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Formally Verified Loop-Invariant Code Motion and Assorted Optimizations

We present an approach for implementing a formally certified loopinvariant code motion optimization by composing an unrolling pass and a formally certified yet efficient global subexpression elimination. This approach is lightweight: each pass comes with a simple and independent proof of correctness. Experiments show the approach significantly narrows the performance gap between the CompCert certified compiler and stateof-the-art optimizing compilers. Our static analysis employs an efficient yet verified hashed set structure, resulting in fast compilation.

Introduction

In this article, we present an approach for obtaining a complex optimization (loop-invariant code motion), which brings a major performance boost to certain applications (including linear algebra kernels), by composition of simple optimization passes that can be proved correct using simple local arguments. We have implemented that scheme in the CompCert verified compiler. 1 

CompCert

CompCert [START_REF] Leroy | Formal verification of a realistic compiler[END_REF][START_REF] Leroy | A formally verified compiler back-end[END_REF] is the first optimizing C compiler with a formal proof of correctness mature enough to be used in industry [START_REF] Bedin | Formally verified optimizing compilation in ACG-based flight control software[END_REF][START_REF] Kästner | CompCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler[END_REF]; it is now available both as a research tool 2 and commercial software. 3 This proof of correctness, verified by the Coq proof assistant, ensures that the behavior of the assembly code produced by the compiler matches the behavior of the source code. Possibilities for code generation bugs in CompCert are extremely limited, and are typically found in unverified parts of the system such as the passes that prints assembly code [START_REF] Monniaux | The Trusted Computing Base of the CompCert Verified Compiler[END_REF]. In particular, CompCert does not have the middleend bugs usually found in compilers [START_REF] Yang | Finding and understanding bugs in C compilers[END_REF], notably in optimization passes. This makes CompCert appealing for safety-critical embedded systems, in particular avionics [START_REF] Bedin | Formally verified optimizing compilation in ACG-based flight control software[END_REF][START_REF] Bedin | Towards Formally Verified Optimizing Compilation in Flight Control Software[END_REF], in comparison to extant practices such as disabling almost all compiler optimizations to ease qualification. However, CompCert's moderate level of optimization compared to state-of-the-art compilers such as GCC or LLVM is dissuasive in other embedded but less critical contexts. 4 Improving optimizations in CompCert is thus important for wider usage.

Most optimizations of CompCert operate at the level of a register transfer language (RTL) representation, equipped with a small-step semantics: the state of the program essentially consists of a triple (p, r, m) where p is a control location, r is the register state and m is the memory state. The semantics of loads, stores and arithmetic operations are described as mutations of parts of r and m, and the control flow as updates to p. Some transitions generate externally observable events, notably calls to external functions; the soundness of the compiler is that the sequence of these events is preserved between source and object code.

In order to prove this property, every transformation or optimization must be formally proved correct with respect to that semantics through simulations relating steps and states before and after the transformation. While the simulation relations for some local optimizations may be relatively simple, the ones for non-local optimizations may be quite complex. For instance, the inlining pass, conceptually quite simple ("replace calls to certain functions by the body of these functions with appropriate renumbering of control locations and pseudoregisters") contains approximately 560 lines of code, but its proof of correctness is approximately 2100 lines long, and uses intricate simulation arguments dealing with the reorganization of memory layout due to the fusion of stack frames. Most of such correctness arguments would typically be handwaved over in the regular compilation literature.

Long and complex proofs not only cost developer time when they are developed, they may also cause problems later when a new Coq version is used, a new architecture is added to CompCert, or when changes are made to Comp-Cert internals. There is thus a strong incentive to keep proofs short and the complexity of simulation arguments low.

An additional difficulty is that CompCert optimizations must be implemented in Coq, a strongly typed pure functional language with many onerous requirements-for instance, all recursive functions must be shown to terminate by syntactic induction, and until recently there were no native machine integer types or arrays. 5 This complicates implementation and limits efficiency. A workaround is to call OCaml code from Coq, but in doing so one must not increase the trusted computing base, or at most by a very small and controlled amount [START_REF] Monniaux | The Trusted Computing Base of the CompCert Verified Compiler[END_REF].

The code initially generated for the body of the innermost loop by CompCert computes the address of C[i][j] (by sign extension, addition and multiplication through bit-shifting), reads it, does the same for A[i][k] and A[j][k], performs two floating-point multiplications and one addition, then recomputes the address of C[i][j] and writes to that location. This is suboptimal. First, the address of C[i][j] should be computed only once inside the loop body. Arguably, the front-end of CompCert, which transforms x += e; where e is a pure expression into x = x+e, could arrange to compute the address of x only once, but this is not what happens. Instead, a local common subexpression elimination phase, available in official 7 CompCert, will notice that the second address computation, even though it is broken down into individual operators referring to different temporary variables, is the same as the first, and will reuse that address.

The address of C[i][j] is a loop invariant : it does not change along the iterations of the innermost loop. If this address was computed just before that loop and stored into a temporary variable, then common subexpression elimination could notice that the address computation inside the loop body is identical, and thus use the value in the temporary variable instead. The computation of that address would thus be completely eliminated from the loop body.

One way to ensure that this value is computed before the innermost loop is to unroll that loop once, replacing it by:

k =0; if ( k < _PB_NJ ) { C [ i ][ j ] += alpha * A [ i ][ k ]* A [ j ][ k ]; k ++; for (; k < _PB_NJ ; k ++) C [ i ][ j ] += alpha * A [ i ][ k ]* A [ j ][ k ]; } }
Then, the address of C[i][j] is computed by the unrolled iteration and it should be possible to eliminate its computation from the loop. What we would thus obtain is a form of loop-invariant code motion.

The common subexpression elimination in official CompCert is however too weak to notice that C[i][j] in the loop is the same subexpression as C[i] [j] in the unfolded iteration, because it is local: it cannot propagate information across control-flow joins, including loop headers. The reason for keeping this transformation local is that, for the analysis used, "least upper bounds for this ordering are known to be difficult to compute efficiently" [12, §7.3]. What is needed is a global common subexpression elimination, capable of propagating information across control-flow joins (tests and loops). We present here one such analysis and transformation.

Moreover, the write to C[i][j] at the end of each iteration ensures that the value of C[i] [j] to be loaded at the beginning of each iteration (except the unrolled first one) is already available in a register, so it is possible to remove that load. In the end, we get this AArch64 assembly code: Until .L105, the first iteration of the loop is unrolled, and contains computations (in blue) that later remain loop-invariant: the addresses of C[i], A[j] and A[i] are computed in resp. x5, x8 and x7. The initial value of C[i][j] is also computed in d18 (then coerced in d1). Since these computations remain valid throughout the loop iterations, we can remove those, resulting in a loop body with fewer instructions.

Elimination of Redundant Tests

Let us consider a case where arrays are protected from accesses out of bounds by routing them through accessors that check these bounds. An add function for adding a value to a cell in an array, implemented using these accessors, would do the bound checks twice, whereas the second checks are redundant.

inline double get ( int n , double t [] , int i ) { if ( i < 0) fail (); if ( i >= n ) fail (); return t [ i ]; } inline void set ( int n , double t [] , int i , double x ) { if ( i < 0) fail (); if ( i >= n ) fail (); t [ i ] = x ; } void add ( int n , double t [] , int i , double x ) { set (n , t , i , get (n , t , i ) + x ); }
We want to eliminate tests that are satisfied on all paths reaching the test, which amounts to replacing them with unconditional branches.

Contributions

We propose implementing loop-invariant code motion as the composition of two simpler phases, which are proved to be correct independently of each other:

• unrolling the first iteration of the loop-through a pass capable of general forms of duplication of code (Sec. 3);

• global subexpression elimination (Sec. 4), which we extend with redundant condition elimination.

In this approach, as opposed to some in the compilation literature, the correctness of loop-invariant code motion does not rely on complex arguments about invariance along execution traces, but instead only on very local arguments based on lock-step simulations and dataflow analysis.

Furthermore, our global subexpression elimination eschews the efficiency issues alluded to in [12, §7.3], yet can be quite easily proved to be correct. This approach is of interest in itself, since it brings some performance improvement even if loop-invariant code motion is not desired.

Our global subexpression elimination internally uses a library for efficiently computing over sets of integers (Sec. 5), also proved correct; this is another contribution. Section 7 discusses the impact on CompCert's trusted computing base of the hash-consing mechanism used for the hashed sets: basically we trust that pointer equality implies structural equality of terms.

In Section 6 we shall report on performance improvements in generated code, and in Section 8 we shall compare with other approaches and propose future extensions.

We shall now begin with an overview of the intermediate representation that we deal with in this article, and how simulations are used to prove the correctness of optimization or transformation phases over it.

CompCert's RTL Representation

CompCert uses many intermediate representations, each equipped with a semantics [START_REF] Leroy | A formally verified compiler back-end[END_REF]. Each transformation or optimization between representations must be proved to be correct, meaning the transformed code must simulate the original with respect to observations: the sequence of calls to external functions (and assembly-level built-in functions and accesses to volatile variables) must be respected, except that undefined behavior (undefined values, trace that stops due to an error) may be replaced by arbitrary behavior.

In this article, we deal solely with the RTL (register transfer language) intermediate language, which is the one on which most optimizations already present in official CompCert (constant propagation, local common subexpression elimination, inlining. . . ) operate.

The RTL Intermediate Language

RTL views each function as a control-flow graph with a single entry point. The nodes of the graph, labeled with positive integers, contain instructions. Each instruction contains the identifiers of the successors of the instruction in the graph: one for most instructions, two for conditional branches (one per branch), many for jump tables, and zero for instructions that terminate the function (tail call, return).

