
HAL Id: hal-03629104
https://hal.science/hal-03629104v2

Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering by Deep Latent Position Model with Graph
Convolutional Network

Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche

To cite this version:
Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche. Clustering by Deep Latent Po-
sition Model with Graph Convolutional Network. Advances in Data Analysis and Classification, In
press, �10.1007/s11634-024-00583-9�. �hal-03629104v2�

https://hal.science/hal-03629104v2
https://hal.archives-ouvertes.fr

Clustering by Deep Latent Position Model

with Graph Convolutional Network

Dingge Liang1*, Marco Corneli1,2, Charles Bouveyron1

and Pierre Latouche3

1*Université Côte d’Azur, INRIA, CNRS, Laboratoire
J.A.Dieudonné, Maasai team, Nice, France.

2Center of modeling, Simulation and Interactions (MSI), Nice,
France.

3Université Clermont Auvergne, CNRS, LMBP UMR 6620,
Aubière, France.

Abstract

With the significant increase of interactions between individuals through
numeric means, clustering of nodes in graphs has become a fundamen-
tal approach for analyzing large and complex networks. In this work, we
propose the deep latent position model (DeepLPM), an end-to-end gener-
ative clustering approach which combines the widely used latent position
model (LPM) for network analysis with a graph convolutional network
(GCN) encoding strategy. Moreover, an original estimation algorithm is
introduced to integrate the explicit optimization of the posterior cluster-
ing probabilities via variational inference and the implicit optimization
using stochastic gradient descent for graph reconstruction. Numerical
experiments on simulated scenarios highlight the ability of DeepLPM
to self-penalize the evidence lower bound for selecting the number of
clusters, demonstrating its clustering capabilities compared to state-of-
the-art methods. Finally, DeepLPM is further applied to an ecclesiastical
network in Merovingian Gaul and to a citation network Cora to illustrate
the practical interest in exploring large and complex real-world networks.

Keywords: network analysis; clustering; unsupervised deep learning; graph
neural networks; latent position models

2 Clustering by Deep Latent Position Model with Graph Convolutional Network

1 Introduction and related work

Networks are employed in a wide range of applications, from social media and
email communications to protein-protein interactions, because they are simple
structures yet are capable of modeling complex systems. In this context, node
clustering is a key branch of clustering which attempts to partition the nodes
of the graph into different groups to extract patterns summarizing the data.

A long series of statistical methods [1, 2] have been developed to dis-
cover the underlying communities in networks by learning the latent features
of graph-structured data. More recently, deep learning based models have
emerged as a promising approach for analyzing large-scale networks and they
have shown their abilities for representation learning purpose on data with
complex structures [3, 4]. We hereafter split the existing approaches for node
clustering in networks into two categories and briefly review them.

Statistical models for clustering. On the one hand, the stochastic block
model [SBM, 5, 6] is widely used to detect communities or more general clus-
ters of nodes [7]. It assumes that nodes are spread into different latent clusters
and that the connection probability between each pair of nodes depends exclu-
sively on their group memberships. Based on SBM, many extensions looking for
overlapping clusters have been proposed. For instance, the mixed-membership
stochastic blockmodel [MMSBM, 8] introduces a mixing weight vector πi

drawn from the Dirichlet distribution for each node, while the overlapping
stochastic blockmodel [OSBM, 9] assumes each node to be characterized by a
binary latent vector sampled from a product of Bernoulli distributions, allow-
ing each node to belong to multiple clusters. Other variants consider the
processing of valued graphs, such as networks with discrete edges [10], categor-
ical edges [11] or text edges [12]. Moreover, some extensions [13–15] allow to
deal with time-evolving networks through dynamic network modeling. On the
other hand, a different approach to model network data relies on the potential
position of nodes. Originally proposed by [16], the latent position model (LPM)
supposes that each node has an unknown position in a latent space and that
the probability of a specific link between two nodes is modeled by some func-
tion of their positions. Afterwards, the latent position cluster model [LPCM,
17] was introduced to incorporate a clustering structure into LPM by consid-
ering that the latent position of each node is drawn from a Gaussian mixture
model (GMM). Further developments of LPMs exist and the reader is referred
to [18] for an extensive review. Nevertheless, these statistical models face a
challenging inference procedure that primarily relies on MCMC or variational
approximations and do not scale easily to large and complex networks. A
more general overview of statistical models for clustering network data can be
explored in [19, Chapter 10].

Deep learning models for clustering. From another aspect, deep neu-
ral networks (DNNs) based techniques have recently shown to be effective
for feature representation learning and have been actively explored in cluster-
ing [20, 21]. Two widely used approaches are deep embedded clustering [DEC,

22] and variational deep embedding [VaDE, 23]. VaDE models the data gen-
erative procedure by combining GMM prior distributions with variational
auto-encoding [VAE, 24], while DEC learns a mapping function and imposes
a soft assignment constraint on the latent features. However, neither VaDE
nor DEC are designed for graph-structured data. For the purpose of per-
forming node clustering on networks, new models were introduced based on
graph neural networks [GNNs, 25]. In this line of methods, the variational
graph auto-encoder [VGAE, 26] adopted a graph convolutional network [GCN,
27] encoder to produce nodes embeddings in the latent space and a simple
inner product decoder for graph reconstruction. As an extension, MGAE [28]
proposed a marginalization process that adds random noise to the content
information of nodes and stacked several single layer graph auto-encoders
to reconstruct the node features matrix. By introducing adversarial learning
into the generation process, ARVGA [29] enforced the latent representation
to match a prior distribution. More recently, AM-GCN [30] proposed a graph
convolution both accounting for the network topology and the node features.
Moreover, FAGCN [31] introduced an additional high-frequency filter to col-
laborate with low-frequency filters in conventional GNNs, in order to handle
networks with heterogeneous structures. All of the aforementioned and other
existing approaches [32–34] adopt a two-step clustering procedure, simply rely-
ing on external clustering algorithms (e.g. K-means) to group the embedded
nodes, independently from the generative model.

Main contributions. In order to overcome the limitations of the methods
listed above, while exploring their benefits, we introduce a new deep latent
position model (DeepLPM) for network data, allowing to simultaneously learn
node representations and obtain node partitions. By combining a GCN encoder
with a LPM-based decoder, our model aims at capturing the best of both
worlds described so far: it is a flexible representation learning tool based on the
deep learning architecture, yet comprehensive and interpretable thanks to the
statistical model considered. The DeepLPM we propose here, has the following
key-features:

• a LPM-based decoder models the probability of interactions between a pair
of nodes as a function of the distance between them in the latent space.
Compared with a standard inner-product-based decoder, this choice better
preserves the network topology in different scenarios (see Figure 1);

• DeepLPM performs an end-to-end clustering of the nodes by estimating the
posterior probabilities for cluster memberships. Thus, it can automatically
assign each node to its group without using any additional algorithms;

• an original estimation algorithm is designed to integrate the expectation
maximization of the posterior clustering probabilities (explicit) and the
stochastic gradient descent optimization for graph reconstruction (implicit);

• by combining the substantial representations learned by GCN with the posi-
tion information, we point out the self-penalizing capability of DeepLPM

4 Clustering by Deep Latent Position Model with Graph Convolutional Network

in selecting the number of clusters, and demonstrate its effectiveness in
performing different clustering tasks.

Organization of the paper. In Section 2, we introduce the generative
model behind DeepLPM. The variational inference and the original optimiza-
tion algorithm are discussed in Section 3. Numerical experiments are provided
in Section 4, highlighting the main features of our proposed approach and
validating its self-penalization ability in model selection. An application to a
real-world network coming from the Medieval history of Europe is presented in
Section 5 and an analysis of the citation network Cora is described in Section 6.
Section 7 finally concludes with a summary of this work.

