
Reconstruction and stability in acousto-optic imaging for
absorption maps with bounded variation∗

Habib Ammari† Loc Hoang Nguyen‡ Laurent Seppecher†

Abstract

The aim of this paper is to propose for the first time a reconstruction scheme and a stability result for
recovering from acoustic-optic data absorption distributions with bounded variation. The paper extends
earlier results in [3] and [5] on smooth absorption distributions. It opens a door for a mathematical
and numerical framework for imaging, from internal data, parameter distributions with high contrast in
biological tissues.
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1 Introduction

In the recent papers [3],[4], and [5], an original mathematical and numerical framework for
modeling biomedical imaging modalities based on mechanical perturbations of the medium is
developed. The objective is to enhance the resolution and stability of tissue property imaging.

Many kinds of waves propagate in biological tissues over certain frequency ranges. Each
one of them can be used to provide an image of a specific physical parameter. Low-frequency
electromagnetic waves are sensitive to electrical conductivity; optical waves tell about optical
absorption, ultrasonic waves reveal tissue’s density, mechanical shear waves indicate how tissues
respond to shear forces. However, single-wave imaging modalities are known to suffer from low
specificity as well as intrinsic instabilities and low resolution; see [2] and [15]. These fundamental
deficiencies are impossible to eliminate, unless additional a priori information is incorporated.
Single-wave imaging modalities can only be used for anomaly detection. Expansions techniques
for data analysis, which reduce the set of admissible solutions and the number of unknowns,
allow robust and accurate reconstruction of the location and of some geometric features of the
anomalies, even with moderately noisy data.

One promising way to overcome the inherent limits of single-wave imaging and provide a
stable and quantitative reconstruction of a distribution of physical parameters is to combine
different wave-imaging modalities; see again [2] and [15]. A variety of multi-wave imaging
approaches are being introduced and studied. In such approaches, two or more types of physical
waves are involved in order to overcome the individual deficiencies of each one of them and to
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combine their strengths. Because of the way the waves are combined, multi-wave imaging can
produce a single image with the best contrast and resolution properties of the two waves.

Three different types of wave interaction can be exploited in multi-wave imaging [8]: (i)
the interaction of one kind of wave with tissue can generate a second kind of wave; (ii) a low-
frequency wave that carries information about the desired contrast can be locally modulated
by a second wave that has better spatial resolution; (iii) a fast propagating wave can be used
to acquire a spatio-temporal sequence of the propagation of a slower transient wave.

In [3] and [5], by mechanically perturbing the medium we proved both analytically and
numerically the stability and resolution enhancement for reconstructing optical tissue parame-
ters. We showed how the high contrast of optical tomography [6] can be coupled to the high
resolution of the acoustic propagation in soft tissues. The use of mechanical perturbations of
the medium modeled by acoustics equations in fluids enhance the resolution to the order of the
front width of the acoustic wave, which propagates inside the object. It dramatically increases
the low resolution of optical tomography [14].

This paper is a continuation and an extension of the work started in [3] and [5]. We keep
here the same models for the diffusive light propagation [7] and for the acoustic perturbations.
Our aim is to extend the reconstruction algorithm developed in [3] to a large class of non smooth
functions taken in a subclass of BV(Ω), the set of functions with bounded variation.

The reconstruction and the stability of the inversion are shown in this general case. Such
an extension is essential for applying the proposed hybrid method to biological tissues. Indeed,
the physiologic parameters that we want to recover cannot be considered smooth or piecewise
smooth as assumed in [5].

Under this natural assumption, new mathematical difficulties rise to prove that the acousto-
optic data contain enough information for reconstructing the absorption map. The lack of
smoothness also causes difficulties to ensure the stability of the algorithm. This paper resolves
these challenging issues. It provides both an original reconstruction formula and a new stability
result in the general setting. As far as we know, together with the recent work [11], it is the
first work in imaging discontinuous parameter distributions from internal measurements.

Throughout this paper, we denote by S the space of Schwartz and by S ′ its dual. We use the
notation Hs for the usual Sobolev spaces and set D to be the set of C∞ compactly supported
functions.

