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Introduction

The Kakeya problem is a central question in harmonic analysis which can be formulated in different ways ; it is also related to restriction theory and arithmetic. A measurable set X in R n is said to be a Kakeya set if for any direction e ∈ S n-1 it contains a unit segment T e oriented along e. The Kakeya conjecture concerns the Hausdorff dimension of Kakeya set X.

Conjecture 1 (Kakeya conjecture). If X is a Kakeya set in R n then

d X = d S n-1 + 1 = n.
This conjecture has been proved by Davies in the plane in [START_REF] Davies | Some remarks on the Kakeya problem[END_REF]. For n ≥ 3, a vast amount of techniques have been developed in order to tackle this issue ; we invite the reader to look at [START_REF] Katz | Recent progress on the Kakeya conjecture[END_REF] or [START_REF] Hawk | An Improved Bound on the Minkowski Dimension of Besicovitch Sets in R 3[END_REF] to see the extent of the techniques that might be deployed. Here, we will simply say that, specialists are able to prove that if X is a Kakeya set in R n then

d X ≥ ( 1 2 + ǫ n )d S n-1 + 1
where ǫ n > 0 is a dimensional constant. There exists a more quantitative version of the Kakeya conjecture and we need to introduce the Kakeya maximal operator to state it. We define the Kakeya maximal function K δ f : S n-1 → R + at scale δ > 0 of a locally integrable function f : R n → R as K δ f (e) := sup where e ∈ S n-1 and T e,δ (a) stands for the tube in R n with center a, oriented along the direction e, of length 1 and radius δ. It appears that any quantitative information on K δ σ,p provides lower bound on the dimension of any Kakeya set X : for any 1 < p < ∞ and β > 0 such that nβp > 0, if we have K δ σ,p n,p,β δ -β then the Hausdorff dimension of any Kakeya set in R n is at least nβp. In regards of this fact, the following conjecture is called the Kakeya maximal conjecture, it is stronger than the Kakeya conjecture.

Conjecture 2 (Kakeya maximal conjecture). For any ǫ > 0 we have

K δ σ,n n,ǫ δ -ǫ .
In this text, we are concerned with a natural generalization of the Kakeya problem. Given an arbitrary Borel set of directions Ω ⊂ S n-1 , we say that a set X in R n is a Ω-Kakeya set if for any e ∈ Ω there exists a unit segment T e oriented along e included in X. What can be said about the dimension of a Ω-Kakeya set ? The following conjecture seems plausible.

Conjecture 3 (Ω-Kakeya conjecture). For any Borel set Ω in S n-1 ; if X is a Ω-Kakeya set then d X ≥ d Ω + 1.
At least three questions can be asked. First, if we know that the Kakeya conjecture is true, can we say something about the Ω-Kakeya conjecture ? Secondly, can we state a maximal version of the Ω-Kakeya conjecture ? Lastly, if there exists a Ω-Kakeya maximal conjecture, what can we said about it given the Kakeya maximal conjecture ? Very recently, Keleti and Mathé gave a positive answer to the first question in [START_REF] Keleti | Equivalences between different forms of the Kakeya conjecture and duality of Hausdorff and packing dimensions for additive complements[END_REF].

Theorem 1 (Keleti-Mathé). If the Kakeya conjecture is true then the Ω-Kakeya conjecture is also true.

The proof of this Theorem relies on fine notions concerning Hausdorff and packing dimension and we invite the reader to look at [START_REF] Keleti | Equivalences between different forms of the Kakeya conjecture and duality of Hausdorff and packing dimensions for additive complements[END_REF] for more details.