The state of a RTL program (outside of the function call mechanism) consists of the call stack, the program counter in the current function, the values of the (pseudo) registers, and the memory. RTL considers an unbounded number of registers, labeled by positive integers. Each register contains a value: a 32bit integer, a 64-bit integer, a 32-bit IEEE-754 single-precision floating-point number, a 64-bit IEEE-754 double-precision floating-point number, a pointer, or the special "undefined" value. Memory is divided into bytes, which can be read and written as chunks (byte, 32-bit floating-point number etc.) from and to values.

Any analysis thus has to deal with a small variety of basic instructions and provide sound transfer functions for all of them. We shall here focus on four of them:

Operation r d := op(r 1 , . . . , r n ) where op is an operation (which may include immediate constants), e.g. 32-bit constant, 32-bit addition or 64-bit float multiplication; the source operands are r 1 , . . . , r n (and, for technical reasons in some cases, the memory);8 the destination is r d ; in particular there is a "move" operation denoted by r d := r 1 that just copies data;

Memory load r d := chunk[addr(r 1 , . . . , r n )] where chunk identifies the size and type of the data being loaded (32-bit integer, 64-bit integer, 32-bit floating-point number etc.), and addr is an addressing mode (which again may include immediate constants, such as offsets); the source operands are r 1 , . . . , r n and the memory; the address used is computed from r 1 , . . . , r n and the addressing mode; the destination is r d ; examples of addressing modes include "add this constant to the first argument", "scale the second argument by the chunk size and add it to the first argument";

Memory store chunk[addr(r 1 , . . . , r n )] := r s with similar notations and meanings; the source operands are r 1 , . . . , r n ; the destination is the memory;

Condition cond(r 1 , . . . , r n ) → (b t , b f )
where cond is a condition (which may include immediate constants), e.g. 64-bit signed "less than" comparison; the source operands are r 1 , . . . , r n (and, for technical reasons in some cases, the memory).

Lock-Step Simulation

Intermediate representations in CompCert are connected by "match" relations, and code transformations must be shown to respect the "match" relation. In the simplest case, the only one that we use in the optimizations that we have developed for this article, this simulation is lock-step: "if a step σ 1 → 1 σ ′ 1 can be taken in the first program representation, and

σ 1 ∼ σ 2 , then σ 2 → 2 σ ′ 2 " with σ ′ 2 such that σ ′ 1 ∼ σ ′ 2 ,
where σ 1 and σ ′ 1 are states in the first representation, ∼ is the "match" relation and σ 2 and σ ′ 2 are states in the second representation. In the case of code duplication (Sec. 3), ∼ is a relation of the form "the registers and the memory are the same, and if p ′ is the program counter in the transformed program and p the program counter in the original program, then f (p ′ ) = p" where f is a function mapping each control location in the transformed program to the control location in the original location from where it was copied.

In the case of common subexpression elimination (Sec. 4), ∼ is the identity between the states in the original and transformed programs (same registers, same memory, same stack) conjoined with some invariant about the values of registers (this is where the available expressions appear) and, for technical reasons, a typing invariant.

In the case of useless move cleanup (Sec. 4.4), ∼ is the identity relation, except that on the register part it is extensional identity, as opposed to the default intensional identity.

Code Duplication

Code duplication "unrolls" pieces of code at the RTL level, keeping instructions in the same execution order. We rely on the a posteriori verification technique to prove it correct: some untrusted OCaml function transforms the code, then a formally proved verifier in Coq either accepts or rejects the transformed code. In this work, we use this pass for unfolding the first iteration of innermost loops and for loop rotation.

Unfolding the First Iteration of Innermost Loops

First, we identify innermost loops using standard algorithms on control-flow graphs. In CompCert, for and while loops are generated as follows: first the computation of the parameters of the condition expression, then a conditional branch to either exit the loop, or go onto the next instructions, which we name loop body. Finally, the last instruction of the loop body has a back edge to the start of the loop.

Unfolding the first iteration consists of duplicating that code, and setting the successor of the duplicated loop body to the actual loop, instead of a back edge (Fig. 1). It amounts to replacing while(c) {b} with if(c) { b; while(c) {b}}.

Since this part is handled in untrusted OCaml code, we do not need to prove any property about these algorithms.9 However, to guide the verifier in knowing which nodes were duplicated, the oracle exhibits a reverse mapping f : for every

Pre-computing condition

Loop condition

Loop body Exit

Pre-computing condition

Loop condition

Loop body Exit

Loop body

Loop condition

Pre-computing condition

Figure 1: The first iteration of the original code (on the left) is unrolled, resulting in the code on the right. The duplicated instructions are in blue. The reverse mapping f is in red.

control location p ′ of the transformed code, f (p ′ ) is the origin of the copy in the original code.

Formally Checked Verifier

Once the untrusted code returns a transformed code (and a reverse mapping f ), our formally verified checker ensures that this new code is indeed faithful to the original code, in terms of order of execution of the duplicated instructions. We do so by comparing each instruction p ′ of the transformed code against the supposedly original instruction f (p ′ ) from the original code. This check only succeeds if both instructions are the same, modulo the following property: "Each pair of successors (s ′ , s) of (p ′ , f (p ′ )) must verify f (s ′ ) = s". For example, if p ′ is a conditional branch, then f (p ′ ) must be a conditional branch with the same parameters except the successors: if we denote by (s true , s f alse ) the successors of f (p ′ ) and (s ′ true , s ′ f alse ) the successors of p ′ , then we must have f (s ′ true ) = s true and f (s ′ f alse ) = s f alse . The verifier is then certified with a lock-step simulation, where the match relation (∼) holds if two states σ σ ′ have all of their terms equal but their program counters p and p ′ , which must instead verify the relation f (p ′ ) = p.

This allows verifying any transformation that duplicates instructions and changes some of the successors to point to duplicated instructions instead of original code. This way, the evaluation of the condition may be merged and scheduled into the body, and there is only one single (conditional) branch.

Loop Rotation

Other transformations such as tail-duplication (for superblock scheduling) or loop unrolling can also be performed and verified with our duplication scheme; we do not cover these here.

Common Subexpression Elimination

The main difficulty in implementing optimizations in CompCert is to keep the complexity of the proofs low. One way to do so is to split them into several phases, each with a clear specification. Our CSE3 common subexpression elimination is thus implemented in five steps:

1. an untrusted analysis collects inductive invariants and stores them in an efficient format (hash-consed sets);

2. a verified checker checks that these invariants are truly inductive;

3. a verified code transformation phase replaces redundant computations by "move" operations, assuming the above invariants are correct;

4. a verified code transformation replaces moves from one variable to itself by "no operation" instructions;

5. a verified code transformation removes dead code.

For simplicity of implementation, most of the code of the first two steps is shared.

Untrusted Static Analysis

Abstract Domain and Semantics

Our abstract domain collects equalities of the general form r d = rhs(r 1 , . . . , r n ) where r d , r 1 , . . . , r n are pseudo-registers, and with two subtypes: either operations or loads. In addition, we collect conditions: predicates of the form cond(r 1 , . . . , r n ). The notations and meanings are similar to RTL:

Operation r d = op(r 1 , . . . , r n ); Memory load r d = chunk[addr(r 1 , . . . , r n )]; Condition cond(r 1 , . . . , r n ).
The semantics of an equality is the set of pairs (registers, memory) that match the equality: both sides of the equality evaluate to the same value. For instance, for a load r d = chunk[addr(r 1 , . . . , r n )], the set of pairs (registers, memory) is such that evaluating the addressing mode over the values of the registers r 1 , . . . , r n , then loading the chunk at that address in the memory, yields a value equal to the value of register r d . 10The semantics of a condition is the set of (registers, memory) that match the condition. For instance, a condition r 1 < 64,u r 2 matches all pairs (registers, memory) such that, in the registers, r 1 is less than r 2 when compared as 64-bit unsigned integers.

The analysis attaches a set of such equalities to each control location in the function under analysis (the analysis is performed independently for each function). We invoke CompCert's implementation of Kildall [START_REF] Gary | A Unified Approach to Global Program Optimization[END_REF]'s algorithm (in the forward direction), which solves a system of dataflow equations in a semilattice. This algorithm may equivalently be understood as a simple solver for monotone fixed-point equations in the abstract interpretation style in a finiteheight lattice [START_REF] Cousot | Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes[END_REF] (just use the dual of the data-flow lattice).

The semantics S of a set of equalities and conditions S is the intersection of the semantics of the equalities and conditions in the set; that is, it is the set of pairs (registers, memory) that match all the equalities and conditions in S.

For efficiency reasons, each equality or condition occurring within the analysis of a function11 is uniquely identified by a positive integer. A set of equalities and conditions is thus represented as a set of positive integers; equality between two sets of equalities and conditions is thus equality between two sets of positive integers. After a control-flow merge, only the equalities and conditions present in all incoming sets are conserved, thus the control-flow merge or least upper bound operation amounts to set intersection. Since equality tests and least upper bounds occur very frequently, we opted for hash-consed integer sets (Sec. 5).

Transfer Functions

Assignments The transfer function for the operation r d := op(r 1 , . . . , r n ) for r d / ∈ {r 1 , . . . , r n } first discards all equalities and conditions involving r d , then adds an equality r d = op(r 1 , . . . , r n ). For instance, for the operation r 1 := r 2 * 5 (op is then the unary operation x → 5x; recall the operator may contain immediate constants) we generate the equality r 1 = r 2 * 5.

