
HAL Id: hal-03629104
https://hal.science/hal-03629104v1

Submitted on 4 Apr 2022 (v1), last revised 9 Jan 2025 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering by Deep Latent Position Model with Graph
Convolutional Network

Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche

To cite this version:
Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche. Clustering by Deep Latent Posi-
tion Model with Graph Convolutional Network. Advances in Data Analysis and Classification, 2024,
�10.1007/s11634-024-00583-9�. �hal-03629104v1�

https://hal.science/hal-03629104v1
https://hal.archives-ouvertes.fr

Clustering by Deep Latent Position Model with Graph
Convolutional Network

Dingge Lianga,∗, Marco Cornelia,b, Charles Bouveyrona, Pierre Latouchec

aUniversité Côte d’Azur, INRIA, CNRS, Laboratoire J.A.Dieudonné, Maasai team, Nice, France
bCenter of modeling, Simulation and Interactions (MSI), Nice, France

cUniversité Paris Cité, CNRS, Laboratoire MAP5, UMR 8145, Paris, France

Abstract

With the significant increase of interactions between individuals through numeric means,

clustering of vertices in graphs has become a fundamental approach for analyzing

large and complex networks. In this work, we propose the deep latent position model

(DeepLPM), an end-to-end generative clustering approach which combines the widely

used latent position model (LPM) for network analysis with a graph convolutional

network (GCN) encoding strategy. Moreover, an original estimation algorithm is

introduced to integrate the explicit optimization of the posterior clustering probabilities

via variational inference and the implicit optimization using stochastic gradient descent

for graph reconstruction. Numerical experiments on simulated scenarios highlight the

ability of DeepLPM to self-penalize the evidence lower bound for selecting the intrinsic

dimension of the latent space and the number of clusters, demonstrating its clustering

capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied

to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to

illustrate the practical interest in exploring large and complex real-world networks.

Keywords: Network Analysis, Graph Clustering, Unsupervised Deep Learning, Graph

Neural Networks

∗Corresponding author
Email address: dingge.liang@inria.fr (Dingge Liang)

Preprint submitted to Journal of Neurocomputing March 30, 2022

1. Introduction and related work

Networks are used in many applications, from social media and email communica-

tions to protein-protein interactions, because they are simple structures yet are capable

of modeling complex systems. In this context, vertex clustering is a key branch of

clustering which attempts to partition the nodes of the graph into different groups to5

extract patterns summarizing the data.

A long series of statistical methods (Schaeffer, 2007; Snijders, 2011) have been

developed to discover the underlying communities in networks by learning the latent fea-

tures of graph-structured data. More recently, deep learning-based models have emerged

as a promising approach for analyzing large-scale networks and they have shown their10

abilities for representation learning purpose on data with complex structures (Hamilton

et al., 2017; Zhang et al., 2018). We hereafter split the existing approaches for vertex

clustering in networks into two categories and briefly review them.

Statistical models for clustering. On the one hand, the stochastic block model (SBM,

Wang and Wong, 1987; Nowicki and Snijders, 2001) is widely used to detect communi-15

ties or more general clusters of nodes (Lee and Wilkinson, 2019). It assumes that nodes

are spread into different latent clusters and that the connection probability between

each pair of nodes depends exclusively on their group memberships. Based on SBM,

many extensions looking for overlapping clusters have been proposed. For instance, the

mixed-membership stochastic blockmodel (MMSBM, Airoldi et al., 2008) introduces a20

mixing weight vector πi drawn from the Dirichlet distribution for each vertex, while

the overlapping stochastic blockmodel (OSBM, Latouche et al., 2011) assumes each

node to be characterized by a binary latent vector sampled from a product of Bernoulli

distributions, allowing each node to belong to multiple clusters. Other variants consider

the processing of valued graphs, such as networks with discrete edges (Mariadassou25

et al., 2010), categorical edges (Jernite et al., 2014) or text edges (Bouveyron et al.,

2018). Moreover, some extensions (Xu and Hero, 2014; Matias and Miele, 2017; Cor-

neli et al., 2019) allow to deal with time-evolving networks through dynamic network

modeling. On the other hand, a different approach to model network data relies on the

potential position of nodes. Originally proposed by Hoff et al. (2002), the latent position30

2

model (LPM) supposes that each node has an unknown position in a latent space and

that the probability of a specific link between two nodes is modelled by some function

of their positions. Afterwards, the latent position cluster model (LPCM, Handcock et al.,

2007) was introduced to incorporate a clustering structure into LPM by considering

that the latent position of each node is drawn from a Gaussian mixture model (GMM).35

Further developments of LPMs exist and the reader is referred to Raftery (2017) for an

extensive review. Nevertheless, these statistical models face a challenging inference

procedure that primarily relies on MCMC or variational approximations and do not scale

easily to large and complex networks. A more general overview of statistical models for

clustering network data can be explored in Bouveyron et al. (2019, Chapter 10).40

Deep learning models for clustering. From another aspect, deep neural network (DNN)-

based techniques have recently shown to be effective for feature representation learning

and have been actively explored in clustering (Aljalbout et al., 2018; Zhang et al., 2020).

Two widely used approaches are deep embedded clustering (DEC, Xie et al., 2016) and

variational deep embedding (VaDE, Jiang et al., 2016). VaDE models the data generative45

procedure by combining GMM prior distributions with variational auto-encoding (VAE,

Kingma and Welling, 2014), while DEC learns a mapping function and imposes a soft

assignment constraint on the latent features. However, neither VaDE nor DEC are

designed for graph-structured data. For the purpose of performing vertex clustering

on networks, new models were introduced based on graph neural networks (GNNs).50

In this line of methods, the variational graph auto-encoder (VGAE, Kipf and Welling,

2016b) adopts a graph convolutional network (GCN, Kipf and Welling, 2016a) encoder

to produce nodes embeddings in the latent space and a simple inner product decoder

for graph reconstruction. As an extension, Wang et al. (MGAE, 2017) proposed a

marginalization process that allows node content to interact with network features. By55

introducing adversarial learning into the generation process, Pan et al. (ARVGA, 2018)

enforced the latent representation to match a prior distribution. Lately, Mehta et al.