Notations

We will work in the euclidean space R n with n ≥ 3 endowed with the Lebesgue measure and the euclidean distance ; if U is a measure set in R n we denote by |U | its n-dimensional Hausdorff measure and by |U | k its k-dimensional Hausdorff measure for k < n. Also we denote by d U its Hausdorff dimension and by diam (U ) its diameter. We denote by σ the spherical surface measure on S n-1 and µ will stand for a probability measure on S n-1 ; we will denote by S µ its support. The surface measure σ will usually not charge the support of µ i.e. we will have σ(S µ ) = 0. We will see that we need to focus on the study of (µ, p)-norm of

K δ : L p (R n ) → L p (S n-1 , µ)
where µ is an arbitrary measure on S n-1 i.e. we will be interested in estimating the following quantity

K δ µ,p := sup f p ≤1 S n-1 (K δ f (e)) p dµ 1 p
.

Hence the notation K δ µ,p emphasizes the dependence on the probability measure µ set on the target space.

Results

We are going to formulate the appropriate maximal version of the Ω-Kakeya conjecture ; then we will prove that the Kakeya maximal conjecture implies the Ω-Kakeya maximal conjecture. In other words, we prove the maximal analog to Theorem 1. Our approach is close to the approach iniated by Mitsis in [START_REF] Mitsis | Norm estimates for the Kakeya maximal function with respect to general measures[END_REF] ; here we work in higher dimension. We will start by proving the following Proposition.

Proposition 1. Let µ be an arbitrary probability measure on S n-1 and suppose we have 1 < p < ∞ and β > 0 such that nβp > 0. Suppose that we have

K δ µ,p n,p,β δ -β .
In this case, for any Borel set of direction Ω containing the support S µ of µ, the Hausdorff dimension of any Ω-Kakeya set X is at least nβp.

In regards of this Proposition, we will call the following Conjecture the Ω-Kakeya maximal conjecture.

Conjecture 4 (Ω-Kakeya maximal conjecture). Fix any probability µ defined on S n-1 satisfying for some

d ∈ [0, n -1] [µ] d := sup e∈S n-1 ,r>0 µ (B e,r ) r -d ≤ 1.
Then for any ǫ > 0 we have (1+ǫ) .

K δ µ,n n,d,ǫ δ (d+1) n - 
Using Frostman's Lemma, one can easily checked that the Ω-Kakeya maximal conjecture implies the Ω-Kakeya conjecture. One of our main result is the following. Theorem 2. If the Kakeya maximal conjecture is true then the Ω-Kakeya maximal conjecture.

In particular, since in the plane R 2 we do have K δ σ,2 ǫ δ -ǫ for any ǫ > 0, this gives another proof of the Ω-Kakeya conjecture in the plane ; recall that this Theorem has also been established by Mitsis in [START_REF] Mitsis | Norm estimates for the Kakeya maximal function with respect to general measures[END_REF].

Theorem 3. For any Borel set Ω in S 1 , if X is a Ω-Kakeya set then d X ≥ d Ω + 1.
At this point, it is interesting to note Theorems 1 and Theorem 2 cannot provide partial result to the Ω-Kakeya conjecture. For example, say we can prove that if X is a Kakeya set then we have

d X ≥ 3 4 (n -1) + 1.
In this situation, we cannot use Theorems 1 and 2 -neither their methods of proof -to show that for any Ω-Kakeya set Y , we have

d Y ≥ 3 4 d Ω + 1.
Hence, in order to obtain further partial result on the Ω-Kakeya conjecture, we are going to employ Bourgain's arithmetic argument in order to prove the following Theorem.

Theorem 4. For any Borel set Ω in S n-1 and any Ω-Kakeya set X in R n we have

d X ≥ 6 11 d Ω + 1.
In [START_REF] Venieri | Dimension estimates for Kakeya sets defined in an axiomatic setting[END_REF], Venieri proved that if Ω is d-Alfhors regular then a Ω-Kakeya set X has Hausdorff dimension greater than d+2 2 + 1 2 . Theorem 4 strengthen this result since it gives better estimate for large n and also since we do not make assumption concerning the set of direction Ω.