In order to quickly find the positive integer associated to this equality, a hash table of all equalities created so far is maintained, along with a counter for the next available equality identifier: if an equality does not already exist in the table, it is added to it and associated with the current value of the counter, which is incremented. To be able to discard all equalities involving r d in one set difference operation, for all register r the set of all extant equalities involving r is maintained and updated as new equalities are created.

The transfer function for a load r d := chunk[addr(r 1 , . . . , r n )] where r d / ∈ {r 1 , . . . , r n } proceeds similarly. For an operation or load such that r d ∈ {r 1 , . . . , r n } we just discard all equalities involving r d .

Conditions

The transfer function for a condition cond(r 1 , . . . , r n ) → (b t , b f ) adds condition cond(r 1 , . . . , r n ) to the set flowing to b t and the condition ¬cond(r 1 , . . . , r n ) to the set flowing to b f . If the negated condition is already in the set, then the transfer function returns ⊥, denoting an unreachable state.

Memory Store A sound but coarse transfer function for a "store" chunk[addr(r 1 , . . . , r n )] := r s operation is to discard all equalities and conditions involving memory, most notably the loads. 12 Again, in order to do so efficiently by set difference, the set of all extant equalities involving memory is maintained and updated as new equalities are created.

Alias Analysis A refinement of the memory store operation, enabled by a command-line option, applies an alias analysis: the intersection of the set of present equalities and the set of equalities involving memory is computed; an equality of the form

r ′ d = chunk[addr'(r ′ 1 , . . . , r ′ n )
] is then discarded only if the alias analysis cannot prove that chunk[addr(r 1 , . . . , r n )] and chunk[addr'(r ′ 1 , . . . , r ′ n )] cannot overlap. Currently this analysis is very simple: it states that memory references within two different global symbols do not overlap, and that memory blocks at two non-overlapping index ranges relative to the same base pointer (e.g. array accesses at different constant offsets, accesses to different fields within the same structure) do not overlap. 13 Note that this involves looking at the semantics of addressing modes, which, in CompCert, involves a per-architecture definition.

A further refinement is to consider that a store chunk[addr(r 1 , . . . , r n )] := r s induces an equality r s = chunk[addr(r 1 , . . . , r n )]. There are a few subtleties here. First, this is only true if the chunk is 32-bit or 64-bit, or, with 8-bit and 16-bit integer writes, the value being read is not the original 32-bit integer that was in r s , but rather its low-order bit truncation. In addition, since CompCert's RTL is untyped, there could be semantic mismatches if an ill-typed operation was executed (e.g. r s contains a floating-point value but chunk is integer). We thus run CompCert's typing analysis first and verify that the type of the chunk matches the type computed for r s . 1412 Some arithmetic operations and conditions are also considered by CompCert to depend on memory. The simple solution we use is to discard them on a memory write. The operations and conditions that depend on memory are comparisons of integer type of the same size as the pointers on the target architecture: comparison between pointers to invalid blocks has undefined behavior, thus the dependency on memory. Arguably, since a write cannot invalidate a block, we could have a finer approach, at the expense of delicate semantics argumentation in the memory model. An alternative would be to define the result of pointer comparisons to invalid blocks, which is allowed since one can always refine undefined behavior into arbitrary behavior. 13 We ran an experiment calling CompCert's value analysis, which computes abstract values for pointers such as "points to global variable v offset o", "points somewhere in global variable b", "points inside the stack" as well as a "provably disjoint" predicate. There was no noticeable improvement in the quality of generated code, probably because CompCert's original CSE already exploits these disjunction predicates. Because of the complications in implementation and proof structure and the disappointing results we went no further.

Function Calls The user selects, by a command-line option, to model function calls by forgetting all relations, or just those involving memory. The latter will try to conserve values in registers across calls and thus increase register pressure, which may be detrimental. A possibility would be for an oracle estimating register pressure to make that choice.

Move-Forwarding We do not apply the transfer functions described above directly. We also first forward their operands: each r i in the right-hand side is possibly replaced by r ′ i so that there is a "move" equation r i = r ′ i in the current set (these are for instance generated from assignments r i := r ′ i ). To quickly obtain these "move" equations, we take the intersection of the current set of valid equations with the set of identifiers of "move" equations with r on the left-hand side. This means that we must maintain for all r the set of all identifiers of such equations.

Recognition of Already Computed Expressions

When processing an assignment r d := op(r 1 , . . . , r n ) (respectively, load r d := chunk[addr(r 1 , . . . , r n )]), such that op is not a "move", we first look for an equation

r ′ d = op(r 1 , . . . , r n ) (respectively, r ′ d = chunk[addr(r 1 , . . . , r n )]
) in the current set. If one exists, then in addition to the r d = op(r ′ 1 , . . . , r ′ n ) equation, we also add the equation r d = r ′ d , which may be useful later for move-forwarding (this can be disabled through a command-line option).

Again, in order to find suitable equation identifiers, we intersect the current set of valid equations with the set of identifiers of equations with the suitable right-hand side. To do so, we maintain a hash table mapping each possible right-hand side to the set of equations in which it appears.

Tables to Maintain

Our analysis is untrusted and implemented in OCaml, therefore we have access to all of OCaml features, including efficient imperative hash tables.

The analysis maintains:

• a hash table mapping each equation or condition to its identifier, a positive integer, with automatic allocation and assignment to a fresh identifier if the equation is not yet in the table;

• conversely, a catalog map from identifiers to the associated equation or condition;

• a hash table for mapping each equation right hand side to the set of identifiers of equations having this right hand side;

• for each r, the set of all identifiers of equations or conditions involving r;

• for each r, the set of all identifiers of "move" equations of the form r = r 1 ;

• the set of all identifiers of equations involving memory.

While, for efficiency, all these tables are created empty and updated dynamically as new equations and conditions are discovered, their contents can all be recomputed from the catalog. This property will be used for verified analysis.

Final Result

The final result of the untrusted analysis is composed of a few read-only data structures:

• the catalog of equations and conditions

• the table mapping equations or conditions to identifiers

• the table mapping right-hand sides to sets of identifiers

• the inductive invariants, as a map from program locations to sets of identifiers No hypothesis (logical axiom) will be made about the contents of these structures in the verified parts of the analysis and the transformation. 15

Inductiveness Check

From the catalog of equations produced by the static analysis, we recompute various tables in a formally verified manner, using Coq code:

• for each r, the set of all identifiers of equations and conditions present in the catalog involving r;

• for each r, the set of all identifiers of "move" equations of the form r = r 1 present in the catalog;

• the set of all identifiers of equations and conditions involving memory present in the catalog.

By "formally verified", we mean we prove theorems stating that the sets that we compute contain the sets describe above; e.g., the "the set of all identifiers of equations involving r" that we compute truly contains the set of all identifiers of equations present in the catalog involving r. We need these properties to prove the soundness of the transfer functions.

We then check that the invariants produced by the static analysis are truly inductive, using transfer functions implemented in Coq. 16 We prove soundness theorems about these functions, in the usual abstract interpretation fashion: if the program can take a step σ → σ ′ through an instruction I, and σ ∈ S , and I ♯ is the abstract transfer function associated with instruction I, then σ ′ ∈ I ♯ (S) .

The inductiveness check just boils down to checking (again, using verified Coq code):

• that the "top" element of the abstract lattice is associated to the function entrypoint (any values in the registers, any values in the memory, no known relation between them)

• that if there is an instruction edge from control location p to control location p ′ , labeled with instruction I, and p is labeled with S p and p ′ is labeled with S p ′ , then I ♯ (S p ) ⊏ S p ′ where ⊏ is the ordering in the lattice.

Through standard interpretation formalism, this entails that at any control location p, labeled with S p , any state reachable at this location belongs to S p : the S p form a system of inductive invariants.

Code Transformation

Our code transformation preserves the structure of the function: it replaces some operations by moves and some branches by unconditional branches, and all other instructions are left in place.

Reuse of Available Expressions Each operation r d = rhs, where rhs, whether a computation or a load, is already available in register r ′ d , is replaced by a move r d := r ′ d . In order to do so, the transformation applies "move forwarding", as in the static analysis, then computes the intersection of the set of equations whose identifiers appear in the invariant associated to the control location of the instruction and the set of equations whose right hand side match the right hand side of the instruction. If one equation r ′ d = rhs is found, then the instruction is replaced by r d := r ′ d . As in CompCert's original CSE, some operations (e.g. loading immediate constants) are deemed "trivial", meaning they cost so little that it is not worth replacing them by moves of available expressions. These operations are not replaced.

Recognition of Necessarily True Conditions

Similarly, when processing a condition cond(r 1 , . . . , r n ) → (b t , b f ), we look for condition cond(r 1 , . . . , r n ), respectively ¬cond(r 1 , . . . , r n ); if found, the condition is replaced by an unconditional branch to b t , respectively b f .

Note that this elimination is syntactic, not semantic: x ≥ 0 could be eliminated in a context where it is known that x ≥ 3, but our system will not detect it because the two conditions are syntactically different. There is here a trade-off between design simplicity and power: our optimizations currently do not need to take into account the semantics of conditions and operators, and are thus very independent of the architecture.

Correctness Proof

The correctness proof is a basic lock-step simulation between deterministic programs: one step in the source program maps to one step in the transformed program, with register and memory states matching exactly. This correctness proof uses the fact that the S p are invariants of the program. For instance, the reason why it is legal to replace r := a + b by r := x is that, using these invariants, we know that at this point in the program, the sum of the values of registers a and b is always equal to the value of register x.

