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TS-GLR: an Adaptive Thompson Sampling for the Switching Multi-Armed Bandit Problem

The stochastic multi-armed bandit problem has been widely studied under the stationary assumption. However in real world problems and industrial applications, this assumption is often unrealistic because the distributions of rewards may change over time. In this paper, we consider the piece-wise iid non-stationary stochastic multi-armed bandit problem with unknown change-points and we focus on the change of mean setup. To solve the latter, we propose a Thompson Sampling strategy equipped with a change point detector based on a well tuned non-parametric Generalized Likelihood Ratio test (GLR). We call the resulting strategy Thompson Sampling-GLR (TS-GLR ). Analytically, in the context of regret minimization for the global switching setting, our proposal achieves a O (K T log T ) regret upperbound where K T is the overall number of change-points up to the horizon T . This result mainly comes from the order optimal detection delay of the GLR test for sub-Gaussian distributions and its well controlled false alarm rate. Experimentally, we demonstrate that the TS-GLR outperforms the state-of-art non stationary stochastic bandits over synthetic Bernoulli rewards as well as on the Yahoo! User Click Log Dataset.

Introduction and related work

Multi-Armed Bandit (MAB) problems model sequential allocation in the face of uncertainty and partial feedback on rewards. At each round, the learning agent (decision-maker) resolves to pull one arm amongst a finite number of possible arms. This decision is based on the past observations. At each time t, upon selecting arm A t ∈ {1, ...A}, the agent receives a reward X At,t , and he aims at building a sequential sampling strategy that maximizes the expected sum of these rewards. This is equivalent to minimizing the regret, defined as the difference between the total reward of the oracle strategy always selecting the arm with largest mean, and that of the agent strategy. The multi-armed bandit problem has been extensively applied in several domains such as communication systems [START_REF] William R Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF], online recommendation systems [START_REF] Li | An unbiased offline evaluation of contextual bandit algorithms with generalized linear models[END_REF], online advertisement campaign [START_REF] Schwartz | Customer acquisition via display advertising using multi-armed bandit experiments[END_REF] and clinical trials [START_REF] Sofía | Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges[END_REF].

The stationary stochastic multi-armed bandit problem has been well-studied since the work of [START_REF] Leung | Asymptotically efficient adaptive allocation rules[END_REF]. In the context of regret minimization, several algorithms with O (log T ) problem-dependent regret upper bound have been proposed (UCB 1 [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], UCB V [START_REF] Audibert | Variance estimates and exploration function in multi-armed bandit[END_REF], CP UCB [START_REF] Garivier | The kl-ucb algorithm for bounded stochastic bandits and beyond[END_REF], Bayes UCB [START_REF] Kaufmann | On bayesian upper confidence bounds for bandit problems[END_REF], KL UCB [START_REF] Cappé | Kullback-leibler upper confidence bounds for optimal sequential allocation[END_REF], DMED [START_REF] Honda | An asymptotically optimal bandit algorithm for bounded support models[END_REF], MOSS [START_REF] Audibert | Minimax policies for adversarial and stochastic bandits[END_REF] and Thompson Sampling [START_REF] Korda | Thompson sampling for 1-dimensional exponential family bandits[END_REF]). However these algorithms perform poorly in non-stationary environments where the distributions of rewards change over time. To address this issue, the non-stationary multi-armed bandit problem has been proposed in the literature. Essentially, there are two kinds of strategies for the non-stationary multi-armed bandit: passively adaptive policies [START_REF] Besbes | Stochastic multi-armed-bandit problem with nonstationary rewards[END_REF][START_REF] Wei | Tracking the best expert in non-stationary stochastic environments[END_REF] and actively adaptive policies [START_REF] Hartland | Multiarmed bandit, dynamic environments and meta-bandits[END_REF][START_REF] Mellor | Thompson sampling in switching environments with bayesian online change point detection[END_REF].

