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An Anisotropic 4D Filtering Approach
to Recover Brain Activation From
Paradigm-Free Functional MRI Data
Isa Costantini*, Rachid Deriche and Samuel Deslauriers-Gauthier

Inria, Université Côte d’Azur, Valbonne, France

Context: Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging

technique that provides an indirect view into brain activity via the blood oxygen level

dependent (BOLD) response. In particular, resting-state fMRI poses challenges to the

recovery of brain activity without prior knowledge on the experimental paradigm, as it

is the case for task fMRI. Conventional methods to infer brain activity from the fMRI

signals, for example, the general linear model (GLM), require the knowledge of the

experimental paradigm to define regressors and estimate the contribution of each voxel’s

time course to the task. To overcome this limitation, approaches to deconvolve the BOLD

response and recover the underlying neural activations without a priori information on

the task have been proposed. State-of-the-art techniques, and in particular the total

activation (TA), formulate the deconvolution as an optimization problem with decoupled

spatial and temporal regularization and an optimization strategy that alternates between

the constraints.

Approach: In this work, we propose a paradigm-free regularization algorithm

named Anisotropic 4D-fMRI (A4D-fMRI) that is applied on the 4D fMRI image, acting

simultaneously in the 3D space and 1D time dimensions. Based on the idea that

large image variations should be preserved as they occur during brain activations,

whereas small variations considered as noise should be removed, the A4D-fMRI

applies an anisotropic regularization, thus recovering the location and the duration of

brain activations.

Results: Using the experimental paradigm as ground truth, the A4D-fMRI is validated on

synthetic and real task-fMRI data from 51 subjects, and its performance is compared to

the TA. Results show higher correlations of the recovered time courses with the ground

truth compared to the TA and lower computational times. In addition, we show that

the A4D-fMRI recovers activity that agrees with the GLM, without requiring or using any

knowledge of the experimental paradigm.

Keywords: BOLD deconvolution, functional MRI, image regularization, paradigm free, resting-state, anisotropic

regularization
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1. INTRODUCTION

Functional MRI (fMRI) is a non-invasive imaging technique that
indirectly probes brain function by providing a measure of the
metabolic activity consequent to an increased neural activation.
Two experimental setups are commonly used to acquire fMRI
data, task-fMRI, and resting-state fMRI (rs-fMRI). In the former,
the subject is asked to follow an experimental paradigm, whereas
in the latter the subject is asked to rest in the scanner and not
do or think of anything in particular. Standard approaches for
the analyses of task-fMRI data are based on the well-known
general linear model (GLM) adapted by Friston and colleagues
in 1998 in the context of fMRI data analyses (Friston et al., 1998).
This approach requires prior knowledge of the task parameters
and timing of events, as well as assumptions about the neural
and hemodynamic responses. Therefore, the GLM can be used
only for task-fMRI experiments, where the expected stimulus
response is given by experimental paradigm. In contrast to task-
fMRI, where the focus is on the response to a specific stimulus,
rs-fMRI provides insight on brain function in the absence of
stimuli. It also allows us to map the brain activity of patients
whose condition does not allow them to perform tasks or follow
an experimental paradigm. Furthermore, there are also brain
activations that cannot be modeled and expected, such as seizures
in epileptic patients (Karahanoğlu et al., 2013). For these data,
which represent unpredictable brain activity, the GLM approach
is not suitable (Gusnard and Raichle, 2001).

Data-driven methods have been proposed to analyze
images obtained in resting-state, when no information about
the occurrence of the activation is available. They include
blind source separation approaches such as the independent
component analysis (ICA) (McKeown et al., 1998; Beckmann
and Smith, 2004; Calhoun and Adali, 2006), the principal
component analysis (PCA) (Andersen et al., 1999; Baumgartner
et al., 2000), the temporal clustering analysis (Liu et al., 2000;
Morgan et al., 2008), and clustering methods (Cordes et al., 2002;
Salvador et al., 2005; Golland et al., 2008; Lee et al., 2012). These
methods are of interest if the aim is to group voxels showing
the same spatial or temporal features but they cannot be used
if the goal is identifying activations at the voxel level. Indeed,

they do not consider including any hemodynamic effect. They

are also limited by the necessity of choosing a priori the number
of components or clusters and by their interpretation (Gaudes
et al., 2011).

To overcome these limitations, deconvolution approaches

have been developed to address the problem of studying and
uncovering brain activations hidden within fMRI time series
at the voxel level. fMRI deconvolution was introduced by
Glover in Glover (1999), who investigated the performance of
Wiener deconvolution for deblurring the fMRI response and
reduce image distortions. This approach resulted in smooth
recovered activation (Karahanoğlu et al., 2013) and required
an independent measurement of the noise spectral density
(Gitelman et al., 2003). Gitelman et al. (2003) developed
an approach based on linear deconvolution and modeled
the interplay between areas as effects of psycho-physiological
interactions. In addition, dynamical filter methods, such as

Kalman and Bayesian filtering, and local linearization filters
have been developed and applied to fMRI (Riera et al., 2004;
Friston et al., 2008; Havlicek et al., 2011). However, because
these approaches are based on non-linear models in continuous
time, they are limited by the high computational cost and
convenient only for the analysis of localized regions of interests
(ROIs) (Karahanoğlu et al., 2013). Other approaches make
spatial and/or temporal assumptions on the underlying signals,
thus adding priors in the optimization problems. In particular,
sparse regularization on the recovered activation maps was
exploited to force to zero the weights of regressors, which
did not contribute to the activation (Flandin and Penny,
2007; Smith and Fahrmeir, 2007; Harrison et al., 2008). L1-
norm regularization approaches have also been developed to
exploit sparse temporal features of the hidden neural activation.
This was done by means of the majorization–minimization
of a cost function to find an optimal solution to the inverse
problem (Hernandez-Garcia and Ulfarsson, 2011). Caballero
Gaudes et al. developed a ridge-regression regularization by
minimizing both the variance of the residuals and the power
of the resulting estimate of the input signal representing the
brain activity (Gaudes et al., 2011) and a sparse regression
(Caballero Gaudes et al., 2013) by assuming short neuronal
activations. Temporal regularized optimization problems based
on wavelets were also explored (Khalidov et al., 2011). These
methods exploit the temporal features of the hemodynamic
response function (HRF) (Karahanoğlu et al., 2013) attempting
to deconvolve it from the fMRI data, rather than using any
information on the timing of the neural activations which
translate on the blood oxygen level dependent (BOLD) response.
Recently, by supposing the brain activates in constant blocks,
Karahanoğlu et al. (2013), later revisited by Farouj et al. (2017),
developed a deconvolution approach which involves both spatial
and temporal regularization called total activation (TA). These
approaches split the optimization problem into two decoupled
spatial and temporal regularizations that increases the number
of parameters to be set and requires the solver to alternate
between the constraints. The temporal regularization of the latter
was then improved by Costantini et al. (2018) by proposing a
joint approach using the least angle regression (LARS) algorithm
and the L-curve, which overcame the limitation of having
to choose a priori the regularization parameter, and reduced
the computation time. Recently, deconvolution algorithms
have also incorporated a multivariate formulation to perform
spatiotemporal deconvolution in 2D (Uruńuela et al., 2020,
2021). The first allows the estimation of blocks of activations
coupled with a subsampling approach based on stability selection
to avoid the choice of the regularization parameter. The latter
enables a method that finds global fluctuations due to motion
artifacts or physiological signals as well as neuronal activity. Also,
Bolton et al. (2019) proposed a spatiotemporal deconvolution
approach that includes structurally informed regularization.

