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Abstract: This paper deals with scheduling maintenance operations for a set of geographically distributed 

production equipment. The problem emerges in distributed maintenance context, where a central 

maintenance workshop (CMW) aims to monitor and repair equipment from various production sites and 

schedule the associated preventive actions. A mobile maintenance workshop (MMW) transports all the 

resources required for the maintenance tasks to replace the equipment with spare parts provided by the 

CMW following the predefined schedule. This study proposes a general approach and a model to 

minimize the maintenance and routing costs while optimizing equipment reliability. The novelty of the 

proposed model is the consideration of the MMW capacity while designing and scheduling distributed 

maintenance. We perform several experiments based on a real-world case study to implement the model 

and highlight its relevance. The studied approach allows choosing the CMW position and the MMW 

capacity while making a trade-off between the costs and the availability of production equipment. 

Keywords: Distributed maintenance, Maintenance scheduling, Routing optimization, Capacity constraints

1. INTRODUCTION 

Efficient maintenance scheduling has always led to 

significant amelioration in the reliability of industrial systems 

(Sedghi et al. 2021). It provides the chronology of 

maintenance tasks and assignment of a set of resources 

(operators, tools and spare parts). Fortunately, Industry 4.0 

technologies offer the possibility to schedule and manage 

maintenance operations more and more smartly and in real-

time (Gopalakrishnan et al. 2022). However, recent decades 

have experienced exponential economic growth and the 

development of aggressive competition for manufacturing 

companies (Saihi et al 2022). Thus, one of the main 

constraints remains the increasingly limited resources 

available for maintenance actions (Castro et al. 2006). An 

allocation problem emerges when various industrial facilities 

share the same maintenance resources (Zhang and Yang, 

2021). It is even more emphasized in the companies where 

facilities are geographically distributed (Manco et al. 2022). 

In this case, it is complex to solve the bi-objective 

optimization problem concerning the schedule of 

maintenance operations and the routing of resources through 

the spread installations. 

In this study, we focus on the concept of Distributed 

Maintenance (Simeu-Abazi and Ahmad 2011), where a 

Central Maintenance Workshop (CMW) pools all the 

maintenance resources. The CMW aims first to monitor 

equipment located in geographically-spread Production Sites 

(PS) and second to plan preventive action. A Mobile 

Maintenance Workshops (MMW) subject to capacity and 

time windows constraints ensure the routing between the 

CMW and the PS. The MMW thus allows transporting spare 

parts and operators in the network composed by the various 

PS and the CMW.  

Industrial applications of Distributed Maintenance arise in 

industries where the distance between geographically 

distributed equipment is not too far (Djeunang Mezafack et 

al. 2021). Centralization could allow reducing maintenance 

costs while increasing equipment availability. As an instance 

from the railway field, various locomotives share the same 

maintenance workshop for preventive actions (Hani et al. 

2007). In the oil and gas industry, the location of oil 

platforms (onshore or offshore) sharing the same central 

monitoring depends on raw material sources. The centralized 

entity manages and performs the maintenance operations of 

the geographically dispersed equipment. As well as in the 

aircraft industry, the defective parts of aircraft are replaced 

directly without transporting aircraft. A centralized workshop 

is necessary to diagnose the origin of failures and repair them 

(Sanchez et al. 2020). In other applications, a third party 

maintains distributed facilities owned by different companies. 

Several approaches are found in the literature, dealing with 

either the scheduling of Preventive Maintenance in CMW or 

the routing optimization of MMW. On the one hand, 

scheduling is a well-known problem in maintenance 

management. But, a CMW environment is more complex 

than a traditional job or assembly shop due to a higher level 

of operational uncertainty (Guide et al. 2000). On the other 

hand, routing optimization is a familiar problem in 

Operational Research. It is a combinatorial optimization and 

integer programming problem generally known as VRP 

(Vehicle Routing Problem) or TSP (Travelling Salesman 
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Problem). The main difficulty encountered is related to the 

fact that it is an NP-Hard problem (Konstantakopoulos et al. 