As in [3] and [5], we consider a smooth bounded domain Ω of Rd, for d ∈ {2, 3}, and a light
fluence field defined as the unique solution of the diffusion equation{

−4Φ + aΦ = 0 in Ω,

l∂νΦ + Φ = g on ∂Ω,
(1)

where a ∈ L∞(Ω) satisfying a ≥ a > 0 and supp (a− a0) ⊂ D b Ω is the absorption parameter
to be recovered; see [6] and [14]. The extrapolation length l, and the bounds a and a0 are known
positive constants. The incoming illumination g ∈ H1/2(∂Ω) is a non negative non zero map
and is also supposed to be known. Moreover, the support D of a− a0 is assumed to be smooth.

The acoustic perturbations are assumed to be generated by spherical pressure waves. Let η
be the front width of the acoustic wave and let w be the wave shape. The acoustic perturbations
take the form:

vy,r,η(x) =
η

r
w

(
|x− y| − r

η

)
x− y
|x− y|

, ∀ x ∈ Rd\{y}, (2)

where y ∈ Y ⊂ Rd, η > 0 and r ∈]η,+∞[; see [4]. Here, Y ⊂ Ω \ D is a smooth surface.
Moreover, the map w ∈ D(R) is non negative and satisfies supp (w) ⊂ [−1, 1], w′ > −1 and
‖w‖L1 = 1. The last assumption ensures that the map x 7−→ x+ v(x) is a diffeomorphism.

2



The effect of the displacement v on the absorption map is assumed to be only a shifting
effect, that is, to say that a becomes av implicitly defined on Ωv = (Id+ v)(Ω) by

av(x+ v(x)) = a(x), ∀ x ∈ Ωv, (3)

or equivalently, by the formula av = a ◦ (Id+ v)−1. We introduce the displaced light fluence as
the unique solution of {

−4Φv + avΦv = 0 in Ω,

l∂νΦv + Φv = g on ∂Ω,
(4)

by extending av by a0 if necessary. Computing now the cross-correlation on the boundary ∂Ω
between Φ and Φv it follows that

1

l

∫
∂Ω

(Φ− Φv)g =

∫
Ω

(av − a)ΦΦv. (5)

Assume that the term in the left-hand side of the above identity can be measured. We define
the measurement as the real quantity given by

Mv =
1

η2

∫
Ω

(av − a)ΦΦv. (6)

Throughout this paper, we assume that Mv is known for any displacement field v given by (2).
For a smooth surface Y ⊂ Ω \D and η > 0, we assume that we are in possession of

Mη(y, r) =
1

η2

∫
Ω

(avy,r,η − a)ΦΦvy,r,η , ∀ (y, r) ∈ Y×]η,+∞[. (7)

The imaging problem considered in this paper is to reconstruct a from the measurement
data Mη given by (7). The aim is to prove that the reconstruction algorithm from acousto-
optic differential measurements presented in [3] can be extended for a very general class of
discontinuous absorption maps. For doing so, we start from the same differential boundary
measurements (7) and consider the case where a has bounded variations. Under some additional
hypothesis, we correctly interpret the first order term in the asymptotic formula when ‖v‖L∞
goes to zero. Then, by giving a weak definition of the spherical means Radon transform R, we
show how the internal data Ψ, satisfying

Φ2Da = DΨ +∇×G,

can be reconstructed stably in Hs(D) with s < 1/2 and D being a smooth domain. This is
done through a stable reconstruction of R[Ψ] in H(d−1)/2+s. Here, Da and DΨ are defined by
(8).

The second part is to show that a stable reconstruction of the absorption map a is possible
from this internal data Ψ. In order to do so, we establish a system of two coupled elliptic
equations for (a,Φ) and solve this coupled system by the classical fixed point theorem. We also
show that the solution depends continuously on Ψ and therefore can verify the global stability
of the reconstruction.

Finally, we present numerical illustrations to substantiate the potential of the proposed
method. We consider the imaging of a highly discontinuous absorption map, chosen from a real
biological tissue data.