(DGLFRM, 2019) combined OSBM with GCN by positing each node of the graph to

have an embedding modelled by a Beta-Bernoulli process. All the above mentioned

approaches employ inner-product-based decoders, whereas we argue that a different60

3

1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.25

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Latent Embeddings of DeepLPM

2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Latent Embeddings of DeepLPM

4 2 0 2 4 6
6

4

2

0

2

4

6

Latent Embeddings of DeepLPM

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10

1.0

0.5

0.0

0.5

1.0

1.5
Latent Embeddings of VGAE

0.07 0.06 0.05 0.04 0.03

0.08

0.07

0.06

0.05

0.04

0.03

Latent Embeddings of VGAE

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

Latent Embeddings of VGAE

Figure 1: Simulated networks and learned embeddings in three scenarios. From top to bottom: the original

simulated graphs, the latent embeddings learned by DeepLPM and latent embeddings learned by VGAE. To

facilitate the visualization, the latent dimension is set to 2.

solution, accounting for the Euclidean distance between nodes in the latent space might

be more suited. Additionally, these and other existing approaches (Tian et al., 2014;

Nie et al., 2017; Zhang et al., 2019) adopt a two-step clustering procedure, simply

relying on external clustering algorithms (e.g. k-means) to group the embedded nodes,

independently from the generative model.65

Main contributions. In order to overcome the limitations of the methods listed above,

while exploring their benefits, we introduce a new deep latent position model (DeepLPM)

for network data, allowing to simultaneously learn vertex representations and obtain

node partitions. By combining a GCN encoder with a LPM-based decoder, our model

aims at capturing the best of both worlds described so far: it is a flexible represen-70

tation learning tool based on the deep learning architecture, yet comprehensive and

4

interpretable thanks to the statistical model considered. The DeepLPM that we propose

here has the following key-features:

• a LPM-based decoder models the probability of interactions between a pair of

nodes as a function of the distance between them in the latent space. Compared75

with a standard inner-product-based decoder, this choice better preserves the

network topology in different scenarios (see Figure 1);

• DeepLPM performs an end-to-end clustering of the nodes by estimating the

posterior probabilities for cluster memberships. Thus, it can automatically assign

each node to its group without using any additional algorithms;80

• an original estimation algorithm is designed to integrate the expectation max-

imization of the posterior clustering probabilities (explicit) and the stochastic

gradient descent optimization for graph reconstruction (implicit);

• by combining the substantial representations learned by GCN with the position

information, we point out the self-penalizing capability of DeepLPM in selecting85

the number of clusters and the latent space dimensionality, and demonstrate its

effectiveness in performing different clustering tasks.

Organization of the paper. In Section 2, we introduce the generative model behind

DeepLPM. The variational inference and the original optimization algorithm are dis-

cussed in Section 3. Numerical experiments are provided in Section 4, highlighting the90

main features of our proposed approach and validating its self-penalization ability in

model selection. An application to a real-world network coming from the Medieval

history of Europe is presented in Section 5 and an analysis of the citation network Cora

is described in Section 6. Section 7 finally concludes with a summary of this work.

2. Deep latent position model95

In this section, the DeepLPM for end-to-end node clustering and network represen-

tation is first introduced.

5

Table 1: List of all model parameters

Notation Description Notation Description

A Adjacency matrix in [0, 1]N×N Y Edge feature matrix

N Number of nodes K Number of clusters

P Latent space dimension D Edge features dimension

π Prior cluster probability vector C Cluster memberships

Z Latent node embeddings in RP fα,β Decoder parametrized by α, β

gφ GCN encoder parametrized by φ γik Posterior clustering probability

that node i is in cluster k

2.1. Notations

In this work, networks are modelled as undirected, unweighted graphs G = (V ;E)

with N = |V | nodes. We introduce an N × N adjacency matrix A, where Aij = 1100

if there is a link between node i and node j, 0 otherwise. The set of edges E can be

associated with an additional covariate information, collected into matrix Y ∈ R|E|×D.

The generic entry of Y , denoted yij , is a D-dimensional feature associated with the

edge connecting i to j. For instance, yij could encode the text that author i sends to

author j in a communication network. We aim at learning well-represented, latent,105

node embeddings Z in a lower dimension P and to partition the nodes into K clusters.

Necessary notations are summarized in Table 1.

2.2. Generative model

As in LPM (Hoff et al., 2002), we assume that each node i = {1, · · · , N} has

an unknown position zi ∈ RP in a latent space and that the edges in the network110

are sampled independently given these positions. Moreover, the probability of a link

between two individuals is modelled as a function of the distance between the two nodes,

in the latent space. The generative process is as follows.

First, each node is assigned to a cluster via a random variable ci encoding its cluster

6

ci cj

zi zj

yij

π

µk, σ
2
k

A α, β

Figure 2: Graphical representation of DeepLPM (variational parameters are not included).

membership

ci
iid∼ M(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (1)

Then, conditionally to its cluster membership, a latent embedding vector zi is

generated

zi|cik = 1 ∼ N (µk, σ
2
kIP), with σ2

k ∈ R+∗, (2)

independently for each node, where µk and σ2
k denote the mean and variance of each

cluster, IP denotes the identity matrix in RP .115

Finally, the probability of a connection between nodes i and j, as represented by

adjacency matrix entry Aij , is modelled through a Bernoulli random variable related to

the distance between the corresponding latent positions

Aij |zi, zj ∼ B(fα,β(zi, zj)), (3)

with

fα,β(zi, zj) = σ(α+ βT yij − ||zi − zj ||2), (4)

where fα,β can be seen as a decoding, one-layer, neural network parametrized by α

and β. Moreover, σ is the logistic sigmoid function and yij is the covariate of the edge

connecting i with j. A graphical representation of the generative model described so far

can be seen in Figure 2.