2 Deep latent position model

In this section, the DeepLPM for end-to-end node clustering and network
representation is first introduced.

1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.25

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Latent Embeddings of DeepLPM

2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Latent Embeddings of DeepLPM

4 2 0 2 4 6
6

4

2

0

2

4

6

Latent Embeddings of DeepLPM

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10

1.0

0.5

0.0

0.5

1.0

1.5
Latent Embeddings of VGAE

0.07 0.06 0.05 0.04 0.03

0.08

0.07

0.06

0.05

0.04

0.03

Latent Embeddings of VGAE

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

Latent Embeddings of VGAE

Fig. 1 Simulated networks and learned embeddings in three scenarios. From top to bottom:
the original simulated graphs, the latent embeddings learned by DeepLPM and the embed-
dings learned by VGAE. To facilitate the visualization, the latent dimension is set to 2.

Table 1 List of all model parameters

Notation Description

A Adjacency matrix in [0, 1]N×N

Y Edge feature matrix
N Number of nodes
K Number of clusters
P Latent space dimension
D Edge features dimension
π Prior cluster probability vector
C Cluster memberships

Z Latent node embeddings in RP

fα,β Decoder parametrized by α, β
gϕ GCN encoder parametrized by ϕ
γik Posterior probability that node i is in cluster k

2.1 Notations

In this work, networks are modeled as undirected, unweighted graphs G =
(V ; E) with N = |V | nodes. We introduce an N × N adjacency matrix A,
where Aij = 1 if there is a link between node i and node j, 0 otherwise. The
set of edges E can be associated with an additional covariate information,
collected into matrix Y ∈ R|E|×D. The generic entry of Y , denoted yij , is a D-
dimensional feature associated with the edge connecting i to j. For instance,
yij could encode the text that author i sends to author j in a communication
network. We aim at learning well-represented, latent, node embeddings Z in
a lower dimension P and to partition the nodes into K clusters. Necessary
notations are summarized in Table 1.

2.2 Generative model

As in LPM [16], we assume that each node i = {1, · · · , N} has an unknown
position zi ∈ RP in a latent space and that the edges in the network are
sampled independently given these positions. Moreover, the probability of a
link between two individuals is modeled as a function of the distance between
the two nodes, in the latent space. The generative process is as follows.

First, each node is assigned to a cluster via a random variable ci encoding
its cluster membership

ci
i.i.d∼ Multinomial(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (1)

Then, conditionally to its cluster membership, a latent embedding vector
zi is generated

zi|cik = 1 ∼ N (µk, σ
2
kIP), with σ2

k ∈ R+∗, (2)

6 Clustering by Deep Latent Position Model with Graph Convolutional Network

Fig. 2 Graphical representation of DeepLPM (variational parameters are not included).

independently for each node, where µk and σ2
k denote the mean and variance

of each cluster, IP denotes an identity matrix in RP .
Finally, the probability of a connection between nodes i and j, as repre-

sented by adjacency matrix entry Aij , is modeled through a Bernoulli random
variable related to the distance between the corresponding latent positions

Aij |zi, zj ∼ Bernoulli(fα,β(zi, zj)), (3)

with
fα,β(zi, zj) = σ(α+ β⊤yij − ∥zi − zj∥2), (4)

where fα,β can be seen as a decoding, one-layer, neural network parametrized
by α and β. Moreover, σ is the logistic sigmoid function and yij is the covariate
of the edge connecting i with j. A graphical representation of the generative
model described so far can be seen in Figure 2.

2.3 Links with related models

At this point, DeepLPM can be linked with the following models:

• In LPCM, a specific prior distribution for the parameters β = (β⊤
0 , β1)

⊤ is
introduced and the estimation is conducted using MCMC sampling. Con-
versely in DeepLPM, we introduce a decoding neural network fα,β , where
the two parameters α and β are automatically optimized though stochastic
gradient descent.

• Both VGAE and DeepLPM rely on the VAE architecture. However, instead
of using a simple inner-product decoder as in VGAE, DeepLPM involves
a latent position-based fα,β decoding strategy and integrates the cluster
memberships to achieve an end-to-end clustering.

• Both VaDE and DeepLPM model the data generative procedure with a
Gaussian Mixture Model and a deep neural network, whereas in VaDE, both

the decoder and the encoder are convolutional neural networks, limiting the
model to image data. The decoding network fα,β in DeepLPM is based on
latent positions, while the encoder gϕ is a two-layer GCN that allows to
model graph-structured data.

3 Model inference

This section details the variational auto-encoding inference procedure and pro-
poses an original estimation method which combines the explicit optimization
of the posterior clustering probabilities and the implicit optimization of the
neural network parameters.

3.1 Variational auto-encoding inference

Before getting into the details of the inference, we first denote by Θ =
{π, µk, σ

2
k, α, β} the set of the model parameters introduced so far. A natu-

ral procedure would consist in maximizing the integrated log-likelihood of the
observed data A with respect to Θ (and, possibly, Y , which is omitted to keep
the notation uncluttered)

log p(A|Θ) = log

∫
Z

∑
C

p(A,Z,C|Θ)dZ. (5)

Unfortunately, Eq. (5) is not tractable and we have to rely on a variational
approach to approximate it

log p(A|Θ) = L(q(Z,C); Θ) +DKL(q(Z,C)|p(Z,C|A,Θ)), (6)

where DKL denotes the Kullback-Leibler divergence between the true and
approximate posterior distributions of (Z,C) given the data and model param-
eters. Then, in order to deal with a tractable family of distributions, q(Z,C)
is assumed to fully factorize (mean-field assumption)

q(Z,C) = q(Z)q(C) =

N∏
i=1

q(zi)q(ci). (7)

Moreover, to benefit from the representational learning capabilities of GCN,
we assume

q(zi) = N (zi; µ̃ϕ(A)i, σ̃
2
ϕ(A)iIP), (8)

where µ̃ϕ(·) : RN×N 7→ RN×P (respectively σ̃2
ϕ(·) : RN×N 7→ R+N

) is the

function mapping the normalized adjacency matrix A = D̂− 1
2 (A+IN)D̂− 1

2 (we
denote the degree matrix as D̂ here to distinguish it from the edge feature
dimension D) into the matrix of the variational means (vector of the standard
deviations), as in [27]. In the above equation, µ̃ϕ(A)i denotes the i-th row

8 Clustering by Deep Latent Position Model with Graph Convolutional Network

Fig. 3 A deep-learning-like model view of DeepLPM.

of µ̃ϕ(A), corresponding to the variational mean for the latent position zi
(similarly for σ̃2

ϕ(A)i). The functions µ̃ϕ(·) and σ̃2
ϕ(·) are parametrized by the

GCN encoder gϕ.
Finally, a standard assumption is made for the variational clustering

probabilities

q(C) =

N∏
i=1

M(ci; 1, γi), (9)

where γik represents the variational probability that node i is in cluster k, with
K∑

k=1

γik = 1,∀k = 1, · · · ,K.

Model architecture. The variational structure of DeepLPM is shown in
Figure 3. Within the framework of VAE, first the graph adjacency matrix A
is taken as the model input and normalized; then, through the two-layer GCN
encoder, we obtain the mean and variance of each node; next, by minimiz-
ing the Kullback-Leibler divergence between the variational and the posterior
distributions, we get the learned latent representations; finally, through the
LPM-based decoder, we can reconstruct the matrix A′ and obtain the cluster
probability matrix γ̂.