3



2 Preliminaries

In order to work with a wide set of discontinuous functions, we introduce BV (Ω) and several
important subspaces of BV (Ω).

2.1 Some subclasses of functions with bounded variation

Definition 2.1: A function u ∈ L1(Ω) is said to have bounded variation if its weak derivative Du
is a finite Radon measure. For any ϕ ∈ C1

c (Ω)d, we have∫
Ω
u(x)∇ · ϕ(x)dx = −

∫
Ω
ϕ(x) ·Du(dx).

The Radon measure Du can be uniquely decomposed into three singular measures as follows:

Du = Dlu+Dju+Dcu, (8)

which are respectively called the Lebesgue part, the jump part, and the Cantor part of Du. The
Lebesgue part is absolutely continuous with respect to the Lebesgue measure and is identified
to Dlu ∈ L1(Ω)d, which is called the smooth variation of u. The jump part Dju is such that
there exists a set S ⊂ Ω of Hausdorff dimension (d− 1), rectifiable admitting the existence of a
generalized normal vector νS(x) for almost every x ∈ S. This part is written as

Dju = [u]SνS · Hd−1
S ,

where [u]S ∈ L1(S,Hd−1
S ) is the jump of u over S and Hd−1

S is the Hausdorff measure on S. The
Cantor part Dcu is supported on a set of Hausdorff dimension less than (d − 1), which means
that its (d− 1)-Hausdorff-measure is zero; see [1].

In many cases it is very difficult to deal with such a general measure derivative. We introduce
the special class of functions of bounded variation SBV (Ω). This class still describes a very
large set of discontinuous functions.

Definition 2.2: A function u ∈ BV(Ω) is in the special class of bounded variation if Dcu = 0.
We denote by

SBV (Ω) = {u ∈ BV(Ω), Dcu = 0} .

In some cases, we shall work in some specific Lp framework. Hence, we use the following
spaces.

Definition 2.3: For any p ∈ [1,+∞], we define

SBV p(Ω) =
{
u ∈ SBV (Ω) ∩ Lp(Ω), Dlu ∈ Lp(Ω)d, [u]S ∈ Lp(S,Hd−1

S )
}
.

Roughly speaking, a function u ∈ SBV p(Ω) is a function of class W 1,p admitting surface dis-
continuities. In the following, we state some Sobolev regularity results for functions of bounded
variation. The embedding rule for BV (Ω) in the Sobolev spaces behaves like that for W 1,1(Ω).

Proposition 2.1 (BV (Ω) embedding in Sobolev spaces): For any s ∈ R+, p ≥ 1, if W 1,1(Ω) ↪→
W s,p(Ω) continuously, then BV (Ω) ↪→W s,p(Ω) continuously.

If a function is in SBV∞(Ω) we can expect a better Sobolev regularity. We provide the
following embedding result.
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Proposition 2.2: For any 0 ≤ α < 1
2 , SBV∞(Ω) ↪→ Hα(Ω).

Proof. Consider u ∈ SBV∞(Ω). Du = Dlu+[u]SνSHd−1
S where S is a rectifiable surface, Dlu ∈

L∞(Ω)d and [u]S ∈ L∞(S,Hd−1
S ). We introduce a continuous trace operator γS : H1−α(Ω) −→

L2(S) and consider a test function ϕ ∈ D(Ω)d to write

〈Du,ϕ〉D′(Ω)d,D(Ω)d =

∫
Ω
Dlu · ϕ+

∫
S

[u]SνS · ϕHd−1
S∣∣∣〈Du,ϕ〉D′(Ω)d,D(Ω)d

∣∣∣ ≤ ‖Dlu‖L∞(Ω) ‖ϕ‖L2(Ω) + ‖[u]S‖L∞(S) ‖ϕ‖L2(S)

≤ ‖γS‖L(H1−α(Ω),L2(Ω))

(
‖Dlu‖L∞(Ω) + ‖[u]S‖L∞(S)

)
‖ϕ‖H1−α(Ω) .

