Frédéric Cuppens
email: frederic.cuppens@enst-bretagne.fr

Nora Cuppens-Boulahia

Joaquín García-Alfaro

DETECTION AND REMOVAL OF FIREWALL MISCONFIGURATION

Keywords: Network Security, Firewalls, Filtering Rules, Redundancy, Shadowing of Rules

To police network traffic, firewalls must be configured with a set of filtering rules. The existence of errors in this set is very likely to degrade the network security policy. The management of these configuration errors is a serious and complex problem to solve. In this paper, we present a set of algorithms to manage rules that never apply or are redundant in a firewall configuration. Our approach is based on the analysis of relationships between the set of filtering rules. Then, a subsequent rewriting of rules will derive from an initial firewall setup to an equivalent one completely free of errors. At the same time, the algorithms will detect both shadowed and redundant rules in the initial firewall configuration.

Introduction

Many companies and organizations use firewalls to segment access control within their own networks. Firewalls are typically deployed to filter traffic between trusted and untrusted zones of corporate networks, as well as to police their incoming and outcoming interaction with other networks -e.g., the Internet 1 .

Firewalls, as many other network security components, must to be configured with a list of rules (e.g., the set of filtering rules shown in Table 1). Each rule typically specifies a decision (e.g., accept or deny) that applies to a set of condition attributes, such as protocol, source, destination, service ports, and so on. For our work, we define a filtering rule as follows:

R i : {condition i } → decision i (1
)
where i is the relative position of the rule within the set of rules, decision i is a boolean expression in {accept, deny} 2 , and {condition i } is a conjunctive set of condition attributes such that {condition i } equals A 1 ∧ A 2 ∧ ... ∧ A p -p being the number of condition attributes of the given set of filtering rules.

To solve conflicts when processing packages, most firewall implementations use a first matching strategy through the ordering of rules (e.g. the order field shown in Table 1). Hence, each packet processed by the firewall is mapped to the decision of the highest priority rule. This strategy introduces, however, firewall rule conflicts that result in non-firing rules (shadowing) or rules that have no effect (redundancy). We define these two general cases of firewall misconfiguration as follows.

Definition 1.1 Let R be a set of filtering rules. Then R has shadowing iff there exists at least one filtering rule, R i in R, which never applies because all the packets that R i may match, are previously matched by another rule, or combination of rules, with higher priority in order. Definition 1.2 Let R be a set of filtering rules. Then R has redundancy iff there exists at least one filtering rule, R i in R, such that the following conditions hold: (1) R i is not shadowed by any other rule; [START_REF] Al-Shaer | Discovery of Policy Anomalies in Distributed Firewalls[END_REF] when removing R i from R, the filtering result does not change.

The detection and removal of both redundancy and shadowing is a serious problem which must to be solved, since a misconfigured set of filtering rules, if not handled correctly, is very likely to lead to a inefficient and weak security policy -since packets could be subject to the wrong actions. Although the proper managing of this configuration errors is starting to get currently a significant amount of work, such as [START_REF] Adiseshu | Detecting and Resolving Packet Filter Conflicts[END_REF][START_REF] Gupta | Algorithms for Routing Lookups and Packet Classification[END_REF][START_REF] Kurland | Firewall Builder[END_REF][START_REF] Al-Shaer | Discovery of Policy Anomalies in Distributed Firewalls[END_REF][START_REF] Cuppens | A formal approach to specify and deploy a network security policy[END_REF] In this paper, we present a set of algorithms for the managing of both redundancy and shadowing of rules. Our main objective is the following. Given a specific firewall setup, we want to analyze the existing firewall configuration to check whether there is errors in such a configuration, i.e., the set of filtering rules presents shadowing or redundancy as defined above.

Our approach is based on the relationships between the filtering rules' parameters: coincidence, disjunction and inclusion. We use a rule transformation process that derive from a set of filtering rules to an equivalent and valid one that is completely free of both shadowing and redundancy. The advantages of our proposal are the following.