7

2.3. Links with related models120

At this point, DeepLPM can be linked with the following models:

• In LPCM, a specific prior distribution for the parameters β = (βT0 , β1)T is

introduced and the estimation is conducted using MCMC sampling. Conversely

in DeepLPM, we introduce a decoding neural network fα,β , where the two

parameters α and β are optimized though stochastic gradient descent.125

• Both VGAE and DeepLPM rely on the VAE architecture. However, instead of

using a simple inner product decoder as in VGAE, DeepLPM involves a latent

position-based fα,β decoding strategy and integrates the cluster memberships to

achieve an end-to-end clustering.

3. Model inference130

This section details the variational auto-encoding inference procedure and proposes

an original estimation method which combines the explicit optimization of the posterior

clustering probabilities and the implicit optimization of the neural network parameters.

3.1. Variational auto-encoding inference

Before getting into the details of the inference, we first denote by Θ = {π, µk, σ2
k, α, β}135

the set of the model parameters introduced so far. A natural procedure would consist in

maximizing the integrated log-likelihood of the observed data A with respect to Θ (and,

possibly, Y , which is omitted to keep the notation uncluttered)

log p(A|Θ) = log

∫
Z

∑
C

p(A,Z,C|Θ)dZ. (5)

Unfortunately, Eq. (5) is not tractable and we have to rely on a variational approach

to approximate it

log p(A|Θ) = L(q(Z,C); Θ) +DKL(q(Z,C)||p(Z,C|A,Θ)), (6)

where DKL denotes the Kullback-Leibler divergence between the true and approximate

posterior distributions of (Z,C) given the data and model parameters. Then, in order

8

Figure 3: A deep-learning-like model view of DeepLPM.

to deal with a tractable family of distributions, q(Z,C) is assumed to fully factorize

(mean-field assumption)

q(Z,C) = q(Z)q(C) =

N∏
i=1

q(zi)q(ci). (7)

Moreover, to benefit from the representational learning capabilities of GCN, we

assume

q(zi) = N (zi; µ̃φ(A)i, σ̃
2
φ(A)iIP), (8)

where µ̃φ(·) : RN×N 7→ RN×P (respectively σ̃2
φ(·) : RN×N 7→ R+N) is the function

mapping the normalized adjacency matrix A = D−
1
2AD−

1
2 (Kipf and Welling, 2016a)140

into the matrix of the variational means (vector of the standard deviations). In the above

equation, µ̃φ(A)i denotes the i-th row of µ̃φ(A), corresponding to the variational mean

for the latent position zi (similarly for σ̃2
φ(A)i). The functions µ̃φ(·) and σ̃2

φ(·) are

parametrized by the GCN encoder gφ.

Finally, a standard assumption is made for the variational clustering probabilities

q(C) =

N∏
i=1

M(ci; 1, γi), (9)

where γik represents the variational probability that node i is in cluster k, with
K∑
k=1

γik =145

1,∀k = 1, · · · ,K.

Model architecture. The variational structure of DeepLPM is shown in Figure 3. Within

the framework of VAE, first the graph adjacency matrix A is taken as the model input

9

and normalized; then, through the two-layer GCN encoder, we obtain the mean and

variance of each node; next, by minimizing the Kullback-Leibler divergence between150

the variational and the posterior distributions, we get the learned latent representations;

finally, through the LPM-based decoder, we can reconstruct the matrix Â and obtain the

cluster probability matrix γ̂.

3.2. Optimization

In this part, we focus on maximizing the evidence lower bound (ELBO)

L(A|Θ) =

∫
Z

∑
C

q(Z,C) log
p(A,Z,C|Θ)dZ

q(Z,C) (10)

with respect to the model parameters Θ and the variational parameters φ. Thanks to

Equations (7)-(8)-(9), Eq. (10) can be further developed as

L =

∫
Z

∑
C

q(Z,C) log
p(A|Z,α, β)p(Z|C, µk, σ2

k)p(C|π)dZ

q(Z,C)

= E [log p(A|Z,α, β)] + E
[
log p(Z|C, µk, σ2

k

]
+ E [log p(C|π)]− E [log q(Z|A)]− E [log q(C)]

= E [log p(A|Z,α, β)] + E
[
log

p(Z|C, µk, σ2
k)

q(Z)

]
+ E

[
log

p(C|π)

q(C)

]

= E

∑
i 6=j

Aij log ηij + (1−Aij) log(1− ηij)

−

N∑
i=1

K∑
k=1

γikDKL(N (µ̃φ(A)i, σ̃
2
φ(A)iIP)||N (µk, σ

2
kIP))

+

N∑
i=1

K∑
k=1

γik log(
πk
γik

),

where ηij = σ(α+ βT yij − ||zi − zj ||2), DKL(·) denotes the KL divergence and the155

expectation is taken with respect to the variational probability q(·).

Explicit optimization. On the one hand, an explicit optimization of the ELBO with

respect to the parameters γik, πk, µk and σk can be performed to obtain the following

10

updates:

γ̂ik =
πke−D

ik
KL

K∑
l=1

πle−D
il
KL

, (11)

where Dik
KL = 1

2

{
log

(σ2
k)
P

(σ̃2
φ(A)i)P

− P +
σ̃2
φ(A)i

σ2
k

+ 1
σ2
k
||µk − µ̃φ(A)i||2

}
.

Then

π̂k =

N∑
i=1

γik/N, (12)

µ̂k =

N∑
i=1

µ̃φ(A)iγik/
N∑
i=1

γik, (13)

and

σ̂2
k =

N∑
i=1

γik(σ2
φ(A)i + ||µk − µ̃φ(A)i||2)

P
N∑
i=1

γik

. (14)

Detailed derivations are given in the appendix.

Implicit optimization. On the other hand, the implicit optimization of the encoder

parameter φ and decoder parameters α, β is performed via stochastic gradient descent.160

In this work, it is implemented using the Adam optimiser.

Algorithm. In the estimation process, we first conduct a pre-training step to avoid the

model getting stuck in a local minima or a saddle point at the beginning of training.