Our approach is based on the idea that brain activations
occur in spatially and temporally coherent patterns with sharp
boundaries. These patterns are projected to fMRI data via the
HRF and corrupted by physiological and motion artifacts. To
recover the underlying brain activations, we propose a novel
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method based on partial differential equations (PDEs), named
anisotropic 4D filtering fMRI (A4D-fMRI). The A4D-fMRI
applies an anisotropic diffusion process whose diffusivity is
steered by derivatives of the evolving image to smooth the fMRI
image and simultaneously enhance important features such as
spatial edges and temporal functional activations. Regularization
methods have been enriched by the use of non-linear PDEs in
several contexts for the last 30 years. First applied to physics
and fluid mechanics, it has been shown that non-linear PDEs
allow smoothing the data while preserving large global features,
such as discontinuities of the signal (Tschumperle and Deriche,
2005), which can be found, for example, in image contours
and corners (Tschumperlé and Deriche, 2007). This approach is
based on the isotropic diffusion equation, i.e., heat flow, and has
subsequently been extended to other theoretical contributions.
Among them there are the anisotropic smoothing (Weickert,
1998; Sapiro, 2006) and the PDEs-based gradient descent used
to solve energy functionals minimizations (Rudin et al., 1992;
Chambolle and Lions, 1997; Charbonnier et al., 1997; Kimmel
et al., 2000; Aubert and Kornprobst, 2006). The pioneering work
that employed anisotropic diffusion PDEs for the restoration of
noisy and blurred digital data was proposed by Perona andMalik
(1990) overcoming the limitations associated with linear filtering
approaches (Tschumperle and Deriche, 2002). To date, PDEs-
based regularization algorithm has been applied to 2-D scalar
images (Perona and Malik, 1990; Nielsen et al., 1997; Weickert,
1998; Aubert and Kornprobst, 2006) and vector-valued images
(Tschumperle and Deriche, 2002).

The A4D-fMRI proposed in this work has been conceived
for the geometrical regularization of 4D fMRI images (3D space
× 1D time) based on PDEs. The A4D-fMRI acts concurrently
in space and time, thus overcoming the limitation of previous
deconvolution approaches that consider the two problems of
spatial and temporal regularization as decoupled processes. In
our method, the regularization flow is performed according to
the time and to the local geometry of the image to evaluate the
presence of an edge and its local strength.

The rest of the article is organized as follows. We
first introduce the PDEs regularization theoretical framework,
illustrate the mathematical problem, and how we solved it.
Next, we validate the A4D-fMRI on phantom data and on task-
fMRI data from 51 subjects using the experimental paradigm as
ground truth and positively compare its performance to the TA
approach. We also applied the A4D-fMRI approach to rs-fMRI
data. Finally, the advantage of our approach of not requiring any
knowledge of the experimental paradigm is shown by recovering
activity that agrees with the GLM, which uses and need this a
priori knowledge.

2. THEORY

The fMRI BOLD signal is a combination of brain activation, the
HRF, physiological artifacts, and noise. More specifically, fMRI
data are modeled as a brain activation that is convolved with
the HRF and corrupted by noise. So, starting from the corrupted
fMRI images, the purpose of this work is to remove from this

signal the noise and the hemodynamic effect and to keep only
the underlying activation signal that is at its origin. To achieve
this goal, in this paper we propose to solve this regularization
problem using diffusion theory. Inspired by the physics of fluids,
many authors assimilated the process of image regularization
with the diffusion of chemical concentrations and proposed to
apply the following diffusion PDE process (Weickert, 1998, 1999;
Tschumperle and Deriche, 2002, 2005; Tschumperlé and Deriche,
2007),

∂I

∂t
= div(D∇I) (1)

where I is the input image, ∇ is the gradient operator, t is the
time, div(·) is the divergence operator, and

D = λ1uu
T + λ2vv

T (2)

is the diffusion tensor of the image I, also called structure
tensor (Förstner, 1986; Förstner and Gülch, 1987; Tschumperle
and Deriche, 2005). The diffusion tensor D is a symmetric and
positive definite matrix, and has λ1, λ2 as positive eigenvalues
and u, v as corresponding orthogonal eigenvectors that drive the
regularization process; the amount of diffusion in the directions
u and v will be weighted by λ1 and λ2, respectively. PDEs smooth
the image at each step with a notion of scale-space (Perona and
Malik, 1990; Nielsen et al., 1997; Lindeberg, 2013). The scale-
space technique involves generating coarser resolution images by
convolving the original image with a Gaussian kernel. Therefore,
starting from an original image, according to one parameter, i.e.,
the size of the smoothing kernel, a set of smoothed images are
produced. At each iteration, the image is smoothed and fine-scale
properties, such as noise in our case, are gradually suppressed.
To apply the diffusion process to fMRI data, Equation (1) will
need to be reformulated to handle 4D images. Let us define
a scalar-valued image as a function I :� ⊂ R

4, where � is
the domain of the 4D (3D space × 1D time) image and let us
assume Neumann boundary conditions on δ�, specifying the
values in which the derivative of the solution is applied within
the boundary of the domain. Let us now define a structure tensor
D as a 4×4 symmetric and positive-definite matrix. By definition,
D has four positive eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0)
and their associated four orthogonal eigenvectors (θ1, θ2, θ3

and θ4) explain the distribution and orientation of the gradient
∇I = (Ix, Iy, Iz , It) of the image I in a given neighborhood.
A structure tensor can distinguish between anisotropic and
isotropic diffusion. If λ1 >> λ2, λ3 and λ4, the structure tensor
has a principal orientation (in this case θ1) and the diffusion is
anisotropic. It can be represented with an ellipsoid oriented along
θ1. On the other hand, if λ1 ≈ λ2 ≈ λ3 ≈ λ4, the structure
tensor is not oriented in a main direction and θ1, θ2, θ3, and
θ4 are eigenvectors of D with equal weight. In this situation, the
diffusion is isotropic and the structure tensor can be represented
with a sphere.