Passively adaptive policy In order to forget the past rewards, the first passively adaptive strategies propose to penalize the past rewards by multiplying them with a discount factor γ ∈ 0, 1 such that the penalization is of γ s if the arm was not seen since s time steps. The Discounted UCB (D-UCB) was first proposed by [START_REF] Kocsis | Discounted ucb[END_REF] and then it has been analyzed by [START_REF] Garivier | On upper-confidence bound policies for switching bandit problems[END_REF] where they prove a regret upper bound of O( √ K T T ln(T )) if the discount factor γ = 1 -K T /T /4 where K T is the overall number of change-point up to the horizon T . Another popular mechanism to forget the past rewards is to use a sliding window of fixed size τ , where only the τ last rewards are used for the decision-maker. The sliding Window UCB (SW-UCB) has been analysed by [START_REF] Garivier | On upper-confidence bound policies for switching bandit problems[END_REF] who demonstrates a regret upper bound of O( K T T ln(T )) in the case where τ = 2 T ln(T )/K T . There are also other recent algorithms such as Discounted Thompson Sampling [START_REF] Raj | Taming non-stationary bandits: A bayesian approach[END_REF] and REXP3 [START_REF] Besbes | Stochastic multi-armed-bandit problem with nonstationary rewards[END_REF] that use passively adaptive mechanisms. Actively adaptive policy There is a large literature exploring the idea of monitoring the change in the reward distribution via online change-point detection and triggering the reset of the bandit algorithm. This kind of algorithm aims at localizing the change-point and hence demonstrate better performances than the passive policies. The Adapte-EvE algorithm [START_REF] Hartland | Multiarmed bandit, dynamic environments and meta-bandits[END_REF] uses the Page-Hinkley test to detect the change-point and hence restart the UCB1 strategy once an alarm is raised. Then, in [START_REF] Mellor | Thompson sampling in switching environments with bayesian online change point detection[END_REF], the authors provide a combination between the Bayesian online change-point detector [START_REF] Prescott | Bayesian online changepoint detection[END_REF] and Thompson Sampling. This work has been revisited in [START_REF] Alami | Memory bandits: a bayesian approach for the switching bandit problem[END_REF] by adding an extra expert aggregation step. A recent and related work [START_REF] Liu | A change-detection based framework for piecewisestationary multi-armed bandit problem[END_REF] uses CUSUM algorithm for change-point detection. Furthermore, the Monitored UCB algorithm (M-UCB) [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF] also combines a CUSUM instance with UCB. However, the change-detection test is much easier and a forced exploration phase is also performed. Moreover, in [START_REF] Besson | The generalized likelihood ratio test meets klucb: an improved algorithm for piece-wise non-stationary bandits[END_REF] the authors propose a hybrid combination between KL-UCB algorithm and a Bernoulli Generalized Likelihood Ratio Test for change-point detection. They reach a O(K T T ln(T )) as regret upper-bound. Finally, in [START_REF] Auer | Adaptively tracking the best bandit arm with an unknown number of distribution changes[END_REF] the authors propose ADSWITCH which achieves (nearly) optimal mini-max regret bounds without knowing the number of changes.

Contributions

In this paper, we propose a change-detection based framework for the piece-wise stationary bandit problem in the global switching setting, which consists of a Thompson Sampling equipped with the well tuned instance of the Generalized Likelihood Ratio test introduced in [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF]. Then, we provide a regret upper bound for the strategy TS-GLR which is O (K T log T ), where K T is the overall number of change-points up to the horizon T . This contradicts the lower bound in Ω( √ T ). The TS-GLR bound is mainly composed of the regret of a Thompson Sampling in the stationary case plus the sum of the detection delays of each observed change-point. This bound in almost optimal when compared against the Thompson Sampling oracle: a strategy that already knows the location of change-point. Finally, we validate the performance of the proposed and existing policies by both synthetic and real world datasets evaluation, and we demonstrate that TS-GLR outperforms the existing policies in terms of pseudo cumulative regret.

The remainder of the paper is organized as follows: we describe the piece-wise stationary bandit model and the change-point detection framework in Section 2. In Section 3, we describe TS-GLR and its analysis. We demonstrate experiment results in Section 4. We conclude the paper in Section 5. Due to space limitations, we provide the proofs of the main analytical results in appendix A (see https:// drive.google.com/file/d/1MzSFw67glTx61kBUYEfTEYUaHzaHojfj/view?usp=sharing).

2 Problem formulation 2.1 The piece-wise stationary multi-armed bandit problem A piece-wise stationary multi-armed bandit is a discrete time stochastic control process defined by a 3-tuple A, T, {F (µ a,t )} a∈A,t∈T where A = {1, ..., A} denotes the discrete set of actions of size A, T = {1, 2, ..., T } a sequence of time-steps going up to the horizon T and F (µ a,t ) the reward probability distribution of arm a at time t (probability density function) whose mean is µ a,t .

We assume a global switching model that allows synchronous changes to happen, i.e. when a switch happens, all arms change their expected rewards. We denote the overall number of change-points up to the horizon T by K T = T t=2 I F (µ a,t ) = F (µ a,t-1 ) , ∀a ∈ A + 1, where I • denotes the indicator function.