Then, the initial weights and biases after pre-training are saved for use in the training

phase. Once we obtain the mean µ̃φ(A)i and variance σ̃2
φ(A)i of each node, we use165

them to update the cluster information γik by minimizing the KL divergence between

the variational and the posterior distributions of each node. Next, we adjust the mixture

component πk, mean µk and variance σk for each cluster according to the previous

steps. Finally, the total loss is computed and the parameters of the encoder/decoder are

optimized via stochastic gradient descent. More details are reported in Algorithm 1.170

11

Algorithm 1 Estimation of DeepLPM
Input: adjacency matrix A, edge features Y

pretrain_model = pretrain(A, 50 epochs) . pre-training to save initial weights of

encoder/decoder

while L increases do

µ̃φ, σ̃
2
φ = GCN(A)

explicit optimization:

update γ̂ik by Equation (11)

update π̂k, µ̂k, σ̂2
k by Equations (12)-(13)-(14)

calculate loss −L

implicit optimization:

update encoder parameter φ and decoder parameters α, β

3.3. Model selection

The ELBO introduced in the previous section allows the estimation of the posterior

law of (Z,C) for a fixed value of the latent dimension P and a fixed number of clusters

K. If we vary these two parameters, the model becomes completely different. Therefore,

choosing appropriate values for P and K can be considered as a model selection task.175

Regarding the model selection, the self-regularization property of VAEs has already

been observed in a number of studies (Kingma et al., 2016; Dai et al., 2017). In the

following Section 4.3, we conduct several experiments to show that DeepLPM does

benefit in practice from this property and that it induces a penalization on the ELBO in

both the latent space variable (Z) and the clustering variable (C), thus allowing to select180

the intrinsic dimension P of the latent space and the number K of clusters.

4. Numerical experiments

This section aims at emphasizing the effectiveness of this work on three synthetic

datasets and at proving the validity of the estimation algorithm proposed in the previous

section.185

12

4.1. Simulation setup

In order to simplify the characterization and to facilitate the reproducibility of the

experiments, we designed three types of synthetic networks based on the generative

models LPCM, SBM and from circle data, respectively:

• scenario A simulates data according to LPCM (Handcock et al., 2007). 3 com-

munities are considered and edges are generated based on the distance between

each node position in dimension P = 2. We set a parameter δ ∈ [0.2, 0.95] to

represent the rate of proximity between the clusters where a larger δ means that

the three clusters are better separated. In this experiment, we set the mean of each

cluster to
µ1 = [0, 0]

µ2 = [1.5 ∗ δ, 1.5 ∗ δ]

µ3 = [−1.5 ∗ δ, 1.5 ∗ δ]

• scenario B simulates data according to SBM (Nowicki and Snijders, 2001). It

consists of one cluster with large probability of external connectivity and two

communities that have a higher tendency to link within subset than across subsets.

The connection probabilities are

Π =

b a a

a a b

a b a

where a = 0.25, b = 0.01 + (1 − δ′

) ∗ (a − 0.01). We set another parameter190

δ
′ ∈ [0.4, 1.0] to measure the degree of closeness where a larger δ

′
means less

overlap among the three clusters.

• scenario C considers networks created from 3 circular-structured data positions in

dimension 2. Three circles have the same center and the different radius are 1,

5, and 10, respectively. Links are then generated based on the distance between195

node positions.

By varying the values of δ and δ
′

in scenario A (assortative) and scenario B (dissor-

tative), we can model the proximity between each cluster and thus test the robustness

13

of our model in both simple and difficult cases. Then, contrary to standard communi-

ties, with strong transitivity (your-friend-is-my-friend effect), scenario C describes the200

construction of three groups of nodes with little transitivity in each.

4.2. Benchmark study

In this part, we aim at benchmarking DeepLPM with SBM (Nowicki and Sni-

jders, 2001), LPCM (Handcock et al., 2007), VGAE (Kipf and Welling, 2016b) and

ARVGA (Pan et al., 2018) on simuated datasets in three scenarios. To facilitate the205

experiments, we do not consider the covariate information Y in simulated data, thus β

in Eq. (4) is set to 0.

Datasets. In the "Easy" situation, scenario A was used with δ = 0.95 and data from

scenario B was created with δ
′

= 0.9. For the "Hard 1" situation, the values of δ

and δ
′

were set to be 0.6 for both scenario A and B. The value 0.4 was chosen in the210

situation "Hard 2". The number of nodes for scenario A and B were fixed to 300 and

600, respectively. Finally, in scenario C we simulated networks with 300 nodes.

Results. For each situation, we generated 10 different networks and calculated the

averaged adjusted rand index (ARI). Experimental results of clustering are shown in

Table 2.215

First, focusing on scenario A, we can see that although the networks are simulated

according to the LPCM model, LPCM does not exhibit the best performance. It only

Table 2: Experimental clustering results on 7 datasets.

Method

Easy Hard 1

Sc.A Sc.B Sc.A Sc.B

SBM 0.945±0.03 1.000±0.00 0.683±0.06 0.950±0.09

LPCM 0.922±0.03 0.769±0.15 0.613±0.06 0.540±0.04

VGAE 0.935±0.03 0.999±0.01 0.481±0.07 0.754±0.03

ARVGA 0.884±0.04 0.993±0.00 0.278±0.07 0.792±0.06

DeepLPM 0.959±0.01 1.000±0.00 0.730±0.03 0.984±0.01

14

Method

Hard 2

Sc.A Sc.B Sc.C

SBM 0.305±0.04 0.644±0.08 0.443±0.00

LPCM 0.324±0.07 0.345±0.03 0.415±0.20

VGAE 0.206±0.05 0.386±0.09 0.610±0.03

ARVGA 0.065±0.01 0.239±0.08 0.631±0.04

DeepLPM 0.373±0.04 0.857±0.02 0.625±0.03

outperforms ARVGA in the simple cases; in Hard 1, it has better performance than

VGAE; and in the more difficult Hard 2 case, it outperforms SBM. The ARVGA always

obtains the worst performance in scenario A, which means it is not adaptive to assortative220

networks. Instead, DeepLPM always outperforms other competitors with different rate

of proximity δ.

Second, considering scenario B, SBM is expected to have good performance in all

models since the networks are simulated according to SBM. Indeed, it shows better

performance than LPCM, VGAE and ARVGA in three situations. As a matter of fact,225

LPCM cannot find clusters on dissortative network structures and VGAE as well as

ARVGA only work well in the simple situation. Again, DeepLPM shows the best

performance in all cases with high clustering value of ARI.