When several operations are replaced by moves, some of these moves may themselves become redundant. For instance, a memory access t[a*i+b] may be compiled into ai = a * i ; aib = ai + b ; addr = t + aib < <3; r =* addr , so a second identical access is compiled into ai2 = a * i ; aib2 = ai2 + b ; addr2 = t + aib < <3; r2 =* addr2

Our analysis replaces the operations in this second access by ai2 = ai ; aib2 = aib ; addr2 = addr ; r2 = r Variables ai2, aib2, addr2 are "dead" and are discarded along with the assignment to them by a later cleanup phase.

Cleanup Phases

The map from registers to values in the state is viewed intensionally (two maps are equal if and only if their internal structure is equal). This means that writing m[x] into a map m at position x returns a map that is not in general equal to m. This is not a problem for our proofs, except for one step: replacing assignments x := x (which may be generated by common subexpression elimination) by "no operation". This needs an extensional view, where two maps are considered to be equal if and only if they are equal at every position. This extensional view can be defined as an equivalence relation over maps, compatible with the map operations.

One approach would have been to define the simulation relation for common subexpression elimination using this equivalence relation instead of map identity, but this would have tended to make all proofs heavier even though we need extensionality only for generating "no operation" instead of x := x assignments. Instead, we opted for a separate phase that replaces these assignment with "no operation", proved correct using a lockstep simulation relation based on this equivalence relation.

We then use CompCert's dead code elimination to remove useless "moves" produced by CSE3.

Hash-Consed Integer Sets

CompCert provides a library (Maps.PTree) of trees with nodes indexed by positive integers, defining partial maps from the positive integers to an arbitrary type A. 17 In CompCert, a positive integer is uniquely defined by the sequence of its binary digits starting from the least significant, and ending by a 1. This sequence of digits is used as a path from the root of a binary tree: 1 corresponds to the root, 2 to its first child, 3 to its second child, etc. A tree thus consists either in an "empty" leaf, or in a node pointing to a "0" subtree (if the next digit in the sequence is 0), to a "1" subtree (if the next digit in the sequence is 1) and containing an optional element from A. If A is chosen to be the "unit" type, then these trees implement sets of integers (as sets of keys associated to nodes with the optional element from the unit type): a present optional value indicates "true", an absent value "false".

There are however two limitations to this approach:

• the representation is not unique: there are infinitely many representations of the empty set (all trees whose nodes contain no optional element);

• many operations (equality test, inclusion test, union, intersection) are trivial if their operands are equal, but there is no fast way for recognizing this case.

To overcome both, we use an approach similar to the "smart constructor" approach advocated by Braibant, Jourdan, and Monniaux [START_REF] Braibant | Implementing and Reasoning About Hash-consed Data Structures in Coq[END_REF] for implementing verified reduced ordered binary decision diagrams in Coq.

The first limitation is overcome by adding the constraint that the tree should be reduced : the tree should not include any node pointing to two "empty" leaves and containing the Boolean "false". We design all functions producing trees so that they automatically reduce the nodes they create, and prove theorems of the form "if the trees passed to this function are reduced, then its output is reduced". Finally, we wrap the trees so that only reduced trees are available externally: a set of positive integers is represented as a dependent pair, the first element is a tree t, the second a proof that t is reduced. 18 The second limitation is overcome by hash-consing the nodes, ensuring that there are never, at a given moment, two copies of the same tree residing at different memory locations inside the OCaml program extracted from Coq. This is achieved by telling Coq's extraction mechanism to replace the normal constructor (and also, for technical reasons, the match operation) over the tree data type with a constructor that looks up a global hash table for a node isomorphic to the one being created, and returns the extant isomorphic node if it exists, otherwise adding the newly created node to the table. The hash table is weak, meaning that OCaml's garbage collector is allowed to remove elements from it if they become otherwise unreachable (a normal hash table would prevent useless nodes from being collected). This is the only addition we make to CompCert's trusted computing base (TCB): we trust this hash table. (More information about CompCert's TCB in section 7.)

We could reduce further the TCB by making our hashed set library less generally usable by not providing a constant-time equality test (physical pointer equality). The property that we really use about hash-consing is that pointer equality implies structural equality, which is not an issue. The other property that hash-consing guarantees, that structural equality implies pointer equality, involves the correctness of the hashing mechanism and the fact that we never create objects outside of that mechanism, a bigger addition to the TCB; but we do not actually need that property: in our usage, it is equality of objects that allow optimizations, not inequality.

The isomorphism test for hash-consing is shallow: hash-consed nodes are isomorphic if and only if they contain the same Boolean, their left subtrees point to the same location, their right subtrees point to the same location. Each node also contains a hidden "unique identifier" field, containing a 64-bit number allocated at node creation (a global counter is incremented at each creation), 18 Such pairs can be conveniently used in lieu of the trees themselves, two sets being semantically equal if and only if the associated pairs are equal, without the need of adding the axiom of proof irrelevance. Indeed, reducedness is a decidable property P , so a proof that t is reduced is just a proof that P (t) = true. The Boolean type obviously has decidable equality, and it is a theorem (Coq.Logic.Eqdep dec.eq proofs unicity on) that if a belongs to a type with decidable equality, there is a unique proof that a = a (in other words, Streicher's axiom K is actually a theorem on types with decidable equality). so as to make hashing shallow as well: the hash value of a node is a hash of the triple composed of the Boolean in the node and the unique identifiers at the roots of its children. In order for nodes to be collected as garbage if they become useless, we use OCaml's weak hash tables: pointers from the hash table to memory blocks do not cause these blocks to be considered in use.

The Coq development follows these lines: first, the tree structure is defined along with its semantics: given a positive integer i and a tree t, whether i belongs to the set defined by t. A structural equality test (tree isomorphism) is defined and proved to be correct; then, all set operations (inclusion, union, intersection, subtraction) are defined, using the structural equality test to trigger shortcuts (e.g. a ∩ b = a if a = b). This is inefficient as a pure Coq implementation, since the linear-time structural equality test is triggered at every recursion step of the operations; but during extraction, this structural equality is replaced by an extremely fast call to OCaml pointer equality (==).

Again along the lines of CompCert extant Maps.PTree module, a "contents" function is provided, producing a list whose contents (defined using Coq's classical In predicate) is provably identical to the set contents. A "fold" operator is provided, shown to be provably equivalent to taking the contents and running the classical left fold operation on lists.

Experiments

We evaluated our common subexpression elimination and loop-invariant code motion schemes on several architectures. On all of them, the combination of unrolling the first loop iteration and global subexpression elimination dramatically increases the speed of certain benchmarks.

Benchmark Configurations

Hardware We ran benchmarks on ARM Cortex A53 (AArch64) inside a Raspberry Pi 3 running Ubuntu GNU/Linux 18.04.5 LTS. This dual-issue, inorder core was chosen because it is similar to other in-order ARM cores used in embedded systems; also it is used as little core in "big.LITTLE" settings. We used gcc 8.3.0. Similarly, we chose the SiFive U740 core as representative of future RISC-V cores to be found in embedded systems, and the Kalray KV3 core as representative of VLIW manycore designs. Finally, we also ran experiments on a server-class x86-64 (Xeon Gold 6138). In each case, we tie the process to one core of the machine, and we measure clock cycles using hardware counters.

Benchmarks We used:

• the Polybench/C 3.2 benchmark suite 19 , consisting of nested loops suitable for polyhedral optimizations;

• TACLeBench,20 , a set of benchmarks for worst-case execution time bounding tools [START_REF] Falk | TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research[END_REF]; • programs compiled from synchronous dataflow programming languages (Lustre).

as well as a few fuller-scale applications:

• The GNU Linear Programming Toolkit (GLPK) v4.6521 solving one if its benchmarks ("prod"),

• Libjpeg-6b,22 the reference JPEG implementation, compressing one of its test images;

• Picosat v965,23 a SAT-solver, solving a sudoku problem encoded into CNF-SAT;

• Genann, a neural network library.24 

Precautions for Running Experiments

Comparing the performance of machine code generated by different compilers is fraught with difficulties. Here are some precautions we had to take.

Scheduling The Cortex-A53, KV3 and U740 processors execute instructions in-order. 25 If the operands of an instruction are unavailable because they have not yet been written out by preceding instructions, the processor will stall (an out-of-order processor such as the Xeon Gold may start executing following instructions). Seemingly unimportant changes in the generated code (e.g. outof-SSA writing out instructions in another order) may thus, especially in tight loops, result in notable differences in execution times.

Optimizing compilers, including gcc, schedule instructions to minimize stalls. It would be unfair to compare performance between gcc with scheduling and CompCert without. The Kalray KV3 port of CompCert schedules instructions inside basic blocks, after register allocation [START_REF] Six | Certified and efficient instruction scheduling: Application to interlocked VLIW processors[END_REF]; this scheduler has been ported to the AArch64. In addition, we use a pre-pass (before register allocation) instruction scheduler for KV3, AArch64 and RISC-V. It formally checks that the instructions are properly reordered in a manner similar to [START_REF] Six | Certified and efficient instruction scheduling: Application to interlocked VLIW processors[END_REF]; it will be covered in another publication. Except on the KV3, this experimental scheduler was developed without access to microarchitectural documentation; improvements may thus be expected in the future.

Contracted floating-point expressions CompCert, at least the formally verified parts of it, is not allowed to modify the semantics of program constructs except by refinement: it can allow executions with undefined behaviors to proceed past that them, and can replace undefined values by arbitrary values-but it cannot replace a well-defined value by another. The C standard, however, sometimes allows altering semantics. This is in particular the case with contracted expressions [9, §6.5, §F.7], i.e., replacing a×b+c by a fused multiply-add :

A floating expression may be contracted, that is, evaluated as though it were a single operation, thereby omitting rounding errors implied by the source code and the expression evaluation method.