Then, we denote the sequence of change-points up to the horizon T by: (τ 1 = 1, τ 2 , ..., τ K T +1 = T + 1). Following this, the environment is now described by K T piece-wise stationary segment denoted by [τ k , τ k+1 ). Then, it is convenient to use the variable θ a, [k] to denote the constant behavior of µ a,t for t ∈ [τ k , τ k+1 ). Moreover, we denote by

Θ [k] = F θ 1,[k] , ..., F θ A,[k] the stationary multi-armed bandit on epoch T k = [τ k , τ k+1 ).
By the way, a piece-wise stationary bandit in a global switching setting is ultimately only a sequence of K T stationary bandit denoted by Θ

[1] , ..., Θ [K T ] .
A decision maker will sequentially interact with this piece-wise stationary bandit for T times. At each round t 1, he has to select an arm A t ∈ A based on past observations and receive the corresponding reward X At,t ∼ F (µ At,t ). At time t, we let a t = argmax a∈A µ a,t denotes the optimal arm. For convenience, we will be interested in the optimal arm during the stationary epoch T k which we shall denote by a [k] = argmax a∈A θ a, [k] . Also, the optimal mean reward on epoch T k is denoted by θ [k] . Thus, the bandit gap of arm a during epoch

T k is ∆ a,[k] = θ [k] -θ a,[k] . Finally, the change magnitude of arm a related to the change-point τ k is Λ a,[k] = θ a,[k] -θ a,[k-1] . For convenience, we shall write Λ [k] instead of Λ a [k] ,[k] .
Regret minimization in the global switching model The agent's objective is to build a policy π in order to maximize its expected cumulative reward in the T time steps, i.e. max E T t=1 X At,t , which is equivalent to minimizing its T -step pseudo cumulative regret R T defined as:

R π T = T t=1 max a∈A E [X a,t ] -E T t=1 X At,t = K T k=1 τ k+1 -1 t=τ k (µ t -µ At,t ) = K T k=1 a∈A ∆ a,[k] E N a,[k]
where

N a,[k] = τ k+1 -1 t=τ k I A t = a denotes the number of draws related to arm a in epoch T k .

Sequential change-point detection

The sequential change-point detection framework has been extensively studied in the statistical learning community [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF]. This framework aims to detect the change in underlying distributions of a sequence of observations Z 1 , ..., Z n as quickly as possible with a minimum false alarm rate. Definition 1 provides a more formal definition of a change-point detection strategy. Definition 1 (Online change-point detection strategy). An online change-point detection strategy CPD (.) takes as input a sequence Z 1 , ..., Z n and output a binary scalar such that:

CPD (Z 1 , ..., Z n ) = 1 if a change in the generation of the sequence (Z 1 , ..., Z n ) is detected, 0 else.

Assessing the performances of an online change-point detector

Let Z 1 , ..., Z τ -1 ∼ F (θ 1 ), Z τ , ..., Z n ∼ F (θ 2
) and τ the change-point to detect. The performance of an algorithm that aims at detecting the change-point τ ∈ [1, n] in the sequence Z 1 , ..., Z n is assessed using two notions.

• False alarm rate: the probability of detecting a change at some instant s ∈ [1, τ ) where there is no change. Usually, the false alarm rate is expressed as:

P ∃s ∈ [1, τ ) : CPD (Z 1 , ..., Z s ) = 1 .
• Detection delay: the number of time steps needed to detect a change. Let τ := min s ∈ [1, s] : CPD (Z 1 , ..., Z s ) = 1 denotes the instant where the change-point τ is detected. Then, the detection delay is expressed as:

( τ -τ ) × I τ > τ .
3 The Thompson Sampling-GLR strategy for the global switching bandit

The Thompson Sampling strategy

Unlike optimistic algorithms belonging to the UCB family [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], which are often based on confidence intervals, the Thompson Sampling deals with Bayesian tools by assuming a Beta prior distribution π a,t=1 = Beta (s 0 , f 0 ) on each arm for some s 0 , f 0 > 0. Further, since the arms are Bernoulli (X At ∼ B (µ At )), for which the Beta distribution is a conjugate prior, the posterior distribution π a,t is Beta distribution which is updated such as: π a,t = Beta (S a,t = #(reward = 1) + s 0 , F a,t = #(reward = 0) + f 0 ). At each time, the agent takes a sample ϑ a,t from each π a,t and then plays the arm A t = argmax a ϑ a,t . Analytically, the Thompson Sampling has been shown to be asymptotically optimal [START_REF] Kaufmann | Thompson sampling: An asymptotically optimal finite-time analysis[END_REF], i.e. the expectation of the pseudocumulative regret reaches the Lai and Robbins lower bound on regret for Bernoulli multi-armed bandit [START_REF] Leung | Asymptotically efficient adaptive allocation rules[END_REF]. We report in Lemma 1 the exact upper bound reached by the regret of a Thompson Sampling. Moreover, we report in Lemma 2 the control of the optimal arm done by Thompson Sampling. It should be noted that Lemma 2 is a key element in providing Lemma 1. Lemma 1 (Thompson Sampling regret). For the Bernoulli bandit Θ = B (θ 1 ) , ..., B (θ A ) , the regret of Thompson Sampling after T rounds takes the following upper bound:

∀ ε > 0 ∃ c ε,Θ : R TS T,ε (Θ) (1 + ε) a∈[1,A]\a ∆ a (log T + log log T ) KL (B (θ a ) , B (θ )) + c ε,Θ
where:

θ = max a∈[1,A]
θ a and a = argmax

a∈[1,A] θ a
Lemma 2 (Controlling the optimal arm for the Thompson Sampling strategy). Given a Bernoulli bandit Θ = B (θ 1 ) , ..., B (θ A ) , and by letting N 1:t denotes the number of draws related to the optimal arm a = argmax a θ a until time t. Then, the quantity N 1:t is controlled as follows:

∃ (κ, ξ = ξ (Θ)) ∈ (1, ∞) × (0, 1) : P N 1:t t ξ 2 (A -1) 2 t 2-ξ + o 1 t κ
Lemma 2 tells us that the probability that Thompson Sampling chooses only a small number of draws on the optimal arm is itself small. This control is very important to guarantee the existence of the detection delay in the case of a bandit feedback setting.

The Improved non parametric Generalized Likelihood Ratio Test

In this section, we briefly introduce a well tuned instance of the Generalized Likelihood ratio which has been specifically designed for sub-Gaussian distributions. Then, we provide the guarantees of the associated change-point detection test in term of false alarm rate and detection delay.

Improved Generalized Likelihood for sub-Gaussian distributions (IMPGLR δ )

For a sequence Z 1 , ..., Z n which is σ sub-Gaussian, the formulation of the improved GLR test introduced in [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF] takes the following simple form:

IMPGLR δ (Z1, ..., Zn) = I ∃ s ∈ [1, n) : 1 s s i=1 Zi - 1 n -s n i=s+1 Zi C σ,δ (s, n)
where the confidence level C σ,δ (s, n) is expressed as follows:

C σ,δ (s, n) = √ 2σ 1 + 1 s s log 2 √ s + 1 δ + 1 + 1 n-s n -s log 2n √ n -s + 1 log 2 (n) log(2)δ .
Note that when the set of observations is empty, we adopt the following convention: IMPGLR δ (∅) = 0. This convention is very useful in the bandit feedback setting in the case of infrequently visited arms.

Note that, since an observation drawn from a Bernoulli distribution has a 1 2 -sub-Gaussian noise, the confidence level for the Bernoulli case is simply C 1 2 ,δ (s, n).

Useful properties of the test IMPGLR δ

Lemma 3 (Guarantees of the test IMPGLR δ ). Let: Z 1 , ..., Z τ -1 ∼ F (θ 1 ) be a sequence of τ -1 i.i.d random variables following a distribution of mean θ 1 and Z τ , ..., Z n ∼ F (θ 2 ) be a sequence of n -τ + 1 i.i.d random variables following a distribution of mean θ 2 . Assume that Z i has σ sub-Gaussian noise. Also, let: Λ = |θ 1 -θ 2 | denotes the change gap. Then, for all δ ∈ (0, 1), the Improved GLR test using the threshold C σ,δ (s, n) for each n 1 presents the three following guarantees:

1. With probability at least 1 -δ, no false alarm occurs in [1, τ ):

P ∃ r ∈ [1, τ ) : IMPGLR δ (Z 1 , ..., Z r ) = 1 δ 2.
The maximum delay to detect the change-point τ is:

d δ,(σ) (n, Λ) = min l ∈ N : l > 8σ 2 n+1 n log (l-1+n) √ l+n+1 δ max Λ 2 -2 n log (l-1+n) √ l+n+1 δ ,0
. Indeed, it is guaranteed that: 

P ∀r ∈ τ, τ + d δ,(σ) (τ -1, Λ) : IMPGLR δ (Z 1 , ..., Z r ) =
2C σ,δ (τ -τ -1 + 1, τ +1 -τ -1 + 1)
Discussion 1. In [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF], it has been shown that the detection delay of IMPGLR δ denoted by d δ,(σ) (n, Λ) is asymptotically order optimal in the sense of Theorem 3.1 in [START_REF] Leung | Sequential change-point detection when the pre-and postchange parameters are unknown[END_REF]. Thus, equipping the Thompson Sampling with IMPGLR δ is a wise choice to handle the piece-wise stationary bandit.