Lastly, on the circular-structured data, all deep learning-based methods perform

better than the ones based on statistical models. ARVGA presents the highest clustering230

ARI compared to the other deep models. DeepLPM and VGAE have a slightly lower

ARI.

Robustness. To further demonstrate the robustness of DeepLPM compared to other

competitors, Figures 4 and 5 illustrate the evolution of the clustering ARI in scenario

A and scenario B. For all models, we varied the parameter δ from 0.2 to 0.95 and δ
′

235

from 0.4 to 1 to compare the clustering performances. We can see that DeepLPM has

the highest ARI with a small variance in all situations. Moreover, Figure 6 shows the

embeddings learned by ARVGA, VGAE and DeepLPM with latent dimension equal to

2 in scenario C. It can be seen that DeepLPM better preserves the network topology.

15

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate of proximity (Delta)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA

Figure 4: Clustering ARI with different proximity rate δ in Sc.A.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rate of proximity (Delta')

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA

Figure 5: Clustering ARI with different proximity rates δ
′

in Sc.B.

4.3. Model selection240

A key element of an unsupervised learning technique such as DeepLPM is to be able

to automatically determine both the latent dimension (P) and the number of clusters

(K). We highlight here the ability of our methodology to auto-penalize the ELBO for

16

1.00 0.75 0.50 0.25 0.00 0.25 0.50

1.5

1.0

0.5

0.0

0.5

1.0

Latent embeddings of ARVGA

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Latent embeddings of VGAE

4 2 0 2 4

6

4

2

0

2

4

6
Latent embeddings of DeepLPM

Figure 6: From left to right: embeddings learned by ARVGA, VGAE and DeepLPM with latent dimension

equal to 2 in Sc.C.

5 10 15 20 25 30
Different latent dimension

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Cl
us

te
rin

g
AR

I

5 10 15 20 25 30
Different latent dimension

44550

44600

44650

44700

44750

44800

Tr
ai

ni
ng

 lo
ss

Figure 7: Averaged training loss (-ELBO) and clustering ARI with different latent dimensions on 50 networks

based on scenario B.

selecting both the intrinsic dimension of the latent space and the number of groups

appropriately.245

Figure 7 shows the clustering ARI and training loss (-ELBO) on 50 networks

simulated according to scenario B (δ
′

= 0.5) with different latent dimensions (P ∈

{2, 4, 8, 16, 32}). We fixed the number of clusters to the actual value K = 3. As we can

see, DeepLPM shows a minimal ELBO when P = 16, which is also associated with the

highest ARI.250

Similarly, by varying the number of clusters from 2 to 6, Figure 8 illustrates how

the training loss can also be used to find the appropriate number of clusters. In this

experiment, we trained another 50 synthetic data in scenario B (δ
′

= 0.5) with the latent

dimension P = 16. The results show that when K = 3, the training loss is minimal,

17

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Different number of clusters

44375

44380

44385

44390

44395

44400

44405

44410

Tr
ai

ni
ng

 lo
ss

Figure 8: Averaged training loss (-ELBO) with different number of clusters on 50 synthetic data in scenario B.

thus recovering the actual value of K for the simulation setting.255

5. Analysis of a medieval network

5.1. Dataset

As an illustration of the practical use of DeepLPM, it is fit here on a real-world

dataset coming from historical science. Thus, we consider the data set proposed by Jer-

nite et al. (2014), which reports the ecclesiastical councils that took place in Merovingian260

Gaul during the 5th and 6th centuries. A council is an ecclesiastical meeting, usually

called by a bishop, where issues regarding the church or the faith are addressed. The

composition of these councils is known thanks to the acts written at the end of the

meeting, and which were signed by all the attending members. The network contains

N = 1287 individuals who held one or several offices in Gaul between the years 480265

and 614, and who either have been related or have at least met during their lifetime.

The number of edges is equal to 33,384. Figure 9 shows a visualisation of the network

highlighting the importance of the temporality in the relationships.

In addition to the interaction data, the data set also contains information about

the individuals: period of activity, type of position and location. From this covariate270

information, we were able to build a 3-dimensional tensor Y encoding the similarities

and differences between individuals. Thus, Y (1)
ij is equal to the number of years for

which i and j have been active at the same time or, alternatively, the negative time lag

(in years) between their period of activity; Y (2)
ij = 1 if i and j were in the same region,

18

before 500

501−524

525−549

550−575

575−599

after 600

Figure 9: Visualisation of the ecclesiastical network, highlighting the temporality of the relationships.

−1 otherwise; Y (3)
ij = 1 if i and j held a similar position (noble, ecclesiastical or other),275

−1 otherwise.

5.2. Results without covariates

We first analyze hereafter the clustering results without taking into account the

covariate information Y . DeepLPM was run on this network for different number of

groups, ranging between 2 and 10, and a fixed number of dimension (P = 16) for the280

latent space. When we ignore the covariate information, the evolution of the training loss

shows a clear minimum at K = 9 according to the number of groups. The visualisation

of cluster partitions of 9 groups by DeepLPM without covariates is shown in Figure 10.

We also provide the results considering the personal positions in each group in Figure 11.

It is worth noticing that DeepLPM has not been influenced by the temporality since it285

was able to detect communities that played a similar role in the network at different

periods. For instance, in Figure 10, the groups #3 and #5 gather people who lived at

different and not overlapping time periods.

19

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Grp 9

Figure 10: Cluster partitions without the covariate information on medieval data.

Figure 11: Partitions without covariates taking into account types in each group on medieval data.