3.2 Optimization

In this part, we focus on maximizing the evidence lower bound (ELBO)

L(A|Θ) =

∫
Z

∑
C

q(Z,C) log
p(A,Z,C|Θ)

q(Z,C)
dZ (10)

with respect to the model parameters Θ and the variational parameters ϕ.
Thanks to Equations (7)-(8)-(9), Eq. (10) can be further developed as

L =

∫
Z

∑
C

q(Z,C) log
p(A|Z,α, β)p(Z|C, µk, σ

2
k)p(C|π)

q(Z,C)
dZ

= E [log p(A|Z,α, β)] + E
[
log p(Z|C, µk, σ

2
k

]
+ E [log p(C|π)]

− E [log q(Z|A)]− E [log q(C)]

= E [log p(A|Z,α, β)] + E
[
log

p(Z|C, µk, σ
2
k)

q(Z)

]
+ E

[
log

p(C|π)
q(C)

]

= E

∑
i ̸=j

Aij log ηij + (1−Aij) log(1− ηij)

−

N∑
i=1

K∑
k=1

γikDKL

(
N (µ̃ϕ(A)i, σ̃

2
ϕ(A)iIP)N (µk, σ

2
kIP)

)
+

N∑
i=1

K∑
k=1

γik log(
πk

γik
),

where ηij = σ(α+βT yij −∥zi − zj∥2), DKL(·) denotes the KL divergence and
the expectation is taken with respect to the variational probability q(·).

Explicit optimization. On the one hand, an explicit optimization of the
ELBO with respect to the parameters γik, πk, µk and σk can be performed to
obtain the following updates:

γ̂ik =
πke

−Dik
KL

K∑
l=1

πle−Dil
KL

, (11)

where Dik
KL = 1

2

{
log

(σ2
k)

P

(σ̃2
ϕ(A)i)P

− P +
σ̃2
ϕ(A)i

σ2
k

+ 1
σ2
k
µk − µ̃ϕ(A)i

2

}
.

Then

π̂k =

N∑
i=1

γik/N, (12)

µ̂k =

N∑
i=1

µ̃ϕ(A)iγik/

N∑
i=1

γik, (13)

and

σ̂2
k =

N∑
i=1

γik(σ
2
ϕ(A)i + µk − µ̃ϕ(A)i

2)

P
N∑
i=1

γik

. (14)

Detailed derivations are given in the appendix.

10 Clustering by Deep Latent Position Model with Graph Convolutional Network

Implicit optimization. On the other hand, the implicit optimization of the
encoder parameter ϕ and decoder parameters α, β is performed via stochastic
gradient descent. In this work, it is implemented using the Adam optimizer [35].

Algorithm. In the estimation process, we first conduct a pre-training step
to avoid the model getting stuck in a local minima or a saddle point at the
beginning of training. Then, the initial weights and biases after pre-training
are saved for use in the training phase. Once we obtain the mean µ̃ϕ(A)i and
variance σ̃2

ϕ(A)i of each node, we use them to update the cluster information
γik by minimizing the KL divergence between the variational and the poste-
rior distributions of each node. Next, we adjust the mixture component πk,
mean µk and variance σ2

k for each cluster according to the previous steps.
Finally, the total loss is computed and the parameters of the encoder/decoder
are optimized via stochastic gradient descent. More details are reported in
Algorithm 3.2.

3.3 Model selection

The ELBO introduced in the previous section allows the estimation of the
posterior law of (Z,C) for a fixed number of clusters K. If we vary this param-
eter, the model becomes completely different. Therefore, choosing appropriate
values for K is a model selection task.

We emphasize that the self-regularization property of VAEs has already
been observed in a number of studies [36, 37]. In the following Section 4.3, we
conduct several experiments to show that DeepLPM does indeed benefit in
practice from this property and that it induces a penalization on the ELBO,
thus allowing to select the number K of clusters.

Algorithm 1 Estimation of DeepLPM

Input: adjacency matrix A, edge features Y
Output: reconstructed graph A′, cluster probability matrix γ̂
γinit = pretrain(A, 50 epochs) ▷ pre-training to initialize cluster
parameters
while L increases do

µ̃ϕ, log σ̃ϕ = gϕ(A)
Z = µ̃ϕ + ϵσ̃ϕ, where ϵ ∼ N (0, IP) ▷ reparameterization trick
explicit optimization:
update γ̂ik by Equation (11)
update π̂k, µ̂k, σ̂

2
k by Equations (12)-(13)-(14)

calculate the training loss (negative ELBO) −L
implicit optimization:
update encoder parameter ϕ and decoder parameters α, β

end while

4 Numerical experiments

This section aims at emphasizing the effectiveness of this work on three syn-
thetic datasets and at proving the validity of the estimation algorithm proposed
in the previous Section 3.2.

4.1 Simulation setup

In order to simplify the characterization and to facilitate the reproducibility of
the experiments, we designed three types of synthetic networks based on the
generative models LPCM, SBM and from circle data, respectively:

• scenario A simulates data according to LPCM [17]. 3 communities are con-
sidered and edges are generated based on the distance between each node
position in dimension P = 2. We set a parameter δ ∈ [0.2, 0.95] to represent
the rate of proximity between the clusters where a larger δ means that the
three clusters are better separated. In this experiment, we set the mean of
each cluster to

µ1 = [0, 0]

µ2 = [1.5 ∗ δ, 1.5 ∗ δ]
µ3 = [−1.5 ∗ δ, 1.5 ∗ δ]

• scenario B simulates data according to SBM [6]. It consists of one clus-
ter with large probability of external connectivity and two communities
that have a higher tendency to link within subset than across subsets. The
connection probabilities are

Π =

b a a
a a b
a b a

where a = 0.25, b = 0.01 + (1 − δ

′
) ∗ (a − 0.01). We set another parameter

δ
′ ∈ [0.4, 1.0] to measure the degree of closeness where a larger δ

′
means less

overlap among the three clusters.
• scenario C considers networks created from 3 circular-structured data posi-
tions in dimension P = 2. Three circles have the same center and the
different radius are 1, 5, and 10, respectively. Links are then generated based
on the distance between node positions.

By varying the values of δ and δ
′
in scenario A (assortative) and scenario

B (dissortative), we can model the proximity between each cluster and thus
test the robustness of our model in both simple and difficult cases. Then,
contrary to standard communities, with strong transitivity (your-friend-is-my-
friend effect), scenario C describes the construction of three groups of nodes
with little transitivity in each.

12 Clustering by Deep Latent Position Model with Graph Convolutional Network

Table 2 Experimental clustering results, showing the average ARI plus/minus the
standard deviation across ten networks.

Method
Easy Hard 1

Sc.A Sc.B Sc.A Sc.B

SBM 0.945±0.03 1.000±0.00 0.683±0.06 0.950±0.09
LPCM 0.922±0.03 0.769±0.15 0.613±0.06 0.540±0.04
VGAE 0.935±0.03 0.999±0.01 0.481±0.07 0.754±0.03
ARVGA 0.884±0.04 0.993±0.00 0.278±0.07 0.792±0.06
AM-GCN 0.824±0.05 0.832±0.03 0.516±0.01 0.565±0.12
FAGCN 0.874±0.04 0.820±0.04 0.626±0.06 0.748±0.04
DeepLPM 0.959±0.01 1.000±0.00 0.730±0.03 0.984±0.01

Method
Hard 2

Sc.A Sc.B Sc.C

SBM 0.305±0.04 0.644±0.08 0.443±0.00
LPCM 0.324±0.07 0.345±0.03 0.415±0.20
VGAE 0.206±0.05 0.386±0.09 0.610±0.03
ARVGA 0.065±0.01 0.239±0.08 0.631±0.04
AM-GCN 0.346±0.05 0.304±0.04 0.604±0.08
FAGCN 0.358±0.08 0.341±0.05 0.620±0.08
DeepLPM 0.373±0.04 0.857±0.02 0.625±0.03

4.2 Benchmark study

In this part, we aim at benchmarking DeepLPM with SBM [6], LPCM [17],
VGAE [26], ARVGA [29], AM-GCN [30] and FAGCN [31] on simulated
datasets in three scenarios. To facilitate the experiments, we do not consider
the covariate information Y in simulated data, thus β in Eq. (4) is set to 0.

