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ON CALOGERO-MOSER CELLULAR CHARACTERS FOR IMPRIMITIVE COMPLEX REFLECTION GROUPS

We study the relationship between Calogero-Moser cellular characters and characters defined from vectors of a Fock space of type A 8 . Using this interpretation, we show that Lusztig's constructible characters of the Weyl group of type B are sums of Calogero-Moser cellular characters. We also give an explicit construction of the character of minimal b-invariant of a given Calogero-Moser family of the complex reflection group

Introduction

The representation theory of finite Coxeter groups, and more precisely the Kazhdan-Lusztig theory, is of crucial importance for the understanding of various problems in Lie theory. For example, in his classification of unipotent characters of finite groups of Lie type, Lusztig has underlined the importance of a partition of irreducible characters of the associated Weyl group into families. The starting point of Kazhdan-Lusztig theory is the construction of a basis of Hecke algebras in [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF], known nowadays as the Kazhdan-Lusztig basis. From this basis, one can define partitions of the Coxeter group in the so-called right, left or two-sided cells. To every right cell is attached a module over the Hecke algebra and a character (not necessarily irreducible) of the Coxeter group. These characters are the cellular characters 1 . Lusztig has then realized that these constructions are also possible with Hecke algebras at unequal parameters [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]. Many questions around Kazhdan-Lusztig theory for Hecke algebra with unequal parameters still remain open, see [START_REF] Bonnafé | Kazhdan-Lusztig cells with unequal parameters[END_REF] for a recent monograph about this subject.

Since the Coxeter groups are real reflection groups, one may ask the following question: does there exist a Kazhdan-Lusztig theory for finite complex reflection groups? Of course, one first need the notion of Hecke algebras for complex reflection groups. These objects have been introduced by Broué-Malle-Rouquier in [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF], where presentations in terms of braid relations are also given. In the particular case of the complex reflection group Gpl, 1, nq, they recover an algebra already introduced in [START_REF] Ariki | A Hecke algebra of pZ{rZq S n and construction of its irreducible representations[END_REF], nowadays known as the Ariki-Koike algebras. Unfortunately, we do not know a basis of the Hecke algebra associated with a finite complex reflection group which has similar properties as the Kazhdan-Lusztig basis for Hecke algebras associated with Coxeter groups.

But this story does not stop there. Rouquier [START_REF] Rouquier | Familles et blocs d'algèbres de Hecke[END_REF] managed to give an interpretation of the Kazhdan-Lusztig families of cristallographic Coxeter groups in terms of blocks of

1
The associated modules have not to be confused with the cell modules in the sense of Graham and Lehrer, even if there are closed relationships between these two objects [START_REF] Geck | Hecke algebras of finite type are cellular[END_REF] the Hecke algebra, which extends to the complex reflection group case. These Rouquier families have been computed for all finite complex reflection groups [START_REF] Chlouveraki | Rouquier blocks of the cyclotomic Ariki-Koike algebras[END_REF]. The next major step in a tentative of the generalization of the Kazhdan-Lusztig theory has been made by Gordon, via the study of the representation theory of restricted rational Cherednik algebras at t " 0 [START_REF] Gordon | Baby Verma modules for rational Cherednik algebras[END_REF]. He introduced the notion of a Calogero-Moser family, which is a partition of the irreducible characters of a given complex reflection group. If the complex reflection group is a Coxeter group, it is worth to notice that the construction of the Calogero-Moser families and the Kazhdan-Lusztig families are very different. But it has been shown, via explicit computations on both sides, that these two notions coincide for most finite irreducible Coxeter groups [START_REF] Bellamy | Cuspidal Calogero-Moser and Lusztig families for Coxeter groups[END_REF]Theorem 2.4].

Finally, Bonnafé and Rouquier [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF] defined the notion of Calogero-Moser right, left and two-sided Calogero-Moser cells by studying the geometry of the Calogero-Moser space associated with a complex reflection group. Their approach is partially motivated by the ideas of Gordon in which the rational Cherednik algebra at t " 0 plays an essential role. To each right cell is also associated a Calogero-Moser cellular character. If the complex reflection group is a Coxeter group, they conjecture that the various output of this Calogero-Moser theory is the same as the output of the Kazhdan-Lusztig theory (families, cells, cellular characters). However, only the some particular cases are well understood: the symmetric group [START_REF] Brochier | RSK and Calogero-Moser Cells in Type A[END_REF], partially the dihedral groups [START_REF] Bonnafé | On the Calogero-Moser space associated with dihedral groups[END_REF][START_REF] Bonnafé | Calogero-Moser cells of dihedral groups at equal parameters[END_REF] or some exemples in small ranks [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF]Chapter 18 and 19].

In this paper, we are mainly interested in the case of the complex reflection group Gpl, 1, nq and more specifically in the cellular characters for Gpl, 1, nq. The second author has stated in [START_REF] Lacabanne | On a conjecture about cellular characters for the complex reflection group Gpd, 1, nq[END_REF] some conjectures relating these Calogero-Moser cellular characters with the expressions of the canonical basis of the level l Fock space for U q pgl 8 q. Thanks to this interpretation of constructible characters for the Weyl group of type B n settled by Leclerc and Miyachi [START_REF] Leclerc | Constructible characters and canonical bases[END_REF], one of our main result is the following, see Theorem 4.6 for the precise details on the parameters involved.

Theorem 1.1. Lusztig's constructible characters for the Weyl group of type B n are sums of Calogero-Moser cellular characters.

Our second main result concerns the computation of certain remarkable elements in the Calogero-Moser families. We provide an explicit proof of a result concerning the binvariants of the characters of a Calogero-Moser family. Namely, it has been proven that for every such family, there exists a unique irreducible character of minimal invariant among the family [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF]Theorem 7.4.1(b)]. We here give another proof of this result, in the specific case of Gpl, 1, nq, and explicitly provide a description in terms of l-symbols of the character of minimal b-invariant in a Calogero-Moser family. We refer to Section 5 for more details, and especially to Theorem 5.2.

