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Restricting directions for Kakeya sets

Anthony Gauvan

April 3, 2022

Abstract

We prove that the Kakeya maximal conjecture is equivalent to the Ω-Kakeya maximal

conjecture. This completes a recent result in [2] where Keleti and Mathé proved that the
Kakeya conjecture is equivalent to the Ω-Kakeya conjecture. Moreover, we improve concrete
bound on the Hausdorff dimension of a Ω-Kakeya set : for any Bore set Ω in S

n−1, we prove
that if X ⊂ R

n contains for any e ∈ Ω a unit segment oriented along e then we have

dX ≥
6

11
dΩ + 1

where dE denotes the Hausdorff dimension of a set E.

1 Introduction

The Kakeya problem is a central question in harmonic analysis which can be formulated in different
ways ; it is also related to restriction theory and arithmetic. A measurable set X in Rn is said to
be a Kakeya set if for any direction e ∈ S

n−1 it contains a unit segment Te oriented along e. The
Kakeya conjecture concerns the Hausdorff dimension of Kakeya set X .

Conjecture 1 (Kakeya conjecture). If X is a Kakeya set in Rn then

dX = dSn−1 + 1 = n.

This conjecture has been proved by Davies in the plane in [1]. For n ≥ 3, a vast amount of
techniques have been developed in order to tackle this issue ; we invite the reader to look at [3]
or [6] to see the extent of the techniques that might be deployed. Here, we will simply say that,
specialists are able to prove that if X is a Kakeya set in Rn then

dX ≥ (
1

2
+ ǫn)dSn−1 + 1

where ǫn > 0 is a dimensional constant. There exists a more quantitative version of the Kakeya
conjecture and we need to introduce the Kakeya maximal operator to state it. We define the Kakeya

maximal function

Kδf : S
n−1 → R+

at scale δ > 0 of a locally integrable function f : Rn → R as

Kδf(e) := sup
a∈Rn

1

|Te,δ(a)|

∫

Te,δ(a)

|f |(x)dx
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where e ∈ Sn−1 and Te,δ(a) stands for the tube in Rn with center a, oriented along the direction e,
of length 1 and radius δ. It appears that any quantitative information on ‖Kδ‖σ,p provides lower
bound on the dimension of any Kakeya set X : for any 1 < p < ∞ and β > 0 such that n−βp > 0,
if we have

‖Kδ‖σ,p .n,p,β δ−β

then the Hausdorff dimension of any Kakeya set in Rn is at least n − βp. In regards of this fact,
the following conjecture is called the Kakeya maximal conjecture, it is stronger than the Kakeya
conjecture.

Conjecture 2 (Kakeya maximal conjecture). For any ǫ > 0 we have

‖Kδ‖σ,n .n,ǫ δ
−ǫ.

In this text, we are concerned with a natural generalization of the Kakeya problem. Given an
arbitrary Borel set of directions Ω ⊂ Sn−1, we say that a set X in Rn is a Ω-Kakeya set if for any
e ∈ Ω there exists a unit segment Te oriented along e included in X . What can be said about the
dimension of a Ω-Kakeya set ? The following conjecture seems plausible.

Conjecture 3 (Ω-Kakeya conjecture). For any Borel set Ω in Sn−1 ; if X is a Ω-Kakeya set then

dX ≥ dΩ + 1.

At least three questions can be asked. First, if we know that the Kakeya conjecture is true, can
we say something about the Ω-Kakeya conjecture ? Secondly, can we state a maximal version of
the Ω-Kakeya conjecture ? Lastly, if there exists a Ω-Kakeya maximal conjecture, what can we said
about it given the Kakeya maximal conjecture ? Very recently, Keleti and Mathé gave a positive
answer to the first question in [2].

Theorem 1 (Keleti-Mathé). If the Kakeya conjecture is true then the Ω-Kakeya conjecture is also

true.

The proof of this Theorem relies on fine notions concerning Hausdorff and packing dimension
and we invite the reader to look at [2] for more details.

