, i.e.,

g∗(µ0) = sup
π∈Π

lim inf
T→∞

1

T

T∑
t=1

r(πt(µt), µt) . (3)

Starting from µ0, the population distribution will evolve in
∆K
N according to a policy π ∈ Π. Nonetheless, with the

assumptions we made, we next show that the dynamics
effectively evolves on a particular subset.

Let QkL(a:L) :=
∏
l∈[L] P

k(al) be the transition matrix
over L time steps, and DL be defined as DL =×k∈[K]

DkL
where

DkL = vex
(
{µkQkL(a:L) | a:L ∈ AL, µk ∈ ∆N}

)
.

Lemma 2.1: Let (A1)-(A2) hold. Then DL is a compact
set included in the relative interior of ∆K

N . Moreover, for
t ≥ L, µt ∈ DL for any policy π ∈ Π.
We recall that the relative interior of the simplex, equipped
with Hilbert’s projective metric, is a complete metric space,
on which the Hilbert’s metric topology is the same as the
Euclidean topology. Hence, under (A1) and (A2), (DL, dH)
is a complete metric space. We also recall Birkhoff theorem,
which shows that every matrix Q � 0 is a contraction in
Hilbert’s projective metric, i.e.,

∀µ, ν ∈ (RN>0), dH(µQ, νQ) ≤ κ(Q)dH(µ, ν) , (4)

where
κ(Q) := tanh (DiamH(Q) / 4) < 1 ,

see [21, Appendix A]. This property applies to the transition
matrix P k(a) under (A2’), or to QkL under (A2).

D. Ergodic eigenproblem

For any real-valued function v : ∆K
N → R, the Bellman

operator B is defined as

B v (µ) = max
a∈A
{r(a, µ) + v(µP (a))} .

A first observation is that µ 7→ (B v)(µ) is convex for any
real-valued convex function v. Indeed, the transition is linear
in µ, as well as the reward; therefore, for any a ∈ A, the

expression under the maximum is convex in µ, and since
the maximization preserves the convexity, the observation
is established. For a feedback policy π, we also define Bπ
the Kolmogorov operator such that Bπ v (µ) = r(π(µ), µ) +
v(µP (π(µ))).

The ergodic control problem for a Markov decision pro-
cess with Bellman operator B, on a compact state space X ,
is classically studied by means of the ergodic eigenproblem

g1X + h = Bh , (5)

in which h is a bounded function on the state space, called
the bias or potential, and g is a real constant. If the ergodic
eigenproblem is solvable, then, g yields the optimal mean
payoff per time unit, and it is independent of the initial state.
Moreover, an optimal policy can be obtained by selecting
maximizing actions in the expression of Bh. When the state
and action spaces are finite, the ergodic eigenproblem is
well understood, in particular, a solution does exist if every
policy yields a unichain transition matrix (i.e., a matrix with a
unique final class), see e.g. [24]. In the case of in infinite state
space, the existence of a solution to the ergodic eigenproblem
is a more difficult question [15, 16, 18, 19]. This is especially
the case for deterministic Markov decision processes, owing
to the lack of regularizing effect of stochastic transitions.
Here, we exploit the contraction properties of the dynamics,
with respect to Hilbert’s projective metric, together with the
vanishing discount approach, to show the following result.

Theorem 2.2: Assume that (A1)-(A3) hold. Then, the er-
godic eigenproblem

g 1DL +h = B h (6)

admits a solution h∗ ∈ Lip(DL) ∩Vex(DL) and g∗ ∈ R.
Proposition 2.3: For any solution (g∗, h∗) of (6), g∗ sat-

isfies (3), and a maximizer a∗(·) ∈ arg maxB h∗ defines an
optimal stationary policy for the average gain problem.
In particular, the constant g∗ in (6) is unique, and it coincides
with the optimal average long-term reward, for all choices
of the initial state µ0.

III. STEADY-STATE OPTIMALITY
A. Definition

The solution of dynamic programming problems, includ-
ing the ergodic eigenproblem (6), is subject to the “curse
of dimensionality” . Therefore, it is of interest to investigate
cases in which the dynamic problem reduces to a static one.
In fact, in some cases the optimal stationary policy may be a
simple policy that attracts the system to a steady-state (“get
there, stay there” – [7]). We next formalize this property:

Definition 3.1: Let S = {(a, µ) ∈ A×∆K
N |µ = µP (a)}

be the action-space domain of stationary probabilities. Then,
µ ∈ ∆K

N is a steady-state if there exists a ∈ A such that
(a, µ) ∈ S.