Inspired by the physical process of diffusion, we link the
diffusion to fMRI image regularization and we propose the
A4D-fMRI for the enhancement of coherent structures found
in fMRI data. The A4D-fMRI recovers brain activations and
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smooths small variations while preserving large variations via
a regularization that is applied on the 4D fMRI image, acting
simultaneously in the 3D space and the 1D time dimensions.
Using this approach corresponds to performing minimization
of image variations as well as a blind image deconvolution. To
do this, we propose a regularization process based on a gradient
descent computed with PDEs, such that

∂I

∂t
= (1− α)

HT(I0 −HI)

‖I0‖2
+ α

div(D̃∇I)

‖div(D̃0∇I0)‖2
(3)

where the term on the left, ∂I/∂t, is the regularization flow,
the first term on the right is the data fitting term, also called
fidelity term, that prevents the solution from straying far from
the input data, and the second term on the right minimizes
image variations. The parameter α ∈ [0, 1] is the user-
defined regularization parameter that balances the fidelity and
the regularization terms. Starting from the initial image I0, the
restored image I is regularized as t increases reducing noise
and extracting coherent space and time variations. At the same
time, no new structures are introduced in the image (Aubert and
Kornprobst, 2006).

Going more into the details of the fidelity term

F(I) =
HT(I0 −HI)

‖I0‖2
(4)

where I0 and I are the original and the regularized image,
respectively, ‖I0‖2 in the denominator is the normalization
factor,H is the HRF (Khalidov et al., 2011) operator, andHT is its
transpose. The multiplication of HT with (I0 − HI) corresponds
to a correlation and can be implemented via convolution with
the time-reversed HRF. Note that this product is computed only
along the time dimension. TheHRF considered in this work is the
linearized time-HRF operator proposed by Friston et al. (2000)
and Khalidov et al. (2011).

The regularization term is defined as

R(I) =
div(D̃∇I)

‖div(D̃0∇I0)‖2
(5)

where ‖div(D̃0∇I0)‖2 is the normalization term and D̃ is the
regularization tensor, distinct from the structure tensor D. In
order to elucidate the regularization term, let us start by the
definition of the operator

D =
∇I∇IT

‖∇I‖2
∗ G (6)

that is the 4D structure tensor of I smoothed by the Gaussian
kernel G with standard deviation σG via the convolution
operator ∗. The matrix D being the diffusion tensor of the
image I, its eigendecomposition gives a set of eigenvalues and
eigenvectors such that, if the gradient in one direction is large,
the eigenvalue associated with that direction is large, whereas
the eigenvalues associated with the other three directions are
relatively small. Since we are processing fMRI images with the

aim of saving activations and contours that occur concomitant to
a large gradient in a certain direction, we aim at reversing the
diffusion process, therefore at reversing the effect of D into D̃

to enhance and simultaneously simplify coherent structures of
the fMRI image. Here, we propose to compute the operator D̃
by modifying the eigenvalues of the operator D in Equation (6).
Specifically, we defined the directions of the image variations by
an eigendecomposition ofD such that

D = Q3QT (7)

where Q contains the orthogonal eigenvectors (θ1, θ2, θ3, θ4) of
D and 3 contains their associated eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥

λ4). We then recomputed the matrix

D̃ = Q3̃QT (8)

where 3̃ is a diagonal matrix with entries λ̃1, λ̃2, λ̃3, and λ̃4 such
that for each voxel the highest eigenvalue is given by

λ̃1 = exp

(

−
λ21

max(3)2
1

2σ 2
D

)

(9)

and the other eigenvalues are λ̃2 = λ̃3 = λ̃4 = 1. The rationale
is that, if λ1 is large, the current voxel may be located on a
edge or activation and the diffusion tensor D̃ is steered to be
anisotropic, by setting λ̃1≪λ̃2, λ̃3, λ̃4. Since we aim at performing
a smoothing only along the other three directions to smooth
preferably along the coherence directions, the three eigenvalues
λ2 ≈ λ3 ≈ λ4 are set to 1. On the other hand, if λ1 is small, the
diffusion will be isotropic in the four directions because λ̃1 ≈ 1
and λ̃2 = λ̃3 = λ̃4 = 1. Using the function in Equation (9)
corresponds to reassigning to each voxel different eigenvalues

constituting the matrix 3̃, before recomputing the operator D̃
as in Equation (8). In fact, if λ1/max(3) is large, the highest
eigenvalue λ̃1 of the considered voxel will tend to zero. This steers
the geometrical regularization to be anisotropic, because the
smoothing will apply equally in the remaining three directions
but it will be negligible in the normal to the detected contour.
Otherwise, if λ1/max(3) is small, the greatest eigenvalue λ̃1 will
tend to 1 and this leads to an isotropic regularization almost in all
the four directions (x, y, z, t). In both cases, λ̃2, λ̃3, λ̃4 are set to
1. This procedure is applied to each voxel of the entire 4D image
such that at each iteration the image I computed in Equation (3)
is removed from the image at the previous iteration.

In practice, the gradient and divergence operator are
implemented using finite differences. The gradient was
implement using a left to right scheme and the divergence
using right to left, leading to a discrete Laplacian if the diffusion
tensor was omitted. To maintain stability across iterations used
to numerically solve the PDE, the step size must be small, but
reducing it increases computation times. We empirically set it to
0.1, which provided stability and acceptable computation times.

In this way, supposing the brain activates in constant blocks,
we regularized the image together in space and time. We
were able to keep large image variations occurring during
brain activations or spatial edges, and to gradually remove
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FIGURE 1 | fMRI model. From left to right, u(t) is the activity inducing signal that represents the neural activation as a piece-wise constant signal. To this signal, a

model noise ǫm with a Gaussian distribution was added, thus leading to the signal un(t) that was then convolved with the hemodynamic response function operator H,

thus obtaining x(t), also called activity-related signal. Adding the noise ǫa to the signal x(t) gives the simulated acquired fMRI data denoted as y(t).

small variations, corresponding to noise, while conserving and
enhancing coherent structures of the fMRI image. The theoretical
framework of the A4D-fMRI explained above has been
implemented in a Python package that can be downloaded at
the following link: gitlab.inria.fr/cobcom/a4dfmri. The validation
illustrated in the following sections is performed using the A4D-
fMRI package.1

3. METHODS

3.1. Simulation of fMRI Data
To reproduce the acquired fMRI signals, we started by simulating
the fMRI activation as a piece-wise constant function as proposed
by Farouj et al. (2017). For each voxel v, we modeled the activity-
inducing signal as a boxcar function

u(t) = H(t − a)−H(t − b)

where H(t) is the Heaviside step function. We added noise
to u(t) representing the random intrinsic electrical fluctuations
within neuronal networks that are not associated with encoding
a response to internal or external stimuli. To do this, we
corrupted the activity-inducing signal u(t) with an additive
random Gaussian noise with zero mean and standard deviation
σm that we called “model noise” ǫm. The noisy activity-inducing
signal is

un(v, t) = u(t)+ ǫm.