Datasets. In the “Easy” situation, scenario A was used with δ = 0.95 and
data from scenario B was created with δ

′
= 0.9. For the “Hard 1” situation,

the values of δ and δ
′
were set to be 0.6 for both scenario A and B. The value

0.4 was chosen in the situation “Hard 2”. The number of nodes for scenario
A and B were fixed to 300 and 600, respectively. Finally, in scenario C we
simulated networks with 300 nodes.

Results. For each situation, we generated ten different networks and calcu-
lated the averaged adjusted rand index [ARI, 38]. On one synthetic network,
we ran each model five times and computed the averaged ARI to account
for the variance among initializations. Experimental results of clustering are
shown in Table 2.

First, focusing on scenario A, we can see that although the networks are
simulated according to the LPCM model, LPCM does not exhibit the best per-
formances. It outperforms three deep models ARVGA, AM-GCN and FAGCN
in the simple case; in Hard 1, it has better performances than VGAE, ARVGA

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate of proximity ()

0.0

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA
FAGCN
AMGCN

Fig. 4 Clustering ARI with different proximity rate δ in Sc.A. We generated ten different
networks for each value of δ and averaged the values of ARI obtained. DeepLPM consistently
surpasses its competitors. VGAE and ARVGA perform worse than SBM and LPCM, the
other two methods relying on statistical models. FAGCN and AM-GCN present good perfor-
mance in difficult situations, whereas AM-GCN perform less effectively when δ exceeds 0.5

.

and AM-GCN; and in the more difficult Hard 2 case, it outperforms SBM,
VGAE and ARVGA. Among deep models, AM-GCN and FAGCN perform less
effectively in the easy situation. ARVGA obtains the worst performance in the
hard situation. Instead, DeepLPM always outperforms other competitors with
different rate of proximity δ.

Second, considering scenario B, SBM is expected to have good perfor-
mances in all conditions since the networks are simulated according to SBM.
Indeed, it shows better performances than LPCM, VGAE, ARVGA, AM-GCN
and FAGCN in the three situations. As a matter of fact, LPCM cannot find
clusters on dissortative network structures and the other four deep models
only work well in the simple situation. Again, DeepLPM shows the best per-
formance in all cases with high ARI values. AM-GCN and FAGCN do not
demonstrate comparable performances.

Lastly, on the circular-structured data, all deep learning-based methods
perform better than the ones based on statistical models. ARVGA presents
the highest ARI compared to the other deep models. DeepLPM and FAGCN
have a slightly lower ARI.

Robustness. To further demonstrate the robustness of DeepLPM compared
to other competitors, Figures 4 and 5 illustrate the evolution of the clustering
ARI in scenario A and scenario B. For all models, we varied the parameter δ
from 0.2 to 0.95 and δ

′
from 0.4 to 1 to compare the clustering performances.

We can see that DeepLPM has the highest ARI with a small variance in
all situations. Moreover, Figure 6 shows the embeddings learned by ARVGA,

14 Clustering by Deep Latent Position Model with Graph Convolutional Network

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rate of proximity (′)

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA
FAGCN
AMGCN

Fig. 5 Clustering ARI with different proximity rates δ
′
in Sc.B. We generated ten different

networks for each value of δ
′
and averaged the values of ARI obtained. When δ

′
is greater

than 0.6, both DeepLPM and SBM can recover the true node partitions perfectly (ARI=1),

whereas SBM cannot maintain its robustness when δ
′
is less than 0.6. LPCM and AM-GCN

are unsuitable for this type of data, performing worse than VGAE, ARVGA and FAGCN.

1.00 0.75 0.50 0.25 0.00 0.25 0.50

1.5

1.0

0.5

0.0

0.5

1.0

Latent embeddings of ARVGA

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Latent embeddings of VGAE

4 2 0 2 4

6

4

2

0

2

4

6
Latent embeddings of DeepLPM

Fig. 6 From left to right: embeddings learned by ARVGA, VGAE and DeepLPM with
latent dimension equal to 2 in Sc.C. Only DeepLPM preserves the data circle structure by
employing a latent position-based decoding strategy.

VGAE and DeepLPM with latent dimension equal to 2 in scenario C. It can
be seen that DeepLPM better preserves the network topology.

4.3 Model selection

A key element of an unsupervised learning technique such as DeepLPM is to be
able to automatically determine the number of clusters (K). We highlight here
the ability of our methodology to auto-penalize the ELBO for selecting the
number of clusters appropriately. Regarding the determination of the latent,
intrinsic dimensionality of a graph, we refer to the work of Lelu [39] which
employs a randomization method. While this methodology provides valuable
insights, our present study focuses on the clustering of the nodes and therefore
on the selection of the number of clusters. A comprehensive exploration of the
latent dimension is an avenue we plan to investigate in future work.

Firstly, by varying the number of clusters from 2 to 6, Figure 7 illustrates
how the training loss (negative ELBO) can be used to find the appropriate
number of clusters. In this experiment, for each number of clusters, we trained
10 synthetic data in scenario B (δ

′
= 0.5) with the latent dimension P = 16.

The results show that whenK = 3, the training loss is minimal, thus recovering
the actual value of K for the simulation setting.

Similarly, to explore the robustness of our approach with respect to the
choice of P , Table 3 presents the averaged training loss and standard deriva-
tions across 10 networks simulated according to scenario A (δ = 0.6), involving
various latent dimensions (P = {2, 4, 8, 16}) and varying cluster numbers
(K ∈ [2, 6]). DeepLPM was able to recover the true value K = 3 by displaying
a clear minimum of the negative ELBO whatever the value of P considered.

5 Analysis of a medieval network

As an illustration of the practical application of DeepLPM, it is used here on
a real-world dataset coming from historical science.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Number of clusters

177100

177200

177300

177400

177500

177600

Ne
ga

tiv
e

EL
BO

Fig. 7 Averaged training loss (negative ELBO) with different number of clusters on 10
synthetic data in scenario B. DeepLPM was able to estimate K = 3 by displaying a clear
minimum of the negative ELBO, which recovered the actual number of clusters.

16 Clustering by Deep Latent Position Model with Graph Convolutional Network

Table 3 Average training loss (negative ELBO) ± standard deviation (×10−2) for various
numbers of clusters and latent dimensions across 10 simulated networks from Scenario A.

K=2 K=3 K=4 K=5 K=6

P=2 500.93±2.92 500.26±2.86 500.49±3.01 500.48±3.00 500.52±3.02
P=4 504.35±2.95 502.26±2.87 502.35±2.92 502.31±2.89 502.34±2.90
P=8 507.08±2.90 503.15±2.73 503.30±2.85 503.16±2.83 503.17±2.86
P=16 509.01±3.08 505.29±3.75 505.77±3.76 505.78±3.85 505.93±3.85

before 500

501−524

525−549

550−575

575−599

after 600

Fig. 8 Visualization of the ecclesiastical network, highlighting the temporality of the
relationships. People living in distinct time periods during the 5th and 6th centuries are
represented by different colors.