If (A2) holds, then for any cluster k and any price a ∈ A,
the Markov chain induced by the transition matrix P k(a)
has a unique stationary distribution. We denote by µ(·) :
A 7→ ∆K

N the mapping sending an action to the stationary
distribution it induces.



Definition 3.2: The optimal steady-state gain g is defined
as

g := max
(a,µ)∈S

r(a, µ) . (7)

If (A2) holds, (7) is in general a static nonconvex maximiza-
tion problem over the actions. Nonetheless, we can expect
to solve it efficiently in the case where µ(·) is analytically
known, see e.g. Section IV. Maximizers a are called optimal
steady-state price, they correspond to a steady-state distribu-
tion µ(a).

B. Optimality gap

In this section we introduce a class of Lagrangian func-
tions designed so that each dual problem turns out to be an
upper bound of g∗. This extends the result of [7] involving
usual Lagrangian functions. We use here a more general
Lagrangian, depending on the choice of a non-linear function
ϕ. This leads to much tighter bounds, and allows us to prove
the optimality of a steady-state strategy whenever a zero
duality gap is obtained. Let Φ be defined as

Φ = {ϕ : ∆K
N → ∆K

N injective and bounded} .
For a given function ϕ ∈ Φ, we define the Lagrangian
function L(ϕ) : (A,∆K

N ,R
KN )→ R by

L(ϕ)(a, µ, λ) := r(a, µP (a))+〈λ, ϕ (µP (a))− ϕ(µ)〉KN .

As a direct consequence of the injectivity of ϕ, we obtain
that for any given ϕ ∈ Φ,

g = max
(a,µ)∈A×∆K

N

inf
λ∈RKN

L(ϕ)(a, µ, λ) .

We also define the dual problem g(ϕ) as

g(ϕ) := inf
λ∈RKN

max
(a,µ)∈A×∆K

N

L(ϕ)(a, µ, λ) . (8)

Proposition 3.3: With (g∗, h∗) solution of (6) and g de-
fined in (7),

g ≤ g∗ ≤ g(ϕ), ∀ϕ ∈ Φ .
The proof extends the arguments in [7, Remark 5.1] to
nonlinear functions ϕ ∈ Φ.

We define the duality gap δL(ϕ) as

δL(ϕ) := g(ϕ) − g.
As an immediate consequence of Proposition 3.3, if there
exists ϕ ∈ Φ such that δL(ϕ) = 0, then g∗ = g, and
the dynamic program 3 reduces to the static optimization
program (7). Depending on the problem parameters, the
duality gap may, or may not, vanish, see Figure 1.

IV. APPLICATION TO ELECTRICITY PRICING

We suppose that an electricity provider has N−1 different
types of offers and that a study has distinguished beforehand
K customer segments, assuming that customers of a given
segment have approximately the same behavior. Given a
segment k and an offer n ∈ [N−1], the reservation price
Rkn is the maximum price that customers of this segment
are willing to spend on n, and Ekn is the (fixed) quantity a

customer of segment k will purchase if he chooses n. The
utility for these customers is linear and is defined as

Ukn(a) := Rkn − Eknan .

where an is the price for one unit of product n. The action
space is then a compact subset of RN−1.

To model the competition between the provider and the
other providers of the market, consumers have an alternative
option (state of index N ). We suppose that this alternative
offer is fixed over time (for example a regulated contract).
Then, under this assumption, it can be modelized w.l.o.g. by
a null utility for each cluster (UkN = 0).

If a customer of segment k chooses the contract n < N
at price an, then the provider receives Eknan from the
electricity consumption of the customer and has an induced
cost of Ckn. Note that the cost should depend on the quantity
Ekn, but as it is supposed to be a parameter, we omit this
dependency. The (linear) reward for the provider is then

θkn(a) = Eknan − Ckn, n < N, θkN = 0 .

We suppose that the transition probability follows a logit
response, see e.g. [9]:

[P k(a)]n,m =
eβ[Ukm(a)+γkn 1m=n]∑
l∈[N ] e

β[Ukl(a)+γkn 1l=n]
, (9)

where the parameter γkn is the cost for segment k to switch
from contract n to another one, and β is the intensity of the
choice (it can represent a “rationality parameter”). One can
easily check that (A1)-(A3) are satisfied.