We modeled the activity-related signal x(t), consequent to the
neural activation as the convolution of un(t) with the HRF,
modeled as the linear time-invariant system h(t) (Khalidov et al.,
2011):

x(v, t) = un(v, t) ∗ h(t).

Real time series acquired using the fMRI technique is corrupted
by different kinds of noise and artifacts given by mechanisms
that do not reflect any neurophysiological function, such as heart
rate, respiratory fluctuations, motion artifacts, thermal noise, and
scanner drifts (Lund et al., 2006). For this reason, we added noise
to x(t) thus obtaining the acquired fMRI signals

y(v, t) = x(v, t)+ ǫa = un(v, t) ∗ h(t)+ ǫa

1gitlab.inria.fr/cobcom/a4dfmri

where ǫa is the additive random Gaussian noise with zero mean
and standard deviation σa. A scheme representing the model of
the phantom fMRI data is shown in Figure 1.

3.2. Validation of Synthetic Data
To test and validate the A4D-fMRI, we scaled a 3D activation
map computed with the FMRIB Software Library (FSL2)
Physics-Oriented Simulated Scanner for Understanding MRI
(POSSUM3) in the range [0, 3], with a 2-mm isotropic resolution
(Figure 2A). Wemultiplied it by a piece-wise constant signal u(t)
of 100 s, with one onset of 40 s, from 20 to 60 s (Figure 2B).
Starting from u(t), we simulated the acquired fMRI time-
courses y(t) as explained in the previous section. We tested
the A4D-fMRI on several simulated images obtained by adding
different amount of noise for each experiment. We regularized
the whole image using the A4D-fMRI as shown in Section 2,
and we recovered the voxel-wise activity-inducing signals û(t).
To evaluate the results, we compared the simulated activity-
inducing signal u(t) with the recovered û(t). To do this, for
each voxel’s time course belonging to the GM, we first computed
the mean square errors (MSEs) between û(t) and u(t). Second,
we computed the roots of the mean (RMSE) and the standard
deviation (STD) of this array set. To be able to compare these
values to the TA results, which restrict computations to the Gray
Matter (GM) voxels, we only considered values obtained among
the voxels belonging to the GM mask. Similarly, the Pearson
correlation (r) was computed for each GM voxel between the
simulated activity-inducing signal u(t) and the recovered û(t).
The mean and the STD was than computed on this set of r
values. We compared our results with those obtained using
the TA approach (Farouj et al., 2017), implemented in the
TA toolbox.4 Note that because of the L1-norm regularization
used by TA which tends to underestimate signal amplitudes,
comparing the results based only on amplitudes is not fair (see
Supplementary Materials for additional discussion). For this
reason also, we compared the performance of both algorithms
based on the correlation between the simulated and the recovered
activation. Pearson’s correlation coefficient is invariant to the
scale of the input signals and therefore ignores the signal
shrinkage associated with the L1-norm and quantifies only

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/POSSUM
4https://miplab.epfl.ch/index.php/software/total-activation
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FIGURE 2 | Spatial map (A) and time series (B) of the activation considered as ground truth for functional MRI simulated data. The time course of the activation u(t)

was simulated with a repetition time of 1 s.

the shape of reconstruction. We did not explicitly set any
regularization parameters for the TA approach and instead
relied on the automatic selection heuristics provided by the
implementation of the TA toolbox4 (Karahanoğlu et al., 2013;
Farouj et al., 2017). The results presented were obtained by
providing only our data with its specific repetition time (TR).
The temporal regularization parameter is initialized in the TA
toolbox based on a pre-estimated noise level value of the data
fit, derived from the median absolute deviation of fine-scale
wavelet coefficients, then updated at each iteration. The spatial
temporal regularization parameter is already preset in the TA
toolbox for the gray matter constrained total variation algorithm
and therefore follows the recommendation of the authors. To
investigate the performance of our algorithm to event-related
designs, we also simulated brain activations as spikes and applied
our approach on the noisy synthetic fMRI images.

3.3. Validation of Real Experimental Data
3.3.1. Task-fMRI Data
In addition to validating the A4D-fMRI on simulated data, we
evaluated its performance on real data. Although our approach
was conceived to be applied to rs-fMRI data, or in any situation
where no experimental paradigm is given, we test it here on task-
fMRI data. This testing strategy provides a ground truth, i.e.,
the task timing, which can be used to assess the performance of
the algorithm.

The study was conducted on the motor task-fMRI data
from 51 subjects from the Human Connectome Project
(HCP) database (Van Essen et al., 2013). The data underwent
a minimal pre-processing pipeline (Glasser et al., 2013),
which includes correction of gradient-non linearity-induced
distortions, registration of each image frame to the signal-
band reference image to achieve motion correction, phase-
encoding distortion correction, EPI image distortion correction,
registration of the fMRI volumes to the structural data,

coregistration of the fMRI data to the Montreal Neurological
Institute (MNI) space, masking and fMRI image intensity
normalization to the 4D whole global mean of 103. As additional
pre-processing steps, each voxels’ time course was detrended to
remove linear trends and normalized to 0mean and unit standard
deviation. The motor task is initiated by a visual cue followed
by the movement of the left and right foot, the left and right
hand, and the tongue. The tasks starting points were considered
equal for each subject and inter-subjects differences of the order
of milliseconds were neglected.

After applying the A4D-fMRI on the entire brain images of
each subject, we recovered the reconstructed activity-inducing
signals û(t) without prior knowledge on the onset/offset times
and location of the evoked stimuli. The regularization parameter
α was set experimentally to 0.9997, σG was set to 1, σD was set
to 0.2, and we computed up to 40 iterations. The value of α is
driven by two factors: the divergence of the expected solution and
the amount of noise in the data. One is very small converging
toward zero and a second one stabilizing at the variance of the
noise in the data. This stopping criteria was chosen because it
was the minimal number of iterations required for the Pearson
correlation to stabilize for all tasks fMRI datasets.

To highlight the ability of the A4D-fMRI to recover brain
activations without knowledge of the experimental paradigm, we
qualitatively compared brain regions recovered using the A4D-
fMRI to those recovered using the GLM as implemented in
the FSL library. The GLM model requires as input the exact
occurrence of the tasks that the subject is asked to perform. We
run the A4D-fMRI on the whole brain thus blindly recovering
brain activations, without prior knowledge on the intervals
of the evoked stimuli. To estimate the results obtained using
the A4D-fMRI, we computed the voxel-wise correlation maps,
by estimating the Pearson correlation coefficient (r) between
the recovered activations and the five tasks. The tasks were
simulated as a piece-wise constant signal with unit amplitude
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TABLE 1 | Montreal Neurological Institute (MNI) coordinates centers of the brain

areas found to respond to the somatosensory stimulation.