5.1 Dataset

We consider the data set proposed by [11], which reports the ecclesiastical
councils that took place in Merovingian Gaul during the 5th and 6th centuries.
A council is an ecclesiastical meeting, usually called by a bishop, where issues
regarding the church or the faith are addressed. The composition of these coun-
cils is known thanks to the acts written at the end of the meeting, and which
were signed by all the attending members. The network contains N = 1, 287
individuals who held one or several offices in Gaul between the years 480 and
614, and who either have been related or have at least met during their life-
time. The number of edges is equal to 33,384. Figure 8 shows a visualization
of the network highlighting the importance of the temporality in the relation-
ships. The standard network visualization tool gplot of the sna1 library in R is
used. Clusters are represented in distinct colors with a layout using a variant of
Fruchterman and Reingold force-directed placement algorithm [40] by default.

1https://CRAN.R-project.org/package=sna

https://CRAN.R-project.org/package=sna

In addition to the interaction data, the data set also contains information
about the individuals: period of activity, type of position and location. From
this covariate information, we were able to build a 3-dimensional tensor Y

encoding the similarities and differences between individuals. Thus, Y
(1)
ij is

equal to the number of years for which i and j have been active at the same
time or, alternatively, the negative time lag (in years) between their period of

activity; Y
(2)
ij = 1 if i and j were in the same region, −1 otherwise; Y

(3)
ij = 1

if i and j held a similar position (noble, ecclesiastical or other), −1 otherwise.
As a result, those who share a greater number of active years, live in the same
location, or hold similar positions are more likely to interact.

5.2 Results without covariates

We first analyze hereafter the clustering results without taking into account
the covariate information encoded in Y . DeepLPM was applied to this network
for various numbers of groups K (varying from 2 to 10) and a fixed number of
latent space dimensions (P = 16). When we ignore the covariate information,
the evolution of the training loss shows a clear minimum at K = 9. Figure 9
depicts the visualization of node partitioning into 9 groups found by DeepLPM
without the use of covariates. It is worth noticing that DeepLPM has not
been influenced by the temporality since it was able to detect communities
that played a similar role in the network at different periods. For instance, the
groups #3 and #5 gather people who lived at different and not overlapping
time periods. In Figure 10, we also show the distributions in each group when
personal roles are taken into consideration. In particular, we can notice that the
group #5 is essentially made of ecclesiastics contrary to all the other clusters.
We also point out that most nobles (in proportion) were found in the group
#4. In addition, it can be seen that citizens played a significant role in the
group #2.

5.3 Results with covariates

To demonstrate the effectiveness of the covariates, we integrated the covariates
encoded in a 3-dimensional vector Y into DeepLPM and performed clustering
on this network. The number of groups also varied between 2 to 10, with a
same intrinsic dimension equals to 16. When edge features are added to the
methodology, the number of groups is estimated to be K = 8 with minimal
loss. Compared to previous Section 5.2, the number of groups is reduced by
one.

Confusion matrix. We first plot the confusion matrix between the pre-
dicted labels at K = 9 without covariates and K = 8 with covariates to
investigate the fusion or dispersion between multiple clusters, as shown in
Figure 11. We can see that, by introducing the covariate, the clusterN1 gathers
people from clusters O3, O6 and O8 together; then, it separates the individuals
from O8 into N1, N3 and N6; and all the people in N5 and N8 come from O4
and O9, respectively. Therefore, the exploitation of the covariate information

18 Clustering by Deep Latent Position Model with Graph Convolutional Network

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Grp 9

Fig. 9 Node partitions without the covariate information on medieval data. Nine clusters
are represented in different colors. DeepLPM was able to find communities at multiple time
periods without being influenced by the network temporality; groups #3 (dark green), #4
(cyan), and #5 (dark blue) in particular are clusters that share the same color while lying
in distinct periods.

Fig. 10 Distributions in each group based on personal roles on medieval data. Nobles are
generally found in groups #4 and #9, ecclesiastics play a large role in group #5, and civilians
predominate in group #2.

results in personnel switching between groupings and a reduction in the num-
ber of clusters, allowing DeepLPM to focus on patterns that are not explained
by the covariates alone.

O1 O2 O3 O4 O5 O6 O7 O8 O9
Cluster partition without covariate Y

N1
N2

N3
N4

N5
N6

N7
N8

Cl
us

te
r p

ar
tit

io
n

wi
th

 c
ov

ar
ia

te
 Y

0 0 116 0 0 50 0 27 0

3 0 0 722 12 0 10 0 1

0 53 0 0 0 0 0 20 0

74 0 0 0 0 3 2 0 0

0 0 0 68 0 0 0 0 0

0 0 0 3 0 0 44 12 0

0 0 0 5 27 0 0 0 8

0 0 0 0 0 0 0 0 27
0

150

300

450

600

Fig. 11 Confusion matrix between cluster partitions with and without covariate. Individ-
uals from O3, O6, and almost half of O8 congregated in N1, reducing one cluster.

Visualization and analysis. Figures 12 shows the clustering visualization
obtained by DeepLPM for 8 groups with covariates. We can see that DeepLPM
was able to detect communities that played a similar role in the network at
different periods. Indeed, the groups #1 (black), #2 (red), #3 (green), #5
(cyan), #6 (pink) and #7 (yellow), all gather people who lived at different
and not overlapping time periods. The red group #2 is particularly represen-
tative of this since it covers the whole period (480-614 of our era). In addition,
distributions within each group based on personal functions are also shown in
Figure 13. Firstly, we can observe that the majority of people in groups #3
and #8 were civilians; then, it can be noticed that ecclesiastics was a signifi-
cant component of the group #7; Furthermore, we point out that groups # 2
and #8 included individuals from all strata of society.

Comparisons of results without and with Y . We further analyze the
results by comparing the partitions without and with covariates in Figures 9
and 12. Firstly, we can see that the group #1 (black) in Figure 12 extracted
some individuals from groups O6 and O8 in Figure 9 and kept people in the
group O3. Combining with Figures 10 and 13, the group #1 in Figure 12
is specific since it only gathers people from clergy and civilians, who were
probably discussing some central questions about the faith during different
periods. Then, the group #3 (green) retained individuals from cluster O2 and
retrieved some civilians from cluster O8, indicating that they were possibly
addressing civilian issues. Similarly, the group #6 (pink) kept the majority of
its members in O7 while also bringing in people from O4 and O8. They may
share religious concerns in relation to their positions. Likewise, the group #5
(cyan) in Figure 12 is specially separated from the big group O4 in Figure 9,
which is made of a relatively significant proportion of nobles, in particular

20 Clustering by Deep Latent Position Model with Graph Convolutional Network

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Fig. 12 Visualization of cluster partitions with covariates on medieval data. Eight clusters
are represented in different colors. DeepLPM was able to find communities at multiple time
periods without being influenced by the network temporality; groups #1, #2, #3, #5, #6
and #7, for example, are clusters with the same colors but located at different times.

Fig. 13 Distributions in each group based on personal roles on medieval data. Civilians
are generally found in groups #3 and #8, ecclesiastics play a large role in group #7, and
all social classes are represented in groups #2 and #5.

kings and queens, implying that this group was discussing political or nobility
matters.

6 Cora citation network

In this section, we also conduct an unsupervised analysis on a widely used
scientific citation network.

6.1 Dataset

The Cora dataset has been analyzed with several embedding and clustering
(deep) methods. The dataset contains 2,708 scientific publications classified
in seven classes: case based, genetic algorithms, neural networks, probabilistic
methods, reinforcement learning, rule learning and theory. The citation net-
work consists of 5,429 links and each publication is described by a 0/1-valued
word vector indicating the absence/presence of the corresponding word from
a dictionary.

Most related works [29, 41] assume that the number of clusters is equal to
the number of classes used in supervised classification tasks, whereas we argue
that the class labels might not be in a one-to-one relation with the detected
communities in unsupervised clustering. Instead, an appropriate cluster num-
ber should be obtained through model selection. Thus, we decided to use the
class membership of each paper to build a tensor Y of dimension D = 7 × 7
encoding the similarities and differences between articles. For each pair of
papers i and j with category labels si and sj , Ysisj = 1 indicates that paper i
belongs to the class si and j belongs to the class sj , 0 otherwise.