5.3. Results with covariates

To show the effectiveness of the covariates, we integrated the 3-dimensional Y into290

DeepLPM and perform clustering on this network. The number of groups also varies

20

O1 O2 O3 O4 O5 O6 O7 O8 O9
Cluster partition without covariate Y

N1
N2

N3
N4

N5
N6

N7
N8

Cl
us

te
r p

ar
tit

io
n

wi
th

 c
ov

ar
ia

te
 Y

0 0 116 0 0 50 0 27 0

3 0 0 722 12 0 10 0 1

0 53 0 0 0 0 0 20 0

74 0 0 0 0 3 2 0 0

0 0 0 68 0 0 0 0 0

0 0 0 3 0 0 44 12 0

0 0 0 5 27 0 0 0 8

0 0 0 0 0 0 0 0 27

0 0 0 0 0 0 0 0 0
0

150

300

450

600

Figure 12: Confusion matrix between cluster partitions with and without covariate.

between 2 and 10, with a same intrinsic dimension equals to 16. When edge features

are added to the model, the number of groups is estimated to be K = 8 with minimal

loss. Thus, with this additional covariate information, the number of groups is reduced

by one.295

Confusion matrix. We first plot the confusion matrix between the predicted labels at

K = 9 without covariates and K = 8 with covariates to investigate the fusion or

dispersion between multiple clusters, as shown in Figure 12. One can see that, by

introducing the covariate, the cluster N1 gathered people from clusters O3, O6 and

O8 together; then, it separates the individuals from O8 into N1, N3 and N6; and300

all the people from N5 were coming from O4. Therefore, the exploitation of the

covariate information allows DeepLPM to focus on patterns that are not explained by

the covariates alone.

Visualisation and analysis. Figures 13 shows the clustering visualisation obtained by

DeepLPM for 8 groups with covariates. We can also see that DeepLPM was able305

to detect communities that played a similar role in the network at different periods.

Indeed, the groups #1 (black), #3 (green), #5 (cyan) and #7 (yellow) gather people who

21

lived at different and not overlapping time periods. The red group #2 is particularly

representative of this since it covers the whole period (480-614 of our era). Figure 14

shows that group #2 gathers individuals from all strata of society, who do not play a310

central role in the network.

We analyze the results by comparing the partitions without and with covariates in

Figures 10 and 13. Firstly, we can see that the group #1 (black) in Figure 13 extracted

some individuals from groups #6 and #8 in Figure 10 and kept people in the group #3.

Combining with Figures 11 and 14, the group #1 in Figure 13 is specific since it only315

gathers people from clergy and civilians, who were probably discussing some central

questions about the faith during different periods. Moreover, the group #5 (cyan) in

Figure 13 is specially separated from the big group #4 in Figure 10, which is made

of a relatively significant proportion of nobles, in particular kings and queens, which

suggests that this group was discussing political or nobility matters.320

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Figure 13: Visualisation of cluster partitions with covariates on medieval data.

22

Figure 14: Partitions with covariates taking into account types in each group on medieval data.

6. Cora citation network

6.1. Dataset

The Cora dataset has been analysed with several embedding and clustering (deep)

methods. The dataset contains 2,708 scientific publications classified in seven classes:

case based, genetic algorithms, neural networks, probabilistic methods, reinforcement325

learning, rule learning and theory. The citation network consists of 5,429 links and each

publication is described by a 0/1-valued word vector indicating the absence/presence of

the corresponding word from a dictionary.

Most related works (Pan et al., 2018; Mehta et al., 2019) assume that the number

of clusters is equal to the number of classes used in supervised classification tasks,330

whereas we argue that the class labels might not be in a one-to-one relation with the

detected communities in unsupervised classification. Instead, an appropriate cluster

number should be obtained through model selection. Thus, we decided to use the class

membership of each paper to build a tensor Y of dimension D = 7 × 7 encoding

the similarities and differences between articles. For each pair of papers i and j with335

23

category labels si and sj , Ysisj = 1 indicates that paper i belongs to the class si and j

belongs to the class sj .

6.2. Results without covariates

We first performed clustering without considering the covariate information. DeepLPM

was fitted to this network for different numbers of groups, ranging between 5 and 11,340

and fixed latent dimension (P = 16) for the latent space. The number of groups is

estimated to be K = 9 with minimum loss.

A visualisation of the latent embeddings learned by DeepLPM is shown in Figure 15.

We can see that even though groups #4 and #5 are very close to each other, and there are

some overlaps between groups #2 and #9, DeepLPM globally produces discriminant345

embeddings. Then, to get an idea of the composition of each group, the distribution of

the papers in the nine clusters according to the seven categories is given in Figure 16.

In particular, groups #4 and #5 focus on subjects related to theory and probabilistic

methods, groups #2 and #9 are mainly based on neural networks and reinforcement

learning, respectively.350

Without considering covariates, it is clear that most clusters, such as #1, #4, #6,

#7, #8 and #9 contain mainly one category of papers, which coincides with the known

supervised information. However we also see groups containing more categories. This is

not surprising. Indeed, when looking at papers from some peculiar categories (e.g. neural

nets, probabilistic methods or theory) we discover that they cover topics from other355

categories. For instance, several probabilistic approaches are build upon neural networks,

or some theoretical papers can refer to neural network-based techniques. The clusters

containing papers from different categories, clearly account for this "contaminations".

Therefore, we want to give DeepLPM the known class labels and let the model dig for

more information hidden behind them.360

24

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Grp 9

Figure 15: Visualisation of the clustered embeddings without covariates on Cora.

Figure 16: Partitions without covariates taking into account the classes in each group on Cora. Here CB:

Case_Based, GA: Genetic_Algorithms, NN: Neural_Networks, PM: Probabilistic_Methods, RL1: Reinforce-

ment_Learning,RL2: Rule_Learning, T: Theory.

25

6.3. Results with covariates

To show the impact of the covariate information, we now adopt the covariates Y .

The model selection was also conducted by varying the number of clusters from 5 to

11, with the dimensionality of the latent space equal to 16. Based on the evolution of

the training loss, the number of groups was estimated to be K = 6. Thus, with this365

additional covariate, the clusters’ number is reduced by three.

Confusion matrix. We first plot the confusion matrix between the predicted labels at

K = 9 (without covariates) and K = 6 with covariates to investigate the fusion or

dispersion between multiple clusters, as shown in Figure 17. As we can see, the cluster

N1 extracted papers from 9 different clusters O1 to O9, especially from O4 and O9;370

N2 assembled publications mainly from clusters O1 and O2; besides, most of the items

in N3 and N5 come from O7 and O3, respectively; finally, N4 consists of quantitative

papers from O1, O2 and O8, N6 is mainly composed of articles of O2, O5 and O6.