Task ROI location MNI center coordinates [mm]

Right\left hand Thumb ±46.6; −22.8; 56.2

Index finger ±43.3; −26.8; 59.9

Middle finger ±40.8; −28.6; 62

Ring finger ±37.5; −29.7; 64.8

Little finger ±35.2; −30.9; 66.3

Tongue Base ±61.4; −11.1; 23.3

Middle ±60.7; −11.4; 30

Tip ±59.2; −11; 36

Right\left foot – ±4; −41; 64

The coordinates, adapted by Roux et al. (2018), are expressed in MNI standard space.

when the subject is performing the task and zeros elsewhere.
As for the GLM, we included the five tasks in a design matrix
and we estimated the regressors’ weights with FSL. Results
showing differences and similarities of both approaches were
qualitatively assessed.

Subsequently, we quantitatively compared the results obtained
using the A4D-fMRI with the ones given by the TA, on the sample
data composed by 51 subjects. We first defined four ROIs located
in brain regions that are involved in the five considered tasks.
The ROI related to the tongue was bilateral, whereas for the
hands and the feet we defined separate ROIs for the left and
the right side of the brain. To do this, we started by defining
the ROIs from the work proposed by Roux et al. (2018), who
mapped the somatosensory homunculus MNI coordinates using
the electrostimulation. For each coordinate center, we built a
spherical 3-mm-radius ROI and we grouped the multiple ROIs
related to each task into a unique ROI. Coordinates’ centers are
shown in Table 1.

After defining the ROIs, similarly to the comparison between
the A4D-fMRI and the GLM, we computed the whole-brain
voxel-wise correlation maps between the time course related
to each task and the recovered activity-inducing signals û(t)
obtained with the A4D-fMRI and the TA. For each subject, we
first computed the average of the Pearson correlation coefficients
(r) inside the GM-masked ROIs and then calculated the mean
and the standard deviation of these averaged correlation values
across the 51 subjects belonging to the sample data.

Furthermore, to show that the A4D-fMRI is able to
differentiate between a region that is active and one that is not,
the time courses û(t) of one representative subject (100307) were
averaged in two ROIs of 6 × 6 × 6 mm3: one that is expected to
be active during the task, and one located in a brain area which
is not involved in the task. We selected the task related to the
tongue, and we chose one ROI centered in the BrodmannArea 4p
(rBA4p; MNI coordinates: 62, −14, 30) that is activated during a
tongue motor task, and another centered in the primary auditory
cortex (TE1.2; MNI coordinates: 56, 4, 10; Kiviniemi et al.,
2003), that is not involved in the tongue movement. The Pearson
correlation (r) was computed between the tongue activation and
the recovered û(t) for each voxel, and then averaged among the

voxels belonging to the two GM-masked ROIs. Again the tongue
activation was simulated as a piece-wise constant signal with unit
amplitude during the task and zeros elsewhere. We compared
results obtained using the A4D-fMRI with the ones obtained
using the TA toolbox.

3.3.2. Resting-State fMRI Data
Finally, we applied the A4D-fMRI on the rs-fMRI image of one
subject (100307) from the HCP database. The data were acquired
with a SIEMENS MAGNETOM Connectome Syngo MR D11
using a gradient-echo EPI sequence (TR = 720 ms; TE = 33.1
ms; flip angle = 52◦; FOV = 208 × 180 mm; slice thickness 2.0
mm; number of slices = 72; 2.0 mm isotropic voxels; multiband
factor = 8). The subject was asked to lay in the scanner without
thinking about anything in particular. The number of acquired
frames was 1,200 and the duration of the acquisition was 14:33
min. In the case of rs-fMRI data, the task paradigm is unavailable
since the subject does not perform any task in the scanner. The
data underwent the sameminimal preprocessing of the task fMRI
data as proposed in the HCP pipeline (Glasser et al., 2013). In
addition, the time series were detrended to remove linear drifts
and normalized to zero mean and unit standard deviation. We
applied the A4D-fMRI algorithm on the entire rs-fMRI sample
and we observed the dynamics of the recovered activation maps
across time.

4. RESULTS

4.1. Validation on Synthetic Data
Figure 3 shows examples of regularized spatial maps (Figure 3A)
and time series (Figure 3B) using the A4D-fMRI (ûA4D−fMRI)
and the TA (ûTA). Both approaches do not require any prior
knowledge of the paradigm timing. The regularized spatial
maps in Figure 3A represented in the axial plane show how
the regularized fMRI image recovered with the A4D-fMRI
(ûA4D−fMRI) is closer to the ground truth (u) in terms of signal
amplitude with respect to those obtained using the TA ûTA.
This is verified for different peak-SNRs (pSNRs), i.e., 6.54, 5.99,
and 3.93 dB. In Figure 3B, we show examples of regularized
time courses and that we recover an amplitude closer to the
ground truth when compared to the method implemented in
the TA tool. We also show smoother recovered signals when
compared to the TA. Additional tests and results are shown in
Supplementary Figure 1.

Figure 4 shows that the roots of MSEs ± STDs computed
between the simulated activation u(t) and the recovered one û(t)
change for different pSNRs. We show lower errors with lower
standard deviations than the ones obtained using TA.

Figure 4 also shows that the activation recovered with the
A4D-fMRI is more correlated with the ground truth (r ≈ 1)
for different pSNRs. Although the results obtained with TA
are more sensitive to noise and show better performances for
less noisy data: the mean correlation increases according to the
pSNR while the standard deviation decreases. Results related
to event-related designs, where activations were simulated as
spikes, are illustrated in Figure 5. The results show that we are
able to recognize a spike activation and remove the noise (see
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FIGURE 3 | (A) From left to right, spatial maps of the simulated fMRI image y, ground truth activation u, recovered activation using the total activation (TA) approach

(ûTA) and our approach (ûA4D−fMRI). Each row corresponds to a different peak-SNR (pSNR): 6.54, 5.99, and 3.93 dB from the top to the bottom. (B) Reconstructed

time series û(t) obtained with our approach [ûA4D−fMRI(t), light-blue] and the TA approach [ûTA(t), magenta] superimposed on the activation [u(t), black] and functional

MRI (fMRI) signal [y(t), orange].

Figure 5 between 30 and 50 time points). However, the obtained
activity-inducing signals are smoothed and do not match the
exact lengths of the simulated spikes. We refer the reader to
Supplementary Figures 2, 3 to see the results for different spike
trains and model and additive amount of noise.