6.2 Results without covariates

We first performed clustering without considering the covariate information.
DeepLPM was fitted to this network for different numbers of groups, ranging
between 5 and 11, and fixed latent dimension (P = 16) for the latent space.
The number of groups is estimated to be K = 9 with minimum loss.

A visualization of Cora, generated by applying PCA to the latent embed-
dings learned by DeepLPM, is shown in Figure 14. We can see that even
though groups #4 and #5 are very close to each other, and there are some
overlaps between groups #2 and #9, DeepLPM globally produces discrimi-
nant embeddings. Then, to get an idea of the composition of each group, the
distribution of the papers in the nine clusters according to the seven cate-
gories is given in Figure 15. In particular, groups #1, #4, #6, #7 and #8
focus on subjects related to neural networks, theory, probabilistic methods, case
based and genetic algorithms, respectively; the group #9 is mainly based on
reinforcement learning.

Without considering covariates, it is clear that most clusters, such as #1,
#4, #6, #7, #8 and #9 contain primarily one category of papers, which coin-
cides with the known supervised information. However, we also see groups #2,

22 Clustering by Deep Latent Position Model with Graph Convolutional Network

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Grp 9

Fig. 14 PCA visualization of the clustered embeddings without covariates on Cora. Nine
clusters are represented in different colors.

Fig. 15 Partitions without covariates taking into account the classes in each group on
Cora. Most groups consist primarily of one type of paper, while a few groups include multi-
ple categories. Here CB: Case Based, GA: Genetic Algorithms, NN: Neural Networks, PM:
Probabilistic Methods, RL1: Reinforcement Learning,RL2: Rule Learning, T: Theory.

#3 and #5 containing more categories. This is not surprising. Indeed, when
looking at papers from some peculiar categories (e.g. neural nets, probabilistic
methods or theory) we discover that they cover topics from other categories.
For instance, several probabilistic approaches are build upon neural networks,
or some theoretical papers can refer to neural network-based techniques. The
clusters containing papers from different categories, clearly account for this

O1 O2 O3 O4 O5 O6 O7 O8 O9
Cluster partition without covariate Y

N1
N2

N3
N4

N5
N6

Cl
us

te
r p

ar
tit

io
n

wi
th

 c
ov

ar
ia

te
 Y

23 32 18 103 47 63 21 28 117

254 76 26 12 51 2 22 46 48

16 3 20 0 0 0 95 4 1

72 106 16 0 16 31 26 282 27

4 21 388 52 20 0 1 31 32

11 108 6 61 127 96 0 28 18

0

80

160

240

320

Fig. 16 Confusion matrix between the estimated clusters with and without covariates. The
previous nine clusters are reduced to six with the addition of covariates.

“contaminations”. Therefore, we want to give DeepLPM the known class labels
and let the model dig for more information hidden behind them.

6.3 Results with covariates

To show the impact of the covariate information, we now adopt the covariates
Y . The model selection was also conducted by varying the number of clusters
from 5 to 11, with the dimensionality of the latent space equal to 16. Based
on the evolution of the training loss, the number of groups was estimated to
be K = 6. Thus, with this additional covariate, the clusters number is reduced
by three.

Confusion matrix. We first plot the confusion matrix between the pre-
dicted labels at K = 9 (without covariates) and K = 6 (with covariates)
to investigate the fusion or dispersion between multiple clusters, as shown in
Figure 16. As we can see, the cluster N1 extracted papers from 9 different clus-
ters O1 to O9, especially from O4 and O9; N2 assembled publications mainly
from clusters O1 and O2; besides, most of the items in N3 and N5 come
from O7 and O3, respectively; finally, N4 consists of quantitative papers from
O1, O2 and O8, N6 is mainly composed of articles of O2, O5 and O6. The
fact that each cluster now contains multiple categories of publications demon-
strates that the addition of covariates helps to reveal hidden patterns behind
supervised class information when performing clustering.

Visualization and analysis. A visualization of Cora learned by DeepLPM
is presented in Figure 17, where PCA has been applied to the latent embed-
dings. Figure 18 shows the paper distributions when considering the class labels
for six groups. In contrast to Figure 15 where each group contains principally
one or two different classes, it is clear that, due to the introduction of paper

24 Clustering by Deep Latent Position Model with Graph Convolutional Network

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Fig. 17 PCA visualization of the clustered embeddings with covariates on Cora. Six clusters
are represented in distinct colors.

Fig. 18 Partitions with covariates taking into account classes in each group on Cora. Each
group now contains a variety of categories that represent the hidden patterns discovered
through the addition of covariates.

labels as covariates, new similarities between papers in different categories
emerge.

Next, to better understand the clustering results, more analysis on the
obtained clusters are performed. We first plotted the latent positions learned

Latent space learned by deepLPM

15

42

67

75

77

85

110

130

137 146

158

164189
220

251

259

295

343

345

360

379

416

427

428

431

439

454

466

478

479

480

520

524

539

553

559

563566

567 570

571

577

592

612

636

637

639

641

650

673

687739

746

748
773

794

810

882

911

966

968

996 1004

1017

1137

1154

1179
1219

1241

1291

1329

1334

1336

1355

1379

1460

1485

1499

1521

1528

1551

1570

1596

1645

1688

1697

1714

1719

1911

2154

2176

2221

2335

2422

2424
2500

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Fig. 19 Learned hidden space (PCA compression on the first two principal components),
highlighting the nodes with degrees higher than 10.

by DeepLPM using PCA with a projection of the first two principal eigen-
vectors in Figure 19, highlighting nodes with degrees higher than 10. Those
papers are more often cited by other papers and can be more representative.
Based on the publications ID, we selected several articles with relatively large
degree from each group and reported the information in Table 4. According
to paper titles, it can first be seen that group #1 (red) focuses on dynamic
or temporal learning algorithms using probabilistic methods or reinforcement
learning; group #2 (green) then discusses different aspects of neural networks,
such as self-organization, adjusting or rules; in group #3 (blue), the papers
are largely based on the analysis and development of case studies; next, group
#4 (cyan) contains articles on applications of genetic algorithms and neu-
ral networks; while in group #5 (purple), papers consist of rule learning and
inductive methods; finally, group #6 (yellow) typically involves statistical and
machine learning models.

Interestingly, when looking at Figure 19 from left to right, the content is
changing from applied research to more theoretical learning, and then from
bottom to top, the topic of the articles is changing from case-based meth-
ods and reinforcement learning to genetic algorithms, and finally to neural
networks and statistical models.