In the no-switching-cost case (γ = 0), we say that the
customers response is instantaneous, and corresponds to the
classical logit distribution, see e.g. [25]:

µknL = eβU
kn(a) /

∑
l∈[N ]

eβU
kl(a) . (10)

The application scope of the transition model we defined
in (9) is broader than electricity pricing. For this specific
kernel, we derive a closed-form expression for the stationary
distributions:

Theorem 4.1: Given a constant action a, the distribution
µkt converges to µk(a), defined as

µkn(a) =
ηkn(a)µknL (a)∑
l∈[N ] η

kl(a)µklL (a)
. (11)

where ηkn(a) := 1 +
[
eβγ

kn − 1
]
µknL (a), and µL is defined

in (10).
The proof makes explicit the solution of µkP k(a) = µk. The
stationary distribution is therefore fully characterized by the
instantaneous response.

As a consequence, the optimal steady-state can be found
by solving

g = max
a∈A

r(a, µ(a)) . (12)



V. NUMERICAL RESULTS

A. Relative Value Iteration with Krasnoselskii-Mann damp-
ing

Relative Value Iteration (RVI) has been extensively studied
to solve unichain finite-state MDP [24, 26]. Simplicial state-
spaces appear in particular in the definition of belief state for
partially observable MDP [27]. For such continuous state-
spaces, a discretization must be done as a prerequisite to
RVI algorithm. Here, we define a regular grid Σ of the
simplex ∆K

N , and BΣ the Bellman Operator with a linear
point approximation on the grid Σ, achieved by a Freudenthal
triangulation [28]. With this simple framework, we have the
following property:

Proposition 5.1 ([27], Thm 12): For any v ∈ Vex(∆K
N ),

B v ≤ BΣ v .
As the bias function ĥ is convex at each iteration, the solution
return by Algorithm 1 provides a gain which is an upper
bound of the optimal gain g∗.

Algorithm 1 RVI with Mann-type iterates

Require: Grid Σ, Bellman operator BΣ, initial function ĥ0

1: Initialize ĥ = ĥ0, ĥ′(µ) = BΣ ĥ
2: while sp(ĥ′ − ĥ) > ε do
3: ĥ← ( ĥ′ −max{ĥ′}e+ ĥ )/2
4: ĥ′(µ̂)← (BΣ ĥ)(µ̂) for all µ̂ ∈ Σ
5: end while
6: ĝ ← ( max(ĥ′ − ĥ) + min(ĥ′ − ĥ) )/2
7: return ĝ, ĥ

In Algorithm 1, we use, following [29], a mixture of
the classical relative value iteration algorithm [24] with a
Krasnoselskii-Mann damping. As detailed in [29] (Th. 9 and
Coro 13), it follows from a theorem of Ishikawa that the
sequence of bias function ĥ does converge, and it follows
from a theorem of Baillon and Bruck that ĝ provides an ε
approximation of the optimal average cost g∗ after O(1/ε2)
iterations.

B. Switching cost effect

The numerical results were obtained on a laptop i7-
1065G7 CPU@1.30GHz. We solved the problem up to di-
mension 4 (2 provider offers, 2 clusters) with high precision
(50 points for each dimension, 1.6 million discretization
points, precision ε = 10−5) in 9 hours (parallelized on 8
threads). In order to visualize qualitative results, we focus
on the minimal non-trivial example (1 offer and 1 cluster).
Note that the conclusions we draw from this example remain
valid for the case 2 offers / 2 clusters. We use data of realistic
orders of magnitude: we consider a population that checks
monthly the market offers and consumes E = 500kWh
each month. The provider competes with a regulated offer of
0.17C/kWh (inducing a reservation price of 85C), and has
a cost of 0.13C/kWh. We suppose that the prices are freely
chosen by the provider in the range 0.08-0.22C/kWh. The
intensity parameter β is fixed to 0.1.

Numerical experiments in Fig. 1-2 emphasize the role of
the switching cost. There exists a threshold – around γ =
22 in Fig. 1 – above which the steady-state policy become
dominated by a cyclic strategy, where a period of promotion
is periodically applied to recover a sufficient market share
(period of 7 time steps on this example, see Fig. 2b and
Fig. 2d). Below this threshold, the optimal policy has an
attractor point which is exactly the best steady-state price,
see Fig. 2c. The finite horizon policy is therefore a “turnpike”
like strategy [30]: we rapidly converge to the steady-state
and diverge at the end of the horizon, see Fig. 2a. Fig. 1
highlights that the adding of a convex function ϕ strengthens
the upper bound, so that the optimality of the steady-state
strategy is guaranteed up to γ around 19.
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Fig. 1: Optimal gain g∗ for a range of switching costs, along with
lower bound g and upper bounds g(ϕ), ϕ(·) = (·)1,2,3,4.