This proves that Du ∈ Hα−1(Ω)d and so, u ∈ Hα(Ω). �

2.2 The light fluence operator

The light fluence Φ associated to the absorption a is defined as the solution of{
−4Φ + aΦ = 0 in Ω,

l∂νΦ + Φ = g on ∂Ω,
(9)

where g is smooth (in H3/2(∂Ω)), non negative, and non zero. This problem is well posed if
a ∈ L∞(Ω) and admits a positive lower bound. Throughout this paper, we assume that there
exist three constants 0 < a ≤ a0 ≤ a < +∞ such that a ≤ a ≤ a in Ω and supp (a− a0) ⊂ D.
Under this condition, the light fluence Φ is uniquely determined in H2(Ω). We define the set of
the admissible absorption maps by

A0 =
{
a ∈ L2(Ω), a ≤ a ≤ a, supp (a− a0) ⊂ D

}
(10)

and the light fluence operator as follows.

Definition 2.4: Let the light fluence operator F be given by

F : A0 −→ H2(Ω)

a 7−→ Φ,

where Φ is the unique solution of (9).

As in dimensions 2 and 3, H2(Ω) ↪→ L∞(Ω) we define the following two quantities

Φ = inf
a∈A0

inf
x∈Ω

F [a](x),

Φ = sup
a∈A0

sup
x∈Ω

F [a](x).
(11)

The following result is from [3].

Proposition 2.3: The quantity Φ is finite and depends only on g, l, Ω and a. Moreover, if g ≥ 0
and g 6= 0 in ∂Ω, then Φ > 0 and depends only on g, l, Ω, and a.
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The following proposition is a direct application of standard elliptic regularity results [9] on
the equation satisfied by F [a]− F [a′]:{

−4(F [a]− F [a′]) + a(F [a]− F [a′]) = (a′ − a)F [a′] in Ω,

l∂ν(F [a]− F [a′]) + (F [a]− F [a′]) = 0 on ∂Ω.

Proposition 2.4: The operator F is Lipschitz continuous from A0 to H2(Ω) in the sense that
there exists a constant C > 0 depending only on Ω such that for any a and a′ in A, we have∥∥F [a]− F [a′]

∥∥
H2(Ω)

≤ CΦ
∥∥a′ − a∥∥

L2(Ω)
.

In the following, we will suppose that a is in SBV∞(Ω) and get from that a little Sobolev
regularity enhancement due to Proposition 2.2. We have a ∈ Hs(Ω) for s ∈]0, 1

2 [. For such
number s, we define a new admissible set for the absorption map:

As =
{
a ∈ A0 ∩Hs(Ω), ‖a‖Hs(Ω) ≤ RAs

}
, (12)

where RAs is a positive real number called the radius of As. This gain of regularity for a implies
that of regularity for Φ = F [a], which is stated in the following proposition.

Proposition 2.5: Assume that g is the trace of a smooth function on ∂Ω. Then for any s ∈]0, 1
2 [

and any a ∈ As, F [a] ∈ H2+s(Ω). Moreover, the map

F : As −→ H2+s(Ω)

is Lipschitz continuous in the following sense: There exists a constant C > 0 depending only
on Ω and s such that, for any a and a′ in As, we have∥∥F [a]− F [a′]

∥∥
H2+s(Ω)

≤ C(Φ + ||∇Φ||L∞)
∥∥a′ − a∥∥

Hs(Ω)
. (13)

Proposition 2.5 follows immediately from standard regularity estimates. In dimensions 2
and 3, H2(Ω) ⊂ L∞(Ω). Hence, Φ satisfies

∆Φ = aΦ ∈ L∞(Ω).

This and the smoothness of g imply Φ ∈ C1,α(Ω) for some α ∈ (0, 1).

2.3 Spherical means Radon transform

Here, we introduce the spherical means Radon transform R and the normalized spherical flow
operator ~R. We extend their definition to tempered distributions in order to deal with derivative
of non smooth functions. We also give several useful properties of these operators. We denote
by Σ = Y×]0,+∞[.