4.2. Validation on Real Data
4.2.1. Task-fMRI Data
Figure 6 shows the structure tensors D̃ (Equation 8) in a coronal
brain slice for a representative subject of the HCP database.
Note that the image refers to the spatial maps, and the temporal
dimension is not represented. The presence of ellipsoids oriented

in different directions rather than spheres shows the anisotropic
nature of the regularization.

As for the real data analyses, and specifically the comparison
between the A4D-fMRI and the GLM, we show that the
correlation maps related to each task computed with the A4D-
fMRI were well overlapped to the values of the regressors
coefficients obtained using the GLM as shown for one illustrative
subject (100307) in Figure 7. The GLM shows results that follow
the GM, while the activations found with the A4D-fMRI, which
again were performed across the whole brain, and not masked
with the GM mask, cover also voxels across the white matter.
Interestingly, the found activations overlap the areas found to
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FIGURE 4 | On the left, the graph shows, for different pSNRs, the mean Pearson correlation coefficients (µr ) and related standard deviation (σr ) computed between

u(t) and û(t) and averaged among the voxels belonging to the GM. On the right, The graph shows, for different pSNRs, the roots of the mean squared errors (MSEs)

and standard deviations (STDs) between u(t) and û(t) averaged among the voxels belonging to the GM.

FIGURE 5 | Reconstructed time series û(t) obtained with the anisotropic 4D-fMRI (A4D-fMRI) [ûA4DfMRI(t), light-blue] superimposed on the spike activation [u(t), black]

and functional MRI (fMRI) signal [y(t), orange]. Peak-SNR = 13.23 dB.
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FIGURE 6 | Representation of the structure tensors computed with the anisotropic 4D-fMRI (A4D-fMRI). The images show for a 3D spatial map, superimposed to the

standard MNI template, how the structure tensors look like ellipsoids or spheres meaning that the geometric regularization is applied anisotropically. Images were

made using MRview (Tournier et al., 2012).

be active in the motor homunculus brain (Penfield and Boldrey,
1937).

Quantitative comparison between the activity-inducing signal
recovered using the A4D-fMRI and the TA is shown in Figure 8.
Results show that the mean Pearson correlation values estimated
for each ROI across the data sample increase while increasing
the number of iterations, until it converges after 25 iterations
for the hands, 5 iterations for the feet, and about 35 iterations
for the tongue. Moreover, starting from the first iteration, we
show statistically significant higher correlation values compared
to the ones obtained using the TA. In particular for the
comparison between the A4D-fMRI and the TA, Figure 9 shows
the reconstructed signals û(t) (Figure 9A) and the correlations
values (Figure 9B) for a single subject (100307). We show a
clear difference between the correlation values estimated in the
area involved in the task and the one that is not involved. In
fact, we show higher correlation between the tongue activation
and the recovered activation û(t) in the ROI rBA4p, which was
expected to be involved in the motor task, while a low correlation
is shown in the ROI rTE12 that instead is not involved. The
TA was not able to clearly distinguish between an active and
an inactive region since it showed low correlation values for
both ROIs. Figure 9 clearly show another advantage of using the
A4D-fMRI over TA in the fact that the recovered amplitude is
higher for A4D-fMRI than TA. If a single threshold is applied
on the output of the A4D-fMRI to define either the region
is active or not, we are clearly able to make this distinction
using the A4D-fMRI. This is not the case if a threshold is
applied on the TA output, because for a low threshold both
regions would be considered active, whereas for a high threshold
both would result inactive. We compared the performance of
the implementations of TA and A4D-fMRI by running both
algorithms on the same hardware. We used the fMRI motor
task data analysis with a size of 109 × 91 × 109 × 284 where
284 is the number of volumes and 109 × 91 × 109 is the
MNI space dimension. TA, as implemented in the TA toolbox,
and constrained in the GM voxels, ran in for approximately
9–9.5 h while our algorithm processed the whole dataset in 7

min per iteration, with a total computation time of 4.5–5 h for
40 iterations.

4.2.2. Resting-State fMRI Data
As for the resting-state data analysis, in Figure 10 we show
few example spatial maps extracted from the 1,200 analyzed
time points. The figure shows a dynamic between the regions
composing the default mode network, i.e., the posterior cingulate
cortex, the medial prefrontal cortex, the lateral parietal lobules,
and the temporal cortex (Buckner et al., 2008). As shown in
the figure, these areas are not all active simultaneously, but they
assemble and disassemble over time in different combinations.

5. DISCUSSION

In this paper, we have described an innovative method to analyze
fMRI images and recover the location and the occurrence in
time of the functional neural activations. The proposed approach
achieves this blindly, without the necessity of a priori knowledge
of timing, duration, and location of the underlying activations.
The approachwe proposed, namely the A4D-fMRI, geometrically
regularizes the fMRI image such that it saves and highlights large
image variations as they are present at the occurrence of a brain
activation or in the presence of a spatial edge with respect to small
image variations that instead are removed to reduce noise. To
do this, we used the PDEs in a iterative algorithm and exploited
the 4-D image structure tensor that defines the directions of the
gradient in the neighborhood of a voxel and directs toward an
anisotropic or isotropic regularization. This gradient contains all
the four principal directions of the fMRI image that is composed
of a 3D spatial image repeatedly acquired in time, which suggests
that the whole 4D fMRI image was smoothed contemporaneously
in space and time at once.

Other approaches have been proposed to analyze fMRI data.
Among them are the (i) the GLM that fits a linear model
to the fMRI time series, but it assumes prior knowledge of
the tasks (Friston et al., 1998); (ii) deconvolution methods,
which are used to uncover brain activations from the BOLD
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FIGURE 7 | Qualitative comparison between the general linear model (GLM) and the anisotropic 4D-fMRI (A4D-fMRI). On the left column, in a blue-lightblue

color-map, superimposed to the standard MNI template, the β-regressors map obtained using the GLM implemented in FMRIB Software Library (FSL). On the right

column, in a red-yellow color map, the whole-brain voxel-wise correlation maps obtained using the A4D-fMRI superimposed to the standard MNI brain. The Pearson

correlation (r) was computed voxel-wise across the whole brain, between the reconstructed activity inducing signals û(t) and the five motor tasks simulated as

piece-wise constant signals with ones in the time points where the subject is executing the task and zeros elsewhere. The values r of the correlations are indicated by

the color bars. Each row corresponds to a specific motor task, from the top to the bottom: the tongue, the right and left hand, and the right and left foot. A, anterior; P,

posterior; S, superior; I, inferior; R, right; L, left. The unthresholded images are available in Supplementary Materials.