Equipping Thompson Sampling with IMPGLR δ (TS-GLR)

In order to resolve a piece-wise stationary multi-armed bandit in the global switching setting, we propose TS-GLR, that combines the Thompson Sampling algorithm with the improved GLR test running on each arm a ∈ A. At some time t, TS-GLR restarts when the improved GLR test associated to arm A t has raised an alarm. Note that unlike the work of [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF] no exploration phase is forced by the algorithm since in the global switch setting a forced exploration is clearly useless. We formally state TS-GLR for the Bernoulli case in Algorithm 1.

Regret analysis

We first introduce some useful notations that are mainly used in this section. Notation 1. Let τ (t) denotes the last restart that happened before time t. Then, let N a,t = t i=τ (t) I A s = a denotes the number of time arm a has been drawn from the last restart until the current time t. For convenience, we shall use Y a,Na,t : a re-shifted version of the observation X a,t . Finally, as short hand notations, we shall write N ,t in place of N a t ,t and we write Y N ,t interchangeably with Y a t ,N a t ,t .

Due to the bandit feedback setting, TS-GLR can only observe one arm at each time. However, there are A instances of IMPGLR δ running in parallel since each arm is associated with a change detection procedure to monitor the possible mean change. So the change detection algorithms in most arms are hungry for samples at each time. If the agent does not feed these change detection algorithms intentionally, the change detection algorithm may miss detection opportunities because they do not have enough samples. Thus, the guarantees of IMPGLR δ test running on arm a is conditioned by the fact that the quantity N a,t = 0. Under this condition, we state the control of the change-point τ k in Lemma 4. Lemma 4 (Control of the change-point τ k ). Assuming that τ k-1,δ is the instant of the last restart done by TS-GLR, and letting Y At,N A t ,t ∼ B (µ At,t ) t τ k-1,δ denotes the sequence of observations that feeds TS-GLR from the last restart τ k-1,δ , then, the change-point τ k is controlled as follows:

1. ∀a ∈ A, P ∃ r ∈ [ τ k-1,δ , τ k ) : IMPGLR δ Y a,1 , ..., Y a,Na,r = 1 N a,r 1 δ
Thus, no false alarm is raised on the epoch [ τ k-1,δ , τ k ).

Detection delay:

Let D k,δ = d δ,( 1 2 ) N ,τ k -1 , Λ [k] , then: P ∀r ∈ [τ k , τ k + D k,δ ] : IMPGLR δ Y 1 , ..., Y N ,r = 0 N ,τ k 1 δ 3. The change-point τ k is undetectable if: ∀a ∈ A Λ a,[k] 2C 1 2 ,δ N a,τ k , N a,τ k+1
Following Lemma 4, with a probability at least 1 -δ, TS-GLR detects the change-point τ k at time

τ k,δ = τ k + D k,δ .
Then, in theorem 1 we state the regret control for TS-GLR. Theorem 1 (Regret upper-bound of TS-GLR strategy). If TS-GLR is run on the piece-wise Bernoulli bandit Θ [START_REF] Prescott | Bayesian online changepoint detection[END_REF] , ..., Θ [K T ] with δ = 1 (A+1)T , then its regret is upper bounded as follows:

∀ε ∈ [0, 1] , ∃C 1 , ..., C K T > 0 : R TS-GLR T K T k=1 R TS τ k+1 -τ k,δ ,ε Θ [k] Stationary regret + a∈A ∆ a,[k] K T k=1 D k,δ detection delay +1 + K T k=1 C k Best Arm selection
Theorem 1 reveals that the regret incurred by TS-GLR strategy is decomposed into three terms:

• R TS τ k+1 -τ k,δ ,ε Θ [k]
: the stationary regret incurred by each Thompson Sampling strategy launched at time τ k,δ with τ k+1 -τ k,δ as a horizon. 