Table 4: Inspection of some nodes/documents having large degree

Groups Node IDs Paper titles Degrees

Grp 1

#524 Studies in machine learning using the game
of checkers

30

26 Clustering by Deep Latent Position Model with Graph Convolutional Network

#553 Learning to act using real-time dynamic
programming

42

#566 Learning to predict by the methods of tem-
poral differences

78

#567 Integrated architectures for learning, plan-
ning, and reacting based on

32

approximating dynamic programming
#673 Cryptographic limitations on learning

boolean formulae and finite automata
21

Grp 2

#130 Evolving networks: using the genetic algo-
rithm with connection learning

15

#295 Neuronlike adaptive elements that can
solve difficult learning control

32

problems
#746 Self-organized formation of topologically

correct feature maps
33

#748 Self-organization and associative memory 74
#810 Self-adjusting dynamic logic module 14
#882 Proben1 | A set of neural network bench-

mark problems and benchmarking
14

rules

Grp 3
#137 Theory refinement combining analytical

and empirical methods
19

#1499 Inferential theory of learning: developing
foundations for multistrategy

12

learning

Grp 4

#164 Genetic algorithms in search, optimization
and machine learning

168

#428 Introduction to the theory of neural com-
putation

65

#571 A new learning algorithm for blind signal
separation

19

#1355 The structure-mapping engine: algorithm
and examples

23

#1521 Adaptive nonlinear PCA algorithms for
blind source separation without

18

prewhitening

Grp 5

#345 Learning logical relations from definitions 31
#379 An empirical comparison of selection mea-

sures for decision-tree induction
26

#431 Irrelevant features and the subset selection
problem

36

#636 Learning with many irrelevant features 21
#911 Learning sequential decision rules using

simulation models and competition
22

Grp 6

#15 Hidden Markov models in computational
biology: applications to protein

19

modeling
#42 Markov chain Monte Carlo convergence

diagnostics: a comparative review
14

#75 Hierarchical mixtures of experts and the
EM algorithm

40

#77 A view of the EM algorithm that justifies
incremental, sparse, and other

16

variants
#454 How to use expert advice 23
#794 A survey of evolution strategies 23

We close this section emphasizing once more that, in unsupervised prob-
lems, we cannot determine the number of clusters solely based on the number
of the classes that are used in supervised tasks. Conversely, when selecting the
number of clusters via model selection (that VAEs seem to perform intrinsi-
cally), we are able to discover interesting new similarities between the nodes
of a graph.

7 Conclusion

We introduced DeepLPM to perform node clustering on network data in
an end-to-end manner. By integrating the GCN encoder with the LPM-
based decoder, we retain the interpretability of the statistical model while
also enjoying the excellent performance of neural networks in representation
learning. An original estimation procedure combined the explicit optimiza-
tion via variational inference and the implicit optimization using stochastic
gradient descent. Numerical experiments show that DeepLPM outperforms
state-of-the-art methods and highlight its capabilities in terms of model
selection. Real-world applications on a historical network and a scientific cita-
tion network were also proposed to illustrate the interest of the method for
unsupervised analysis.

To assist users further, we have found that a latent dimension of P =
16 generally yields meaningful outcomes across various datasets in practice.
Therefore, we suggest this as a starting point for users. For the number of
clusters K, we recommend initially exploring the range of 2-10. This range is
a good balance between computational efficiency and the ability to capture
diverse data structures. However, if the minimum of the negative ELBO is not
distinctly achieved within this range, we advise extending the range of K for
further exploration.

For future work, we are interested into analyzing textual edges by incor-
porating topic modeling. Moreover, the primary focus of our current study
is on the identification and analysis of non-overlapping clusters. Further

28 Clustering by Deep Latent Position Model with Graph Convolutional Network

research could certainly explore extending DeepLPM to more effectively
address overlapping scenarios.

Acknowledgments. This work has been supported by the French gov-
ernment, through the 3IA Côte d’Azur Investment in the Future Project
managed by the National Research Agency (ANR) with the reference numbers
ANR-19-P3IA-0002.

Declarations

• Funding: this work was funded by the French National Research Agency
(ANR) with the reference numbers ANR-19-P3IA-0002.

• Conflict of interest/Competing interests: the authors have no relevant
financial or non-financial interests to disclose.

Appendix A Derivatives of the ELBO

We perform the explicit optimization of the ELBO with respect to the
parameters γik, πk, µk and σk by calculating the derivatives of the ELBO.

Under the equality constraint
K∑

k=1

γik = 1,∀k, we use the method of

Lagrange multipliers. Firstly, we introduce a Lagrange multiplier λi

L̃ = L −
N∑
i=1

λi

(
K∑

k=1

γik − 1

)
, (A1)

then, we derive L̃ according to γik

∂L̃
∂γik

= log πk − log γik − γik
γik

−Dik
KL − λi = 0, (A2)

thus, we have

log γik = log πk − 1−Dik
KL − λi (A3)

γik = e{log πk−1−Dik
KL−λi} =

e{log πk−Dik
KL}

e{1+λi}
. (A4)

By using the constraint on
K∑

k=1

γik, we can get

K∑
k=1

γik =

K∑
k=1

e{log πk−Dik
KL}

e{1+λi}
= 1 (A5)

log

K∑
k=1

e{log πk−Dik
KL} = log e{1+λi} (A6)

λi = log

K∑
k=1

e{log πk−Dik
KL} − 1. (A7)

After putting the value of λi into Eq. A4

γik =
e{log πk−Dik

KL}

e
{1+log

K∑
k=1

e{log πk−Dik
KL

}−1}
=

e{log πk−Dik
KL}

K∑
k=1

e{log πk−Dik
KL}

. (A8)

Finally, we obtain

γ̂ik =
πke

−Dik
KL

K∑
l=1

πle−Dil
KL

, (A9)

where Dik
KL = 1

2

{
log

(σ2
k)

P

(σ̃2
ϕ(A)i)P

− P +
σ̃2
ϕ(A)i

σ2
k

+ 1
σ2
k
µk − µ̃ϕ(A)i

2

}
.

Similarly, since
K∑

k=1

πk = 1,∀k, we introduce another Lagrange multiplier β

L̃ = L − β

(
K∑

k=1

πk − 1

)
, (A10)

then, we derive L̃ according to πk

∂L̃
∂πk

=

N∑
i=1

γik
πk

− β = 0, (A11)

next, we use the equality constraint to solve β

K∑
k=1

N∑
i=1

γik =

K∑
k=1

πkβ (A12)

β = N, (A13)

and finally, we have

π̂k =

N∑
i=1

γik/N. (A14)

30 Clustering by Deep Latent Position Model with Graph Convolutional Network

Lastly, we need to calculate the derivatives for µk and σ2
k. We start by

deriving L̃ according to µk

∂L̃
∂µk

= −1

2

N∑
i=1

γik{
1

σ2
k

(2µk − 2µ̃ϕ(A)i} = 0, (A15)

then, we obtain

µk

N∑
i=1

γik =

N∑
i=1

µ̃ϕ(A)iγik (A16)

µ̂k =

N∑
i=1

µ̃ϕ(A)iγik

N∑
i=1

γik

, (A17)

and finally for σ2
k, we have

∂L̃
∂σ2

k

= −1

2

N∑
i=1

γik{
P

σ2
k

− 1

σ4
k

(σ2
ϕ(A)i + µk − µ̃ϕ(A)i

2)} = 0

P

N∑
i=1

γik
σ2
k

=

N∑
i=1

γik
σ4
k

(σ2
ϕ(A)i + µk − µ̃ϕ(A)i

2)

P

N∑
i=1

γikσ
2
k =

N∑
i=1

γik(σ
2
ϕ(A)i + µk − µ̃ϕ(A)i

2)

σ̂2
k =

N∑
i=1

γik(σ
2
ϕ(A)i + µk − µ̃ϕ(A)i

2)

P
N∑
i=1

γik

.

(A18)

Appendix B Implementation details and
computation time

In DeepLPM, the GCN encoder has 64 neurons in the first hidden layer and
16 neurons in the second hidden layer respectively, equipped with a Relu acti-
vation for the first layer. The decoder is a one-layer neural network which
maps the latent embeddings into a reconstructed graph, following by a sigmoid
activation function. Adam optimizer is used instead of the classical stochas-
tic gradient descent procedure to update network weights. The computation
time on the ecclesiastical network with 1,287 nodes and 33,384 edges is about
0.12s/epoch, for a total of 107s for 800 epochs on a GeForce RTX 2070 GPU.
On the same GPU, training on the citation network Cora with 2,708 nodes and
5,429 edges takes about 0.18s/epoch and a total of 444.37s for 2,000 epochs.