VI. CONCLUSION

We developed an ergodic control model to represent the
evolution of a large population of customers, able to actualize
their choices at any time. Using qualitative properties of
the population dynamics (contraction in Hilbert’s projective
metric), we showed the existence of a solution to the ergodic
eigenproblem, which we applied to a problem of electricity
pricing. A numerical study reveals the existence of optimal
cyclic promotion mechanisms, that have already been ob-
served in economics. We also quantified the suboptimality
of constant-price strategy in terms of a specific duality gap.

The present model has connections with partially observ-
able MDPs, in which the state space is also a simplex. We
plan to explore such connections in future work. Besides,
the convergence of the solution of the discretized ergodic
equation (associated to the grid Σ) to the continuous solution
will also be studied.
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(a) Optimal finite horizon trajectory (provider action and customer
distribution) for low switching cost.
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(b) Optimal finite horizon trajectory (provider action and customer
distribution) for high switching cost.
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(c) Optimal decision for the long-run average reward (provider action
and next customer distribution) for low switching cost. Graphical

iteration is drawn in dotted lines.
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(d) Optimal decision for the long-run average reward (provider action
and next customer distribution) for high switching cost. Graphical

iteration is drawn in dotted lines.

Fig. 2: Numerical results for both the finite horizon and long-term average reward criteria.
Low (resp. high) switching cost stands for γ = 20 (resp. 25).
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[14] Onésimo Hernández-Lerma and Jean Bernard Lasserre.
Discrete-Time Markov Control Processes. Springer New
York, 1996.

[15] Vassili N. Kolokoltsov and Victor P. Maslov. Idempotent
analysis and its applications. Vol. 401. Mathematics and
its Applications. Dordrecht: Kluwer Academic Publishers
Group, 1997, pp. xii+305.

https://arxiv.org/abs/1912.07883
https://arxiv.org/abs/2106.08755
https://arxiv.org/abs/1510.08968
https://arxiv.org/abs/1510.08968


[16] Albert Fathi. “The weak-KAM theorem in Lagrangian dy-
namics”. Book to appear. 2022.

[17] Eduardo Garibaldi and Philippe Thieullen. “Minimizing or-
bits in the discrete Aubry–Mather model”. In: Nonlinearity
24 (2011), pp. 563–611.

[18] John Mallet-Paret and Robert Nussbaum. “Eigenvalues for a
Class of Homogeneous Cone Maps Arising from Max-Plus
Operators”. In: Discrete and Continuous Dynamical Systems
8.3 (2002), pp. 519–562.
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VIII. APPENDIX
A. Proof materials

Lemma 8.1: Let D ⊂ relint(∆n), n ∈ N and x, y ∈ D.
Then,

n ‖x− y‖∞ ≤ dH(x, y)Υ(DiamH(D)) (13)

where Υ(d) = 1
de
d(ed − 1).

Proof: We use the results in [31]: Lemma 2.3 shows
that for any vectors u, x, y ∈ D such that there exist a, b > 0
satisfying ax ≤ u ≤ bx and ay ≤ u ≤ by, we have the
following inequality:

‖x− y‖u ≤
(
edT (x,y) − 1

)
emax(dT (x,u),dT (y,u)) ,

where dT denotes the Thompson distance, and ‖z‖u =
inf{a > 0 | −au ≤ z ≤ au}. In particular, by choosing u =
(1/n, . . . 1/n) as the center of the simplex, ‖·‖u = n ‖·‖∞.
Moreover, dT (·, ·) ≤ dH(·, ·) on relint(∆K

N ), see [31, Eq.
2.4]. Therefore,

n ‖x− y‖∞ ≤
(
edH(x,y) − 1

)
emax(dH(x,u),dH(y,u))

≤
(
edH(x,y) − 1

)
eDiamH(D) .

We easily conclude using the fact that f : x 7→ ex − 1 is a
convex function, and so for all 0 ≤ x ≤ x̄, f(x) ≤ x ex̄−1

x̄ .