In particular, an expression of the form a*b+c (multiplication, then rounding, followed by addition, and another rounding) may be replaced by a fused multiplyadd fma(a, b, c) (multiplication, addition, then rounding) on processors where such an instruction is available in hardware, thereby using only one floatingpoint operation instead of two. Since rounding is done differently, the values produced may be slightly different, the semantics is changed and such an optimization cannot be done inside the verified part of CompCert, but it is applied by default by gcc, at least some versions of it. In order to keep performance results comparable, we disable contracted expressions in gcc using -ffp-contract=off.

x86-64: bad fit for CISC CompCert was designed for RISC processors with separate instructions for accessing memory. In contrast, x86 and x86-64 have instructions that access memory and perform arithmetic, for instance load a value from memory and add it to a register. CompCert will not use these instructions and instead go through a temporary register. It is unclear how much this reduces the performance of the code produced by CompCert.

Performance Results

Let us analyze Tables. 1, 4, 2, 3 (a strict subset of the benchmarks, for lack of space).

Our loop invariant code motion and common subexpression elimination scheme improves performance by 10% to 20% on average, depending on the architecture. CSE3 alone does not procure much of that speed gain, as most of the eliminations it can do alone are already done by CompCert's extant CSE; adding unrolling of the first iteration and thereby apply loop invariant code motion gains significant speed on the Polybench suite.

Disabling redundant condition elimination does not result in any significant change; this suggests that either most benchmark code does not contain redundant conditions, or more "semantic" condition elimination should be applied. This redundant condition elimination was implemented as a building block for other, yet unreleased, optimizations, not as an optimization interesting in itself.

Of particular note is the poor performance of CSE3 on the lv6-en-2cgc convertible benchmark on the RISC-V, generated by the Lustre v6 compiler. The problem seems to be that CSE3 increases the lifetime of certain values and leads to extra register spills. Possible solutions to this issue include making CSE3 sensitive to an estimate of register pressure, or porting CSE3 to an intermediate representation after register allocation.

We also verified that our approach with hashing is way faster than one without hashing, and that in any case the running time of our transformation is dominated by that of register allocation on larger functions (Figure 2); see also subsection 6.5. 

Comparison with GCC

It is difficult to identify reasons for relative slowness on larger "application" benchmarks, because there are so many possible optimizations that may affect the result (e.g. inlining strategy). On the smaller Polybench benchmarks, with tight loops, we have identified the following useful optimizations not currently implemented by CompCert.

Strength Reduction of Address Computations on Loop Indices Polybench contains many accesses to arrays. An access a[i][j], where i and j are 32-bit integers, to a bidimensional array a, induces an address computation a + (ext(i) × N + ext(j)) × S where a is the base address of a, N is the number of columns (in which j ranges), S is the size in bytes of one array cell, including padding, and ext is the sign extension function from 32-bit integers to 64-bit integers (assuming 64-bit pointers). CompCert issues all these operations into RTL for every access, and it is up to RTL optimizations to identify that some of these operations are redundant. Multiplication is typically much slower than addition. Strength reduction replaces a multiplication i × N , where i is a loop index incremented by K at every iteration, by an extra variable i K incremented by KN at every iteration.

Integer Size Promotion Consider the loop where i and n are 32-bit integers not overwritten within the loop body: for(int i=0; i<n; i++) { .. }. Equivalently, one could convert n to a 64-bit integer before the loop, then use i as a 64-bit integer. This would avoid sign extension instructions within the loop body.

Advanced Loop Optimizations With the same loop as above, the trip count of the loop is known to be n and this allows many optimizations, including software pipelining (starting some operations for the next loop iteration, such as fetching data, within the current one), using hardware loops on architectures supporting them (KV3), etc.

Compilation speed

We timed various CompCert phases for x86-64 on a family of programs generated by Yarpgen26 , a tool for testing compilers. CSE2, a simpler version of the same analysis, without hashed sets, is slower (Fig. 4); this justifies the use of hashed sets. Register allocation is also slower than CSE3 (Fig. 2).

Impact on Trusted Computing Base

The point of CompCert is to convey extremely strong assurance that the semantics of the assembly code matches that of the source code through theorems verified inside the Coq proof assistant. If one trusts Coq, and more precisely the small proof checker inside Coq, then one can trust CompCert. Yet, there are ways to use Coq, especially when dealing with extraction to OCaml code and linking with external libraries, that can lead to undesirable additions to 

CompCert's Trusted Computing Base

We summarize here the findings of a recent study of CompCert's trusted computing base [START_REF] Monniaux | The Trusted Computing Base of the CompCert Verified Compiler[END_REF]. Official CompCert's trusted computing base consists of 11. the axiomatization of these pseudo-instructions (e.g., the registers they may clobber);

12. the formal semantics of a formal assembly language;

13. the assembly language printer; 14. the compatibility of the application binary interface used by CompCert with that of the compiler used to compile other libraries on the system, including the standard library;

15. the assembler and linker.

Each of these items is a possible unsoundness hazard, but the chances widely differ. Among recently detected bugs in official CompCert were one rarely used instruction being printed to assembly with incorrect instruction order, and two pseudo-assembly instructions being incorrectly axiomatized (scratch registers were clobbered but this was not reflected in the semantics).

According to the study, the main suspects for possible bugs are: ABI compatibility, assembly printout (including tricky system-specific aspects), axiomatization and expansion of pseudo-assembly instructions, rather than, say, the implementations of Coq and OCaml. Indeed, it seems unlikely that there would be a bug in OCaml that was not triggered by the many extant OCaml applications, but that would trigger specifically when executing CompCert in a way that would not make CompCert crash or produce aberrant results, but instead silently produce wrong assembly code that would still be accepted by the assembler and linker.

Analysis of our development

In common to official CompCert, we do not use logical axioms about the behavior of OCaml code: that is, we never state axioms of the form "this external OCaml code returns a value that satisfies this property" (e.g. we do not assume that abstract interpretation algorithms truly compute invariants; if we need such properties, we prove them).

Point 6 (the functional character of OCaml code) applies throughout Comp-Cert, including official versions, which use numerous OCaml functions; it also applies to some of our extensions. Coq is a purely functional programming language, thus when OCaml functions are called from Coq it is assumed that they behave purely functionally from an external point of view: if a function f is called twice on the same parameter x, then it should return the same value f (x). This is not guaranteed in general in OCaml, since a function may use impure operations and use persistent storage across calls. There could be a proof where f (x) and f (x ′ ) appear, arising from two different calls, then the case where x = x ′ is examined, and f (x) = f (x ′ ) is dismissed as absurd, whereas this case is reachable in the extracted code. This is not in general considered to be a serious issue: one is unlikely to distinguish such an "absurd case" by accident. It is possible to work around this issue by wrapping the external OCaml code in a nondeterministic monad, but this makes all programming and proofs considerably heavier, and anyway one would need to rewrite most of CompCert in monadic style to follow this idea.

The only place where we really add to CompCert's trusted computing base is the hashed set library, in two ways:

1. we assume a tiny bit of OCaml code calling OCaml's weak hash tables and pointer equality is correct;

2. we assume OCaml's weak hash tables behave correctly (but we can do without it, see below).

Regarding point 2: weak hash tables are used in both the OCaml compiler and in Coq, thus if there are unsoundness issues they may already manifest themselves elsewhere in the trusted computing base.

There remains point 1: the trusted correctness of the (very short) hashconsing code called from the custom constructor. Could we do without it? Hash-consing guarantees:

1. that the node returned by the hash-consing constructor is truly the requested node;

2. that structural equality implies pointer equality (the converse properties always holds).

Regarding point 1, our node equality test checks that the requested node and the node provided by hash-consing have identical contents (through pointer equalities); if we did not trust the hash table we could run the equality test on its output and throw an exception if the nodes do not match. Point 2 allows us to define a set equality operator as structural equality (by induction on the trees), then extract it as pointer equality. Yet, we do not actually need a fully correct set equality operator. What we need in our proofs is that if set equality is deemed to hold, then the sets should be equal, which boils down to "if the pointers to two sets are identical, then the sets are equal", which is uncontroversial. In no place we need to establish that two sets are not equal.

Would it be a problem if the weak hash table failed to retrieve a node already in the system and thus allow creating two different yet structurally equal sets? The possible consequences, neither of which a soundness hazard, are:

• unnecessary recursion in set operations, where equality (never inequality) triggers shortcuts;

• unnecessary fixed point iterations, where a fixed point is not detected, possibly leading to the maximal number of iterations being exceeded and a "failed static analysis" error being returned when compiling.

Six, Boulmé, and Monniaux [START_REF] Six | Certified and efficient instruction scheduling: Application to interlocked VLIW processors[END_REF], when building the scheduling validator for the KV3, used another approach for their hash-consing: a special constructor function is used, but no assumption is made about its soundness (the returned term is checked); and physical equality is modeled as a nondeterministic function, such that when it returns true there is equality. Their approach has a smaller trusted computing base, but it loses the hash-consing axiom (which we do not really need) that when two terms are structurally equal, they are also at the same address in memory. It however is considerably heavier, due to the use of a nondeterminism monad. In addition, we intended our hashed set library to be usable independently of CompCert, and for other uses it is nice to have a true equality test with guaranteed equality/inequality answer, rather than a partial test.

Related Work, Prospects, and Conclusion

There are very few formally verified compilers. Early (1980-1990s) prototypes of verified compilers tended not to include optimizations. The two major current verified compilers are CompCert and CakeML. CakeML does not feature common subexpression elimination. Two less mature projects of verified compilers, Velus27 and CertiCoq,28 use CompCert as a backend; our optimizations benefit them. Velus [START_REF] Bourke | Mechanized semantics and verified compilation for a dataflow synchronous language with reset[END_REF] compiles a subset of the Lustre data-flow synchronous language, similar to industrial languages such as Scade or Simulink meant for implementing control laws in embedded systems.