Proof of Proposition 1

We let µ be an arbitrary probability measure on S n-1 and suppose we have 1 < p < ∞ and β > 0 such that nβp > 0. We also suppose that we have

K δ µ,p n,p,β δ -β .
We fix then an arbitrary Borel set of directions Ω which contains S µ and we let X included in R n be a Ω-Kakeya set ; we are going to prove that we have

d X ≥ n -βp.
Fix an arbitrary α ∈ (0, nβp). Consider a covering of X by balls B i = B(x i , r i ) such that r i < 1 for any i ∈ I. We will show that we have i∈I r α i α 1 which gives d X ≥ α. For e ∈ Ω, let T e ⊂ X be a unit segment oriented along the direction e ; for k ≥ 1 we order the balls B i by their radii defining

I k = i ∈ I : r i ≃ 1 2 k .
We also define

Ω k =    e ∈ Ω : T e ∩ i∈I k B i 1 ≥ 1 2k 2    .
It is not difficult to show that we have Ω = k≥1 Ω k . We are going to fatten a little bit every segment T e in order to deal with tubes. We define for k ≥ 1 the set

Y ′ k = i∈I k B(x i , 2r i ).
For e ∈ Ω , by simple geometry we have the following inequality

T e,2 -k ∩ Y ′ k 1 k 2 T e,2 -k .
Hence for any e ∈ Ω k we have

K 2 -k 1 Y ′ k (e) 1 k 2 .
Using our hypothesis on K δ , we obtain

µ (Ω k ) µ K 2 -k 1 Y ′ k ≥ 1 2k 2 n,p,β k 2p 2 kβp |Y ′ k | . Since we have |Y ′ k | n 2 -kn #I k it follows that µ (Ω k ) ≤ k 2p 2 -k(n-βp) #I k .
We have selected α < nβp and so we have by polynomial comparison k 2p 2 -k(n-βp) α 2 -kα . Hence we have i∈I

r α i ≥ k 2 -αk #I k α k µ(Ω k ) ≥ µ(Ω) = 1
since Ω contains the support S µ of µ.

Proof of Theorem 2

We are going to prove Theorem 2 proving the following estimate.

Theorem 5. Fix 1 < p < ∞ and let µ be a probability on

S n-1 satisfying [µ] d ≤ 1 for some 0 ≤ d ≤ n -1.
In this case we have for any δ > 0

K δ µ,p n,d,p δ -n-(d+1) p K δ σ,p .
This estimate comes from the fact that a function K δ f is almost δ-discrete. Observe that this estimate is not possible in general since the surface measure σ typically does not charge the support S µ of the measure µ i.e. σ(S µ ) = 0. The following Lemma is a manifestation of the idea that we should not define the orientation of an object more precisely than its eccentricity. Lemma 1. For any δ > 0 and any directions e 1 , e 2 ∈ S n-1 satisfying |e 1e 2 | ≤ δ we have

K δ f (e 1 ) ≃ n K δ f (e 2 )
for any locally integrable function f . Proof. This comes from the fact that there is a dimensional constant a n > 1 such that if we have two tubes T e1,δ , T e2,δ with |e 1e 2 | < δ then one can find t ∈ R n such that

t + 1 a n T e1,δ ⊂ T e2,δ ⊂ t + a n T e1,δ .
We can then relate the (σ, p)-norm of K δ f with a discrete sum over a family e δ,S n-1 ⊂ S n-1 which is δ-separated and maximal for this property.

Lemma 2. For f locally integrable and any family e δ,S n-1 of S n-1 which is maximal and δseparated, we have

K δ f p σ,p ≃ n e∈e δ,S n-1 K δ f (e) p δ n-1 .
Proof. On one hand we have

S n-1 K δ f (e) p dσ(e) n e∈e δ,S n-1 K δ f (e) p σ(B(e, δ)) ≃ n e∈e δ,S n-1 K δ f (e) p δ n-1 .
On the other hand we have

S n-1 K δ f (e) p dσ(e) n e∈e δ,S n-1 K δ f (e) p σ(B(e, δ 2 
)) ≃ n e∈e δ,S n-1

K δ f (e) p δ n-1
which concludes.

We can now prove Theorem 5.