After rewriting the rules, one can verify that each redundant or shadowed rule -considered as useless during the audit process -will be removed from the initial set of filtering rules. When such a detection occurs, the discovering process will provide an evidence of error to the administration console. This way, the security officer in charge of the network can check from the initial specification, in order to verify the correctness of the whole process. Furthermore, since the resulting rules are disjoint, the ordering of rules is no longer relevant. Hence, one can perform a second transformation in a positive or negative manner. The first -when generating only permissionscan be used in a closed policy whereas the latter -when generating only prohibitions -can be used in case of an open policy. After performing this second rewriting, the security officer will have a clear view of the accepted traffic (in the case of positive rewriting) or the rejected traffic (in the case of negative rewriting).

The rest of this paper is organized as follows: We start in Section 2 with an analysis of some related work. In Section 3 and Section 4, we formally present our algorithms, and introduce some examples and demonstrations to validate the correctness of our approach. We close with conclusions and future work in Section 5.

Related Work

A first approach to get a firewall configuration free of errors is by applying a formal security model to express the network security policy. In [START_REF] Cuppens | A formal approach to specify and deploy a network security policy[END_REF], for example, a formal model is presented with this purpose. This way, a set of filtering rules, whose syntax is specific to a given firewall, may be generated using a transformation language. Nonetheless, this approach is not enough to ensure that the firewall configuration is completely free of errors.

Some other proposals, such as [START_REF] Adiseshu | Detecting and Resolving Packet Filter Conflicts[END_REF][START_REF] Gupta | Algorithms for Routing Lookups and Packet Classification[END_REF][START_REF] Al-Shaer | Discovery of Policy Anomalies in Distributed Firewalls[END_REF][START_REF] Kurland | Firewall Builder[END_REF], provide means to directly manage misconfiguration. The authors in [START_REF] Adiseshu | Detecting and Resolving Packet Filter Conflicts[END_REF], for instance, consider that in a configuration set, two rules are in conflict when the first rule in order matches some packets that match the second rule, and the second rule also matches some packets that match the first rule. This approach is very limited since it does not detect what we consider serious misconfiguration errors -the two general cases defined in Section1. What they detect is just a particular case of wrongly defined rules which cause ambiguity in the firewall configuration, and that is more efficiently defined as a combination of both redundancy and shadowing.

In [START_REF] Gupta | Algorithms for Routing Lookups and Packet Classification[END_REF], two new cases of misconfiguration are considered. First, a rule R j is defined as backward redundant if and only if there exists another rule R i with higher priority in order such that all the packets that match rule R j also match rule R i . On the other hand, a rule R i is defined as forward redundant if and only if there exists another rule R j with the same decision and less priority in order such that the following conditions hold: (1) all the packets that match R i also match R j ; (2) for each rule R k between R i and R j , and that matches all the packets that also match rule R i , R k has the same decision than R i .

Although this approach seems to head in the right direction, we consider our definitions (cf. Section1, Def. 1.1 and Def. 1.2) simpler and more general, because all possible backward and forward redundant rules are specific cases of both redundancy and shadowing, but not vice versa. For instance, given the following set of rules:

R 1 : s ∈ [10, 50] → deny R 2 : s ∈ [40, 70] → accept R 2 : s ∈ [50, 80] → accept
their detection proposal, as defined above, cannot detect the redundancy of rule R 2 . Thus, we point out this work as incomplete.

Firewall Builder [START_REF] Kurland | Firewall Builder[END_REF], a well known support tool developed to assist administrators in their task of configuring firewalls, also provides detection of misconfiguration in the set of filtering rules. Nevertheless, this discovering mechanism only detects trivial equality or inclusion between the filtering rules' parameters. We checked out that more complex configuration errors are unfortunately not detected by this tool.