Experiments

We evaluate the proposed TS-GLR algorithm in two non-stationary environments: a synthetic dataset (switching scenario) and one real-world dataset from Yahoo!. In both experiments, we compare the performance of TS-GLR against 5 multi-armed bandits algorithms designed for the non-stationary case: GLR-klUCB [START_REF] Besson | The generalized likelihood ratio test meets klucb: an improved algorithm for piece-wise non-stationary bandits[END_REF], Exp3S [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF], Sliding Window UCB (SW-UCB) [START_REF] Garivier | On upper-confidence bound policies for switching bandit problems[END_REF], Discounted UCB (D-UCB) [START_REF] Garivier | On upper-confidence bound policies for switching bandit problems[END_REF] and Monitored UCB (M-UCB) [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF]. For the M-UCB algorithm, we choose hyper-parameters based on Remark 1 in [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF]. Namely, we choose

w = 4 δ 2 [(log(2AT 2 )) 1/2 + (log(2T )) 1/2 ] 2 , b = [w log(2A.T 2 )/2] 1/2 and γ = A.(K T -1).(2b + 3 √ w)/(2T )
, where δ designates the minimal amplitude of change defined in [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF] Section 5. We choose γ = 1 -0.25 K T /T and ξ = 0.5 for D-UCB and τ = 2 T /K T for SW-UCB. For Exp-3S, we use α = 1/T and γ = min 1, A log(A.T )/T . For the GLR-klUCB we use α = α 0 KK T log T /T with α 0 = 0.05 and δ = 1/ √ KK T T .Finally, for TS-GLR, we use α 0 = β 0 = 1 which corresponds to a uniform prior. Since we will be working on piece-wise stationary Bernoulli processes, we set σ = 0.5 for the IMPGLR δ used in TS-GLR.

Algorithm 1 Thompson Sampling with Generalized Likelihood Ratio 1: procedure TS-GLR (s 0 , f 0 , T, δ) return argmax a ϑ a,t 12:

2: ∀a ∈ {1, ..., A} S a,1 ← s 0 , F a,1 ← f 0 , N a,
13: procedure PLAYARM(A t )

14: return S At,t+1 , F At,t+1 20:

X At,t ∼ B (µ At,t ), Y At,N A t ,t ← X At,t , N At,t+1 ← N At,
21: procedure DETECTCHANGEPOINT( Y At,1 , ..., Y At,N A t ,t , δ) 22: 
if

IMPGLR δ Y At,1 , ..., Y At,N A t ,t = 1 then 23: ∀a ∈ {1, ..., A} S a,t+1 ← s 0 , F a,t+1 ← f 0 , N a,t+1 ← 1 24: 
return {S} t+1 , {F } t+1 , {N } t+1

Synthetic environment

In this first setting, we generate a piece-wise stationary Bernoulli process, with a horizon T = 10000, A = 5 arms and K T = 6 global switch-points at time-steps 2000, 4500, 5500, 7500 and 9000 as shown in Figure 2a. We test the above strategies in 50 simulations and record the mean and std. deviation of the cumulative regrets as indicated in Figure 3b. Statistics about the cumulative regrets at time T can be examined in Appendix B.1. We apply the previous strategies to a Yahoo! Front Page Today Module dataset 1 . The dataset contains a set of recommended articles, each associated with a binary value, representing whether the user chooses to click the article. We randomly pick A = 4 articles, among a pool of 50 articles which have been recommended together the most. Each article is associated with an arm, and we assume a piece-wise stationary Bernoulli process with K T = 10 global change points, by evaluating the mean click-through rates every 1800 seconds, for a total of T = 18000 seconds (which is equivalent to five hours). Unlike [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF], we don't set a minimum amplitude of change, but we scale the click-through rates in 0-1 range to obtain greater mean changes. For each strategy, we evaluate the hyper-parameters setting described above, using the obtained environment shown in Figure 3a. In Figure 3b, we observe the mean, and std. deviation of the cumulative regrets over 50 simulations, and we transcribe the cumulative regrets statistics at time T in Appendix B.2. Discussions The TS-GLR outperforms significantly state-of-the-art non-stationary MAB strategies, whether on the synthetic or the real-world dataset experiment. To name a few reasons, the upper bound of TS-GLR regret is independent of the number of arms A, as opposed to the other strategies with at least a √ A factor. Another limitation for the other strategies is that they take a parametric approach to change-point detection, which requires an extra step for hyper-parameters tuning. M-UCB for example, does not perform well enough in the Yahoo! Dataset because Assumption 1 in [START_REF] Cao | Nearly optimal adaptive procedure with change detection for piecewise-stationary bandit[END_REF] is not verified.

Discussion 4. This work can naturally be extended to other distributions since Thompson Sampling has also been designed for non-Bernoulli case and the test IMPGLR δ has been initially designed for sub-gaussian distributions. Nevertheless, since Thompson sampling has only been optimally analyzed in the case of Bernoulli, we cannot yet give a mathematical analysis of TS-GLR in the non-Bernoulli case (more particularly the sub-Gaussian case).