Definition 2.5 (Spherical means Radon transform): For any function f ∈ C0(Rd), we define its
spherical means Radon transform R[f ] ∈ C0(Y×]0,+∞[) by

R[f ](y, r) =

∫
Sd−1

f(y + rξ)σ(dξ), ∀ (y, r) ∈ Σ,

6



where σ is the surface measure of the unit sphere. To extend this definition to distributions, we
introduce the dual operator R∗ : S(Σ) −→ S(Rd) defined for any ϕ ∈ S(Σ) by

R∗[ϕ](x) =

∫
Y

ϕ(y, |x− y|)
|x− y|d−1

σ(dy).

Then, for any tempered distribution u ∈ S ′(Rd), we define its spherical mean Radon transform
R[u] ∈ S ′(Σ) as follows:

〈R[u], ϕ〉S′(Σ),S(Σ) = 〈u,R∗[ϕ]〉S′(Rd),S(Rd) , ∀ ϕ ∈ S(Rd).

Injectivity and invertibility issues for R have been studied in several works; see, for instance,
[12]. In [12, Corollary 6.4], the continuity of R and its inverse were proved. The following result
holds.

Theorem 2.6: Consider s ∈ R and suppose that for some α < s and any u ∈ Hα(Ω) with
compact support, R[u] = 0 implies u = 0. Then there exist two positive constants c1 and c2

such that

‖u‖Hα(Ω) ≤ c1 ‖R[u]‖
Hα+ d−1

2 (Σ)
≤ c2 ‖u‖Hα(Ω) .

In the following, we always suppose that we are in the context where this theorem applies.
Injectivity issues are essentially controlled by the set of centers Y ; see, for instance, [13].

Definition 2.6 (Spherical flow operator): For any function F ∈ C0(Rd)d, we define its normalized
flow through the sphere S(y, r), ~R[F ] ∈ C0(Y×]0,+∞[) by

~R[F ](y, r) =

∫
Sd−1

F (y + rξ) · ξσ(dξ), ∀ (y, r) ∈ Σ. (14)

To extend this definition to distributions, we introduce the dual operator ~R∗ : S(Σ) −→
S(Rd) defined for any ϕ ∈ S(Σ) by

~R∗[ϕ](y, r) =

∫
Y

ϕ(y, |x− y|)
|x− y|d

(x− y)σ(dy).

Then, for any tempered distribution U ∈ S ′(Rd)d, we define its normalized flow through the
sphere S(y, r) denoted by ~R[U ] ∈ S ′(Σ) as〈

~R[u], ϕ
〉
S′(Σ),S(Σ)

=
〈
u, ~R∗[ϕ]

〉
S′(Rd),S(Rd)

, ∀ ϕ ∈ S(Rd).

The following result is easy to prove.

Proposition 2.7: For any u ∈ S ′(Rd), U ∈ S ′(Rd)d, we have the following identities in the sense
of distributions:

~R[∇u] = ∂rR[u], (15)

~R[∇× U ] = 0, (16)

R[∇ · U ] =
1

r
∂r

(
r ~R[U ]

)
, (17)
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and

R[4u] =
1

r
∂r
(
r∂rR[u]

)
. (18)

3 Recovering the internal data

The aim of this section is to recover the internal data Ψ with enough stability in order to use
it in the next section to recover the absorption map a. The section is divided into five steps.

In the first step, we prove that when a belongs to SBV∞(Ω), the approximation

Mη(y, r) = − 1

η2

∫
Ω

Φ2(x)vy,r,η(x) ·Da(dx) +O
(
η
d−1
2d

)
holds as η goes to zero. In the second step, we link the approximated measurement to ~R[Φ2Da]
through the exact formula:

1

η2

∫
Ω

Φ2(x)vy,r,η(x) ·Da(dx) =
([
~R[Φ2Da]

]
∗
[
rd−2wη

])
(y, r),

where ∗ is the convolution product with respect to the variable r and wη(r) = 1
ηw(r/η). In the

third step, we give a weak Helmholtz decomposition of

Φ2Da = DΨ +∇×G,

where Ψ ∈ Hs(D) with s ∈ [0, 1/2[ and is of class C∞ outside of supp (Da) and satisfies
Ψ|Y = 0. In the fourth step, we prove that its spherical means Radon transform R[Ψ] is stably
approximated in the space H(d−1)/2(Σ) in order to satisfy the assumptions of the Palamodov
theorem. We conclude by proving the stable reconstruction of Ψ in L2(D), where D is a smooth
subdomain of interest containing supp (Da) and is such that Y ⊂ Ω \D.