2 Notations

We will work in the euclidean space R
n with n ≥ 3 endowed with the Lebesgue measure and the

euclidean distance ; if U is a measure set in Rn we denote by |U | its n-dimensional Hausdorff
measure and by |U |k its k-dimensional Hausdorff measure for k < n. Also we denote by dU its
Hausdorff dimension and by diam (U) its diameter. We denote by σ the spherical surface measure
on Sn−1 and µ will stand for a probability measure on Sn−1 ; we will denote by Sµ its support.
The surface measure σ will usually not charge the support of µ i.e. we will have σ(Sµ) = 0. We
will see that we need to focus on the study of (µ, p)-norm of

Kδ : L
p(Rn) → Lp(Sn−1, µ)

where µ is an arbitrary measure on Sn−1 i.e. we will be interested in estimating the following
quantity

‖Kδ‖µ,p := sup
‖f‖p≤1

(
∫

Sn−1

(Kδf(e))
pdµ

)
1
p

.
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Hence the notation ‖Kδ‖µ,p emphasizes the dependence on the probability measure µ set on the
target space.

3 Results

We are going to formulate the appropriate maximal version of the Ω-Kakeya conjecture ; then we
will prove that the Kakeya maximal conjecture implies the Ω-Kakeya maximal conjecture. In other
words, we prove the maximal analog to Theorem 1. Our approach is close to the approach iniated by
Mitsis in [5] ; here we work in higher dimension. We will start by proving the following Proposition.

Proposition 1. Let µ be an arbitrary probability measure on S
n−1 and suppose we have 1 < p < ∞

and β > 0 such that n− βp > 0. Suppose that we have

‖Kδ‖µ,p .n,p,β δ−β .

In this case, for any Borel set of direction Ω containing the support Sµ of µ, the Hausdorff dimension

of any Ω-Kakeya set X is at least n− βp.

In regards of this Proposition, we will call the following Conjecture the Ω-Kakeya maximal
conjecture.

Conjecture 4 (Ω-Kakeya maximal conjecture). Fix any probability µ defined on Sn−1 satisfying

for some d ∈ [0, n− 1]
[µ]d := sup

e∈Sn−1,r>0

µ (Be,r) r
−d ≤ 1.

Then for any ǫ > 0 we have

‖Kδ‖µ,n .n,d,ǫ δ
(d+1)

n
−(1+ǫ).

Using Frostman’s Lemma, one can easily checked that the Ω-Kakeya maximal conjecture implies
the Ω-Kakeya conjecture. One of our main result is the following.

Theorem 2. If the Kakeya maximal conjecture is true then the Ω-Kakeya maximal conjecture.

In particular, since in the plane R2 we do have ‖Kδ‖σ,2 .ǫ δ
−ǫ for any ǫ > 0, this gives another

proof of the Ω-Kakeya conjecture in the plane ; recall that this Theorem has also been established
by Mitsis in [5].

Theorem 3. For any Borel set Ω in S1, if X is a Ω-Kakeya set then

dX ≥ dΩ + 1.

At this point, it is interesting to note Theorems 1 and Theorem 2 cannot provide partial result

to the Ω-Kakeya conjecture. For example, say we can prove that if X is a Kakeya set then we have

dX ≥
3

4
(n− 1) + 1.

In this situation, we cannot use Theorems 1 and 2 - neither their methods of proof - to show that
for any Ω-Kakeya set Y , we have

dY ≥
3

4
dΩ + 1.

Hence, in order to obtain further partial result on the Ω-Kakeya conjecture, we are going to employ
Bourgain’s arithmetic argument in order to prove the following Theorem.
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Theorem 4. For any Borel set Ω in Sn−1 and any Ω-Kakeya set X in Rn we have

dX ≥
6

11
dΩ + 1.

In [7], Venieri proved that if Ω is d-Alfhors regular then a Ω-Kakeya set X has Hausdorff
dimension greater than d+2

2 + 1
2 . Theorem 4 strengthen this result since it gives better estimate for

large n and also since we do not make assumption concerning the set of direction Ω.

4 Proof of Proposition 1

We let µ be an arbitrary probability measure on Sn−1 and suppose we have 1 < p < ∞ and β > 0
such that n− βp > 0. We also suppose that we have

‖Kδ‖µ,p .n,p,β δ−β .