Conclusion and future works

We have proposed a new algorithm for the piece-wise stationary bandit problem in the global switching setting, TS-GLR, which combines the Thompson Sampling algorithm with a well tuned instance of the GLR change-point detector. From the experiments, the proposed algorithm outperforms the most popular strategies designed for the non-stationary bandit setting. This comes directly from the powerful GLR test: its detection delay is optimal and the false alarm rate probability is well controlled. Finally, the framework of TS-GLR is easily extendable to the other popular multi-armed bandit algorithms and also to other powerful online change-point detector. As future works, we plan to extend TS-GLR for the local changes i.e. the changes happen independently from an arm to another.

Broader Impact

This section does not apply to us since we discuss theoretical results.

A Proofs of Lemmas and Theorems in the paper

Proof of Lemma 2:

It is a simple rewriting of proposition 1 in [START_REF] Kaufmann | Thompson sampling: An asymptotically optimal finite-time analysis[END_REF] (without the summand).

Proof of Lemma 3:

It is a rewriting of Theorem in [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF].

Proof of Theorem 1:

The proof follows four steps.

Step 1: First decomposition

R TS-GLR T = K T k=1 τ k+1 -1 t=τ k (µ t -µ At,t ) = K T k=1 a∈A\a [k] ∆ a,[k] E N a,[k]
Let H k,δ denotes the event of well detecting the change-point τ k . It is defined as:

H k,δ = τ k,δ ∈ [τ k , τ k + D k,δ ] with D k,δ
denotes the maximum detection delay needed by TS-GLR to raise an alarm after observing the change at τ k . Then, the decomposition of the quantity E N a,[k] is done as follows:

E N a,[k] = τ k+1 -1 t=τ k E [I {A t = a}] = τ k+1 -1 t=τ k P A t = a τ k+1 -1 t=τ k P A t = a, H k,δ + τ k+1 -1 t=τ k P ¬H k,δ D k,δ + τ k+1 -1 t= τ k,δ P A t = a, H k,δ + τ k+1 -1 t=τ k P ¬H k,δ
Step 2: Controlling the stationary period Under the event H k,δ , the change occurred at time τ k is well detected and thus we get (from Lemma 1):

a∈A\a [k] ∆ a,[k] τ k+1 -1 t= τ k,δ P A t = a, H k,δ R TS τ k+1 -τ k,δ ,ε Θ [k]
Step 3: Control of the event of well detecting the change-point τ k : H k,δ Using a simple union bound, we get:

P ¬H k,δ P τ k,δ < τ k FALSE ALARM + P τ k,δ > τ k + D k,δ DETECTION DELAY

False alarm

τ k,δ < τ k implies that there exists an arm a such that whose associated change point detector has raised a false-alarm on the interval [ τ k-1,δ , τ k ). Thus, we write:

τ k,δ < τ k =⇒ ∃a ∈ A, ∃ r ∈ [ τ k-1,δ , τ k ) : IMPGLR δ Y a 1 , ..., Y a Na,r = 1
Then, we get:

P τ k,δ < τ k P ∃a ∈ A, ∃ r ∈ [ τ k-1,δ , τ k ) : IMPGLR δ Y a 1 , ..., Y a Na,r = 1 (a) a∈A P ∃ r ∈ [ τ k-1,δ , τ k ) : IMPGLR δ Y a 1 , ..., Y a Na,r = 1 (b)
Aδ where (a) holds using a simple union bound and (b) holds using the first result of Lemma 4.

Detection delay

First, we introduce some basic results: Lemma 5. Let A, B and C three events such that: B =⇒ C, then we have:

P A P A C + P ¬B
Then, notice that: Step 4: putting everything together

N ,t (t -τ (t) + 1) b Et =⇒ N ,t 1 (1) 
R T = K T k=1 a∈A\a [k] ∆ a,[k] E N a,[τ k :τ k+1 ) K T k=1 R TS τ k+1 -τ k,δ ,ε Θ [k] + K T k=1 a∈A ∆ a,[k] τ k+1 -1 t=τ k P ¬H k,δ + D k,δ K T k=1 R TS τ k+1 -τ k,δ ,ε Θ [k] + K T k=1 a∈A ∆ a,[k] (τ k+1 -τ k ) (A + 1) δ + C ξ k + D k,δ K T k=1 R TS τ k+1 -τ k,δ ,ε Θ [k] + a∈A ∆ a,[k] (A + 1) T δ + K T k=1 C ξ k + K T k=1 D k,δ
And for δ = 

0 δ 3 .