2020). Among several variants of the VRP problem, 

maintenance scheduling is more related to the CVRPTW 

(Capacitated Vehicle Routing Problem with Time Windows). 

This paper aims to combine maintenance scheduling and 

routing optimization. But, the literature has already addressed 

this problem. Indeed López-Santana et al. (2016) proposed 

the first modular model called CMR (Combined Maintenance 

and Routing). It is a two-step iterative process with a trade-

off between maintenance and routing costs. But this model 

does not consider the capacity constraint of the MMW. Thus 

Vega-Figueroa et al. (2022) proposed a hybrid algorithm, and 

Allaham et al. (2022) defined a MILP (Mixed Integer Linear 

Programming) to allocate teams and tasks for each 

maintenance operation considering the capacity constraint of 

the MMW. However, these papers do not deal with both the 

choice of CMW position and the MMW capacity. The 

novelty of our contribution is to propose a general framework 

to design and schedule Distributed Maintenance. In addition, 

we improved the modular CMR model to CMCR (Combined 

Maintenance and Capacitated Routing). 

As a reminder, after the introduction in Section 1, the 

problem is defined in Section 2. The next section presents the 

general optimization framework and the CMCR model. After 

that, Section 4 illustrates a case study from the railway field 

and, the last section concludes this work and provides some 

perspectives for future research. 

2. PROBLEM DEFINITION 

We consider a system with a set of   PS (Production Sites) 

geographically distributed over an area. Each PS has one 

piece of equipment subject to uncertain failures. With a 

schedule, an MMW (Mobile Maintenance Workshop) is 

responsible for transporting preventive maintenance 

resources (spare parts and tools) to visit the set of PS within a 

horizon of time, as presented in Figure 1. A CMW 

(Centralized Maintenance Workshops) monitors the state of 

each piece of equipment and stores the spare parts. The 

MMW starts in the CMW with a limited capacity of spare 

parts and visits all the PS following the optimal scheduling. 

When the MMW reaches a PS, the piece of equipment is 

replaced systematically by a spare part.  

 

Figure 1. Distributed maintenance context 

The objective is to find the optimal routing of the MMW 

through the PS while reducing maintenance and routing 

costs. The main assumptions of the problem are summarized 

as follows: 

 The MMW is a fleet of   homogeneous vehicles, each 

with a limited capacity  . 

 A vehicle transports only one operator in charge of 

replacing a piece of equipment with a brand-new spare 

part. 

 The travel times are deterministic and do not change 

over the scheduling horizon  . 

 The CMW is a depot with an unlimited capacity. 

 The PS are   geographically-spread customers, each 

with a single piece of equipment. 

 A piece of equipment starts in "as good as new" 

condition and, after the replacement, it returns to "as 

good as new" condition. 

 All the pieces of equipment are mutually independent 

according to their failures’ behaviour. It means that the 

state of one piece of equipment does not disrupt those 

of another. Thus, we consider it is possible to optimize 

the frequency of preventive maintenance operations for 

each customer separately. 

 Each customer is subject to a hard time window 

constraint out of which a preventive maintenance 

operation cannot be conducted.  

 In the case of a failure, the customer waits and the 

following preventive maintenance operation replaces 

the defective equipment. 

In the next section, we will present first the general 

framework used to optimize distributed maintenance and, 

second, the CMCR model for MMW visits' in detail. 

3. OPTIMIZATION OF DISTRIBUTED MAINTENANCE 

3.1 General framework  

A Distributed Maintenance works with three main entities: 

MMW/vehicles, a CMW/depot and PS/customers. Figure 2 

illustrates the framework, which gives an overview of the 

optimization process. It allows choosing the capacity of the 

vehicles, the position of the depot and the scheduling of the 

operations. Indeed, two loops allow to compare the optimal 

scheduling, first for different depot locations and second for 

various vehicles capacity. The objective is to choose the best 

parameters satisfying the optimal maintenance and routing 

costs. The first loop of positions is based on the work of 

Simeu-Abazi and Gascard (2020), which highlights that when 

the depot is near to a customer, the costs are low. The second 

loop of capacity tests different values of   from      to 

    . 