The organisation of the paper is as follows. In Section 2, we review the definition of Calogero-Moser cellular characters via Gaudin algebras, as in [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF]Chapter 8], and focus then in the specific case of the complex reflection group Gpl, 1, nq. Section 3 concerns the Fock spaces, and the quasimonomial vectors, that we relate to some approximations of the Calogero-Moser cellular characters. Then, in Section 4, we study in details the case of the Weyl group of type B and the relationship between Calogero-Moser cellular characters and Lusztig's constructible characters. Before the last section, we go back to the case of the complex reflection group Gpl, 1, nq and describe the symbol of minimal b-invariant in a Calogero-Moser family using the combinatorics of l-symbols. Finally, we end in Section 6 with some various conjectures, mostly related with the b-invariant.

Calogero-Moser cellular characters

The Calogero-Moser cellular characters are a conjectural extension to complex reflection groups of cellular characters in Kazhdan-Lusztig theory. The definition of cells usually requires the study of representation theory of Cherednik algebras, but we will use the definition of the Calogero-Moser characters using the notion of Gaudin algebras. We recall now their definition and then focus on the case of Gpl, 1, nq.

2.1. Set-up. Let V be a finite dimensional C-vector space with dual V ˚. The duality pairing is denoted by x¨, ¨y : V ˆV ˚Ñ C and the determinant map by det : GLpV q Ñ C ˚.

Let W Ă GLpV q be a complex reflection group. We denote by RefpW q the set of pseudoreflections of W , that is elements of W which fix an hyperplane. For each s P RefpW q, we choose α s P V ˚and α _ s P V such that kerps ´Idq " kerpα s q and Imps ´Idq " Cα _ s . In other terms, we have spvq " v ´p1 ´detpsqq xv,αsy xα _ s ,αsy α _ s for any v P V . We denote by IrrpW q the set of irreducible complex characters of W and for any χ P IrrpW q, we fix V χ a simple representation of W affording the character χ.

Finally, we also fix a function c : RefpW q Ñ C, s Þ Ñ c s which is invariant by conjugation of W on RefpW q.

2.2. Definition via Gaudin algebras. For any x P V , we consider the following element of CpV qrW s

D x " ÿ sPRefpW q c s detpsq xx, α s y α s s.
Definition 2.1. The Gaudin algebra with parameter c, denoted by Gau c pW q is the CpV qsubalgebra of CpV qrW s generated by p D x q xPV . Since x Þ Ñ D x is clearly linear, the Gaudin algebra Gau c pW q is generated by pD x q xPB , where B is a basis of V . Proposition 2.2 ([7, Proposition 8.3.1]). For any x, y P V , the elements D x and D y commute in CpV qrW s. Therefore Gau c pW q is a commutative subalgebra of CpV qrW s.

Even though Gau c pW q is commutative, its representation theory is far form being wellunderstood: it depends heavily on c and the field CpV q is almost never a splitting field. Some simple representations are not absolutely simple and therefore a simple representation of Gau c pW q is not automatically of dimension 1.

Definition 2.3. Let L be a simple representation of Gau c pW q. The Calogero-Moser cellular character associated with L is

γ CM L " ÿ χPIrrpW q " Res CpV qrW s GaucpW q pCpV q b C V χ q : L ı χ.
The name Calogero-Moser cellular characters comes from another definition of these characters, which is related with the Calogero-Moser partition of W into cells, see [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF].

2.3. The case of Gpl, 1, nq and Jucys-Murphy elements. We now focus on the case of the complex reflection group Gpl, 1, nq. We fix ζ " expp2iπ{lq, µ l " xζy the group of l-th root of unity in C ˚and suppose that V is of dimension n with basis py i q 1ďiďn and dual basis px i q 1ďiďn . Identifying GLpV q with GL n pCq through the basis py i q 1ďiďn , the group Gpl, 1, nq consist of monomial matrices with entries in µ l . By convention, Gpl, 1, 0q will denote the trivial group.

We denote by s i,j the reflection exchanging y i and y j and fixing y k for k R ti, ju and by σ i the reflection fixing y k for k ‰ i and sending y i to ζy i . The group Gpl, 1, nq is then generated by ts i,i`1 | 1 ď i ă nu Y tσ 1 u. The reflections of Gpl, 1, nq fall into l conjugacy classes, namely S 0 " σ r j s i,j σ ´r j ˇˇ1 ď i ‰ j ď n, 0 ď r ă l ( and S 1 , . . . , S l´1 given by S k " σ k i ˇˇ1 ď i ď n ( . Finally, we set c i " c |S i as a shorthand for the parameter c. Another set of parameters appears also in the context of Cherednik and Gaudin algebras, namely k 0 , . . . , k l´1 given by

k i " 1 l l´1 ÿ j"1 ζ jp1´iq c j .
We will consider the indices modulo l and note that k 0 `¨¨¨`k l´1 " 0.

The following Jucys-Murphy elements have been introduced by the second author in [START_REF] Lacabanne | On a conjecture about cellular characters for the complex reflection group Gpd, 1, nq[END_REF] J i "

ÿ sPRefpGpl,1,iqq sRRefpGpl,1,i´1qq c s detpsqs.
These elements generate a commutative subalgebra JM c pl, nq of CrGpl, 1, nqs. Similarly to Definition 2.3, we define the Jucys-Murphy cellular characters. Definition 2.4. Let L be an irreducible representation of JM c pl, nq. The Jucys-Murphy cellular character associated with L is

γ JM L " ÿ χPIrrpW q " Res CrGpl,1,nqs JMcpl,nq pV χ q : L ı χ.
The Jucys-Murphy cellular characters approximate the Calogero-Moser cellular characters in the following sense: We now aim to give an inductive characterization of these Jucys-Murphy cellular characters. We first recall the combinatorics of the l-partitions of n which govern the representation theory of Gpl, 1, nq, see [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF]Section 5.1].

A partition λ of n is a decreasing sequence of non-negative integers λ 1 ě λ 2 ě ¨¨¨ě λ k ě ¨¨¨such that λ i " 0 for i " 0 and |λ| :"

ř 8 i"1 λ i " n.
A l-partition of n is then a l-tuple of partitions pλ p1q , . . . , λ plq q such that ř l i"1 |λ piq | " n. The isomorphism classes of irreducible representations of Gpl, 1, nq are parametrized by the set of l-partitions of n. For every l-partition λ of n, we denote by V λ the corresponding irreducible representation and by χ λ its character.