3.1 Step 1: From physical to ideal measurements

Definition 3.1 (Ideal measurements): We call the ideal measurement function associated to the
absorption a ∈ SBV∞(Ω) the function defined on Σ by

M̃η(y, r) = − 1

η2

∫
Ω

Φ2(x)vy,r,η(x) ·Da(dx). (19)

In order to prove that Mη is close to M̃η when η goes to zero, we need several definitions.

Definition 3.2 (Wrap condition): Let Ω′ b Ω be a smooth domain. We say that the surface
Y ⊂ Ω \Ω′ satisfies the wrap condition around Ω′ if there exists a constant C > 0 such that for
any x ∈ Ω′, Γ ⊂ Sd−1 measurable, we have

σ (Y ∩ Cone(x,Γ)) ≤ C σ (Γ) ,

where Cone(x,Γ) = {x+ tξ, ξ ∈ Γ, t ∈ R+}.
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Theorem 3.1: Let a ∈ SBV∞(Ω) and let Ω′ be such that dist(Ω′, Y ) ≥ r0 > 0. Suppose that Y
satisfies the wrap condition around Ω′. Then, there exists a constant C > 0 depending on Ω,
Φ, |Y |, |Da|(Ω), r0 and the wrap constant such that∥∥∥Mη − M̃η

∥∥∥
L2(Σ)

≤ Cη
d−1
2d ,

and ∥∥∥P [Mη]− P [M̃η]
∥∥∥
H1(Σ)

≤ Cη
d−1
2d ,

where P is the operator defined by

P [ϕ](y, r) = −
∫ r

0

ϕ(y, ρ)

ρd−2
dρ.

To prove this result, we need several lemmas. The first one is a spherical density result for
the Radon measure |Da|. Its proof uses some measure density results and is given in Appendix
A.

Lemma 3.2: Consider a ∈ SBV∞(Ω) constant out of the subdomain D b Ω and let the mollifier

sequence wη(r) = 1
ηw
(

1
η

)
, where w is given by (2). Suppose that Y satisfies the wrap condition

around D. Then, the sequence of functions defined on Σ by

ϕη(y, r) =

∫
Ω
wη(|x− y| − r)|Da|(dx)

satisfies

‖ϕη‖L2(Σ) ≤ Cη
− 1

2d

with C depending on |Da|(Ω), |Y |, and the wrap constant.

In the next lemma, we rewrite the measurement map Mη.

Lemma 3.3: For any (y, r) ∈ Σ, we have

Mη(y, r) = − 1

η2

∫
Ω
T [vy,r,η](x, y)vy,r,η(x) ·Da(dx),

where

T [v](x, y) =

∫ 1

0
(ΦΦv) (x+ tv(x))

(
1 + t

|v(x)|
|x− y|

)d−1

dt.

Proof. Since we fix y (supposed to be zero), r > r0 and η > 0, we will not write the
dependence with respect to these variables. We first introduce an approximation sequence
of smooth functions (aε)ε>0 such that supp (aε − a0) ⊂ Ω′ and aε → a in L2(Ω). Note that its
derivative ∇aε converges to Da for the H−1(Ω)d norm.