A core model is required to optimize the scheduling at every 

loop. In our study, we develop the CMCR. It is an extended 

version of the CMR proposed by López-Santana et al. (2016). 

The main contribution of our model is the integration of 

vehicles capacity choice. Indeed, as in the CMR, the 

proposed model considers as input the customers' data and 

the geographical location of the depot. As an innovation to 

the existing model, the CMCR allows the entry of vehicles 

capacity. The customers’ data concern their geographical 

locations and historical statistics on their equipment failures.  

 

Figure 2. General framework for combining maintenance 

scheduling and routing optimization 

3.2 Combined Maintenance and Capacitated Routing  

The CMCR approach consists in solving two different 

models iteratively as presented in Figure 3: 

(1) Maintenance Model (MM): The objective is to 

minimize the Expected Maintenance Costs (     ). 
This model does not change from the CMR to CMCR 

and allows to find the optimal period of preventive 

maintenance for each piece of equipment separately. 

The output is the time windows for each customer at 

which the preventive maintenance must be carried-out 

within the scheduling horizon.  

(2) Capacitated Routing Model (CRM): The objective is to 

minimize the Expected Routing Costs (     ); this 

model is the main change from CMR to CMCR. It 

solves the well-known CVRPTW (Capacitated Vehicle 

Routing Problem with Time Windows) in Operational 

Research. In the CVRPTW, a fleet of homogeneous 

vehicles must service customers with known demands 

subject to opening hours (Konstantakopoulos et al. 

2020). Based on the mathematical model used to solve 

this problem, the CRM proposed the optimal schedule 

of preventive maintenance operations. 

The MM and CRM models are linked by the expected 

waiting time   
1 which is the period elapsing between an 

expected failure and the beginning of the next preventive 

maintenance operation. These two models loop and the sum 

of       and      ) converge to an optimal solution. The 

Expected Distributed Maintenance Cost is represented by: 

                                                           
1
    is obtained exactly as in the CMR. 

                    

 

Figure 3: CMCR (Combined Maintenance and Capacitated 

Routing) model 

In the case of higher calculation time due to the loop, it is 

necessary to define a tolerance interval. The optimization 

stops if        doesn’t exceed the bound after several 

iterations. 

We focus now on the CRM model. We consider a complete 

directed graph        , where               is a set 

of nodes with the depot  , and          a subset of 

customers.                 represents the set of links 

between all pairs of nodes. The vehicles set is defined by 

           , each with a capacity  . Each customer 

     is associated with a certain positive demand      

and an on-site service time     . Non-negative travel time     

and distance     are associated to each arc        .  

Each customer         has    times a preventive maintenance 

operation over the scheduling horizon  . The MM allows to 

obtain time windows for each operation             

        . We thus consider an auxiliary grouped set of 

nodes                where   is the depot and   
   

 
    represents the cardinal of the set of all the preventive 

maintenance operations over the horizon  . Then, we define 

an auxiliary directed graph             where    
                    represents the set of arcs. For each node 

      we can find the equivalent     such as    =  . And, 

for each arc            we can find the equivalent arc 

        such as           and          . 

The problem therefore consists in solving a classical 

CVRPTW considering the graph    such that: 

 Each maintenance operation           is performed 

exactly once. 

 A vehicle cannot transport spare parts over its capacity 

 . 

 Each time windows                     is equivalent 

to a time window              
         .  

CVRPTW is an NP-hard problem and it can be solved only 

for small instances of the problem. The most recent and 

relevant model is proposed by Borcinova (2017). Based on 

this classical model, we now define the Mixed-Integer Linear 



Programming model (MILP) of the CRM. For the rest of the 

paper, we use the index   instead of    to denote each 

preventive maintenance operation. 