Restriction and induction can be described using by the Young graph of l-partitions of n. Given a l-partition λ, its Young diagram rλs is the set pa, b, cq P Z ą0 ˆZą0 ˆt1, . . . , lu ˇˇ1 ď b ď λ pcq a ( whose elements are called boxes. A box γ of the Young diagram of a l-partition λ of n is said to be removable if rλsztγu is the Young diagram of a l-partition µ of n ´1. The box γ is also said to be addable to the Young diagram of µ.

Proposition 2.6 ([13, Proposition 5.1.8]). Let λ be a l-partition of n. Then

Res

Gpl,1,nq Gpl,1,n´1q pV λ q " ' µ V µ where the sum is taken over the l-partitions µ of n ´1 whose Young diagram is obtained by removing a box of rλs and Ind Gpl,1,n`1q Gpl,1,nq pV λ q " ' µ V µ where the sum is taken over the l-partitions µ of n `1 whose Young diagram is obtained by adding a box to rλs.

Using these decompositions, we obtain a basis of V λ indexed by the so-called standard tableaux of shape λ. Given a l-partition λ of n, a standard tableau of shape λ is a bijection t : rλs Ñ t1, . . . , nu such that for all boxes γ " pa, b, cq and γ 1 " pa 1 , b 1 , cq of λ, we have tpγq ă tpγ 1 q if a " a 1 and b ă b 1 or a ă a 1 and b " b 1 . The datum of a standard tableau of shape λ is equivalent to the datum of a finite sequence pλrisq 1ďiďn such that λris is a l-partition of i, λrns " λ and rλri `1ss is obtained from rλriss by adding a box. We denote by λ t the sequence of l-partitions obtained from the standard tableau t, that is rλ t riss " t ´1t1, . . . , iu.

Therefore, using the branching rule for restriction, we have V λ " À t D t where the sum is over the standard tableaux of shape λ and D t is a one dimensional space contained in the irreducible component V λ t ris of Res Gpl,1,nq Gpl,1,iq pV λ q for all 1 ď i ď n. The Jucys-Murphy elements act diagonally on V λ with respect to the decomposition V λ " À t D t . On D t , the Jucys-Murphy element J i acts by multiplication by lpk 1´c ´c0 pb ´aqq, where tpa, b, cq " i, see [START_REF] Lacabanne | On a conjecture about cellular characters for the complex reflection group Gpd, 1, nq[END_REF]Corollary 1.8].

Given ξ P C and λ a l-partition of n ´1, we refine the induction as follows:

ξ ´Ind Gpl,1,nq Gpl,1,n´1q pV λ q " à µ V µ ,
the sum being over the l-partitions µ of n whose Young diagram is obtained by adding a box to rλs and such that J n acts on V µ by multiplication by ξ. Using this truncated induction, we recursively define a set of representations of Gpl, 1, nq as follows:

E 0 " t1u and E n " ! ξ ´Ind Gpl,1,nq Gpl,1,n´1q pV q ˇˇV P E n´1 , ξ P C ) zt0u,
where 1 denotes the trivial representation of the trivial group. From the above discussion, we immediately deduce the following new way to define the Jucys-Murphy cellular characters.

Proposition 2.7. The set of characters of representations in E n coincides with the set of Jucys-Murphy constructible characters.

Remark 2.8. Instead of considering the Jucys-Murphy elements J i , we might consider the shifts J i `k by any scalar k. The set E n does not change if we replace the Jucys-Murphy elements by these shifts.

In terms of parameters, this is equivalent to replace the condition k 0 `¨¨¨`k l´1 " 0 by k 0 `¨¨¨`k l´1 " k. Therefore, we may and will remove the condition k 0 `¨¨¨`k l´1 " 0 on the parameters without changing the set of Jucys-Murphy constructible characters.

Quasimonomial vectors of Fock spaces in type A 8

Following [13, Section 6.2], we introduce the Fock space as a representation of U q psl 8 q together with quasimonomial vectors. We then relate evaluations at q " 1 of these vectors with the Jucys-Murphy cellular characters introduced in the previous section.

We fix q an indeterminate and define the usual quantum integers and factorials in Zrq, q ´1s by rns "

q n ´q´n q ´q´1 and rns! "

n ź k"1 rks,
for n P N.

3.1. The algebra U q psl 8 q and the Fock space F s . Let U q psl 8 q be the Qpqq-algebra with generators E i , F i and K ˘1 i for i P Z subject to

K i K ´1 i " 1 " K ´1 i K i , K i K j " K j K i , K i E j " q ´δi´1,j `2δ i,j ´δi`1,j E j K i , K i F j " q δ i´1,j ´2δ i,j `δi`1,j F j K i , rE i , F j s " δ i,j K i ´K´1 i q ´q´1
, and the Serre relations

E 2 i E j ´r2sE i E j E i `Ej E 2 i " 0, F 2 i F j ´r2sF i F j F i `Fj F 2 i " 0, if |i ´j| " 1, rE i , E j s " 0, rF i , F j s " 0, if |i ´j| ą 1.
We define the divided powers E prq i

and

F prq i by E prq i " E i rrs! and F prq i " F i rrs! .
We endow U q psl 8 q with a structure of Hopf algebra. The coproduct ∆, the antipode S and the counit ε are given on the generators by

∆pE i q " E i b 1 `K´1 i b E i , SpE i q " ´Ei K i , εpE i q " 0, ∆pF i q " F i b K i `1 b F i , SpF i q " ´K´1 i F i , εpF i q " 0, ∆pK i q " K i b K i , SpK i q " K ´1 i , εpK i q " 1.
The fundamental weights of U q psl 8 q are denoted by pΛ k q kPZ . We now fix l ě 0 and s " ps 1 , . . . , s l q P Z l . We define the Fock space F s of charge s as the Qpqq vector space with basis p|λ, syq where λ runs in the set of l-partitions of integers. We set

F n s " à λ Qpqq|λ, sy
where λ runs in the set of l-partitions of n so that F s " À nPN F n s . In order to define an action of U q psl 8 q on the Fock space F s , we first need the notion of charged content of a box. Given λ a l-partition and γ " pa, b, cq a box of its Young diagram, the charged content (relative to s) is the integer b ´a `sc . If γ " pa, b, cq and γ 1 " pa 1 , b 1 , c 1 q are two removable or addable boxes of λ with same content, we set γ ă s γ 1 (resp. γ ą s γ 1 ) if c ă c 1 (resp. c ą c 1 ). Remark 3.1. Note that two removable (resp. addable) boxes of same content must lie in different components of rλs. Thus, for each i P Z, we have at most l removable (resp. addable) boxes with content i in rλs.