 3 Undetectable change-point: Let τ -1 denotes the change-point just coming before τ and τ +1 the one just coming after τ . If the change-point τ is undetectable, then the magnitude of the change-point gap Λ must satisfy the following condition Λ

•Figure 1 :

 1 Figure 1: Mean cumulative regrets of TS-GLR and TS over 50 runs in the environment described in 4.1. Changepoints occurs at each 2000 time-steps.

Figure 2 :

 2 Figure 2: Generated environment and cumulative regrets of MAB strategies from the synthetic dataset

Figure 3 :

 3 Figure 3: Generated environment and cumulative regrets of MAB strategies from the Yahoo! Dataset
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 22 Recall that the quantity D k,δ = d δ,(1/2) N ,τ k -1 , Λ [k] refers to the time needed by the algorithm in order to detect the change occurred to the optimal arm a [k-1] during the period [ τ k-1,δ , τ k ).Thus,τ k,δ > τ k + D k,δ =⇒ ∀r ∈ [τ k , τ k + D k,δ ] : IMPGLR δ Y 1 , ..., Y N ,r = 0 P τ k,δ > τ k + D k,δ (c) P ∀r ∈ [τ k , τ k + D k,δ ] : IMPGLR δ Y 1 , ..., Y N ,r = 0 E τ k + P ¬E τ k (d) P ∀r ∈ [τ k , τ k + D k,δ ] : IMPGLR δ Y 1 , ..., Y N ,r = 0 N ,τ k 1 + P ¬E τ k τ k -τ k-1,δ + 1) 2-ξ k + o 1 (τ k -τ k-1,δ + 1)κ where: (c) holds thanks to Lemma 5, (d) holds thanks to Equation (1), (e) holds thanks to the second result of Lemma 4 and (f) holds thanks to the result of Lemma 2 for some κ,ξ k = ξ Θ [k] ∈ (1, ∞) × (0, 1).Finally, the event H k,δ is controlled us follows:P ¬H k,δ P τ k,δ < τ k + P τ k,δ > τ k + D k,δ Aδ + δ + 2 (A -1) τ k -τ k-1,δ + 1) 2-ξ k + o 1 (τ k -τ k-1,δ + 1) κ Since we have t 2(A-1) 2 (τ k -τ k-1,δ +1) 2-ξ k + o 1 (τ k -τ k-1,δ +1) κC ξ k , we obtain:∃C ξ k > 0 : τ k+1 -1 t=τ k P ¬H k,δ (τ k+1 -τ k ) (A + 1) δ + C ξ k

B

  τ k+1 -τ k,δ ,ε Θ [k] Cumulative regrets statistics on experiments

  At,t+1 ← RECEIVEREWARD S At,t , F At,t , Y At,N A t ,t {S} t+1 , {F } t+1 , {N } t+1 ← DETECTCHANGEPOINT Y At,1 , ..., Y At,N A t ,t , δ∀ a ∈ {1, ..., A} ϑ a,t ← Beta (S a,t , F a,t )

		1 ← 1	Initialization
	3:	for t ∈ 1, ..., T do	Interaction with environment
	4:	A t ← SELECTARM {S} t , {F } t	
	5:	Y At,N A t ,t , N At,t+1 ← PLAYARM(A t )	Bernoulli trial
	6: S At,t+1 , F 7:	
	8:		
	9: procedure SELECTARM({S} t , {F } t )	
	10:		
	11:		

  t + 1 At,t , F At,t , Y At,N A t ,t )

	15:	return Y At,N A t ,t , N At,t+1
	16:	
	17: procedure RECEIVEREWARD(S

18: S At,t+1 ← S At,t + Y At,N A t ,t and F At,t+1 ← F At,t + 1 -Y At,N A t ,t 19:

Table 1 :

 1 Cumulative regrets statistics in the synthetic dataset Cumulative regrets statistics at time T = 10000 in the synthetic dataset 13 B.2 Cumulative regrets statistics in Yahoo! Dataset

			Cumulative Regret	
		Mean	Std. Deviation Lower 95% CI Upper 95% CI
	Algorithm				
	D-UCB	1461.16	31.488	1452.432	1469.888
	Exp3-S	5944.28	46.645	5931.351	5957.209
	M-UCB	5386.12	348.030	5289.651	5482.589
	SW-UCB	5632.36	33.167	5623.166	5641.554
	TS-GLR	829.66	27.774	821.962	837.358

B.1

Table 2 :

 2 Cumulative regrets statistics at time T = 18000 in the Yahoo! Dataset
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R6B -Yahoo! Front Page Today Module User Click Log Dataset, available on : https://webscope.sandbox.yahoo.com