We fix then an arbitrary Borel set of directions Ω which contains Sµ and we let X included in Rn

be a Ω-Kakeya set ; we are going to prove that we have

dX ≥ n− βp.

Fix an arbitrary α ∈ (0, n− βp). Consider a covering of X by balls Bi = B(xi, ri) such that ri < 1
for any i ∈ I. We will show that we have

∑

i∈I

rαi &α 1

which gives dX ≥ α. For e ∈ Ω, let Te ⊂ X be a unit segment oriented along the direction e ; for
k ≥ 1 we order the balls Bi by their radii defining

Ik =

{

i ∈ I : ri ≃
1

2k

}

.

We also define

Ωk =







e ∈ Ω :

∣

∣

∣

∣

∣

Te ∩
⋃

i∈Ik

Bi

∣

∣

∣

∣

∣

1

≥
1

2k2







.

It is not difficult to show that we have Ω =
⋃

k≥1 Ωk. We are going to fatten a little bit every
segment Te in order to deal with tubes. We define for k ≥ 1 the set

Y ′
k =

⋃

i∈Ik

B(xi, 2ri).

For e ∈ Ω , by simple geometry we have the following inequality

∣

∣Te,2−k ∩ Y ′
k

∣

∣ &
1

k2

∣

∣Te,2−k

∣

∣ .

Hence for any e ∈ Ωk we have K2−k1Y ′

k
(e) & 1

k2 . Using our hypothesis on Kδ, we obtain

µ (Ωk) . µ

({

K2−k1Y ′

k
≥

1

2k2

})

.n,p,β k2p2kβp |Y ′
k| .
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Since we have |Y ′
k| .n 2−kn#Ik it follows that µ (Ωk) ≤ k2p2−k(n−βp)#Ik. We have selected

α < n− βp and so we have by polynomial comparison k2p2−k(n−βp) .α 2−kα. Hence we have

∑

i∈I

rαi ≥
∑

k

2−αk#Ik &α

∑

k

µ(Ωk) ≥ µ(Ω) = 1

since Ω contains the support Sµ of µ.

5 Proof of Theorem 2

We are going to prove Theorem 2 proving the following estimate.

Theorem 5. Fix 1 < p < ∞ and let µ be a probability on S
n−1satisfying [µ]d ≤ 1 for some

0 ≤ d ≤ n− 1. In this case we have for any δ > 0

‖Kδ‖µ,p .n,d,p δ−
n−(d+1)

p ‖Kδ‖σ,p.

This estimate comes from the fact that a function Kδf is almost δ-discrete. Observe that this
estimate is not possible in general since the surface measure σ typically does not charge the support
Sµ of the measure µ i.e. σ(Sµ) = 0. The following Lemma is a manifestation of the idea that we
should not define the orientation of an object more precisely than its eccentricity.

Lemma 1. For any δ > 0 and any directions e1, e2 ∈ Sn−1 satisfying |e1 − e2| ≤ δ we have

Kδf(e1) ≃n Kδf(e2)

for any locally integrable function f .

Proof. This comes from the fact that there is a dimensional constant an > 1 such that if we have
two tubes Te1,δ, Te2,δ with |e1 − e2| < δ then one can find ~t ∈ Rn such that

~t+
1

an
Te1,δ ⊂ Te2,δ ⊂ ~t+ anTe1,δ.

We can then relate the (σ, p)-norm of Kδf with a discrete sum over a family eδ,Sn−1 ⊂ Sn−1

which is δ-separated and maximal for this property.

Lemma 2. For f locally integrable and any family eδ,Sn−1 of Sn−1 which is maximal and δ-

separated, we have

‖Kδf‖
p
σ,p ≃n

∑

e∈e
δ,Sn−1

Kδf(e)
pδn−1.

Proof. On one hand we have

∫

Sn−1

Kδf(e)
pdσ(e) .n

∑

e∈e
δ,Sn−1

Kδf(e)
pσ(B(e, δ)) ≃n

∑

e∈e
δ,Sn−1

Kδf(e)
pδn−1.
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On the other hand we have
∫

Sn−1

Kδf(e)
pdσ(e) &n

∑

e∈eδ,Sn−1

Kδf(e)
pσ(B(e,

δ

2
)) ≃n

∑

e∈eδ,Sn−1

Kδf(e)
pδn−1

which concludes.