The fusion facts here confirm that the addition of covariates helps to reveal hidden

patterns behind supervised class information when performing clustering tasks.375

O1 O2 O3 O4 O5 O6 O7 O8 O9
Cluster partition without covariate Y

N1
N2

N3
N4

N5
N6

Cl
us

te
r p

ar
tit

io
n

wi
th

 c
ov

ar
ia

te
 Y

23 32 18 103 47 63 21 28 117

254 76 26 12 51 2 22 46 48

16 3 20 0 0 0 95 4 1

72 106 16 0 16 31 26 282 27

4 21 388 52 20 0 1 31 32

11 108 6 61 127 96 0 28 18

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0

80

160

240

320

Figure 17: Confusion matrix between the estimated clusters with and without covariates.

Visualisation and analysis. The visualisation of the latent embeddings learned by

DeepLPM is shown in Figure 18. Figure 19 shows the paper distributions when consid-

ering the class labels for six groups. In contrast to Figure 16 where each group contains

26

principally one or two different classes, it is clear that, due to the introduction of paper

labels as covariates new similarities between papers in different categories emerge.380

Grp 1
Grp 2
Grp 3
Grp 4
Grp 5
Grp 6

Figure 18: Visualisation of the clustered embeddings with covariates on Cora.

Figure 19: Partitions with covariates taking into account classes in each group on Cora. Here CB:

Case_Based, GA: Genetic_Algorithms, NN: Neural_Networks, PM: Probabilistic_Methods, RL1: Rein-

forcement_Learning,RL2: Rule_Learning, T: Theory.

27

Next, to better understand the clustering results, more analysis on the obtained

clusters are performed. We first plotted the latent positions learned by DeepLPM using

PCA in Figure 20, highlighting nodes with degrees higher than 10. Those papers

are more often cited by other papers and can be more representative. Based on the

publications ID, we selected several articles with relatively large degree from each group385

and reported the information in Table 3. According to paper titles, it can first be seen that

group #1 (red) focuses on dynamic or temporal learning algorithms using probabilistic

methods or reinforcement learning; group #2 (green) then discusses different aspects of

neural networks, such as self-organization, adjusting or rules; in group #3 (blue), the

papers are largely based on the analysis and development of case studies; next, group390

#4 (cyan) contains articles on applications of genetic algorithms and neural networks;

while in group #5 (purple), papers consist of rule learning and inductive methods; finally,

group #6 (yellow) typically involves statistical and machine learning models.

Interestingly, when looking at Figure 20 from left to right, the content is changing

from applied research to more theoretical learning, and then from bottom to top, the395

topic of the articles is changing from case-based methods and reinforcement learning to

genetic algorithms, and finally to neural networks and statistical models.

Latent space learned by deepLPM

15

42

67

75

77

85

110

130

137 146

158

164189
220

251

259

295

343

345

360

379

416

427

428

431

439

454

466

478

479

480

520

524

539

553

559

563566

567 570

571

577

592

612

636

637

639

641

650

673

687739

746

748
773

794

810

882

911

966

968

996 1004

1017

1137

1154

1179
1219

1241

1291

1329

1334

1336

1355

1379

1460

1485

1499

1521

1528

1551

1570

1596

1645

1688

1697

1714

1719

1911

2154

2176

2221

2335

2422

2424
2500

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Figure 20: Learned hidden space (PCA compression), highlighting the nodes with degrees higher than 10.

28

Table 3: Inspection of some nodes/documents having large degree

Groups Node IDs Paper titles Degrees

Grp 1

#524 Studies in machine learning using the game of checkers 30

#553 Learning to act using real-time dynamic programming 42

#566 Learning to predict by the methods of temporal differ-

ences

78

#567 Integrated architectures for learning, planning, and re-

acting based on approximating dynamic programming

32

#673 Cryptographic limitations on learning boolean formu-

lae and finite automata

21

Grp 2

#130 Evolving networks: using the genetic algorithm with

connection learning

15

#295 Neuronlike adaptive elements that can solve difficult

learning control problems

32

#746 Self-organized formation of topologically correct fea-

ture maps

33

#748 Self-organization and associative memory 74

#810 Self-adjusting dynamic logic module 14

#882 Proben1 | A set of neural network benchmark problems

and benchmarking rules

14

Grp 3
#137 Theory refinement combining analytical and empirical

methods

19

#1499 Inferential theory of learning: developing foundations

for multistrategy learning

12

Grp 4

#164 Genetic algorithms in search, optimization and ma-

chine learning

168

#428 Introduction to the theory of neural computation 65

#571 A new learning algorithm for blind signal separation 19

#1355 The structure-mapping engine: algorithm and exam-

ples

23

#1521 Adaptive nonlinear PCA algorithms for blind source

separation without prewhitening

18

29

Groups Node ID Paper title Degree

Grp 5

#345 Learning logical relations from definitions 31

#379 An empirical comparison of selection measures for

decision-tree induction

26

#431 Irrelevant features and the subset selection problem 36

#636 Learning with many irrelevant features 21

#911 Learning sequential decision rules using simulation

models and competition

22

Grp 6

#15 Hidden Markov models in computational biology: ap-

plications to protein modeling

19

#42 Markov chain Monte Carlo convergence diagnostics:

a comparative review

14

#75 Hierarchical mixtures of experts and the EM algorithm 40

#77 A view of the EM algorithm that justifies incremental,

sparse, and other variants

16

#454 How to use expert advice 23

#794 A survey of evolution strategies 23

We close this section emphasizing once more that, in unsupervised problems, we

cannot determine the number of clusters solely bases on the number of the classes

that are used in supervised tasks. Conversely, when selecting the number of clusters400

via model selection (that VAEs seem to perform intrinsically), we are able to discover

interesting new similarities between the nodes of a graph.

7. Conclusion

We introduced DeepLPM to perform node clustering on network data in an end-to-

end manner. By integrating the GCN encoder with the LPM-based decoder, we retain the405

interpretability of the statistical model while also enjoying the excellent performance of

neural networks in representation learning. An original estimation procedure combined

the explicit optimization via variational inference and the implicit optimization using

stochastic gradient descent. Numerical experiments show that DeepLPM outperforms

30

state-of-the-art methods and highlight its capabilities in terms of model selection. Real-410

world applications on a historical network and a scientific citation network were also

proposed to illustrate the interest of the method for unsupervised analysis. For future

work, we are interested into analyzing textual edges by incorporating topic modeling.