B. Proof of Lemma 2.1

The set {µkQkL(a:L) | (a:L, µ
k) ∈ AL×∆N} is compact,

since (a:L, µ
k) 7→ µkQkL(a:L) is continuous and ∆N and

A are both compact. Therefore, DL is compact as it is the
convex hull of a compact set in finite dimension. Then,
the positiveness of QkL implies that DkL ⊂ relint(∆N ).
Moreover, by property of the semiflow, φt(a:t, µ0) =
φL (at−L+1:t, φt−L(a:t−L, µ0)) ∈ DL.

C. Proof of Theorem 2.2

We first make the proof under the stronger assump-
tion (A2’), and then deduce the general result.

Let V ∗α be the infinite horizon discounted objective, de-
fined as

V ∗α (µ0) = sup
π∈Π

∑
t≥1

αt−1r(πt(µt), µt) ,

where α is the discount factor and µ0 is the initial distribu-
tion.

We first prove that (V ∗α )α∈(0,1) is equi-Lipschitz on D1

(Lipschitz of a constant independent of α) : let a be the
sequence of actions derived from an ε-optimal policy π and
initial condition µ0 ∈ D1. Then, for ν0 ∈ D1

V ∗α (µ0)− V ∗α (ν0) ≤
∑
t≥1

αt−1

[
r (at, φt(a:t, µ0))

− r (at, φt(a:t, ν0))

]
+ ε .

The total reward is (NMr)-Lipschitz for the infinite norm.
Therefore, using Lemma 8.1, µ 7→ r(a, µ) is Lipschitz
of constant MDr := 1

KMrΥ(DiamH(D1)) for the Hilbert
metric. Hence,

V ∗α (µ0)− V ∗α (ν0) ≤MDr
∑
t≥1

αt−1dH(φt(a:t, µ0), φt(a:t, ν0))

+ ε .

From the Birkhoff theorem, one can derive that
dH(µP (a), νP (a)) ≤ κ dH(µ, ν) for µ, ν ∈ D1, a ∈ A,
where κ = maxa∈A κ(P (a)) < 1. As a consequence,
dH(φt(a:t, µ0), φt(a:t, ν0)) ≤ κtdH(µ0, ν0) and

V ∗α (µ0)− V ∗α (ν0) ≤MDr
∑
t≥1

αt−1κtdH(µ0, ν0) + ε

≤ κMDr
1− ακdH(µ0, ν0) + ε ≤ κMDr

1− κdH(µ0, ν0) + ε .
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The value function V ∗α is therefore
(
κMD

r

1−κ

)
-equi-Lipschitz

for the Hilbert metric.
Let us define a reference distribution µ ∈ ∆K

N , g∗α =
(1 − α)V ∗α (µ), and h∗α = V ∗α − V ∗α (µ) 1D1 , then as V ∗α is
equi-Lipschitz on D1, h∗α is equi-bounded and equi-Lipschitz
on D1 (in particular equi-continuous). By the Arzelà-Ascoli
theorem, h∗α → h∗ ∈ C0(D1).

Finally, from the discounted reward approach, we get
B(αV ∗α ) = V ∗α , therefore

g∗α
1− α 1D1

+h∗α = B
(
αg∗α

1− α 1D1
+αh∗α

)
.

By the additive homogeneity property of the Bellman func-
tion, g∗α 1D1

+h∗α = B(αh∗α) . The fixed-point equation (6)
is then obtained by continuity of the Bellman operator B.

To conclude, h∗ is convex since V ∗α is convex and the
pointwise convergence preserves the convexity.

To deduce the general result with (A2), we define
• Ã := AL, α̃ := αL,
• φ̃τ (ã:τ , µ0) := µ0

∏
1≤t≤τ Q(ãt),

• r̃(a:L, µ) :=
∑
l∈[L] α

l−1r(al, φl(a:l, µ)),
• and B̃ : V 7→ maxã∈Ã{r̃(ã, µ) + V (ν) | ν = µQL(ã)}.

and observe that

V ∗α (µ0) =
∑
τ≥1

α̃τ−1r̃(ãτ , φ̃τ (ã:τ , µ0)) .