Finally, if λ and µ are two l-partitions respectively of n and n `1 with rµs " rλs Y tγu and γ of charged content i, we set

N ą i pλ, µq "|taddable nodes γ 1 to λ of charged content i with γ 1 ą s γu| ´|tremovable nodes γ 1 of λ of charged content i with γ 1 ą s γu| N ă
i pλ, µq "|taddable nodes γ 1 to λ of charged content i with γ 1 ă s γu| ´|tremovable nodes γ 1 of λ of charged content i with γ 1 ă s γu| N i pλq "|taddable nodes to λ of charged content iu| ´|tremovable nodes of λ of charged content iu| Proposition 3.2 ([16, Proposition 3.5]). The Fock space F s is an integrable U q psl 8 q-module with action given by E i ¨|λ, sy " ÿ µ,rλszrµs"tγu γ of charged content i q ´N ă i pµ,λq |µ, sy F i ¨|λ, sy " ÿ µ,rµszrλs"tγu γ of charged content i q N ą i pλ,µq |µ, sy K i ¨|λ, sy " q N i pλq |λ, sy.

Therefore, the vector |H, sy is a highest weight vector of weight

ř l i"1 Λ s i . A non-zero vector v of F n
s is said to be quasimonomial if it is obtained from |H, sy by successive applications of F i 's, that is if there exists a sequence of integers pi 1 , . . . , i n q such that v " pF in ¨¨¨F i 1 q ¨|H, sy. A non-zero vector v of F n s is said to be monomial if it is obtained from |H, sy by successive applications of divided powers of the F i 's, that is if there exists a sequence of integers pi 1 , . . . , i k q with i j`1 ‰ i j and pr 1 , . . . , r k q integers with r 1 `¨¨¨`r k " n such that v " pF

pr k q i k ¨¨¨F pr 1 q i 1 q ¨|H, sy.
From the formulas of the action in Proposition 3.2 we easily see that monomial and quasimonomial vectors are elements of À Nrq, q ´1s|λ, sy. To a quasimonomial vector v P F n s , we associate a character γ v of Gpl, 1, nq as follows. We first express v along the basis p|λ, syq of F n s : v " ÿ λ a λ pqq|λ, sy, where λ runs in the set of s-partitions of n and a λ pqq P Nrq, q ´1s. We then obtain the character γ v by evaluation at q " 1:

γ v " ÿ λ a λ p1qχ λ . 3.2. Canonical basis. Let x Þ Ñ x be the Q-linear algebra involution of U q psl 8 q given by q " q ´1, K i " K ´1 i , E i " E i , F i " F i .
We consider the submodule V s of F s generated by the highest weight vector |H, sy, which is then isomorphic to the integrable irreducible module of highest weight Λ " ř l i"1 Λ s i . Any element v P V s can then be expressed as v " x ¨|H, sy for some x P U q psl 8 q and we set v " x ¨|H, sy. This gives a well-defined involution on V s .

Let R be the subring of Qpqq of rational functions regular at q " 0 and consider F s,R the R-sublattice of F s generated by p|λ, syq λ for λ running in the l-partitions of integers. In order to state the existence of canonical basis, we need the definition of a cylindrical multipartition. Definition 3.3. Suppose that s " ps 1 , . . . , s l q is such that s 1 ě s 2 ě ¨¨¨ě s l . A l-partition λ " pλ p1q , . . . , λ plq q is said to be cylindrical if λ pkq i`s k ´sk`1 ě λ pk`1q i for all 1 ď k ď l and i P N ˚.

Theorem 3.4 ([21, 17]

). There exists a unique basis tGpλ, sq | λ cylindrical l ´partitionu of V s such that ' Gpλ, sq " Gpλ, sq, ' Gpλ, sq " |λ, sy mod qF s,R .

The basis pGpλ, sqq of V s is the canonical basis of V s . As for quasimonomial vectors, we can evaluate at q " 1 and obtain (virtual) characters of Gpl, 1, nq. It is expected that these characters should coincide with the Calogero-Moser cellular characters.

Remark 3.5. The cylindrical multipartitions are the multipartitions which naturally indexed the crystal basis of V s in the case where s 1 ě s 2 ě ¨¨¨ě s l . In the general case where s P Z l , the analogous multipartitions are the images of the cylindrical multipartitions by certain combinatorial maps described in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U q p p slpeq -modules of higher level[END_REF].

3.3.

Another description of the Fock space. We follow the description of the Fock space given in [START_REF] Leclerc | Constructible characters and canonical bases[END_REF]. Let V pΛ k q be the irreducible integrable representation of U q psl 8 q of highest weight Λ k . A basis of V pΛ k q is given by pv β q β where β runs in the set of sequences pβ j q jďk such that β j´1 ă β j for all j ď k and β j " j for j ! 0. The action of U q psl 8 q on V pΛ k q is given by

E i v β " # v γ if i R β and i `1 P β, with γ " pβzti `1uq Y tiu, 0 otherwise, F i v β " # v γ if i P β and i `1 R β, with γ " pβztiuq Y ti `1u, 0 otherwise, K i v β " $ ' & ' % qv β if i P β and i `1 R β, q ´1v β if i R β and i `1 P β, v β otherwise.
Given s " ps 1 , . . . , s l q P Z l , the Fock space F 1 s is the tensor product F 1 s " V pΛ s 1 q b ¨¨¨b V pΛ s l q, the U q psl 8 q-action is given by the coproduct. A basis of F 1 s is given by pv S q S , with S a l-symbol S "

¨β1

. . .

β l ',
where β i " pβ i,j q jďs i is a sequence of integers such that β i,j´1 ă β i,j for all j ď s i and β i,j " j for j ! 0. The vector v S is the tensor product v β 1 b ¨¨¨b v β l .