We can now prove Theorem 5.

Proof. Fix δ > 0 and consider a family (ek)k≤m ⊂ Sµ which is δ-separated and whose cardinal is
maximal ; this implies that we have

Sµ ⊂
⋃

k≤m

Bek,2δ.

For f in Lp(Rn) we have then
∫

Sµ

Kδf(e)
pdµ(e) .n

∑

k≤m

∫

Bek,2δ

Kδf(ek)
pµ(Bek,2δ) .n,d

∑

k≤m

Kδf(ek)δ
d

using Lemma 1 and the fact that [µ]d ≤ 1. Now we complete the family (ek)k≤m into a δ-separated

family eδ,Sn−1 which is maximal in Sn−1. We have then

∑

k≤m

Kδf(ek)
pδd ≤

∑

e∈e
δ,Sn−1

Kδf(e)
pδd ≃ δd+1−n

∑

e∈e
δ,Sn−1

Kδf(e)
pδn−1 ≃n δd+1−n‖Kδf‖

p
σ,p

using the previous lemma.

We can now prove Theorem 2 i.e. we can prove that the Kakeya maximal conjecture implies to
the Ω-Kakeya maximal conjecture. This simply comes from the fact that the ǫ-loss can be easily
transferred thanks to Theorem 5.

Proof. Fix any probability µ defined on Sn−1 satisfying for some d ∈ [0, n− 1], [µ]d ≤ 1. Thanks
to Theorem 5, if the Kakeya maximal conjecture is true then we have

‖Kδ‖µ,n .n,d δ
(d+1)

n
−1‖Kδ‖σ,n .n,d,ǫ δ

(d+1)
n

−(1+ǫ)

i.e. the Ω-Kakeya maximal conjecture is true.

6 Proof of Theorem 4

The proof of Theorem 4 follows Bourgain’s arithmetic argument for the classic Kakeya problem ;
this method relies on the following two results. The first one allow us to give an upper bound on
the difference set A−B.

Theorem 6 (Sum-difference Theorem). Fix any δ > 0 and suppose that A,B are finite subset of

δZn such that #A,#B ≤ N . If G ⊂ A× B satisfies

#{a+ b : (a, b) ∈ G} . N

then we have #{a− b : (a, b) ∈ G} ≤ N2− 1
6 .
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The second Theorem needed is due to Heath-Brown [8] : it states that if S is a large subset of
{0, . . . ,M} for M large enough then S contains an arithmetic progression of length 3.

Theorem 7 (Heath-Brown). There exists an integer M0 such that if M > M0 is a integer and if

S is a subset of {0, . . . ,M} such that

#S ≥
M

log(M)c

then S contains a subset of the form {m,m+m′,m+2m′} ⊂ S. Here c > 0 is an absolute constant.

For the sake of clarity, we have decomposed the proof of Theorem 4 in two steps. We will denote
by C(A, δ) the smallest number of balls of radius δ needed to cover the set A.

Decomposition of the Ω-Kakeya set

To begin with, we may suppose that Ω is contained in a small spherical cap ; concretely we suppose
that for any e = (e1, . . . , en) ∈ Ω we have en > 1

2 . We fix then d < dΩ arbitrarily close and we use
Frostman’s Lemma to obtain an probability µ such that Sµ ⊂ Ω and also [µ]d ≤ 1. We consider
then a Ω-Kakeya set X and we suppose that X is contained in [0, 1]n. For any e ∈ Ω we will denote
by Te a unit segment oriented along e contained in X . Finally we fix s > dX and we will prove that
we have

s ≥
6

11
d+ 1.

We fix ǫ ∈ (0, 1) arbitrarily small and we let η ∈ (0, 1) such that defining δk = 2−2ηk

we have
for any k ≥ 1,

δs+ǫ
k ≤ δsk+1.

Since s > dX , for arbitrary large k0, we can cover X by a countable collection of balls {Bi}i∈I and
such that for any i ∈ I, we have diam(Bi) < δk0 and

∑

i∈I diam(Bi)
s < 1. In addition, we take k0

so large that we have
k40 max(δηk0

, δ
ηd
k0
) < 1.