To our best knowledge, the authors in [START_REF] Al-Shaer | Discovery of Policy Anomalies in Distributed Firewalls[END_REF] propose the most efficient set of techniques and algorithms to detect redundancy and shadowing in different firewall configuration setups. In addition to the discovery process, their approach also attempts an optimal insertion of arbitrary rules into an existing configuration, through a tree based representation of the filtering criteria.

Nonetheless, and even though the efficiency of their proposed discovering algorithms and techniques is very promising, we also consider this approach as incomplete. On the one hand, their approach is too weak since, given a misconfigured firewall, their discovering algorithms could not detect all the possible errors. For example, given the following set of rules:

R 1 : s ∈ [10, 50] → accept R 2 : s ∈ [40, 90] → accept R 3 : s ∈ [30, 80] → deny
their approach cannot detect the shadowing over rule R 3 due to the union of rules R 1 and R 2 . Furthermore, they do not cover, intentionally, an automatic rewriting of rules to correct the discovered errors. This way, it is the security officer who should perform the final changes.

Summing up, we believe that none of the identified related work provides a complete discovering of both redundancy and shadowing of rules -which are the cases we consider serious errors within firewalls configurations -as well as a proper handling of such a misconfiguration.

Detection Process

As pointed out in Section 1, our main goal is the discovering of both shadowing and redundancy inside an initial set of filtering rules R. Such a detection process is a way to alert the security officer in charge of the network about these configuration errors, as well as to remove all the useless rules in the initial firewall configuration.

The data for the process is the following. A set of rules R as a linked-list3 of initial size n, where n equals count(R), and where each element is an associative arraywith the strings condition, decision, shadowing, and redundancy as keys to access each necessary value. In turn, each element R i [condition] is an indexed arrayof size p containing the set of conditions of each rule; each element R i [decision] is a boolean variable whose values are in {accept, deny};

each element R i [shadowing] is a boolean variable in {true, f alse}; each element R i [redundancy]
is another boolean variable in {true, f alse}. Both shadowing and redundancy variables of each rule are initialized to f alse.

To simplify, we split the whole detection process and the removal of misconfiguration in two different processes. Thus, we define a main detection function (Algorithm 1), whose input is the initial set of filtering rules, R, and an auxiliary function (Algorithm 2) whose input is two rules, A and B. Once executed, this auxiliary function returns a further rule, C, whose set of condition attributes is the exclusion of the set of conditions from A over B. In order to simplify the representation of this second algorithm (cf. Algorithm 2), we use the notation A i as an abbreviation of the variable A[condition][i], an the notation B i as an abbreviation of the variable B[condition][i] -where i in [1, p].

Algorithm 1: detection(R) for i ← 1 to (count(R) -1) do for j ← (i + 1) to count(R) do R j ← exclusion (R j ,R i); if R j [condition] = ∅ then R j [

.. and (A

p ∩ B p) = ∅) then C[condition] ← C[condition] ∪ {(B 1 -A 1) ∧ B 2 ∧ ... ∧ Bp, (A 1 ∩ B 1) ∧ (B 2 -A 2) ∧ ... ∧ Bp, (A 1 ∩ B 1) ∧ (A 2 ∩ B 2) ∧ (B 3 -A 3) ∧ ... ∧ Bp, ... (A 1 ∩ B 1) ∧ ... ∧ (A p-1 ∩ B p-1) ∧ (Bp -Ap)}; else C[condition] ← (C[condition] ∪ B[condition]); end end return C;
We recall that the output of the main detection function (cf. Algorithm 1) is the set which results as a transformation of the initial set of filtering rules R. This new set is equivalent to the initial one, R, and all its rules are completely disjoint. Therefore, the resulting set is free of both redundancy and shadowing of rules, as well as any other possible configuration error -such as correlation, generalization, and irrelevance [START_REF] Al-Shaer | Discovery of Policy Anomalies in Distributed Firewalls[END_REF].