Proof. Fix δ > 0 and consider a family (e k ) k≤m ⊂ S µ which is δ-separated and whose cardinal is maximal ; this implies that we have

S µ ⊂ k≤m B e k ,2δ .
For f in L p (R n ) we have then

Sµ K δ f (e) p dµ(e) n k≤m B e k ,2δ K δ f (e k ) p µ(B e k ,2δ ) n,d k≤m K δ f (e k )δ d
using Lemma 1 and the fact that [µ] d ≤ 1. Now we complete the family (e k ) k≤m into a δ-separated family e δ,S n-1 which is maximal in S n-1 . We have then

k≤m K δ f (e k ) p δ d ≤ e∈e δ,S n-1 K δ f (e) p δ d ≃ δ d+1-n e∈e δ,S n-1 K δ f (e) p δ n-1 ≃ n δ d+1-n K δ f p σ,p
using the previous lemma.

We can now prove Theorem 2 i.e. we can prove that the Kakeya maximal conjecture implies to the Ω-Kakeya maximal conjecture. This simply comes from the fact that the ǫ-loss can be easily transferred thanks to Theorem 5.

Proof. Fix any probability µ defined on S n-1 satisfying for some d ∈ [0, n -1], [µ] d ≤ 1. Thanks to Theorem 5, if the Kakeya maximal conjecture is true then we have

K δ µ,n n,d δ (d+1) n -1 K δ σ,n n,d,ǫ δ (d+1) n - (1+ǫ) 
i.e. the Ω-Kakeya maximal conjecture is true.

Proof of Theorem 4

The proof of Theorem 4 follows Bourgain's arithmetic argument for the classic Kakeya problem ; this method relies on the following two results. The first one allow us to give an upper bound on the difference set A -B.

Theorem 6 (Sum-difference Theorem). Fix any δ > 0 and suppose that A, B are finite subset of

δZ n such that #A, #B ≤ N . If G ⊂ A × B satisfies #{a + b : (a, b) ∈ G} N then we have #{a -b : (a, b) ∈ G} ≤ N 2-1 6 .
The second Theorem needed is due to Heath-Brown [START_REF] Heath-Brown | Integer sets containing no arithmetic progressions[END_REF] : it states that if S is a large subset of {0, . . . , M } for M large enough then S contains an arithmetic progression of length 3.

Theorem 7 (Heath-Brown).

There exists an integer M 0 such that if M > M 0 is a integer and if S is a subset of {0, . . . , M } such that

#S ≥ M log(M ) c
then S contains a subset of the form {m, m + m ′ , m + 2m ′ } ⊂ S. Here c > 0 is an absolute constant.

For the sake of clarity, we have decomposed the proof of Theorem 4 in two steps. We will denote by C(A, δ) the smallest number of balls of radius δ needed to cover the set A.

Decomposition of the Ω-Kakeya set

To begin with, we may suppose that Ω is contained in a small spherical cap ; concretely we suppose that for any e = (e 1 , . . . , e n ) ∈ Ω we have e n > 1 2 . We fix then d < d Ω arbitrarily close and we use Frostman's Lemma to obtain an probability µ such that S µ ⊂ Ω and also [µ] d ≤ 1. We consider then a Ω-Kakeya set X and we suppose that X is contained in [0, 1] n . For any e ∈ Ω we will denote by T e a unit segment oriented along e contained in X. Finally we fix s > d X and we will prove that we have

s ≥ 6 11 d + 1.
We fix ǫ ∈ (0, 1) arbitrarily small and we let η ∈ (0, 1) such that defining δ k = 2 -2 ηk we have for any k ≥ 1, δ s+ǫ k ≤ δ s k+1 . Since s > d X , for arbitrary large k 0 , we can cover X by a countable collection of balls {B i } i∈I and such that for any i ∈ I, we have diam(B i ) < δ k0 and i∈I diam(B i ) s < 1. In addition, we take k 0 so large that we have k 4 0 max(δ η k0 , δ ηd k0 ) < 1. We denote by Y the union of the balls {B i } i∈I i.e.