Formally verified compilation is still a challenge. Classical optimizations, available in mainstream compilers, may be surprisingly difficult to prove correct. Tristan and Leroy [START_REF] Tristan | Verified validation of lazy code motion[END_REF] proposed a system for lazy code motion inside CompCert. This system was not made available, and in particular was never integrated into CompCert, in particular because of high cost on large functions. 29 Tristan's thesis states that their available expression analysis, used in lazy code motion, takes cubic time [19, §5.4.4.]. It is difficult for us to compare our work to Tristan and Leroy's since their publications give a high level view, missing important details, and their implementation is not available. Their proof is much bigger than ours despite the algorithmics being less efficient.

In modern compilers, the strongest forms of common subexpression elimination (global value numbering, etc.) and of code motion are often implemented on some single static assignment (SSA) form [START_REF] Rastello | SSA-based Compiler Design[END_REF]. A "middle-end" based on conversion to SSA, optimization, the conversion from SSA, was implemented into CompCert [START_REF] Barthe | Formal Verification of an SSA-Based Middle-End for CompCert[END_REF][START_REF] Demange | Verifying Fast and Sparse SSA-Based Optimizations in Coq[END_REF], and was recently ported to current versions of Comp-Cert.30 This is certainly a more general approach than ours, but also much heavier. The SSA middle-end, including global value numbering, comprises about 53,000 lines of code, whereas our common subexpression elimination is only 2,700 line long, to which must be added 1,500 lines for the hashed set library (which is completely independent of the rest of CompCert and thus immune to changes in semantics, architectures etc.). Their correctness proofs are harder and involve non-trivial invariants about control-flow graphs, dominance relations, etc. Furthermore, their system is significantly slower compared to ours (Figure 3); further investigation is needed to establish why.

Instead of unrolling the first iteration of the loop, we investigated (and even implemented) injecting a copy of the possibly loop-invariant statements as dead code, writing to fresh variables, before the loop entry, and then using common subexpression elimination to replace instructions in the loop body by moves from these fresh variables; then dead code elimination will erase the injected statements that are not actually used. This approach however suffers from several shortcomings:

• one cannot move memory loads out of loops, because they may trap if the memory location is incorrect;31 

• the same for trapping arithmetic instructions (e.g., division on some architectures, because of division by zero);

• one cannot remove loads from memory of values that have just been written to by the preceding iteration.

One may object that unrolling the first iteration of a loop may increase the code size needlessly, even when there is little loop-invariant code (object files inflate by an average of 5% on AArch64 with our settings). Future work will include an untrusted check for loop-invariant values before unrolling the first iteration and/or a pass that would roll back needlessly unrolled iterations (this is the reverse of code duplication and thus can be verified as easily). One could similarly add a "filter" to the analysis pass, which would remember information only about variables that matter for the transformation; the set of these variables would be given by the oracle.

A weakness of our current approach is that it may increase register pressure, that is, the number of values to be simultaneously held in processor registers. If this exceeds the number of actual available registers,32 then spilling is needed: the value is stored to memory, and later restored. This may nullify the performance improvement brought by common subexpression elimination, or even worsen performance, which may explain disappointing results in some rare benchmarks. 33 Recent work on scheduling in CompCert [START_REF] Six | Formally verified superblock scheduling[END_REF] models register pressure in the untrusted oracle. We could similarly add a system that would simulate the consequences on register pressure of the current expression reuses, identify sources of excessive pressure, and disable these reuses. Again, this can be done in an oracle without further proofs, since it is always safe not to replace an instruction by a move.

An alternative to verified compilation is translation validation: the program is compiled with a conventional compiler, then the object and source code are compared by a tool. Sewell, Myreen, and Klein [START_REF] Arthur | Translation validation for a verified OS kernel[END_REF] successfully applied this approach to a 10000-line microkernel (seL4). The approach must be tuned according to the compiler used and uses heuristics that may break with some optimizations. The fact that this approach was not ported to programs other than seL4 seems to indicate that it is limited in applicability and/or that significant efforts are needed for each new program to be compiled.
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Table 1 :

 1 Performance on AArch64 Cortex-A53. All numbers give the time (in cycles) relative to the baseline: our version of CompCert without CSE3. +us30 means CSE3 plus unrolling the first iteration of an inner loop a single time if the number of instructions in the loop body is less than 30 (this performs loop invariant code motion); +lr10 adds loop rotation if the number of instructions to rotate is less than 10; +ub30 duplicates the loop body if the number of instructions in the loop body is less than 30 (this may open new opportunities for scheduling). cse3-cond is CSE3 minus the removal of redundant branches.

	Benchmark			CompCert		gcc	
		cse3	+us30	+lr10	+ub30	cse3-cond	-O1	-O2
	lv6-en-2cgc convertible	1.06	1.07	1.07	1.06	1.02	0.73	0.71
	bitsliced-aes	0.99	0.88	0.85	0.85	0.99	1.10	0.86
	complex mat c8	1.01	0.97	0.93	1.03	1.18	1.11	0.58
	glibc qsort	0.89	0.83	0.84	0.78	0.91	0.71	0.62
	heapsort	0.98	1.00	0.98	0.99	0.98	1.00	0.85
	idea	1.00	1.00	1.00	0.99	1.00	0.95	0.87
	ntt	0.98	0.96	0.97	1.01	1.13	1.22	1.01
	quicksort	0.97	0.95	0.94	0.94	1.01	0.97	0.91
	sha-256	0.90	0.88	0.88	0.88	0.94	0.88	0.67
	lift	1.03	0.88	0.88	0.81	1.03	0.81	0.68
	radiotrans	0.97	0.97	0.97	0.99	0.99	1.40	1.03
	glpk	1.00	0.98	0.96	0.97	1.00	0.95	0.90
	picosat	0.97	0.96	0.95	0.93	0.96	0.74	0.73
	genann4	0.98	0.93	0.89	0.88	0.99	0.92	0.70
	jpeg-6b	1.00	1.01	1.00	0.96	1.02	1.07	0.82
	correlation	0.96	0.94	0.94	0.98	0.96	0.64	0.59
	covariance	1.20	0.95	0.93	0.78	0.95	0.70	0.64
	2mm	1.00	0.81	0.85	0.92	1.09	0.74	0.73
	3mm	0.85	0.82	0.72	0.68	0.88	0.59	0.63
	atax	0.88	0.77	0.76	0.77	0.88	0.79	0.76
	bicg	1.00	0.87	1.09	0.89	1.00	0.91	0.88
	ludcmp	0.96	0.94	0.87	0.74	0.98	0.64	0.55
	lift	1.03	0.89	0.87	0.81	1.03	0.90	0.69
	isqrt	0.99	0.97	0.98	0.98	0.99	0.84	0.95
	jfdctint	1.04	0.95	0.94	1.08	0.87	0.94	1.14
	lms	1.04	1.04	1.01	0.91	1.00	0.91	0.91
	ludcmp	0.97	0.83	0.85	0.91	0.92	0.81	0.78
	matrix1	0.99	0.89	0.90	0.80	1.03	0.79	0.69
	md5	1.01	0.98	0.90	0.89	1.00	0.86	0.62
	minver	0.94	1.27	0.98	0.97	0.94	0.78	0.72
	pm	1.00	0.99	0.93	0.93	1.02	0.94	0.83
	prime	1.50	1.50	1.70	1.47	1.28	1.02	0.57
	quicksort	1.01	0.94	0.99	0.95	0.97	0.79	0.90
	rad2deg	0.99	0.68	0.68	0.58	0.99	0.64	0.55
	recursion	0.96	0.99	1.00	1.12	1.07	0.69	0.66
	sha	1.08	0.78	0.78	0.78	1.01	0.64	0.39
	st	0.96	0.98	0.94	0.95	1.01	0.80	0.60
	adpcm dec	0.98	0.99	1.01	0.99	0.98	0.69	0.52
	adpcm enc	1.03	0.98	0.99	1.00	0.98	0.68	0.52
	ammunition	1.01	0.95	0.88	0.88	1.01	0.83	0.73
	anagram	0.90	0.88	0.86	0.85	0.92	0.48	0.36
	audiobeam	1.17	0.98	0.89	0.92	1.01	0.83	0.76
	cjpeg transupp	1.03	0.92	0.94	0.90	1.02	0.93	0.90
	cjpeg wrbmp	1.00	0.92	0.92	0.94	1.01	0.98	0.45
	dijkstra	0.98	0.90	0.90	0.90	0.98	0.86	0.41
	epic	0.99	1.04	0.94	0.91	1.07	1.22	0.97
	fmref	0.99	0.94	0.91	0.91	0.99	0.83	0.72
	g723 enc	1.07	0.96	0.99	1.31	1.17	0.90	0.71
	gsm dec	0.98	0.98	0.96	0.98	0.98	0.82	0.64
	h264 dec	0.72	0.76	0.63	0.65	0.75	0.61	0.64
	huff dec	0.77	0.76	0.75	0.65	0.79	0.53	0.50
	huff enc	1.00	0.92	0.94	0.88	0.99	0.79	0.63
	mpeg2	1.00	0.99	0.98	0.96	1.00	1.09	0.82
	ndes	1.75	0.99	0.99	1.02	1.11	0.78	0.52
	petrinet	0.97	0.93	1.00	0.99	0.94	0.81	0.76
	rijndael dec	0.90	0.91	0.89	0.86	0.90	1.21	0.79
	rijndael enc	0.92	0.92	0.93	0.88	0.92	1.24	0.84
	statemate	1.19	0.98	0.98	0.98	0.96	2.09	1.17
	susan	1.00	1.00	1.06	1.00	1.00	1.22	0.93
	test3	0.96	1.05	0.94	0.96	0.99	1.04	0.59

Table 2 :

 2 Kalray KV3, a manycore processor, with in-order, very large instruction (VLIW) cores; gcc 9.4.1, Kalray Compiler 4.6.0-33. Some benchmarks cannot run on this platform and thus are ommitted from the table.