The binary decision variable     is defined to indicate if a 

vehicle crosses an arc       in the optimal solution. A vehicle 

arrives for a service   at a time denoted by    and with a load 

  . The model of the CRM can be stated as follows: 

          

                                   
   

 
          

             

          
 
                                                                   

    
 
                                                                           

    
 
      ;                                                                            

    
 
                                                               

    
 
                                                               

                                          

           
              ,                    
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In this MILP formulation, the objective function 

    minimizes the Expected Routing Cost       )  with:  

 

                                                  
                                         

                                   
                             

  

The constraint     represents the minimum number of 

vehicles needed to serve all the operations. The constraint     
imposes that exactly   vehicles leave the depot. The classical 

flow constraints         and     guarantee that each vehicle 

can leave the depot exactly once, and each maintenance 

operation is performed only once. In the constraint    , the 

capacity of vehicles is stated such that the difference of a 

vehicle’s load between two successive services   and   do not 

exceed the demand of  . The constraint     ensures that the 

time between two successive services   and   do not exceed 

    
    . The constraints (9), (10) and (11) restrict the 

upper and lower bounds of decision variables. In the next 

paragraph, we will implement the proposed model in a real-

world case study. 

4. ILLUSTRATED CASE STUDY IN RAILWAY 

INDUSTRY 

4.1 Test instance 

In this section, we run the CMCR model in the railway field 

to highlight the relevance of the proposed model. We study 

the case of the railway French company called SNCF 

(Société Nationale des Chemins de Fer). Data has been found 

at https://ressources.data.sncf.com/explore/dataset/sites-de-

livraison-sncf-ti-geoparts-v2/table/. We apply the general 

framework proposed in Section 3.1.  

(1) Equipment: trains are considered as equipment subject 

to failures; preventive maintenance operations need to 

be scheduled every two years. 

(2) Customers: we consider nine distributed sites in a 

radius of 238 km of the French city of Nîmes, from 

which trains daily serve several railway stations. We 

assume that each customer has exactly one train at the 

departure each day, and the failure of a train is only 

caused by wheels degradation. The wheels are replaced 

within 6 days of a preventive maintenance operation 

and transported to the depot. 

(3) Depot: A CMW is currently located in the centre of 

Nîmes. It is the "Technicentre Industriel". It supplies 

spare parts to the vehicles. 

The objective is to find the optimal location of the depot, the 

capacity of the vehicles and the scheduling of preventive 

maintenance operations. We first get the information 

concerning the geographical positions and historical statistics 

on the wheels’ failures. Indeed, the matrix of distance and 

time of the customers’ network is obtained from Google Map 

as illustrated in Table 1.  

Table 1. Distance matrix of customers (km) 

i  j          

  0 1 2 3 4 5 6 7 8 9 

    0  0 3 43 70 75 125 250 280 206 292 

1  4 0 45 69 74 124 248 279 204 290 

2  43 44 0 64 63 95 220 251 246 331 

3  68 67 64 0 1 65 190 220 263 349 

4  70 68 64 1 0 65 189 220 264 350 

5  124 123 95 65 64 0 165 196 318 404 

6  249 248 220 189 189 165 0 38 443 529 

7  280 279 251 221 221 196 38 0 475 560 

8  212 206 247 265 270 320 444 475 0 208 

9  297 291 332 350 355 405 529 560 206 0 

 

Table 2 presents the different health states of wheels denoted 

by             A Weibull distribution        describes 

the duration (in days) of each state. The studied wheels are 

currently in the state   . 

Table 2. Expert guess of the Weibull parameters of wheels 

degradation in days. (Thorsten Neumann et al. 2019) 

             

          1.5 1.5 1.6 1.7 

https://ressources.data.sncf.com/explore/dataset/sites-de-livraison-sncf-ti-geoparts-v2/table/
https://ressources.data.sncf.com/explore/dataset/sites-de-livraison-sncf-ti-geoparts-v2/table/


         600 500 370 280 

 

As other input to MM, the first iterative model, we have the 

downtime cost per time unit:               and we have 

the service cost of replacing a wheel:            

The MMW has a fleet of homogeneous vehicles whose 

capacity needs to be optimized. The unit costs related to each 

vehicle are:                                 
      . 

We consider 3 types of vehicles  

(1) Medium:                    

(2) Heavy:                    ; 

(3) Extra-heavy:                    

We choose the software Scilab 5.5.2 to implement the case 

study. All the tests have been run using the library “FOSSEE 

Optimization Toolbox” adapted for MILP. We perform the 

experiments on Windows 8, 64 bits machine, with an Intel(R) 

Core (TM) i7-10850H, CPU 2.70 GHz and 32 Go of RAM. 