Y := i∈I B i
and for k ≥ k 0 we will denote by

I k := {i ∈ I k : δ < diam(B i ) ≤ δ} and also Y k := i∈I k B i . We can control the size of #I k . Claim 1. We have #I k δ s+ǫ k < 1.
Proof. By definition of I k and since we have

δ s+ǫ k ≤ δ s k+1 and i∈I diam(B i ) s < 1, we obtain #I k δ s+ǫ k ≤ #I k δ s k+1 ≤ i∈I k diam(B i ) s < 1.
step 1 : refinement to a single scale

We wish to work at a single scale with respect to this covering. Hence we are going to exhibit a k ≥ k 0 such that there is a specific subset Ω k ⊂ Ω adapted to the covering {B i } i∈I k : on one hand Ω k is large and on the other hand, for any e ∈ Ω k , the unit segment T e ⊂ X is well covered by the balls {B i } i∈I k .

Claim 2. There exists k ≥ k 0 and Ω k ⊂ Ω such that for any e ∈ Ω k ,

|T e ∩ Y k | 1 ≥ 1 k 2 and also µ(Ω k ) > 1 k 2 .
Proof. If this is not the case, then for any k ≥ k 0 we have

µ {e ∈ Ω : |T e ∩ Y k | 1 ≥ 1 k 2 } ≤ 1 k 2 .
Hence we have

µ {e ∈ Ω : ∃k ≥ k 0 , |T e ∩ Y k | 1 ≥ 1 k 2 } ≤ k≥k0 1 k 2 < µ(Ω) so there is e ∈ Ω such that |T e ∩ Y k | 1 < 1 k 2 for any k ≥ k 0 .
This is not possible since Y covers X and so T e in particular. step 2 : slicing R n at two scales We fix such a k and we let δ := δ k . Recall that since k ≥ k 0 and that we can choose k 0 arbitrarily large, the same is true for k i.e. the integer k can be chosen arbitrarily large. Also observe that by definition we have k ≃ log log(δ -η ).

Now we fix two integers N, M ∈ N such that (N, M ) ≃ (δ η-1 , δ -η ).

We are going to slice R n at two different scales (δ and δ η ) along the vector (0, . . . , 1). Precisely for j ≤ N and m ≤ M , we define By definition of Ω k , we also have the following estimate

A j,m := {x = (x 1 , . . . , x n ) ∈ R n : jδ + mN δ ≤ x n ≤ (j +
1 k 4 ≤ µ(Ω k ) k 2 ≤ Ω k |Y k ∩ T e | 1 dµ(e) = j≤N Ω k |Y k ∩ T e ∩ A j | 1 dµ(e).
We define then the subset J ⊂ {0, . . . , N } as

J = {j ≤ N : Ω k |Y k ∩ T e ∩ A j | 1 ≥ 1 2N k 4 }.
The following claim states that this set J is not too small in {0, . . . , N }.

Claim 4. We have #J δ η N Proof. The proof comes from a reverse Markov inequality. Now for each j ∈ J, we extract a subset Ω k,j from Ω k in the same fashion that we have extracted Ω k from Ω. The proof is the same than for Claim 2.

Claim 5. For any j ∈ J, there exists Ω k,j ⊂ Ω k such that for any e ∈ Ω k,j ,

|T e ∩ Y k ∩ A j | 1 > |T e ∩ A j | 1 4k 4 
and also µ(Ω k,j ) > µ(Ω k ) k 2 .

step 3 : conclusion

Observe that for |jj ′ | > 2, the sets Y k ∩ A j and Y k ∩ A j ′ are separated by a distance greater than 2δ. Hence, on one hand we have

j∈J C(Y k ∩ A j , δ) C(Y k , δ) δ -s-ǫ .
On the other hand, suppose that for any j ∈ J we have Since δ is small enough, we get 

C(Y k ∩ A j , δ) δ 6 

Lower bound for C(Y

k ∩ A j , δ)
Hence we are left to prove that we have, for any j ∈ J, the following bound

C(Y k ∩ A j , δ) δ 6 11 (2η-1)d .
We will start by applying Heath-Brown's Theorem and we will use thereafter the Sum-difference Theorem to obtain a bound on C(Y k ∩ A j , δ).

step 1 : application of Heath-Brown's Theorem

For any j ∈ J and any e ∈ Ω k,j , we consider the following subset of {0, . . . , M } K(e, j) := {m ≤ M : Y k ∩ T e ∩ A j,m = ∅}.