Acknowledgements

This work has been supported by the French government, through the 3IA Côte415

d’Azur Investment in the Future Project managed by the National Research Agency

(ANR) with the reference numbers ANR-19-P3IA-0002.

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership

stochastic blockmodels. Journal of machine learning research.420

Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., and Cremers, D. (2018). Clustering

with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648.

Bouveyron, C., Celeux, G., Murphy, T. B., and Raftery, A. E. (2019). Model-based

clustering and classification for data science: with applications in R, volume 50.

Cambridge University Press.425

Bouveyron, C., Latouche, P., and Zreik, R. (2018). The stochastic topic block model for

the clustering of vertices in networks with textual edges. Statistics and Computing,

28(1):11–31.

Corneli, M., Bouveyron, C., Latouche, P., and Rossi, F. (2019). The dynamic stochastic

topic block model for dynamic networks with textual edges. Statistics and Computing,430

29(4):677–695.

Dai, B., Wang, Y., Aston, J., Hua, G., and Wipf, D. (2017). Hidden talents of the

variational autoencoder. arXiv preprint arXiv:1706.05148.

31

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive representation learning

on large graphs. In Proceedings of the 31st International Conference on Neural435

Information Processing Systems, pages 1025–1035.

Handcock, M. S., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering

for social networks. Journal of the Royal Statistical Society: Series A (Statistics in

Society), 170(2):301–354.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to440

social network analysis. Journal of the american Statistical association, 97(460):1090–

1098.

Jernite, Y., Latouche, P., Bouveyron, C., Rivera, P., Jegou, L., and Lamassé, S. (2014).

The random subgraph model for the analysis of an ecclesiastical network in merovin-

gian gaul. The Annals of Applied Statistics, 8(1):377–405.445

Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. (2016). Variational deep embed-

ding: An unsupervised and generative approach to clustering. In International Joint

Conference on Artificial Intelligence (IJCAI-2017).

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M.

(2016). Improved variational inference with inverse autoregressive flow. Advances in450

neural information processing systems, 29:4743–4751.

Kingma, D. P. and Welling, M. (2014). Stochastic gradient vb and the variational auto-

encoder. In Second International Conference on Learning Representations, ICLR,

volume 19, page 121.

Kipf, T. N. and Welling, M. (2016a). Semi-supervised classification with graph con-455

volutional networks. In 5th International Conference on Learning Representations

(ICLR-17).

Kipf, T. N. and Welling, M. (2016b). Variational graph auto-encoders. In NeurIPS

Workshop on Bayesian Deep Learning (NeurIPS-16 BDL).

32

Latouche, P., Birmelé, E., and Ambroise, C. (2011). Overlapping stochastic block460

models with application to the french political blogosphere. The Annals of Applied

Statistics, pages 309–336.

Lee, C. and Wilkinson, D. J. (2019). A review of stochastic block models and extensions

for graph clustering. Applied Network Science, 4(1):1–50.

Mariadassou, M., Robin, S., and Vacher, C. (2010). Uncovering latent structure in valued465

graphs: a variational approach. The Annals of Applied Statistics, 4(2):715–742.

Matias, C. and Miele, V. (2017). Statistical clustering of temporal networks through a

dynamic stochastic block model. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 79(4):1119–1141.

Mehta, N., Duke, L. C., and Rai, P. (2019). Stochastic blockmodels meet graph neural470

networks. In International Conference on Machine Learning, pages 4466–4474.

PMLR.

Nie, F., Zhu, W., and Li, X. (2017). Unsupervised large graph embedding. In Thirty-first

AAAI conference on artificial intelligence.

Nowicki, K. and Snijders, T. A. B. (2001). Estimation and prediction for stochastic475

blockstructures. Journal of the American statistical association, 96(455):1077–1087.

Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C. (2018). Adversarially regu-

larized graph autoencoder for graph embedding. In International Joint Conference

on Artificial Intelligence (IJCAI-18), pages 2609–2615.

Raftery, A. E. (2017). Comment: Extending the latent position model for networks.480

Journal of the American Statistical Association, 112(520):1531–1534.

Schaeffer, S. E. (2007). Graph clustering. Computer science review, 1(1):27–64.

Snijders, T. A. (2011). Statistical models for social networks. Annual review of sociology,

37:131–153.

33

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. (2014). Learning deep representations485

for graph clustering. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 28.

Wang, C., Pan, S., Long, G., Zhu, X., and Jiang, J. (2017). Mgae: Marginalized graph

autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management, pages 889–898.490

Wang, Y. J. and Wong, G. Y. (1987). Stochastic blockmodels for directed graphs.

Journal of the American Statistical Association, 82(397):8–19.

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding for

clustering analysis. In International conference on machine learning, pages 478–487.

PMLR.495

Xu, K. S. and Hero, A. O. (2014). Dynamic stochastic blockmodels for time-evolving

social networks. IEEE Journal of Selected Topics in Signal Processing, 8(4):552–562.

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2018). Network representation learning: A

survey. IEEE transactions on Big Data, 6(1):3–28.

Zhang, X., Liu, H., Li, Q., and Wu, X.-M. (2019). Attributed graph clustering via500

adaptive graph convolution. arXiv preprint arXiv:1906.01210.

Zhang, Z., Cui, P., and Zhu, W. (2020). Deep learning on graphs: A survey. IEEE

Transactions on Knowledge and Data Engineering.

34

	Introduction and related work
	Deep latent position model
	Notations
	Generative model
	Links with related models

	Model inference
	Variational auto-encoding inference
	Optimization
	Model selection

	Numerical experiments
	Simulation setup
	Benchmark study
	Model selection

	Analysis of a medieval network
	Dataset
	Results without covariates
	Results with covariates

	Cora citation network
	Dataset
	Results without covariates
	Results with covariates

	Conclusion

