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Abstract

This work deals with the interaction of waves
governed by a Boussinesq system with some float-
ing structures. The full system can be reduced
to coupled boundary problems for the Boussi-
nesq equations with boundary conditions given
in terms of the vertical displacement of the ob-
jects, the average horizontal discharge beneath
it and the traces of the water-column. The latter
quantities are determined by nonlinear ODEs

with forcing terms coming from the exterior wave-

field.

Keywords: Fluid-structure interaction, Disper-
sive perturbation of hyperbolic problems, Wave
Energy Converters in shallow water regime.

1 Modelling floating bodies

Zi4+1

T

Tit1
The mathematical study of floating struc-
tures is a keystone to understand wave power
facilities. Consider N partially immersed rigid
rectangles in a 2D fluid allowed to move ver-
tically (see figure above). We denote by 2¢;
and x; the horizontal length and the abscissa
of the center of the i-body. The domain of wave
propagation R is divided into "congested" areas
T = Ufil(xi —{;, x;+¥;) where the floating bod-
ies are located and free areas £ = R/Z. We will
denote by di+% = w11 — bir1 — x; — £; the dis-
tance between the i-th body and 7 4+ 1-th body.

The dynamics of each body is given by the
Newton equation

Ti+-4;
mz; + gz = / P (1)
x;—4;

where the unknowns z; denote the vertical dis-
placement of the center of mass of the i-th body

-

and * is the second derivative with respect to
time. The source term P is the pressure exerted
by the fluid under each body. At equilibrium
the water column is piecewise constant

ho_ hg in &
4 N h - Ly, in (x; — 4,2 + 4;)

where L, ; is the length of the immersed part of
the vertical wall at equilibrium. The dynamics
of the waves in R is described by the Boussinesq-
Abbott system which is the following dispersive
PDE

h2 2 2
( - %ag)atq + ax (g;L + q) = *haxB

h
(2)
where ¢ refers to the fluid horizontal discharge
and h to the water-column. The latter is

e unknown in the free areas,

e should fit the wetted surface hy,; 1= heq +
2j — Zeq under any body (z; — £, x; + £;).
In particular, this implies that

Qi = ittty = (& = 2i)Z + s

where the average is defined by
1
q4i = §(qw,i(l‘i +4i) + qu,i(zi — i)

2 Pressure term

The pressure P is
e cqual to the constant atmospheric one,

e unknown under any body and can be seen
as Lagrangian multipliers 0P|, _p, 2,44,
associated to the constraints h = Ay, ;.

The system is not complete. Indeed one needs
transmission conditions at each contact point
x; + £; between the free and "congested" areas.
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The first transmission condition is associated to
fluid volume conservation which implies that

qe(@i £ 4) = qz (i £ 4;) = Flizi + q;.

The second one is associated to the conservation
of energy of the full system. This is satisfied if
we assume that

2 2
1 q qwi
P = glhje — hug] + ( £ ’)+

2\ My B
gl hey %
3he 3 hug

at each contact point (x; + ¢;).

Taking the space derivative of the second
equation in (2), one gets an elliptic equation for
the pressure P on (x; —¥;, x; + ¢;) with Dirichlet
boundary conditions and source depending on

3 = (9i, 21, 2)

and its time derivative. If we use this elliptic
problem in (1) and the second equation of (2)
to eliminate P, we get nonlinear ODEs

m (3, y)di + 7 (Gir by) = by, By), (3)

with forcing term f(h;, h;) coming from the wave-
field in free areas

hi = (hg(xi — i), hye (i + £:))-
The coefficients m(3;, ;), 7(3i, h;) and the fore-

Yy
ing term f(h;, h;) are similar to the ones given
in [1]. The equations of wave-structure system

are now complete.

3 An augmented formulation

Taking advantage of the dispersion terms, we
can introduce a hidden equation for the traces of
the water-column on each wall of floating solid.
Firstly, we introduce the unknowns

uH%(x) = (h|g, q|g)($i +4; + di+%x)

that are cast on the unit cell (0,1) fori =1...N—
1 and

{u_m = (h,q)(z1 — £y — )
uy(z) = (h,q)(x —2n —{N)

that are cast on (0,00). Secondly, we introduce

. hg ..
Ripl o= \/§di +1s the regularizing operators

Rtz . H"(0,1) — H"2(0,1)

which are the inverse operators of (1 — r,, 102)
2
with homogeneous Neumann boundary condi-

tions and R” the inverse operator of (1 — %383)
on (0,00) with homogeneous Neumann bound-
ary condition at {0}. Therefore, equations (2)
can be rewritten on the conservative form on

(0,1)

and on (0, 00)

Oyut £ 0, (R%:Ltfi> = ((1)> qi(O)e_x\h/T? (5)

with boundary conditions
G5 1(0) = =liZitqi, g1 (1) = i1 Zipa it
q-(0) =liz1 +q1, ¢+(0) = —lNZN +qnN.

In the previous equations, the flux terms are

2
Uit-1 912 oy, Jit

. = . . = Z(h% {—h3)+ 2
gwé <R2+éfi+é> fH—% 2( it 0) h

and the source terms are

i1
i+3

1

(—=liZi + qi) — (liv1Zi41 + Qiv1)e “itg

6;_% = -
l—e itz
1
ot oo WinFin +8i) — (G5 + Gi)e T2
S S .

1—e Ci+d
Taking the spatial derivative of the second equa-
tion in (4), one gets a hidden equation on the
water-column
H?+%hi+% +fipy = RH%fH%JF
_ = — e (6)

_ K. 1 1
K. 1(67 je "tz —@T e itz
i+3(Gipy i+ )

that can be taken at each contact point x; + ¢;
in order to be coupled with (3) to make an ODE

in which the exterior wave-fields Ri+3 Jiy1 acts
2

as a forcing term. The full equations (3,6,4,5)
are used to show local well-posedness theory and
perform simulations with the finite volume method.
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