In this paper, LPCM is implemented by VBLPCM pakage in R,
SBM, VGAE, ARVGA, AM-GCN and FAGCN are conducted using the
available Python code in github: https://github.com/Remi-Boutin/SBM
package, https://github.com/DaehanKim/vgae pytorch, https://github.com/
GRAND-Lab/ARGA, https://github.com/zhumeiqiBUPT/AM-GCN, https:
//github.com/bdy9527/FAGCN, respectively.

References

[1] Schaeffer, S.E.: Graph clustering. Computer science review 1(1), 27–64
(2007)

[2] Snijders, T.A.: Statistical models for social networks. Annual review of
sociology 37, 131–153 (2011)

[3] Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning
on large graphs. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 1025–1035 (2017)

[4] Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning:
A survey. IEEE transactions on Big Data 6(1), 3–28 (2018)

[5] Wang, Y.J., Wong, G.Y.: Stochastic blockmodels for directed graphs.
Journal of the American Statistical Association 82(397), 8–19 (1987)

[6] Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic
blockstructures. Journal of the American statistical association 96(455),
1077–1087 (2001)

[7] Lee, C., Wilkinson, D.J.: A review of stochastic block models and
extensions for graph clustering. Applied Network Science 4(1), 1–50
(2019)

[8] Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership
stochastic blockmodels. Journal of machine learning research (2008)

[9] Latouche, P., Birmelé, E., Ambroise, C.: Overlapping stochastic block
models with application to the french political blogosphere. The Annals
of Applied Statistics, 309–336 (2011)

[10] Mariadassou, M., Robin, S., Vacher, C.: Uncovering latent structure in
valued graphs: a variational approach. The Annals of Applied Statistics
4(2), 715–742 (2010)

[11] Jernite, Y., Latouche, P., Bouveyron, C., Rivera, P., Jegou, L., Lamassé,
S.: The random subgraph model for the analysis of an ecclesiastical net-
work in merovingian gaul. The Annals of Applied Statistics 8(1), 377–405

https://github.com/Remi-Boutin/SBM_package
https://github.com/Remi-Boutin/SBM_package
https://github.com/DaehanKim/vgae_pytorch
https://github.com/GRAND-Lab/ARGA
https://github.com/GRAND-Lab/ARGA
https://github.com/zhumeiqiBUPT/AM-GCN
https://github.com/bdy9527/FAGCN
https://github.com/bdy9527/FAGCN

32 Clustering by Deep Latent Position Model with Graph Convolutional Network

(2014)

[12] Bouveyron, C., Latouche, P., Zreik, R.: The stochastic topic block model
for the clustering of vertices in networks with textual edges. Statistics and
Computing 28(1), 11–31 (2018)

[13] Xu, K.S., Hero, A.O.: Dynamic stochastic blockmodels for time-evolving
social networks. IEEE Journal of Selected Topics in Signal Processing
8(4), 552–562 (2014)

[14] Matias, C., Miele, V.: Statistical clustering of temporal networks through
a dynamic stochastic block model. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 79(4), 1119–1141 (2017)

[15] Corneli, M., Bouveyron, C., Latouche, P., Rossi, F.: The dynamic stochas-
tic topic block model for dynamic networks with textual edges. Statistics
and Computing 29(4), 677–695 (2019)

[16] Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to
social network analysis. Journal of the american Statistical association
97(460), 1090–1098 (2002)

[17] Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering
for social networks. Journal of the Royal Statistical Society: Series A
(Statistics in Society) 170(2), 301–354 (2007)

[18] Raftery, A.E.: Comment: Extending the latent position model for net-
works. Journal of the American Statistical Association 112(520), 1531–
1534 (2017)

[19] Bouveyron, C., Celeux, G., Murphy, T.B., Raftery, A.E.: Model-based
Clustering and Classification for Data Science: with Applications in R vol.
50. Cambridge University Press, ??? (2019)

[20] Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D.: Clus-
tering with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648 (2018)

[21] Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering (2020)

[22] Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clus-
tering analysis. In: International Conference on Machine Learning, pp.
478–487 (2016). PMLR

[23] Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep
embedding: An unsupervised and generative approach to clustering. In:

International Joint Conference on Artificial Intelligence (IJCAI-2017)
(2016)

[24] Kingma, D.P., Welling, M.: Stochastic gradient vb and the variational
auto-encoder. In: Second International Conference on Learning Represen-
tations, ICLR, vol. 19, p. 121 (2014)

[25] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C.,
Sun, M.: Graph neural networks: A review of methods and applications.
AI Open 1, 57–81 (2020)

[26] Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NeurIPS
Workshop on Bayesian Deep Learning (NeurIPS-16 BDL) (2016)

[27] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convo-
lutional networks. In: 5th International Conference on Learning Repre-
sentations (ICLR-17) (2016)

[28] Wang, C., Pan, S., Long, G., Zhu, X., Jiang, J.: Mgae: Marginalized
graph autoencoder for graph clustering. In: Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, pp. 889–898
(2017)

[29] Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially reg-
ularized graph autoencoder for graph embedding. In: International Joint
Conference on Artificial Intelligence (IJCAI-18), pp. 2609–2615 (2018)

[30] Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: Am-gcn: Adaptive
multi-channel graph convolutional networks. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1243–1253 (2020)

[31] Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information
in graph convolutional networks. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, pp. 3950–3957 (2021)

[32] Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.-Y.: Learning deep represen-
tations for graph clustering. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 28 (2014)

[33] Nie, F., Zhu, W., Li, X.: Unsupervised large graph embedding. In: Thirty-
first AAAI Conference on Artificial Intelligence (2017)

[34] Zhang, X., Liu, H., Li, Q., Wu, X.-M.: Attributed graph clustering via
adaptive graph convolution. arXiv preprint arXiv:1906.01210 (2019)

[35] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv

34 Clustering by Deep Latent Position Model with Graph Convolutional Network

preprint arXiv:1412.6980 (2014)

[36] Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I.,
Welling, M.: Improved variational inference with inverse autoregressive
flow. Advances in neural information processing systems 29, 4743–4751
(2016)

[37] Dai, B., Wang, Y., Aston, J., Hua, G., Wipf, D.: Hidden talents of the
variational autoencoder. arXiv preprint arXiv:1706.05148 (2017)

[38] Hubert, L., Arabie, P.: Comparing partitions. Journal of classification
2(1), 193–218 (1985)

[39] Lelu, A.: Relevant eigen-subspace of a graph: A randomization test. In:
CAP 2011, p. 4 (2011)

[40] Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed
placement. Software: Practice and experience 21(11), 1129–1164 (1991)

[41] Mehta, N., Duke, L.C., Rai, P.: Stochastic blockmodels meet graph neural
networks. In: International Conference on Machine Learning, pp. 4466–
4474 (2019). PMLR

	Introduction and related work
	Statistical models for clustering
	Deep learning models for clustering
	Main contributions
	Organization of the paper

	Deep latent position model
	Notations
	Generative model
	Links with related models

	Model inference
	Variational auto-encoding inference
	Model architecture

	Optimization
	Explicit optimization
	Implicit optimization
	Algorithm

	Model selection

	Numerical experiments
	Simulation setup
	Benchmark study
	Datasets
	Results
	Robustness

	Model selection

	Analysis of a medieval network
	Dataset
	Results without covariates
	Results with covariates
	Confusion matrix
	Visualization and analysis
	Comparisons of results without and with Y

	Cora citation network
	Dataset
	Results without covariates
	Results with covariates
	Confusion matrix
	Visualization and analysis

	Conclusion
	Acknowledgments

	Derivatives of the ELBO
	Implementation details and computation time