Applying the Algorithms

This section gives a short outlook on applying our algorithms over some representative examples. Let us start by applying function exclusion over a set of two rules R i and R j , each one of them with two condition attributes -(s)ource and (d)estination -and where rule R j has less priority in order than rule R i . In this first example,

R i [condition] = (s ∈ [80, 100]) ∧ (d ∈ [1, 50]) R j [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50]) since (s ∈ [1, 50]) ∩ (s ∈ [80, 100]) = ∅,
the condition attributes of rules R i and R j are completely independent. Thus, the applying of

exclusion(R j , R i) is equal to R j [condition].
The following three examples show the same execution over a set of condition with different cases of conflict. A first case is the following,

R i [condition] = (s ∈ [1, 60]) ∧ (d ∈ [1, 30]) R j [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])
where there is a main overlap of attribute s from R i [condition] which completely excludes the same attribute on R j [condition]. Then, there is a second overlap of attribute d from R i [condition] which partially excludes the range [START_REF] Adiseshu | Detecting and Resolving Packet Filter Conflicts[END_REF]30]

into attribute d of R j [condition], which becomes d in [31, 50]. This way, exclusion(R j , R i) ← {(s ∈ [1, 50]) ∧ (d ∈ [31, 50])} 4 . In this second example, R i [condition] = (s ∈ [1, 60]) ∧ (d ∈ [20, 30]) R j [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])
there is two simple overlaps of both attributes s and

d from R i [condition] to R j [condition], such that exclusion(R j , R i) becomes {(s ∈ [1, 50]) ∧ (d ∈ [1, 19]), (s ∈ [1, 50]) ∧ (d ∈ [31, 50])}. A more complete example is the following, R i [condition] = (s ∈ [10, 40]) ∧ (d ∈ [20, 30]) R j [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50]) where exclusion(R j , R i) becomes {(s ∈ [1, 9]) ∧ (d ∈ [1, 50]), (s ∈ [41, 50]) ∧ (d ∈ [1, 50]), (s ∈ [10, 40]) ∧ (d ∈ [1, 19]), (s ∈ [10, 40]) ∧ (d ∈ [31, 50])}.
Regarding a full exclusion, let us now show the following example,

R i [condition] = (s ∈ [1, 60]) ∧ (d ∈ [1, 60]) R j [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])
where the set of condition attributes of rule R i completely excludes the ones of rule R j . Then, the applying of exclusion(R j , R i) becomes an empty set (i.e., 4 We do not show the first empty set corresponding to the first overlap. If shown, the result should become as follows:

exclusion(R j , R i) ← {∅, (s ∈ [1, 50]) ∧ (d ∈ [31, 50])}.
{∅, ∅} = ∅). Hence, on a further execution of Algorithm 1 the shadowing field of rule R j (initialized as f alse by default) would become true (i.e., R j [shadowing] ← true).

To conclude, let us show a complete applying over the set of filtering rules based on Table 1, where the number of condition attributes, p, is just one. Lemma 3.2 Let R i : condition i → decision i and R j : condition j → decision j be two filtering rules.

Then {R i , R j } is equivalent to {R i , R j } where R j ← exclusion(R j , R i).
Theorem 3.3 Let R be a set of filtering rules and let T r(R) be the resulting filtering rules obtained by applying Algorithm 1 to R. Then R and T r(R) are equivalent. Lemma 3.4 Let R i : condition i → decision i and R j : condition j → decision j be two filtering rules. Then rules R i and R j , where R j ← exclusion(R j , R i) will never simultaneously apply to any given packet. Theorem 3.5 Let R be a set of filtering rules and let T r(R) be the resulting filtering rules obtained by applying Algorithm 1 to R. Then ordering the rules in T r(R) is no longer relevant. Theorem 3.6 Let R be a set of filtering rules and let T r(R) be the resulting filtering rules obtained by applying Algorithm 1 to R. Then T r(R) is free from both shadowing and redundancy.

For space limitation reasons, we move the correctness proofs of this section to Appendix A.