The following claim states that K(e, j) contains a lot of element in {0, . . . , M }.

Claim 6. We have #K(e, j) M log log(M) .

Proof. We have

#K(e, j) × δ |Y k ∩ T e ∩ A j | 1 > 1 4N k 4 . Hence #K(e, j) M k 4 ≃ M log log(M )
.

Since we can take M arbitrary large and that K(e, j) is quite large in {0, . . . , M }, we are able to exhibit arithmetic progressions of three terms in K(e, j) using the Theorem of Heath-Brown. Claim 7. For any j ∈ J and e ∈ Ω k,j , the set K(e, j) contains a subset of the form {m, m + m ′ , m + 2m ′ } ⊂ K(e, j). 2 for e ∈ Ω k,j , it follows that balls roughly of radius δ 1-η centred at the unit vectors ae-be |ae-be| (for e ∈ Ω k,j ) cover Ω k,j . As µ(Ω k,j ) > 1 4k 4 , this implies #(A -B) δ (η-1)d k 4 δ (2η-1)d .

Hence for any j ∈ J, we have

C(Y k ∩ A j , δ) δ 6 11 (2η-1)d .
This concludes the proof of Theorem 4.

a∈R n 1

 1 |T e,δ (a)| T e,δ (a) |f |(x)dx

Claim 3 .

 3 1)δ + mN δ} and A j := m≤M A j,m . For any e ∈ Ω k and j ≤ N , we have|T e ∩ A j | 1 ≃ M δ ≃ 1N . Proof. The claim comes from the fact that we have supposed that for any e = (e 1 , . . . , e n ) ∈ Ω we have e n > 1 2 .

6 11 (2η- 1 )d δ 6 11

 616 11 (2η-1)d .In this case we obtain j∈J C(Y k ∩ A j , δ) #J × δ (2η-1)d+(2η-1) .
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 86 Hence for any j ∈ J and any e ∈ Ω k,j , there exists a e , b e ∈ Y k (nδ) ∩ T e (nδ) ∩ A j ∩ δZ n such that a e + b e 2 ∈ Y k (nδ) ∩ T e (nδ) ∩ A j ∩ δZ n and a e , b e belong to different sets A j,m . Observe also that the sets A j,m for different indices m are at least distant of ≃ δ η . Thus if δ is small enough we have |a eb e | δ η . Finally, we consider the sets A = {a e : e ∈ Ω k,j }, B = {b e : e ∈ Ω k,j } and G := {(a e , b e ) : e ∈ Ω k,j } ⊂ A × B. Recall that we have A, B ⊂ δZ n . step 2 : upper bound for #{ab : (a, b) ∈ G} We are going to give an upper bound and lower bound on #{ab : (a, b) ∈ G}. Observe that the cardinal of A, B and {a + b : (a, b) ∈ G} is controlled by the covering number C(Y k ∩ A j , δ). Hence a direct application of the Sum-difference Theorem yields an upper bound on #{ab : (a, b) ∈ G} Claim We have #{ab : (a, b) ∈ G} C(Y k ∩ A j , δ) 11 step 3 : lower bound for #{ab : (a, b) ∈ G} Finally we are also able to provide a lower bound on #{ab : (a, b) ∈ G} using the measure µ. Claim 9. We have δ (2η-1)d #{ab : (a, b) ∈ G}. Proof. Since a e and b e are in the nδ-neighbourhood of T e and |a eb e | > δ η