	Benchmark			CompCert		gcc	
		cse3	+us30	+lr10	+ub30	cse3-cond	-O1	-O2
	lv6-en-2cgc convertible	0.91	0.87	0.87	0.86	0.91	0.48	0.41
	bitsliced-aes	0.90	0.90	0.90	0.79	0.79	1.03	0.67
	complex mat c8	0.99	0.98	0.98	0.98	0.98	1.33	0.68
	glibc qsort	0.97	0.95	0.92	0.89	0.89	0.86	0.61
	heapsort	1.02	1.02	1.03	1.02	1.02	1.33	1.00
	idea	0.98	1.00	0.96	0.96	0.96	1.20	0.49
	ntt	0.98	0.98	0.99	0.99	0.99	0.92	0.81
	quicksort	0.98	0.96	0.97	0.95	0.95	1.18	0.86
	sha-256	0.84	0.84	0.84	0.82	0.82	1.16	0.47
	lift	0.98	0.89	0.90	0.73	0.73	0.79	0.52
	radiotrans	0.93	0.93	0.93	0.93	0.93	0.70	0.32
	glpk	0.99	0.99	0.97	0.96	0.97	0.99	0.92
	picosat	0.96	0.98	0.98	0.96	0.95	1.01	0.91
	genann4	0.98	0.94	0.88	0.88	0.88	1.07	0.72
	jpeg-6b	1.01	1.02	0.98	0.97	0.96	1.19	0.82
	correlation	1.00	1.00	1.00	0.97	0.97	0.62	0.54
	covariance	1.00	0.99	0.99	0.90	0.90	1.21	0.80
	2mm	0.89	0.89	0.89	0.85	0.85	1.16	0.78
	3mm	0.94	0.97	0.97	0.89	0.89	1.25	0.81
	atax	0.91	0.94	0.94	0.86	0.86	1.08	0.88
	bicg	1.00	0.93	0.93	0.93	0.93	0.97	0.94
	ludcmp	0.94	0.91	0.77	0.72	0.72	0.87	0.67
	lift	0.99	0.91	0.89	0.72	0.72	0.79	0.51
	isqrt	1.00	0.97	0.96	0.96	0.96	0.88	0.28
	jfdctint	1.01	0.95	0.95	0.92	0.92	1.27	0.85
	lms	0.99	0.98	0.90	0.87	0.87	0.74	0.63
	ludcmp	0.98	0.96	0.94	0.95	0.95	0.99	0.93
	matrix1	1.00	0.89	0.89	0.76	0.76	0.85	0.73
	md5	1.00	1.01	0.96	0.85	0.85	0.85	0.52
	minver	0.99	0.97	0.95	0.97	0.97	0.97	0.91
	pm	1.00	1.00	0.94	0.88	0.88	0.91	0.77
	prime	1.02	1.00	1.02	1.01	1.01	0.66	0.56
	quicksort	1.00	0.99	1.03	0.92	0.92	1.04	0.71
	rad2deg	0.99	0.99	0.99	0.99	0.99	0.50	0.50
	recursion	1.00	1.00	1.00	1.00	1.00	1.21	0.50
	sha	0.98	0.94	1.00	0.85	0.85	0.89	0.45
	st	1.00	1.00	1.00	0.97	0.97	0.77	0.60
	adpcm dec	0.98	0.97	0.98	0.95	0.95	0.86	0.72
	adpcm enc	0.98	0.98	0.99	0.98	0.98	0.88	0.73
	ammunition	0.98	0.95	0.94	0.93	0.94	0.91	0.54
	anagram	1.00	0.97	0.97	0.92	0.92	0.56	0.40
	audiobeam	1.00	0.99	0.92	0.88	0.88	0.98	0.72
	cjpeg transupp	1.00	0.91	0.87	0.85	0.85	1.01	0.65
	cjpeg wrbmp	0.99	0.98	0.99	0.98	0.98	0.78	0.28
	dijkstra	1.00	1.00	0.89	0.86	0.86	0.89	0.50
	epic	1.01	0.95	0.73	0.73	0.73	1.28	1.00
	fmref	1.00	1.00	0.99	0.99	0.99	0.71	0.68
	g723 enc	0.99	0.95	0.95	0.95	0.95	1.18	0.70
	gsm dec	0.99	0.99	0.94	0.94	0.94	0.91	0.71
	h264 dec	1.00	1.01	0.88	0.82	0.82	0.63	0.53
	huff dec	0.97	0.95	0.96	0.94	0.94	0.93	0.65
	huff enc	0.97	0.96	0.98	0.90	0.90	0.92	0.56
	mpeg2	0.99	0.99	0.99	0.94	0.94	1.85	0.85
	ndes	0.99	0.99	1.00	0.99	0.99	0.85	0.49
	petrinet	0.90	0.89	0.86	0.86	0.86	0.55	0.52
	statemate	1.15	1.15	1.17	1.17	1.17	0.90	0.54
	test3	1.00	1.00	1.00	1.00	1.00	2.03	0.92

Table 3 :

 3 High-performance, highly out-of-order, server-class Intel ® Xeon ® Gold 6138 CPU, running Debian GNU/Linux 10; gcc 8.3.0.

	Benchmark			CompCert		gcc	
		cse3	+us30	+lr10	+ub30	cse3-cond	-O1	-O2
	lv6-en-2cgc convertible	1.04	1.03	1.03	1.04	1.02	0.47	0.68
	bitsliced-aes	1.01	1.53	1.55	1.08	0.99	0.84	0.86
	complex mat c8	1.01	1.00	1.00	1.04	1.01	0.55	0.79
	glibc qsort	1.05	0.89	0.91	0.83	1.04	0.86	0.80
	heapsort	0.68	0.65	0.65	0.64	0.69	0.41	0.53
	idea	1.08	1.06	0.93	0.95	1.05	0.82	0.98
	ntt	1.01	1.00	0.99	0.99	0.98	1.03	1.05
	quicksort	1.09	1.19	1.44	1.51	1.17	0.85	1.03
	sha-256	1.03	0.98	0.96	0.99	1.03	0.75	0.77
	lift	1.00	0.88	0.95	0.91	1.01	0.73	0.81
	radiotrans	1.04	1.03	1.03	1.05	0.99	0.51	0.43
	glpk	1.19	1.12	1.06	0.99	1.16	0.84	1.14
	picosat	0.73	0.82	0.95	0.73	0.76	0.67	0.62
	genann4	1.11	0.94	0.91	0.90	1.14	1.04	0.69
	jpeg-6b	1.01	0.98	1.00	0.99	1.01	0.89	0.89
	correlation	0.91	0.85	0.85	0.71	0.90	0.73	0.36
	covariance	0.91	0.86	0.86	0.69	0.91	0.79	0.38
	2mm	0.96	0.92	0.92	0.70	0.96	0.80	0.44
	3mm	0.98	0.92	0.92	0.69	0.95	0.77	0.49
	atax	0.90	0.57	0.57	0.49	0.89	0.86	0.48
	bicg	1.01	0.98	1.00	1.01	1.01	1.00	0.99
	ludcmp	0.85	0.71	0.78	0.67	0.85	0.45	0.55
	lift	0.98	0.89	0.93	0.89	0.98	0.76	0.67
	isqrt	1.00	1.04	1.17	1.16	1.00	0.78	0.73
	jfdctint	1.01	1.00	0.99	0.99	1.01	0.99	0.97
	lms	0.97	0.98	0.92	0.93	0.97	0.98	0.97
	ludcmp	0.98	0.97	0.94	1.01	0.98	1.31	1.33
	matrix1	1.03	0.91	0.93	0.91	1.03	0.52	0.51
	md5	1.06	1.07	1.05	0.81	1.06	0.39	0.55
	minver	0.96	0.87	0.92	0.74	0.95	2.02	1.91
	pm	0.95	1.08	0.94	0.93	0.95	0.97	0.92
	prime	0.85	0.87	0.86	0.85	0.85	0.63	0.50
	quicksort	1.16	0.99	1.25	0.99	1.16	0.87	0.86
	rad2deg	0.97	0.54	0.51	0.49	0.98	1.35	1.31
	recursion	1.04	1.02	1.02	0.94	1.01	0.98	0.71
	sha	1.00	0.74	0.73	0.66	0.97	0.47	0.34
	st	1.01	0.88	0.88	0.88	1.01	0.89	0.69
	adpcm dec	1.00	1.02	1.02	1.00	1.01	1.05	0.96
	adpcm enc	0.89	0.89	0.88	0.88	0.89	0.86	0.84
	ammunition	0.97	0.95	0.92	0.95	1.00	0.54	0.52
	anagram	0.99	0.97	0.91	0.86	0.98	0.63	0.50
	audiobeam	0.91	0.92	0.86	0.91	0.91	0.76	0.69
	cjpeg transupp	0.98	0.91	1.02	0.97	0.96	0.78	0.73
	cjpeg wrbmp	1.63	1.02	1.01	1.05	1.09	1.02	1.22
	dijkstra	1.05	1.43	0.96	0.96	0.93	1.07	1.05
	epic	1.06	0.91	0.80	0.80	1.06	0.67	0.61
	fmref	1.13	1.12	1.31	1.31	1.13	0.76	0.60
	g723 enc	1.02	0.91	0.84	0.84	1.03	0.86	0.75
	gsm dec	1.13	0.97	0.95	1.07	1.13	0.87	0.68
	h264 dec	1.08	0.92	0.96	0.87	1.06	0.80	0.68
	huff dec	1.06	0.90	0.90	0.86	1.05	0.78	0.64
	huff enc	1.05	0.94	0.95	0.91	1.05	0.86	0.70
	mpeg2	1.00	0.99	1.01	0.95	0.97	0.89	0.89
	ndes	1.03	0.99	1.05	1.02	1.03	0.74	0.62
	petrinet	1.40	1.01	2.42	1.41	1.32	0.92	0.71
	rijndael dec	0.89	0.86	0.89	0.86	0.89	0.61	0.61
	rijndael enc	0.87	0.90	0.90	0.86	0.87	0.59	0.60
	statemate	1.00	1.02	1.01	1.00	1.00	0.88	0.88
	susan	1.06	0.87	0.99	1.04	1.49	0.57	0.77
	test3	0.95	1.06	0.94	1.00	0.96	0.92	0.94