We have rescaled the time (τ instead of t) so that the
transition matrix between time τ and time τ + 1 is QL(ãτ ).
One τ -time step corresponds to L t-time steps. As the
transition QL(ã) is now positive, the proof is exactly the
same as before, in the τ -time space. We end up with the
existence of h̃ ∈ Lip(DL)∩Vex(DL) and g̃∗ ∈ R such that

h̃∗ + g̃∗ = B̃h̃∗ .
Defining g∗ = g̃∗/L, considering

h∗ = h̃∗ ∨
(
B h̃∗ − g∗ 1DL

)
∨
(

(B)2h̃∗ − 2g∗ 1DL

)
∨ . . . ∨

(
(B)L−1h̃∗ − (L− 1)g∗ 1DL

)
,

and using the fact that the Bellman operator B commutes
with the supremum operation, we get that (g∗, h∗) satisfy (6)
and h∗ ∈ Lip(DL) ∩Vex(DL).

D. Proof of Proposition 2.3
Let π ∈ Π be a policy. By definition, for every t, Bπt h∗ ≤

B h∗ = h∗ + g∗ 1DL . Therefore, iterating the Kolmogorov
operator, we obtain

(Bπ1 ◦ . . . ◦ Bπt)h∗ ≤ h∗ + tg∗ 1DL .

Let h∗ := minµ∈DL h
∗(µ) be the minimum of h∗. Then,

0DL ≤ h − h∗ 1DL , and so (Bπ1 ◦ . . . ◦ Bπt)(0DL) ≤ h∗ +
(tg∗ − h∗) 1DL . Finally,

lim inf
t→∞

1

t
(Bπ1 ◦ . . . ◦ Bπt)(0DL)(µ0) ≤ g∗ .

Any strategy has an average reward lower than g∗. As we
have proved that the bias function h∗ is continuous on DL, a
maximizer a∗(µ) can be found for any state µ, and so playing
the strategy a∗(µ) achieves the best possible average gain g∗.

E. Proof of Proposition 3.3

First, from the geometrical convergence the dynamic
(see Section VIII-D), the valid strategy consisting in execut-
ing action a each period of time induces an average reward
of g, regardless the initial distribution. Therefore, g ≤ g∗.

Then, for ε > 0, there exists λε such that for any (a, µ) ∈
A×∆k

N ,

r(a, µP (a)) + 〈λε, ϕ(µP (a))− ϕ(µ)〉KN ≤ g(ϕ) + ε .

We construct a sequence of decision a1, . . . , aT leading to
distribution µ1, . . . , µT . Then, at each period t,

r(at, µt) + 〈λε, ϕ(µt)− ϕ(µt−1)〉KN ≤ g(ϕ) + ε .

Therefore, we take the mean over t = 1, . . . , T to recover
the average reward criteria:

1

T

T∑
t=1

r(at, µt) +
1

T
〈λε, ϕ(µT )− ϕ(µ0)〉KN ≤ g(ϕ) + ε .

The second term converges to zero when T → ∞ as we
suppose that ϕ is bounded on the simplex. So,

lim inf
T→∞

1

T

T∑
t=1

r(at, µt) ≤ g(ϕ) + ε .

The latter inequality is valid for any ε > 0, and any sequence
of action (at)t∈N, so g∗ ≤ g(ϕ).

F. Proof of Theorem 4.1

In the proof, we forget the dependence on k and
a. The stationary probability is defined as ∀m ∈
[N ], µm [1− Pmm] =

∑
n 6=m µ

nPnm . We can then re-
place by the definition of the probabilities (9) to obtain

µm

[ ∑
l 6=m e

βUm∑
l e
β[U l+1l=m γm]

]
=
∑
n 6=m

µn
[

eβU
m∑

l e
β[U l+1l=n γn]

]
.

Defining µ̃n := µn∑
l e
β[Ul+1l=n γ

n]
, we obtain

∀m ∈ [N ], µ̃m
∑
l 6=m

eβU
l

= eβU
m ∑
l 6=m

µ̃l .

The solution µ̃n := λeβU
n

, n ∈ [N ] is then a valid solution,
and the constant λ is chosen so that

∑
l∈[N ] µ

l = 1:

µkn(a) = λeβU
kn(a)

∑
m∈[N ]

eβ[Ukn(a)+1m=n γ
kn]

λ−1 =
∑
n∈[N ]

eβU
kn(a)

∑
m∈[N ]

eβ[Ukm(a)+1m=n γ
kn]

(14)

Finally, ηkn =
∑
l e
β[Ukl+1l=n γ

kn]/
∑
l e
βUkl . We recover

the definition of µ (14).
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