Such symbols are in bijection with l-partitions. Given such a symbol S we associate a l-partition λ S " pλ p1q , . . . , λ plq q by setting λ pkq i " β k,s k ´i`1 ´sk `i ´1.

Thanks to the assumptions on the entries of the symbol S, we do have λ pkq i ě λ pkq i`1 and λ pkq i " 0 for i " 0. It is then easy to see that S Þ Ñ λ S is a bijective map. We can then detect the addable and removable nodes of the l-partition λ S from the symbol S. Indeed, a node γ " pa, b, cq is removable if and only if β c,sc´a`1 " b ´a `sc `1 and b ´a `sc does not appear in β c . Similarly, a node γ " pa, b, cq is addable to λ if and only if β c,sc´a`1 " b ´a `sc and b ´a `sc `1 does not appear in β c . Since b ´a `sc is nothing more than the charged content of γ, we can also recover the content of a removable or addable node from the symbol S. 

'.

It corresponds to the 3-partition λ S " p4.3.1, 3, 1 3 q whose Young diagram is

rλ S s " ¨3 4 5 6 2 3 4 1 , 1 2 3 , 2 1 0 ‹ ‹ ‹ ‹ ‹ '
the entries corresponding to the charged content. Removable nodes are in gray and correspond to the entries 2, 5 and 7 in the first row of S, to the entry 4 in the second row of S and to the entry 1 in the last row of S.

Proposition 3.7. The above bijection between l-symbols and l-partitions induces an isomorphism of U q psl 8 q-modules between F 1 s and F s given by v S Þ Ñ |λ S , sy. Proof. It suffices to check that the isomorphism of vector spaces v S Þ Ñ |λ S , sy is U q psl 8 qequivariant, which is easily checked.

The vector |H, sy then corresponds to the vector v S 0 where S 0 is the symbol such that its i-th row is the sequence pjq jďs i .

Finally, note that detecting a cylindrical multipartition is easy from its corresponding symbol: the l-partition λ s is cylindrical if and only if the symbol S is standard, that is if β i,k ě β i,k`1 for all 1 ď k ă l and i ď s k`1 .

Comparison with cellular characters.

Hypothesis: We suppose that the parameter c is such that there exists k P C with lk i P Z `k for every i and that c 0 " ´1 l .

We set k 1 " pk 1 1 , . . . , k 1 l q P Z l where k 1 c " lk 1´c ´k. Therefore, given a standard tableau t of shape λ, the shift of the Jucys-Murphy element J i ´k acts on the line D t by multiplication by the charged content of t ´1piq.

Theorem 3.8. The set of Jucys-Murphy cellular characters of Gpl, 1, nq for the parameter c coincide with the characters obtained by evaluation at q " 1 of quasimonomial vectors of

F n k 1 . Proof. If v P F n´1 k 1
and v 1 " F i ¨v P F n k 1 are quasimonomial vectors, then it follows from the definition of the action and the particular choice of parameter that γ v 1 " i Índ

Gpl,1,nq Gpl,1,n´1q pγ v q. Therefore the characters of Gpl, 1, nq obtained from specializations at q " 1 of quasimonomial vectors coincide with the set E n introduced in Section 2.3, since the only quasimonomial vector of F 0 k 1 is |H, k 1 y. Therefore, we conclude using Proposition 2.7.

Using Proposition 2.5, we deduce that the characters obtained by evaluation at q " 1 of quasimonomial vectors of F n k 1 are sums of Calogero-Moser c-cellular characters. The second author has also formulated the following conjecture concerning vectors of the canonical basis of V s : Conjecture 3.9. The set of Calogero-Moser cellular characters of Gpl, 1, nq for the parameter c coincide with the characters obtained by evaluation at q " 1 of the vectors of height n of the canonical basis of V s .

The type B and Lusztig's constructible characters

In this Section, we take l " 2 so that the complex reflection group Gpl, 1, nq is isomorphic to the Weyl group of type B n . We aim to compare, using results of Leclerc-Miyachi [START_REF] Leclerc | Constructible characters and canonical bases[END_REF], the Jucys-Murphy cellular characters and Lusztig's constructible characters.

Lusztig's constructible characters depend also on a choice of parameters for each conjugacy class of reflections. We will always take the parameter equal to 1 for the conjugacy class S 0 and the parameter for the conjugacy class S 1 is denoted by r and will be explicitely related to the multicharge s. Theorem 4.1 ([20, Theorem 10 and Proposition 4]). Let s " ps 1 , s 2 q P Z 2 with s 1 ě s 2 . Then the characters of the Weyl group of type B obtained from specializations at q " 1 of the vectors of the canonical basis of V s coincide with Lusztig's constructible characters at parameter r " s 1 ´s2 .

Moreover, every element in the canonical basis of V s is of the following form:

Gpλ, sq " F pr k q i k ¨¨¨F pr 1 q i 1 ¨vS 0 ,
where i j P Z and r j P t1, 2u for all 1 ď j ď k.

Because of the divided powers, it is not clear if the vectors of the canonical basis are monomial or not. Proposition 4.2. Let s " ps 1 , s 2 q P Z 2 with s 1 ą s 2 . For any n P N, any k P N, any i 1 , . . . , i k P Z and any r 1 , . . . , r k P t1, 2u such that ř k i"1 r i " n there exist j 1 , . . . , j n such that F

pr k q i k ¨¨¨F pr 1 q i 1
¨vS 0 " F jn ¨¨¨F j 1 ¨vS 0 . Proof. We proceed by induction on n. There is nothing to prove if n " 0 or if n " 1. Note that since s 1 ą s 2 , we have F p2q i ¨vS 0 " 0, which also settles the case n " 2. Now suppose that n ě 3 and that the result is proven for every l ď n´1. Fix i 1 , . . . , i k P Z and r 1 , . . . , r k P t1, 2u such that ř k i"1 r i " n. Of course, we suppose that F

pr k q i k ¨¨¨F pr 1 q
i 1 ¨vS 0 is non-zero, otherwise there is nothing to show.