4.2 Results 

The CMCR allows optimizing the preventive maintenance 

operations of geographically distributed equipment. With the 

case study, we have conducted experiments to highlight the 

relevance of the proposed model. Firstly, we considered that 

all the equipment are identical and at the same period of their 

life as presented in Table 1. We run the iterative process until 

reaching 10 successive iterations where the value of        
do not change to more than 1%. 

We therefore run the model for all the vehicle types. In 

addition, we changed the position of the depot as proposed by 

the general framework to compare the current structure with 

the optimization results. It took about 16 hours to implement 

the case study. Thus, Figure 4 illustrates the variation of 

      , as a function of the vehicle type and the depot 

position. It can be observed that for an unlimited capacity, the 

current position of the depot denoted by   is the third most 

cost-effective. With the capacity constraint for this scenario, 

the medium vehicle is the best choice. And, if the depot were 

near customer number 6, the cost would be less than the 

current. For this scenario, the capacity constraint allows 

reducing the cost to more than 5.6%. Since the capacity is 

considered unlimited, the company needs to buy a more 

expensive vehicle covering all the equipment demand. But, 

with the proposed model, an optimized routing can be 

obtained despite the limited capacity. 

Secondly, to explore the influence of the equipment state in 

the       , we run the model for the different periods of 

the wheel’s life (from         ). Figure 5 shows the evolution 

of the total cost versus different depot positions while using 

medium vehicles. It is clear that for these scenarios, the more 

equipment is old, the higher the total cost is. For example, if 

the depot is in the current position, in period   , the 

distributed maintenance will cost 547$/day while costing 

649$/day in   . But,        does not change too much for a 

chosen wheels’ state. As an instance, for   , the minimum 

value of        is          and, its maximum value is 

        . For   , the minimum value of        is 

         while its maximum value is         . It could 

be justified by the fact that according to a given state of 

wheels, the frequency of preventive maintenance operations 

is too low to highlight the influence of the depot position. 

Indeed, at state    for example, a wheel need about 24 

preventive operations performed within 2 years as illustrated 

in Figure 6. It represents about 1 operation each month. 

 

Figure 4. Costs versus vehicles’ capacity and depot’s position 

 

Figure 5. Costs versus wheels’ degradation and depot’s position 

Finally, the medium vehicles are the best MMW's choice for 

this case study. However, the results do not well highlight the 

influence of the depot position. Furthermore, equipment the 

frequency of failures is higher could solve this problem. For 

example, it could be the wheels in a more degraded state. Or, 

by considering more production sites, the numbers of 

operations may increase. 



 

Figure 6. Number of preventive maintenance operations to be 

performed within the schedule horizon of time. 

5. CONCLUSION 

This paper addresses the combination of maintenance 

scheduling and routing optimization. We focus on a 

distributed maintenance context where a set of geographically 

dispersed production sites need to be visited frequently for 

preventive maintenance operations. We proposed a novel 

model to consider the capacity constraints of the vehicles 

transporting spare parts and operators.  

We made some assumptions to fit the problem with the 

known approach of Operational Research and Maintenance 

Management. The main contribution of this work is the 

reduction of maintenance and routing costs while optimizing 

the scheduling of preventive maintenance operations. We 

implemented the proposed model in a case study from the 

railway field and showed an improvement of more than 5.6% 

in the expected costs. 

Future research based on this work could remove some 

assumptions in the modelling of the distributed maintenance 

system. We assumed that defective equipment in a production 

site must always wait for the following preventive 

maintenance operation for the replacement. However, this 

equipment may require an emergency repair. Thus, re-

scheduling could be studied to reflect the real-world process. 

In addition, it is necessary to consider the environmental 

issues of the proposed model since the transport sector is a 

contributor to CO2 emissions. Circular strategies such as 

remanufacturing, for example, could allow reducing the 

carbon footprint of each defective piece of equipment. 
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