Complete Detection

Up to now, the result of Algorithm 1 offers a set of filtering rules, T r(R), equivalent to an initial set of rules R, and completely free of any possible relation between its rules. Nevertheless, there is a limitation on such an algorithm regarding the reporting of redundancy -just the existence of shadowing is reported to the security officer. Therefore, we need to modify this algorithm in order to also detect redundancy in R.

The purpose of this section is to solve this limitation, by presenting a second manner to completely discover both shadowing and redundancy errors into the initial set of filtering rules, R, based on the techniques and results previously shown in Section 3.

The reporting of redundancy is much more complex than the task of reporting shadowing. To properly overcome this complexity, we first divide the whole process in two different algorithms (Algorithm 3 and Algorithm 4).

The first algorithm (cf. Algorithm 3) is a boolean function in {true, f alse}, which, in turn, apply the transformation exclusion (cf. Section 3, Algorithm 2) over a set of filtering rules to check whether the rule obtained as a parameter is potentially redundant.

The second algorithm (cf. Algorithm 4) performs the whole process of detecting and removing both redundancy and shadowing, and is also split in two different phases. During the first phase, a potential set of redundant rules is calculated from a top-bottom scope, by iteratively applying Algorithm 3. Such a process is applied during the stage of detecting and removing shadowed rules, i.e., before the detection and removal of proper redundant rules. This information is then used when applying the second phase, from a bottom-top scope. This stage is performed to detect and remove proper redundant rules, as well as to detect and remove all the further shadowed rules resulting during the process. As a result of the whole execution, the initial set of rules, R, is transformed into an equivalent set, T r(R), whose rules are completely disjoint. Furthermore, all the discovery of both shadowing and redundancy is reported to the security officer, who may verify the correctness of the whole process.

3: testRedundancy(R,i) test ← f alse; j ← (i + 1); temp ← R i ; while ¬test and (j ≤ count(R)) do if temp[decision] = R j [decision] then temp ← exclusion(temp, R j); if temp[condition] = ∅ then test ← true; end end j ← (j + 1); end return test; Algorithm 4: completeDetection(R) /* Phase 1 */ for i ← 1 to (count(R) -1) do if testRedundancy (R, i) then R i [redundancy] ← true; end if R i [redundancy] then for j ← (i + 1) to count(R) do if R i [decision] = R j [decision] then R j ← exclusion (R j ,R i); if R j [condition] = ∅ then R j [shadowing] ← true; end else for j ← (i + 1) to count(R) do R j ← exclusion (R j ,R i); if R j [condition] = ∅ then R j [shadowing] ← true; end end end /* Phase 2 */ for i ← (count(R) -1) to 1 do if R i [redundancy] then if testRedundancy (R, i) then R i [condition] ← ∅; else R i [redundancy] ← f alse; for j ← (i + 1) to count(R) do if R i [decision]=R j [decision] then R j ←exclusion (R j ,R i); if R j [condition] = ∅ then R j [shadowing] ← true; end end end end

Applying the Algorithms

In this section we give an outlook on the full execution of the extended algorithms (Algorithm 3 and Algorithm 4) over a set of filtering rules based on Table 1, where the number of condition attributes, p, is just one. Once finished the first phase and running over the step where i equals 2, we notice that: (1) the applying of testRedundancy with R 2 as parameter becomes true; (2) the union of condition attributes of rules R 3 and R 5 enables the redundancy of rule R 2 . Hence, the status field redundancy of rule R 2 , R 2 [redundancy], switches its value to true:

/ * phase 2, step 4, i = 2 * / / * testRedundancy(R 2) = true * / / * R 2 [redundancy] = true * / / * R 4 [shadowing] = true * / R 1 : s ∈ [10, 50] → deny R 2 : ∅ → accept R 3 : s ∈ [60, 100] → accept R 4 : ∅ → deny R 5 : s ∈ {[1, 9], [51, 59]} → accept
For reasons of clarity, we do not show the rest of the execution, since the resulting set of filtering rules does not modify from the previous one, which is the following:

/ * resulting rules * / R 1 : s ∈ [10, 50] → deny R 3 : s ∈ [60, 100] → accept R 5 : s ∈ {[1, 9], [51, 59]} → accept
To conclude, let us recall that the following two warnings will notice the security officer to the discovering of both shadowing and redundancy errors, in order to verify the correctness of the whole detection and transformation process: For space limitation reasons, we move the correctness proofs of this section to Appendix A.