We denote by Y the union of the balls {Bi}i∈I i.e.

Y :=
⋃

i∈I

Bi

and for k ≥ k0 we will denote by Ik := {i ∈ Ik : δ < diam(Bi) ≤ δ} and also Yk :=
⋃

i∈Ik
Bi. We

can control the size of #Ik.

Claim 1. We have #Ikδ
s+ǫ
k < 1.

Proof. By definition of Ik and since we have δs+ǫ
k ≤ δsk+1 and

∑

i∈I diam(Bi)
s < 1, we obtain

#Ikδ
s+ǫ
k ≤ #Ikδ

s
k+1 ≤

∑

i∈Ik

diam(Bi)
s < 1.
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step 1 : refinement to a single scale

We wish to work at a single scale with respect to this covering. Hence we are going to exhibit a
k ≥ k0 such that there is a specific subset Ωk ⊂ Ω adapted to the covering {Bi}i∈Ik

: on one hand
Ωk is large and on the other hand, for any e ∈ Ωk, the unit segment Te ⊂ X is well covered by the
balls {Bi}i∈Ik

.

Claim 2. There exists k ≥ k0 and Ωk ⊂ Ω such that for any e ∈ Ωk,

|Te ∩ Yk|1 ≥
1

k2

and also µ(Ωk) >
1
k2 .

Proof. If this is not the case, then for any k ≥ k0 we have

µ

(

{e ∈ Ω : |Te ∩ Yk|1 ≥
1

k2
}

)

≤
1

k2
.

Hence we have

µ

(

{e ∈ Ω : ∃k ≥ k0, |Te ∩ Yk|1 ≥
1

k2
}

)

≤
∑

k≥k0

1

k2
< µ(Ω)

and so there is e ∈ Ω such that |Te ∩ Yk|1 < 1
k2 for any k ≥ k0. This is not possible since Y covers

X and so Te in particular.

step 2 : slicing Rn at two scales

We fix such a k and we let δ := δk. Recall that since k ≥ k0 and that we can choose k0 arbitrarily
large, the same is true for k i.e. the integer k can be chosen arbitrarily large. Also observe that by
definition we have

k ≃ log log(δ−η).

Now we fix two integers N,M ∈ N such that

(N,M) ≃ (δη−1, δ−η).

We are going to slice Rn at two different scales (δ and δη) along the vector (0, . . . , 1). Precisely for
j ≤ N and m ≤ M , we define

Aj,m := {x = (x1, . . . , xn) ∈ R
n : jδ +mNδ ≤ xn ≤ (j + 1)δ +mNδ}

and Aj :=
⋃

m≤M Aj,m.

Claim 3. For any e ∈ Ωk and j ≤ N , we have |Te ∩ Aj |1 ≃ Mδ ≃ 1
N
.

Proof. The claim comes from the fact that we have supposed that for any e = (e1, . . . , en) ∈ Ω we
have en > 1

2 .

8



By definition of Ωk, we also have the following estimate

1

k4
≤

µ(Ωk)

k2
≤

∫

Ωk

|Yk ∩ Te|1dµ(e) =
∑

j≤N

∫

Ωk

|Yk ∩ Te ∩ Aj |1dµ(e).

We define then the subset J ⊂ {0, . . . , N} as

J = {j ≤ N :

∫

Ωk

|Yk ∩ Te ∩ Aj |1 ≥
1

2Nk4
}.

The following claim states that this set J is not too small in {0, . . . , N}.

Claim 4. We have #J & δηN

Proof. The proof comes from a reverse Markov inequality.

Now for each j ∈ J , we extract a subset Ωk,j from Ωk in the same fashion that we have extracted
Ωk from Ω. The proof is the same than for Claim 2.

Claim 5. For any j ∈ J , there exists Ωk,j ⊂ Ωk such that for any e ∈ Ωk,j ,

|Te ∩ Yk ∩ Aj |1 >
|Te ∩Aj |1

4k4

and also µ(Ωk,j) >
µ(Ωk)
k2 .

step 3 : conclusion

Observe that for |j− j′| > 2, the sets Yk ∩Aj and Yk ∩Aj′ are separated by a distance greater than
2δ. Hence, on one hand we have

∑

j∈J

C(Yk ∩Aj , δ) . C(Yk, δ) . δ−s−ǫ.