Table 4 :

 4 Risc-V 64 bit SiFive U740 inside a HiFive Unmatched board running Linux; gcc 8.3.0.

	Benchmark			CompCert		gcc	
		cse3	+us30	+lr10	+ub30	cse3-cond	-O1	-O2
	lv6-en-2cgc convertible	2.16	2.11	2.14	2.15	3.13	0.76	0.73
	bitsliced-aes	1.08	1.00	1.05	1.04	1.08	1.09	0.78
	complex mat c8	0.95	0.96	0.94	0.93	0.94	1.21	0.61
	glibc qsort	1.02	0.92	0.97	0.94	1.00	0.81	0.77
	heapsort	1.00	1.00	0.99	1.02	1.01	0.93	0.93
	idea	1.03	1.03	1.02	1.02	1.03	1.01	0.87
	ntt	1.05	1.05	1.06	1.06	1.05	1.02	1.06
	quicksort	0.96	0.94	0.92	0.91	0.96	0.77	0.71
	sha-256	0.92	0.92	0.92	0.92	0.93	0.83	0.69
	lift	1.00	1.04	0.85	0.83	1.00	0.64	0.61
	radiotrans	1.01	1.01	1.00	1.01	1.01	1.02	0.72
	glpk	1.00	0.98	0.98	0.97	1.00	0.93	0.87
	picosat	0.96	1.05	1.02	1.01	0.97	0.78	0.75
	genann4	0.99	0.95	0.96	0.95	0.99	0.99	0.83
	jpeg-6b	1.00	1.00	1.00	0.97	1.00	0.88	0.83
	correlation	0.93	0.93	0.97	0.96	0.93	0.72	0.68
	covariance	0.91	0.88	0.90	0.91	0.92	0.91	0.76
	2mm	0.91	0.89	0.92	0.89	0.89	0.82	0.83
	3mm	0.88	0.89	0.88	0.88	0.88	0.81	0.81
	atax	0.93	0.91	0.91	0.88	0.94	0.84	0.80
	bicg	0.95	0.95	0.95	0.96	0.95	0.92	0.89
	ludcmp	0.86	0.79	0.78	0.68	0.86	0.60	0.56
	lift	1.02	0.88	0.87	0.84	1.02	0.69	0.56
	isqrt	1.00	1.01	0.99	1.00	1.00	0.74	0.71
	jfdctint	0.97	1.05	1.01	1.13	1.04	1.00	1.10
	lms	0.98	1.00	0.98	0.91	0.98	0.81	0.74
	ludcmp	1.00	0.63	0.61	0.58	0.54	0.89	1.01
	matrix1	1.10	1.01	1.01	1.01	1.05	0.89	0.84
	md5	1.03	1.02	1.00	0.95	1.03	0.69	0.47
	minver	0.85	1.75	0.74	1.74	0.83	1.28	1.20
	pm	1.00	0.97	0.94	0.94	1.01	1.04	0.90
	prime	1.13	0.98	0.98	1.02	1.05	0.88	0.71
	quicksort	1.00	1.00	0.98	1.00	1.00	0.84	0.77
	rad2deg	0.96	0.81	0.85	0.83	0.95	0.77	0.69
	recursion	1.05	0.97	0.97	0.99	1.01	0.67	0.54
	sha	0.98	0.87	0.91	0.84	0.98	0.56	0.38
	st	1.02	1.00	1.02	0.99	1.01	0.96	0.76
	adpcm dec	0.92	0.79	0.81	0.80	0.79	0.66	0.56
	adpcm enc	0.90	0.90	0.91	0.91	0.90	0.75	0.64
	ammunition	0.98	0.98	0.97	0.97	0.98	0.93	0.88
	anagram	1.01	1.00	0.97	0.91	1.01	0.68	0.54
	audiobeam	1.01	1.00	1.01	1.00	1.01	0.14	0.08
	cjpeg transupp	1.04	0.92	0.95	0.96	0.98	0.78	0.73
	cjpeg wrbmp	0.92	0.94	0.97	0.95	1.00	1.04	0.52
	dijkstra	0.96	0.91	0.88	0.88	0.96	0.77	0.56
	epic	1.02	0.99	0.90	0.91	1.01	0.98	0.91
	fmref	0.93	0.91	0.91	0.95	0.98	0.84	0.75
	g723 enc	0.95	1.04	0.89	0.90	0.96	0.93	0.75
	gsm dec	0.94	0.96	0.93	0.93	0.94	0.61	0.61
	h264 dec	0.96	0.93	0.95	0.98	0.99	0.55	0.53
	huff dec	0.86	0.81	0.75	0.75	0.80	0.50	0.45
	huff enc	0.96	0.91	0.91	0.88	0.96	0.71	0.56
	mpeg2	1.00	0.98	0.98	0.95	0.99	1.02	0.92
	ndes	0.99	1.00	0.94	1.03	0.97	0.52	0.38
	petrinet	1.15	1.01	0.90	1.06	1.15	0.24	0.81
	rijndael dec	1.02	1.00	1.01	1.00	1.01	1.05	0.95
	rijndael enc	1.00	0.99	0.99	0.99	1.01	1.06	0.96
	statemate	1.01	1.02	1.01	1.00	1.00	1.84	1.33
	susan	1.00	1.01	1.00	1.03	1.00	1.20	1.06
	test3	0.94	0.93	0.94	0.94	0.91	0.92	0.78

For instance, the seL4 formally verified microkernel was adapted to be compiled with CompCert, but the resulting code was too slow.

Coq 8.13, released in January 2021, introduced native integers and arrays. This opens the perspective of rewriting certain OCaml oracles into Coq. This also poses the question of relying on recently added features, which may contain bugs.

https://sourceforge.net/p/polybench/wiki/Home/

We call "official" the releases of CompCert on Absint's GitHub repository, as opposed to forked versions.

Comparisons of integer values of the same bit width as the pointer type may be comparing pointers, and comparison of pointers refers to memory insofar as the comparison of two pointers has defined meaning only if the two pointers point to the same memory block, possibly at different offsets.

A bug in these algorithms might result in a worst performance, but never to incorrectness, since that would be caught by the certified verifier.

Loads from an invalid address are defined to yield the special value "undefined". This is necessary in order to accommodate the "non trapping" or "dismissible" load instructions found in certain architectures, which return a default value instead of trapping on incorrect memory references. Such instructions are useful to anticipate loads before conditional branches.

Our analysis is intraprocedural, as often for common subexpression elimination.

If CompCert's type analysis fails, due to some variable being used to store values of different types, our optimization phase fails. This is consistent with CompCert's register allocation failing if the program is ill-typed. CompCert's RTL generation phase always produces correctly typed programs, and all optimization phases should maintain this typing property. This is an example among others of an invariant that CompCert expects to be maintained, and that is checked dynamically.

The read-only hash tables are exported to Coq as their "find" operation: functions mapping a key to an optional value. There is an implicit logical assumption that this "find" operation behaves as a pure function.See Section 7 for a discussion of possible implications on the trusted computing base.

[START_REF] Arthur | Translation validation for a verified OS kernel[END_REF] For ease of implementation, the transfer functions used in the verified inductiveness check and those used in the untrusted static analysis are the same Coq code.

In CompCert 3.10, which was released after this article was originally submitted, this library works differently. We refer here to the older formalization and algorithms.

http://web.cse.ohio-state.edu/ ~pouchet.2/software/polybench/

https://github.com/tacle/tacle-bench

https://www.gnu.org/software/glpk/

http://libjpeg.sourceforge.net/

http://fmv.jku.at/picosat/

https://github.com/codeplea/genann

The KV3 uses very large instruction words (VLIW), meaning that the compiler can schedule several instructions at the same clock cycle. The Cortex-A53 can issue two consecutive instructions at the same clock cycle if they are compatible. However, they will not reorder instructions.

https://github.com/intel/yarpgen

https://velus.inria.fr/

https://certicoq.org/

see Leroy's answer https://github.com/AbsInt/CompCert/issues/274

https://gitlab.inria.fr/compcertssa/compcertssa

Unless the instruction set has dismissible loads, that is, loads that return a default value instead of trapping. The only architecture with such instructions that is supported by Comp-Cert (not in "official") is the Kalray KV3, in certain modes of operation.

 32 To compound the issue, there are typically different register classes for integer/pointer values and for floating-point

values.33 Since any change in the intermediate representation may push CompCert's register allocation heuristics into other choices, making programs hard to compare visually, it is difficult to ascertain spilling issues, except on the smallest benchmarks.