response without prior information on the underlying activity
(Gaudes et al., 2011; Caballero Gaudes et al., 2013; Karahanoğlu
et al., 2013; Farouj et al., 2017). The deconvolution approach
in Karahanoğlu et al. (2013) splits the problem into a spatial

and temporal regularization problems, meaning that the user has
to specify two regularization parameters and the two weights
used to have a solution that is given by a weighted sum of the
two separate regularization processes. In contrast, the A4D-fMRI
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FIGURE 8 | Barplots of the mean (µr ) ± standard deviations (σr ) of the Pearson correlation coefficients (r) computed on the sample data (51 subjects) in five regions of

interests (ROIs) related to the tasks of the left and right hand, the tongue, and the left and right foot. For each task, the bars in light-blue represent the results using the

anisotropic 4D filtering fMRI (A4D-fMRI) for an increasing number of iterations (from 1 to 40). The bars in magenta represent the results using the total activation (TA)

toolbox. (lHAND, left hand; rHAND, right hand; lFOOT, left foot; rFOOT, right foot).

FIGURE 9 | (A) Reconstructed signals û(t) obtained with the anisotropic 4D filtering fMRI (A4D-fMRI) (light-blue) and the total activation (TA) tool (magenta)

superimposed on the real acquired functional MRI (fMRI) signals (orange) and the simulated tongue activation (black). The plot on the left is related to the regions of

interest (ROI) located on the Brodmann Area 4p (rBA4p), the plot on the right is associated to the ROI positioned on the primary auditory cortex (rTE1.2). All the signals

were averaged across the voxels belonging to the GM-masked ROIs. The gray areas represent the occurrence and the duration of the tongue movements. (B) Mean

Pearson correlation coefficients (µ) and their associated standard deviations (σ ) computed between the tongue activation and the recovered signals û(t) averaged

across the voxels belonging to the GM-masked ROIs (rBA4p on the left, rTE1.2 on the right).

overcomes several limitations found in the previous literature.
When comparing the regions recovered using the GLM and
A4D-fMRI, we noted overall very good agreement between
the two methods. Moreover, the activations found using our
approach are bigger than those found using the GLM. Both
approaches found active voxels outside the GM. The A4D-fMRI
was run on the entire brain volume and did not rely on a GM
mask. To reduce the size of the recovered action, a GM mask
can be applied to the recovered brain activation. However, in

this paper, whose aim was presenting the novel algorithm, we
omitted this step to show the potentials of our approach, capable
of running on a whole 91 × 109 × 91 × 1,200 sized image
taking only few minutes per iteration. Future developments
could employ the application of a GM-mask for a functional
activation analysis, or not if the interest is to investigate white
matter functional activation. It should again be emphasized
that, while the GLM requires knowledge of the experimental
paradigm, the A4D-fMRI does not. These results highlight that
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FIGURE 10 | Spatial maps obtained with the anisotropic 4D filtering fMRI (A4D-fMRI) spanned across 150 repetition times (TRs) (from 200 to 350 TRs). The maps

show the dynamics between the areas composing the default mode network. These regions are not all active at the same time but dynamically assemble and

disassemble over time. The maps show how the lateral parietal lobules are not always active simultaneously as well as the medial prefrontal cortex that can activate

selectively with the posterior cingulate cortex and the right temporal lobe.

the A4D-fMRI can be used to recover brain activity in the
absence of an experimental paradigm, such as rs-fMRI. When
comparing correlation maps obtained for the A4D-fMRI and
the TA, correlation values obtained with the A4D-fMRI were
significantly higher than those obtained with the TA suggesting
an improved recovery of brain activity.

Compared to previous approaches, A4D-fMRI considers
both the spatial and temporal nature of the fMRI signals
simultaneously. This not only leads to an elegant formulation,
but also allows the algorithm to leverage the notion smoothness
across dimensions. For example, a brief activation of
a volume of the brain or a long activation of a small
area would both be detected as they correspond to a 3D
subset of the 4D data. The algorithm also allows efficient
implementation, which leads to reduced computation times
when compared to existing strategies. Finally, while we
only considered the notion of connectivity the natural
representation of fMRI leading to a 4D algorithm, long-
range connectivity could potentially be added by increasing
the number of dimensions. This could, for example, lead
to non-local filtering tied to white matter connectivity
obtained from diffusion MRI and embed the notion of brain
network naturally.

The A4D-fMRI can be used for different purposes, for
example to recover brain activations in a task experimental
paradigm as well as in a rs-fMRI study, where the subject
is asked not to perform any task while lying in the MRI
scanner. Hence, the A4D-fMRI could be useful to analyze the
functional brain activity for those subject affected by neurological
diseases that make them unable to perform a task or to analyze
unexpected brain activities, for example in the case of epilepsy,
thus improving the recovery of brain dynamics for future
clinical applications. The A4D-fMRI could help in the recovery
of time series and spatial maps that could be post-processed
afterwards to perform statistical analyses. Another application
of A4D-fMRI is the detection of innovation-driven co-activation
patterns (iCAPs) (Karahanoğlu and Van De Ville, 2015). Indeed,
iCAPs identifies spatially overlapping activation maps that reveal
transients in spontaneous neural temporal activity on rs-fMRI
data. It has been demonstrated that decomposing rs-fMRI data
using iCAPs reveals the spatiotemporal dynamics below the so-
called resting-state networks. Within this context, A4D-fMRI
could be used to recover the innovation signal, which is derived
from the recovered brain activations. A second application of
interest is structure–function mapping (Deslauriers-Gauthier
et al., 2020b) where A4D-fMRI would serve as a preprocessing
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step. This could potentially enhance the signal to noise ratio of
the functional connectivity matrices and improve the training
of models used to predict function from structure. It has been
shown that including fMRI information from the A4D-fMRI
approach to find active regions to be exploited as priors on
cortical regions allows to select plausible structural connections
to yield a tractable optimization problem to infer white matter
information flow (Deslauriers-Gauthier et al., 2020a). Results,
and specifically the ones shown in Figure 10, show the great
potentials of the A4D-fMRI to analyze the dynamics of rs-
fMRI data (Preti et al., 2017) on a larger sample in healthy
control as well as in a patient group. The A4D-fMRI could
also be exploited in a framework that employs the dynamic
causal modeling (Friston et al., 2003). It must be clarified
that the A4D-fMRI does not assume any hypothesis on the
interactions between brain regions. Once the activations are
inferred using the A4D-fMRI, the dynamic causal modeling
could be exploited on the recovered signals to reveal possible
causality between brain regions’ activity. Hence, the information
flow can be inferred between cortical regions known to be
active using the A4D-fMRI that allows to blindly identify active
regions, without requiring a manual selection of the regions of
interest. A drawback of A4D-fMRI is its tendency to smooth
the boundary of activity inducing signal as seen in Figure 3,
particularly when compared to l1-norm approaches such as
TA. It is caused by the local smoothing of the 4D tensor
embodied in the parameter σG. However, this is a necessary
step of the algorithm as it improves the local estimation of
the tensor and ensures it is full rank. A second source of
smoothing is caused by our choice to set three eigenvalues
of the modified structure tensor to 1. Filtering can therefore
only be prevented in one direction, which is ideal for many
signal boundaries. However, this introduces smoothing in certain
cases where ideally fewer eigenvalues should be set to 1
(one such example is the spike train presented in Section
3). We are currently investigating strategies that would allow
anisotropic filtering in an adapted number of directions and
reduce over-smoothing.