On the other hand, suppose that for any j ∈ J we have

C(Yk ∩ Aj , δ) & δ
6
11 (2η−1)d.

In this case we obtain
∑

j∈J

C(Yk ∩Aj , δ) & #J × δ
6
11 (2η−1)d & δ

6
11 (2η−1)d+(2η−1).

Since δ is small enough, we get 6
11 (1 − 2η)d − 2η + 1 ≤ s+ ǫ. Taking ǫ and η arbitrarily small we

conclude that

s ≥
6

11
d+ 1.

Lower bound for C(Yk ∩Aj , δ)

Hence we are left to prove that we have, for any j ∈ J , the following bound

C(Yk ∩ Aj , δ) & δ
6
11 (2η−1)d.

We will start by applying Heath-Brown’s Theorem and we will use thereafter the Sum-difference
Theorem to obtain a bound on C(Yk ∩ Aj , δ).
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step 1 : application of Heath-Brown’s Theorem

For any j ∈ J and any e ∈ Ωk,j , we consider the following subset of {0, . . . ,M}

K(e, j) := {m ≤ M : Yk ∩ Te ∩ Aj,m 6= ∅}.

The following claim states that K(e, j) contains a lot of element in {0, . . . ,M}.

Claim 6. We have #K(e, j) & M
log log(M) .

Proof. We have

#K(e, j)× δ & |Yk ∩ Te ∩ Aj |1 >
1

4Nk4
.

Hence

#K(e, j) &
M

k4
≃

M

log log(M)
.

Since we can take M arbitrary large and that K(e, j) is quite large in {0, . . . ,M}, we are able
to exhibit arithmetic progressions of three terms in K(e, j) using the Theorem of Heath-Brown.

Claim 7. For any j ∈ J and e ∈ Ωk,j , the set K(e, j) contains a subset of the form

{m,m+m′,m+ 2m′} ⊂ K(e, j).

Hence for any j ∈ J and any e ∈ Ωk,j , there exists ae, be ∈ Yk(nδ)∩Te(nδ)∩Aj ∩ δZn such that

ae + be

2
∈ Yk(nδ) ∩ Te(nδ) ∩ Aj ∩ δZn

and ae, be belong to different sets Aj,m. Observe also that the sets Aj,m for different indices m are
at least distant of ≃ δη. Thus if δ is small enough we have |ae − be| & δη. Finally, we consider the
sets A = {ae : e ∈ Ωk,j}, B = {be : e ∈ Ωk,j} and

G := {(ae, be) : e ∈ Ωk,j} ⊂ A×B.

Recall that we have
A,B ⊂ δZn.

step 2 : upper bound for #{a− b : (a, b) ∈ G}

We are going to give an upper bound and lower bound on #{a− b : (a, b) ∈ G}. Observe that the
cardinal of A,B and {a+ b : (a, b) ∈ G} is controlled by the covering number C(Yk ∩Aj , δ). Hence
a direct application of the Sum-difference Theorem yields an upper bound on #{a− b : (a, b) ∈ G}

Claim 8. We have #{a− b : (a, b) ∈ G} . C(Yk ∩ Aj , δ)
11
6 .
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step 3 : lower bound for #{a− b : (a, b) ∈ G}

Finally we are also able to provide a lower bound on #{a− b : (a, b) ∈ G} using the measure µ.

Claim 9. We have δ(2η−1)d . #{a− b : (a, b) ∈ G}.

Proof. Since ae and be are in the nδ-neighbourhood of Te and |ae − be| >
δη

2 for e ∈ Ωk,j , it follows

that balls roughly of radius δ1−η centred at the unit vectors ae−be
|ae−be|

(for e ∈ Ωk,j) cover Ωk,j . As

µ(Ωk,j) >
1

4k4 , this implies

#(A−B) &
δ(η−1)d

k4
& δ(2η−1)d.

Hence for any j ∈ J , we have

C(Yk ∩ Aj , δ) & δ
6
11 (2η−1)d.

This concludes the proof of Theorem 4.
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