If r k " 1, then the induction hypothesis gives us j 1 , . . . , j n´1 such that

F pr k´1 q i k´1 ¨¨¨F pr 1 q i 1 ¨vS 0 " F j n´1 ¨¨¨F j 1 ¨vS 0 ,
and acting by F i k shows that

F i k F pr k´1 q i k´1 ¨¨¨F pr 1 q i 1 ¨vS 0 " F i k F j n´1 ¨¨¨F j 1 ¨vS 0
has the desired form. Finally, suppose that r k " 2. We use the induction hypothesis to obtain j 1 , . . . , j n´2 such that F

pr k´1 q i k´1 ¨¨¨F pr 1 q i 1 ¨vS 0 " F j n´2 ¨¨¨F j 1 ¨vS 0 ,
and we now discuss on the value of j n´2 . If

j n´2 R ti k ´1, i k , i k `1u then F p2q
i k and F j n´1 commute and then

F p2q i k F pr k´1 q i k´1 ¨¨¨F pr 1 q i 1 ¨vS 0 " F j n´2 F p2q i k F j n´3 ¨¨¨F j 1 ¨vS 0 .
We once again apply the induction hypothesis to F p2q i k F j n´3 ¨¨¨F j 1 ¨vS 0 to reach the conclusion.

Since we have supposed that

F p2q i k F pr k´1 q i k´1 ¨¨¨F pr 1 q i 1
¨vS 0 is non-zero, we have j n´2 ‰ i k . Indeed, F 3 i k acts by zero on the Fock space by Remark 3.1. If j n´2 " i k ´1, we want to use the quantum Serre relation

F p2q i k F j n´2 " F i k F j n´2 F i k Fj n´2 F p2q
i k and we show that F p2q i k acts by zero on F j n´3 ¨¨¨F j 1 ¨vS 0 . If a symbol S " `β γ ȋs such that v S appears in F j n´3 ¨¨¨F j 1 ¨vS 0 with a non zero coefficient, then the value of β X γ and β Y γ does not depend on the chosen symbol. Then i k R β X γ, otherwise F i k´1 would act by zero on F j n´3 ¨¨¨F j 1 ¨vS 0 . Therefore F p2q i k acts by zero on F j n´3 ¨¨¨F j 1 ¨vS 0 and we have

F p2q i k F j n´2 F j n´3 ¨¨¨F j 1 ¨vS 0 " F i k F j n´2 F i k F j n´3
¨¨¨F j 1 ¨vS 0 , which has the expected form.

If j n´2 " i k `1, we can proceed similarly: we show that i k `1 P β Y γ and then

F p2q i k
acts by zero on F j n´3 ¨¨¨F j 1 ¨vS 0 .

Example 4.3. If we take the multicharge s " p1, 0q then the vector F p2q 0 F 1 ¨vS 0 is an element of the canonical basis. Since F p2q 0 acts by zero on v S 0 , we have F p2q 0 F 1 ¨vS 0 " F 0 F 1 F 0 ¨vS 0 , and we obtain a monomial vector.

If the multicharge s is of the form ps, sq, we have almost the same result. Proposition 4.4. Let s " ps, sq P Z 2 . For any n P N, any k P N, any i 1 , . . . , i k P Z and any r 1 , . . . , r k P t1, 2u such that ř k i"1 r i " n and pr 1 , . . . , r k q ‰ p2, . . . , 2q, there exist j 1 , . . . , j n such that F

pr k q i k ¨¨¨F pr 1 q i 1 ¨vS 0 " F jn ¨¨¨F j 1 ¨vS 0 .
If n " 2k is even and pr 1 , . . . , r k q " p2, . . . , 2q then the vector F p2q i k ¨¨¨F p2q i 1 ¨vS 0 is either zero or of the form v S for S a symbol of the form `β β ˘.

Proof. The strategy is the same as in the proof of Proposition 4.2. We proceed by induction on n and the only difference being the case of a non-zero vector of the form

F i k F p2q i k´1 ¨¨¨F p2q i 1 vS
0 . Indeed, we cannot apply the induction hypothesis to

F p2q i k´1 ¨¨¨F p2q i 1 ¨vS 0 . As F i k F p2q i k´1 ¨¨¨F p2q i 1 ¨vS 0 is non-zero, we have i k ‰ i k´1 . If i k ‰ i k´1 ˘1, then F i k and F p2q i k´1 commute and we rewrite F p2q i k´1 F i k F p2q i k´2 ¨¨¨F p2q i 1 ¨vS 0 as in the proof of Proposition 4.2. If i k " i k´1 ´1, as we supposed that F i k F p2q i k´1 ¨¨¨F p2q i 1 ¨vS 0 , the vector F p2q i k´2 ¨¨¨F p2q i 1 ¨vS 0 is equal to v S with S " `β β ˘with i k `1 " i k´1 P β. Therefore F p2q i k ¨vS " 0 and F i k F p2q i k´1 ¨¨¨F p2q i 1 ¨vS 0 " F i k´1 F i k F i k´1 F p2q i k´2 ¨¨¨F p2q i 1 ¨vS 0 ,
and we once again conclude by induction. The case i k " i k´1 `1 is similar.

The two previous propositions enable us te get rid of the divided powers in almost all cases.

Corollary 4.5. Let s " ps 1 , s 2 q P Z 2 be a multicharge with s 1 ě s 2 .

(1) If s 1 ą s 2 then any vector of the canonical basis of V s is monomial.

(2) If s 1 " s 2 and then any vector of the canonical basis of V s different from v S with S " `β β ˘is monomial.

Theorem 4.6. Lusztig's constructible characters in type B at parameter r are sums of Calogero-Moser cellular characters at parameters c with c 0 " ´1{2 and c 1 " ´r{2.

Proof. In order to be consistent with the hypothesis of Section 3.4, we take k " ´r{2 so that pk 1 1 , k 1 2 q " pr, 0q. If γ is a Lusztig's constructible character, then thanks to Theorem 4.1, γ is obtained from the evaluation at q " 1 of a vector of the canonical basis of V s .

If r ‰ 0 Corollary 4.5 ensures that γ is obtained from the evaluation at q " 1 of a monomial vector of the Fock space. Therefore, thanks to Theorem 3.8, γ is a Jucys-Murphy constructible character, which is a sum of Calogero-Moser c-cellular characters, see Proposition 2.5.