/ * warnings * / R 2 [redundancy] = true R 4 [shadowing] = true

Correctness of the Algorithms

Conclusions

In this paper we presented and audit process based on the existence of relationships between the condition attributes of the filtering rules, such as coincidence, disjunction, and inclusion. Our proposal uses a transformation process which derives from an initial set of rules to an equivalent one completely free of misconfiguration.

Furthermore, our proposal verify that any rule considered as useless is removed from the configuration. In turn, it provides an evidence of error to the security officer -he can check whether the security policy is consistent, to verify the correctness of the whole process. The complete independence between rules, moreover, enables the possibility to perform a second rewriting of rules in a positive or negative manner. If done, the security officer will have a clear view of the accepted traffic -when positive -or the rejected traffic -when negative.

Regarding the increase of number of filtering rules, because of the rewriting process, it is only significant whether the associated firewall parsing algorithm would depend on the number of rules. Nonetheless, this is not a disadvantage since the use of a parsing algorithm independent of the number of rules becomes the best solution as much for our proposal as for the current deployment of firewall technologies. The set pruning tree algorithm is a proper example, because it only depends on the number and size of attributes to be parsed, not the number of rules [START_REF] Paul | A full bandwidth ATM Firewall[END_REF].

As future work we are considering to extend our proposal to a more complex network setup. This paper is based on the hypothesis that only one firewall polices the network. More investigation has to be done when this role is assigned several network security components, that is, a distributed access control. Indeed, in particular, redundancy will not systematically be considered as an error [START_REF] Al-Shaer | Discovery of Policy Anomalies in Distributed Firewalls[END_REF]. It may be suited to avoid inconsistent decisions between firewalls used in the same security architecture to control the access to different zones. In parallel, we are also considering to study the anomaly problems of security rules in the case where the security architecture includes firewalls as well as IDS (Intrusion Detection Systems). The objective is to avoid redundant or shadowed filtering or/and alerting rules. These two works are still in progress.

 shadowing] ← true; end end Algorithm 2: exclusion(B,A) C[condition] ← ∅; C[decision] ← B[decision]; C[shadowing] ← f alse; C[redundancy] ← f alse; forall the elements of A[condition] and B[condition] do if ((A 1 ∩ B 1) = ∅ and (A 2 ∩ B 2) = ∅ and

/

 * motivation example * / R1 : s ∈ [10, 50] → deny R2 : s ∈ [40, 90] → accept R3 : s ∈ [60, 100] → accept R4 : s ∈ [30, 80] → deny R5 : s ∈ [1, 70] → accept / * step 1 * / R1 : s ∈ [10, 50] → deny R2 : s ∈ [51, 90] → accept R3 : s ∈ [60, 100] → accept R4 : s ∈ [51, 80] → deny R5 : {s ∈ [1, 9], s ∈ [51, 70]} → accept / * step 2 = step 3 = step 4 * / R1 : s ∈ [10, 50] → deny R2 : s ∈ [51, 90] → accept R3 : s ∈ [91, 100] → accept R4 : ∅ → deny R5 : s ∈ [1, 9] → accept / * resulting rules * / R1 : s ∈ [10, 50] → deny R2 : s ∈ [51, 90] → accept R3 : s ∈ [91, 100] → accept R5 : s ∈ [1, 9] → accept / * warnings * / R4[shadowing] = true 3.2 Correctness of the Algorithms Definition 3.1 Let R be a set of filtering rules and let T r(R) be the resulting filtering rules obtained by applying Algorithm 1 to R.