Future works could include into the solution of the
inverse problem the information given by the diffusion
MRI data that would provide us with a more complex
neighborhood defined by white matter connectivity. In this
way, the neighborhood would no longer be given only by
the surrounding voxels, but also by the voxels which are
anatomically segregated and therefore functionally connected
to achieve the same function. In addition, the proposed A4D-
fMRI approach could be exploited to investigate possible
fMRI activations in the white matter, which is an emerging
debated topic in the neuroimaging field (Huang et al.,
2018).

6. CONCLUSION

In this article, we proposed and validated a new method to
blindly regularize the fMRI images and recover the brain activity
from fMRI signals without prior knowledge. Our findings show
that the A4D-fMRI enabled us to solve an important problem,
coupling the spatial and the temporal dimension and to recover
brain activations overlapping the ones obtained with the GLM.
Our results also show higher correlations of the recovered time
courses with the ground truth compared to the TA. This opens
a new channel for the analyses of rs-fMRI data and the recovery
of paradigm-free neural activity to be used for investigations in
future clinical applications.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this
study. This data can be found at: https://db.
humanconnectome.org/app/template/Login.vm;jsessionid=
55C7D675B7D4CA21400384E01478FD3A.

AUTHOR CONTRIBUTIONS

IC, RD, and SD-G: study conception and design, data
collection, analysis and interpretation of results, and manuscript
preparation. All authors contributed to the article and approved
the submitted version.

FUNDING

This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (ERC Advanced Grant
agreement No 694665: CoBCoM—Computational Brain
Connectivity Mapping).

ACKNOWLEDGMENTS

Data were provided [in part] by the Human Connectome
Project, WU-Minn Consortium (Principal Investigators: David
Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the
16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research and by theMcDonnell Center for Systems
Neuroscience at Washington University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnimg.
2022.815423/full#supplementary-material

REFERENCES

Andersen, A. H., Gash, D. M., and Avison, M. J. (1999). Principal

component analysis of the dynamic response measured by fMRI: a

generalized linear systems framework. Magn. Reson. Imaging 17, 795–815.

doi: 10.1016/S0730-725X(99)00028-4

Aubert, G., and Kornprobst, P. (2006).Mathematical Problems in Image Processing:

Partial Differential Equations and the Calculus of Variations, Vol. 147. New

Frontiers in Neuroimaging | www.frontiersin.org 14 April 2022 | Volume 1 | Article 815423

https://db.humanconnectome.org/app/template/Login.vm;jsessionid=55C7D675B7D4CA21400384E01478FD3A
https://db.humanconnectome.org/app/template/Login.vm;jsessionid=55C7D675B7D4CA21400384E01478FD3A
https://db.humanconnectome.org/app/template/Login.vm;jsessionid=55C7D675B7D4CA21400384E01478FD3A
https://www.frontiersin.org/articles/10.3389/fnimg.2022.815423/full#supplementary-material
https://doi.org/10.1016/S0730-725X(99)00028-4
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroimaging#articles


Costantini et al. A4D-fMRI to Recover Brain Activation

York, NY: Springer Science and Business Media. doi: 10.1007/978-0-387-

44588-5

Baumgartner, R., Ryner, L., Richter,W., Summers, R., Jarmasz,M., and Somorjai, R.

(2000). Comparison of two exploratory data analysis methods for fMRI: fuzzy

clustering vs. principal component analysis. Magn. Reson. Imaging 18, 89–94.

doi: 10.1016/S0730-725X(99)00102-2

Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent component

analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging

23, 137–152. doi: 10.1109/TMI.2003.822821

Bolton, T. A., Farouj, Y., Inan, M., and Van De Ville, D. (2019). “Structurally

informed deconvolution of functional magnetic resonance imaging data,” in

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)

(Venice: IEEE), 1545–1549. doi: 10.1109/ISBI.2019.8759218

Buckner, R., Andrews-Hanna, J., and Schacter, D. (2008). The brain’s default

network-anatomy, function, and relevance to disease. Cogn. Neurosci. 2008,

1–38. doi: 10.1196/annals.1440.011

Caballero Gaudes, C., Petridou, N., Francis, S. T., Dryden, I. L., and Gowland, P.

A. (2013). Paradigm free mapping with sparse regression automatically detects

single-trial functional magnetic resonance imaging blood oxygenation level

dependent responses. Hum. Brain Mapp. 34, 501–518. doi: 10.1002/hbm.21452

Calhoun, V. D., and Adali, T. (2006). Unmixing fMRI with independent

component analysis. IEEE Eng. Med. Biol. Mag. 25, 79–90.

doi: 10.1109/MEMB.2006.1607672

Chambolle, A., and Lions, P.-L. (1997). Image recovery via total variation

minimization and related problems. Numer. Math. 76, 167–188.

doi: 10.1007/s002110050258

Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. (1997).

Deterministic edge-preserving regularization in computed imaging. IEEE

Trans. Image Process. 6, 298–311. doi: 10.1109/83.551699

Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., and Maravilla, K. (2002).

Hierarchical clustering to measure connectivity in fMRI resting-state data.

Magn. Reson. Imaging 20, 305–317. doi: 10.1016/S0730-725X(02)00503-9

Costantini, I., Filipiak, P., Maksymenko, K., Deslauriers-Gauthier, S., and Deriche,

R. (2018). “fMRI deconvolution via temporal regularization using a lassomodel

and the LARS algorithm,” in 40th International Engineering in Medicine and

Biology Conference (Honolulu, HI).

Deslauriers-Gauthier, S., Costantini, I., and Deriche, R. (2020a). Non-invasive

inference of information flow using diffusion MRI, functional MRI, and MEG.

J. Neural Eng. 17:045003. doi: 10.1088/1741-2552/ab95ec

Deslauriers-Gauthier, S., Zucchelli, M., Frigo, M., and Deriche, R. (2020b).

A unified framework for multimodal structure-function mapping based on

eigenmodes.Med. Image Anal. 66:101799. doi: 10.1016/j.media.2020.101799
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