If r " 0, then the same argument shows that any Lusztig's constructible character different from χ pλ,λq is a sum of Calogero-Moser c-cellular characters. But the character χ pλ,λq is alone in its Calogero-Moser family. Indeed, the two rows of the 2-symbol S λ corresponding to the bipartition pλ, λq are equal: there exists only one symbol with the same content of S λ and the Calogero-Moser family is determined by the content, see [25, Theorem 3.9 and 3.13]. Hence, using [7, Proposition 7.7.1 and Theorem 13.5.1], we deduce that χ pλ,λq is also a Calogero-Moser c-cellular character.

5. Calogero-Moser families and b-invariant 5.1. Calogero-Moser families. Using the representation theory of restricted rational Cherednik algebras at t " 0, Gordon [START_REF] Gordon | Baby Verma modules for rational Cherednik algebras[END_REF] defines the notion of Calogero-Moser families of characters for a complex reflection group W . It consists in a partition of the set of irreducible representations for W , which, in the case of Weyl group, conjecturally correspond to the notion of Lusztig family. This conjecture is known to hold in the case where W is a classical Weyl group thanks to a case by case analysis. Now, for each irreducible representation E of W , one can define its fake degree f E pqq which is a polynomial in one indeterminate q. This object is connected with the invariant theory of W . The valuation of f E pqq is denoted by b E and is known as the b-invariant of E. In [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF], Bonnafé and Rouquier have proved that in each Calogero-Moser family, there is a unique element with minimal b-invariant. Our aim is to recover this result and to give the explicit form of this element in the case where W " Gpl, 1, nq.

5.2.

The case W " Gpl, 1, nq. We first describe the Calogero-Moser family in this case and give an explicit formula for the b-invariant of an irreducible character in terms of symbols. Let l P N ą0 and let s " ps 1 , . . . , s l q P N l . We will suppose that s 1 ě s 2 ě ¨¨¨ě s l and consider the set of l-symbols Symbpsq of multicharge s. The symbols considered in this section are slightly diffrent from the ones introduces in Section 3, and we stress the difference of conventions. First, the multicharge is allowed to have only non-negative values. Then, the i-th row of an l-symbol will be a finite increasing sequence of s i integers. Infinite symbols as in Section 3 have the advantage to be in bijection with all l-partitions of all integers, whereas there are some restriction for finite symbols: we can only recover partitions of integers with the i-th component of length at most s i . Therefore, the irreducible representations of Gpl, 1, nq may be parametrized by Symbpsq as soon as s l ě n. In the following, we will need this assuption on s l every time we want to describe an irreducible representation by its associated symbol. We now write a symbol S P Symbpsq as follows:

S " ¨β1 1 . . . β 1 s 1 ´s2 β 1 s 1 ´s2 `1 . . . β 1 s 1 ´sl β 1 s 1 ´sl `1 . . . β 1 s 1 β 2 1 . . . β 2 s 2 ´sl β 2 s 2 ´sl `1 . . . β 1 s 2 . . . . . . . . . . . . . . . β l 1 . . . β l s l ‹ ‹ ' .
Given S P Symbpsq, we define bpSq P N and b 1 pSq P N by bpSq "

n ÿ i"1 s i ÿ j"1 plps i ´jq `i ´1qpβ i j ´j `1q and b 1 pSq " n ÿ i"1 s i ÿ j"1 plps i ´jq `i ´1qβ i j .
Then bpSq is the b-invariant associated with the simple representation parametrized by S. This can be deduced from the computation of the fake degrees in [23, Bemerkung 2.10]. This result can be thought as an extension of a similar property for Lusztig's constructible characters for Coxeter groups, see [START_REF] Bonnafé | Constructible characters and b-invariant[END_REF].

Thanks to computer calculations, we conjecture some similar properties for the vectors of the canonical basis. Conjecture 6.1. We fix s " ps 1 , . . . , s l q P Z l and consider λ a cylindric l-partition. We expand Gpλ, sq along the standard basis: Gpλ, sq " ÿ µ a λ,µ pqq|µ, sy, with a λ,µ pqq P Zrq, q ´1s.

Then there exists a unique ν with minimal b-invariant among the µ such that a λ,µ pqq ‰ 0.

If one considers Lusztig's constructible characters at equal parameters, given a Lusztig's family of characters F, every constructible character whose underlying family F share an irreducible component, which is the character of minimal b-invariant in the family F. We also conjecture a similar behavior for the canonical basis, for specific parameters s. Let us denote by mpλq the l-partition ν of the previous conjecture. Conjecture 6.2. Suppose that the parameter s is of the following form: s " ps `1, . . . , s 1, s, . . . , sq. Let λ be a cylindrical l-partition. Then mpλq is the symbol of minimal content in the Calogero-Moser family containing λ. This conjecture asserts that the constituent with minimal b-invariant is the same if the two vectors of the canonical basis correspond to the same family of symbols.

We finally give a last conjecture, which corresponds to [START_REF] Geck | Left cells and constructible representations[END_REF]Lemma 4.6] and [24, Remarque 5.7]. This conjecture is related with the so-called spetsial parameters. These parameters should be the correct generalization of the equal parameters for Hecke algebras associated with equal parameters, see [START_REF] Bonnafé | Cherednik algebras and Calogero-Moser cells[END_REF]Chapter 8] for the correspondance of parameters between rational Cherednik algebras and cyclotomic Hecke algebras. In terms of the multicharge s, these spetsial parameters correspond to the case s " ps `1, s, . . . , sq. Note that symbols of shape given by s are considered in [START_REF] Malle | Unipotente Grade imprimitiver komplexer Spiegelungsgruppen[END_REF], where they parametrize the unipotent degrees of the principal family for the imprimitive complex reflection group Gpl, 1, nq.

Let s E be the Schur element associated with the representation E of the Ariki-Koike algebra at spetsial parameters. These elements have been explicitly computed, see [START_REF] Chlouveraki | Rouquier blocks of the cyclotomic Ariki-Koike algebras[END_REF]Theorem 2.4] for a factorization of these Schur elements. The leading coefficient of s E is denoted by ξ E . Since the Ariki-Koike algebra is a flat deformation of the group algebra

Proposition 2 . 5 (

 25 [START_REF] Lacabanne | On a conjecture about cellular characters for the complex reflection group Gpd, 1, nq[END_REF] Theorem 1.10]). Every Jucys-Murphy cellular character is a sum of Calogero-Moser cellular characters.
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 36 Consider the multicharge p3, 1, 2q and the following symbol S S "

6. 2 .