Algorithm

/

 * motivation example * / R 1 : s ∈ [10, 50] → deny R 2 : s ∈ [40, 90] → accept R 3 : s ∈ [60, 100] → accept R 4 : s ∈ [30, 80] → deny R 5 : s ∈ [1, 70] → acceptThen, we begin by showing the initial step within the first phase of Algorithm 4, where i equals 1, and applied over the previous set of filtering rules. Let us notice that on this first step, the execution of function testRedundancy (cf. Algorithm 3), with rule R 1 as parameter, becomes f alse. Thus, the result of this first step is the following:/ * phase 1, step 1, i = 1 * / / * testRedundancy(R 1) = f alse * / R 1 : s ∈ [10, 50] → deny R 2 : s ∈ [51, 90] → accept R 3 : s ∈ [60, 100] → accept R 4 : s ∈ [51, 80] → deny R 5 : s ∈ {[1, 9], [51, 70]} → acceptLet us now move to the second step, with i equals 2. In this step, rule R 4 disappears since: (1) the result of applying function testRedundancy with rule R 2 as parameter becomes true; (2) the union of condition attributes from rules R 1 and R 2 completely excludes the condition attribute of rule R 4 . Hence, rule R 4 , which is shadowed by the combination of rules R 1 and R 2 , becomes and empty set. Therefore, the status field shadowing of rule R 4 , R 4 [shadowing], switches its value to true:/ * phase 1, step 2, i = 2 * / / * testRedundancy(R 2) = true * / / * R 4 [shadowing] = true * / R 1 : s ∈ [10, 50] → deny R 2 : s ∈ [51, 90] → accept R 3 : s ∈ [60, 100] → accept R 4 : ∅ → deny R 5 : s ∈ {[1,9], [51, 70]} → accept At the end of the third step of this first phase, the applying of function testRedundancy, with rule R 3 as parameter, becomes f alse: / * phase 1, step 3, i = 3 * / / * testRedundancy(R 3) = f alse * / / * R 4 [shadowing] = true * / R 1 : s ∈ [10, 50] → deny R 2 : s ∈ [51, 90] → accept R 3 : s ∈ [60, 100] → accept R 4 : ∅ → deny R 5 : s ∈ {[1, 9], [51, 59]} → accept

Theorem 4 . 1

 41 Let R be a set of filtering rules and let T r (R) be the resulting filtering rules obtained by applying Algorithm 4 to R. Then R and T r (R) are equivalent. Theorem 4.2 Let R be a set of filtering rules and let T r (R) be the resulting filtering rules obtained by applying Algorithm 4 to R. Then ordering the rules in T r (R) is no longer relevant.

Theorem 4 . 3

 43 Let R be a set of filtering rules and let T r (R) be the resulting filtering rules obtained by applying Algorithm 4 to R. Then T r (R) is free from both shadowing and redundancy.

Table 1 .

 1], just few approaches seem to manage acceptable results. Example of a set of filtering rules with five condition attributes.

	order			condition			decision
		(p)rotocol	(s)ource	(sP)ort	(d)estination	(dP)ort	
	1	any	xxx.xxx.xxx.[010,050]	any	xxx.xxx.xxx.xxx	any	deny
	2	any	xxx.xxx.xxx.[040,090]	any	xxx.xxx.xxx.xxx	any	accept
	3	any	xxx.xxx.xxx.[060,100]	any	xxx.xxx.xxx.xxx	any	accept
	4	any	xxx.xxx.xxx.[030,080]	any	xxx.xxx.xxx.xxx	any	deny
	5	any	xxx.xxx.xxx.[001,070]	any	xxx.xxx.xxx.xxx	any	accept

Firewalls also implement other functionalities, such as Proxying and Network Address Transfer (NAT), but it is not the purpose of this paper to cover these functionalities.