 2 Canonical basis and b-invariant. In [7, Theorem 11.4.2(c)], Bonnafé and Rouquier have proved that every irreducible constituent of a Calogero-Moser c-cellular character belongs to the same Calogero-Moser family. Therefore, one can define the Calogero-Moser family associated to a Calogero-Moser c-cellular character. Note that vectors of the standard basis appearing in the expression of the a vector of the canonical basis have a similar behaviour. As for Calogero-Moser families, Bonnafé and Rouquier have proven a result in relation with the b-invariant: every Calogero-Moser c-cellular characters have a unique irreducible constituent of minimal b-invariant.

A program for the computation of monomial and canonical basis elements is available in http://ftp. math.rwth-aachen.de/homes/CHEVIE/contr/arikidec.g
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It is clear that for two symbols S and S 1 associated with multipartitions with the same length, we have: bpSq ď bpS 1 q ðñ b 1 pSq ď b 1 pS 1 q.

Given a symbol S P Symbpsq, we associate a sequence zpSq by zpSq " pβ 1 1 , . . . , β 1 s1´s2 , β 2 1 , β 1 s1´s2`1 , . . . , β 2 s2´s3 , β 1 s1´s3 , β 3 1 , β 2 s2´s3`1 , β 1 s1´s3`1 , . . . , β l 1 , β l´1 1 , . . . , β 1 1 q. This sequence is obtained from the symbol S by reading the entries from bottom to top and from left to right.

Let W be the tuple pw 1 , . . . , w l q such that b 1 pSq " 

‹ '

Note that zpW q is a strictly decreasing sequence (eventhough W in not a symbol, the definition of zpW q still makes sense).

Then the two symbols S and T in Symbpsq belong to the same Calogero-Moser family if the underlying multiset is the same; this defines a partition of Symbpsq into families of symbols.

Fix F a family of symbols with underlying multiset of entries E. We define a symbol S F P F through the sequence zpS F q:

(1) we set zpS F q 1 to be the minimum of E, (2) suppose that we have defined zpS F q 1 , . . . , zpS F q i ; then we set zpS F q i`1 to be the minimal element x of EztzpS F q 1 , . . . , zpS F q i u such that there exists a symbol S P F with associated sequence zpSq starting with pzpS F q 1 , . . . , zpS F q i , xq.

Example 5.1. Here, we take the multicharge p5, 5, 3q and the family with underlying multiset t0, 0, 0, 1, 1, 2, 2, 5, 7, 8, 9, 11, 12u. Then we have zpS F q " p0, 0, 1, 1, 0, 2, 2, 5, 7, 8, 9, 11, 12q and the corresponding symbol is

Theorem 5.2. Let F Ă Symbpsq be a family of symbols. Then bpS F q ď bpSq for all S P F with equality if and only if S " S F .

Let be the order on Symbpsq induced by the dominance order on the associated sequences:

From the definition of b 1 , it is easy to see that b 1 pSq "

Therefore if S T then b 1 pSq ď b 1 pT q and if S T and b 1 pSq " b 1 pT q then S " T . Hence Theorem 5.2 will follow immediately from the next proposition.

Proposition 5.3. Let F be a family of Symbpsq. Then S F S for all S P F.

Proof. Let S P F different from S F and consider 1 ď j ď s 1 `¨¨¨`s l minimal such that zpSq j ‰ zpS F q j . We construct a symbol T such that T S and zpT q i " zpS F q i for all 1 ď i ď j. By induction, this implies that S F T S.

Let j ă k ď s 1 `. . . `sl be minimal such that zpSq k " zpS F q j . We consider the two rows S a and S b of S such that β a p is the entry zpSq j and β b q the entry zpSq k . Note that, by definition of S F , we must have zpSq j ą zpS F q j and zpS F q j does not appear in S a .

Since k ą j, we have s b ´q `1 ď s a ´p `1. Therefore there exists p 1 ě p such that β a p 1 ‰ β b r for all r ě q. Indeed, if β a p 1 belongs to S b for all p 1 ě p, then these s a ´p `1 different integers all bigger that zpSq k " β b q appear at the right of β p q . But there are s b ´q ă s a ´p `1 integers to the right of β b q . Now that we have find an entry in S a at the right of zpSq j (zpSq j included) which does not appear in S b , we now define the symbol T from S. Denote by q 0 " q, q 1 , . . . , q p 1 ´p´1 the integers such that β a p`r " β b q r`1 for all 0 ď r ď p 1 ´p ´1. Note that β b q 0 " β b q cannot appear in S a otherwise, it would appear at the left of β a p and thus it would appear with multiplicity 2 in row S a F . Let T be the symbol obtained by exchanging β a p`r with β b qr for 0 ď r ď p 1 ´p and increasingly reordering the row in position b. Since zpT q is obtained from zpSq by a successive exchange of pairs px, yq with x ą y and x appearing before y, we have T S. Moreover, by construction, the j ´1 first entries of zpT q and zpSq coincide with those of zpS F q and zpT q j " zpS F q j . 6. Conjectures 6.1. Monomial and canonical bases. In section 4, we have seen that every canonical basis elements are in fact monomial vectors in the case where l " 2.

We conjecture that this is also the case when l " 3 even if a closed formula for them might been more difficult to obtain than in the case l " 2. When l ą 2, the canonical basis elements are not monomial in general, but such counter-examples are not easy to find.

From explicit computer calculations 2 , we found the following counter-example for l " 5 with the multicharge s " p3, 2, 2, 1, 0q and the multipartition λ " pp3q, p3q, p1q, H, Hq. The corresponding element of the canonical basis Gpλ, sq is not a monomial vector of the Fock space.

of Gpl, 1, nq, the irreducible representations are parametrized by l-partitions of n, and we write ξ λ instead of ξ E if E is the representation indexed by λ. Conjecture 6.3. Let s be ps `1, s, . . . , sq the spetsial parameters. Let λ be a cylindrical l-partition. Then a λ,mpλq p1q " ÿ µ a λ,µ p1q ξ µ .