The decision field may also be a combination of both accept and deny together with some other options such as a logging or jump options. For reasons of clarity we assume that just accept and deny are proper values.

We assume one can access a linked-list through the operator R i , where i is the relative position regarding the initial list size -count(R). We also assume one can remove elements through the addition of an empty set (element ← ∅). The internal order of elements from the linked-list R keeps with the relative ordering of rules.

Acknowledgements -This work was supported by funding from the French ministry of research, under the ACI DESIRS project, the Spanish Government project TIC2003-02041, and the Catalan Government grants 2003FI126 and 2005BE77.

A Correctness Proofs

Proof of Lemma 3.2 Let us assume that:

If (A 1 ∩ B 1) = ∅ or (A 2 ∩ B 2) = ∅ or . . . or (A p ∩ B p) = ∅ then exclusion(R j , R i) ← R j . Hence, to prove the equivalence between {R i , R j } and {R i , R j } is trivial in this case.

Let us now assume that:

If we apply filtering rules {R i , R j } where R i comes before R j , then rule R j applies to a given packet if this packet satisfies

which corresponds to condition of rule R j = exclusion(R j , R i). This way, if rule R j applies to a given packet in {R i , R j }, then rule R j also applies to this packet in {R i , R j }.

Conversely, if rule R j applies to a given packet in {R i , R j }, then this means this packet satisfies

Proof of Theorem 3.3 Notice that if R is a set of filtering rules, then T r(R) is obtained by recursively applying transformation exclusion(R j , R i) when rule R i comes before rule R j , which preserves the equivalence at each step of the transformation, previously proved for Lemma 3.2.

Proof of Lemma 3.4 Notice that rule R j only applies when rule R i does not apply. Thus, if rule R j comes before rule R i , this will not change the final decision since rule R j only applies to packets that do not match rule R i .

Proof of Theorem 3.5

For any pair of rules R i and R j such that R i comes before R j , R j is replaced by a rule R j obtained by recursively replacing R j by exclusion(R j , R k) for any k < j.

Then, by recursively applying Lemma 3.4, it is possible to commute rules R i and R j in T r(R) without changing the final decision.

Proof of Theorem 3.6 Notice that, in T r(R), each rule is independent of all other rules. Thus, if we consider a rule R i in T r(R) such that R i [condition] = ∅, then this rule will apply to any packet that satisfies R i [condition]. Hence, this rule is not shadowed.

Similarly, rule R i is not redundant because if we remove this rule, since this rule is the only one that applies to packets that satisfy R i [condition], then the filtering decision will change if we remove rule R i from T r(R).

Proof of Theorem 4.1

Let T r 1 (R) be the set of rules obtained after applying the first phase of Algorithm 4. Since T r 1 (R) is derived from R by applying

Hence, let us now move to the second phase of Algorithm 4. Let us consider a rule R i such that testRedundancy(R i) (cf. Algorithm 3) is true. This means that R i [condition] can be derived by conditions of a set of rules S with the same decision and that come after in order than rule R i .

Since every rule R j with a decision different from the one of rules in S has already been excluded from rules of S in the first phase of the Algorithm, we can conclude that rule R i is definitely redundant and can be removed without changing the final filtering decision. This way, we conclude that Algorithm 4 preserves equivalence in this case.

On the other hand, if testRedundancy(R i) is f alse, then transformation consists in applying exclusion(R j , R i) to some rules R j which also preserves equivalence. Thus, in both cases, T r (R) is equivalent to T r 1 (R) which, in turn, is equivalent to R.

Proof of Theorem 4.2 and Theorem 4.3 As stated out in the proof of both Theorem 3.5 and Theorem 3.6, once shadowed and redundant rules have been removed, every rule R i is replaced by exclusion(R i , R j) where j < i.

Therefore, a similar reasoning enables to prove both Theorem 4.2 and Theorem 4.3.