We define now a flow ϕ(x, t) = x + tv(x), ϕ ∈ C∞
(
Rd × [0, 1],Rd

)
. The condition w′ > −1

ensures that this flow is invertible in the sense that there exists a flow ϕ−1(x, t) of class C∞ such

9



that ϕ(ϕ−1(x, t), t) = ϕ−1(ϕ(x, t), t) = x for all (x, t) ∈ Rd × [0, 1]. In particular, it satisfies for
any x ∈ Rd, ϕ−1(x, 0) = x and ϕ−1(x, 1) = (Id+ v)−1(x). For all x ∈ Rd, ε > 0, we have

aε ◦ (Id+ v)−1(x)− aε(x) =

∫ 1

0
∇aε(ϕ−1(x, t)) · ∂tϕ−1(x, t)dt∫

Ω
(aεv − aε)p =

∫
Ω

∫ 1

0
∇aε(ϕ−1(x, t)) · ∂tϕ−1(x, t)p(x)dtdx∫

Ω
(aεv − aε)p =

∫ 1

0

∫
Ω
∇aε(ϕ−1(x, t)) · ∂tϕ−1(x, t)p(x)dxdt,

where p = ΦΦv.
Hence, using the change of variables x 7→ ϕ(x, t), we get∫

Ω
(aεv − aε)p =

∫ 1

0

∫
Ω
∇aε(x) · ∂tϕ−1(ϕ(x, t), t)p ◦ ϕ(x, t) det(dxϕ(x, t))dxdt

= −
∫

Ω
F · ∇aε,

where

F (x) = −
∫ 1

0
∂tϕ
−1(ϕ(x, t), t)p ◦ ϕ(x, t) det(dxϕ(x, t))dt.

As p ∈ H2(Ω), the function F belongs to H1(Ω)d. Passing to the limit when ε goes to zero in
the previous equation, the term in the left-hand side goes to

∫
Ω(au − a)p and as F ∈ H1(Ω)d

and supp
(
∇aε

)
⊂ Ω′ ⊂⊂ Ω, the right-hand side converges to

∫
Ω F (x) · Da(dx). Hence, the

formula

M =

∫
Ω

(av − a)p = −
∫

Ω
F (x) ·Da(dx)

holds. In order to simplify the writing of F , we recall two useful properties satisfied by ϕ and
ϕ−1. Deriving the identity ϕ−1(ϕ(x, t), t) = x with respect to t and x, we get

dxϕ
−1(ϕ(x, t), t)∂tϕ(x, t) + ∂tϕ

−1(ϕ(x, t), t) = 0,

dxϕ
−1(ϕ(x, t), t)dxϕ(x, t) = Id.

We recall that dxϕ(x, t) = Id + tdv(x). Now noticing that ∂tϕ
−1(ϕ(x, t), t) = −(Id + tdv(x)),

we rewrite F as follows:

F (x) = −
∫ 1

0
p
(
x+ tv(x)

)
det
(
Id+ tdv(x)

)(
Id+ tdv(x)

)−1
v(x)dt.

Fortunately, dv(x) is diagonal in the spherical orthonormal basis B = (ξ, e2, · · · , ed), where
ξ = x/|x| and (e2, · · · , ed) is an orthonormal basis of ξ⊥, the hyperplane orthogonal to ξ. Its
matrix in this basis is given by

matB(dv(x)) =

 r0r w′ ( |x|−rη )
0

0 |v(x)|
|x| Id−1

 .
Then,

matB(Id+ tdv(x)) =

1 + t r0r w
′
(
|x|−r
η

)
0

0
(

1 + t |v(x)|
|x|

)
Id−1

 ,
10



and from this matrix we deduce that

det
(
Id+ tdv(x)

)
=

[
1 + t

r0

r
w′
(
|x| − r
η

)][
1 + t

|v(x)|
|x|

]d−1

(
Id+ tdv(x)

)−1
v(x) =

v(x)

1 + t r0r w
′
(
|x|−r
η

) .
Therefore,

F (x) =

∫ 1

0
p
(
x+ tv(x)

) [
1 + t

|v(x)|
|x|

]d−1

dt v(x).

Replacing |x| by |x− y| and rewriting the dependence in y, r, and η, we finally get the expected
formula. �

The next result shows that the shifted absorption map av stays close to a in L1(Ω) if η is
small. The key result is optimal in the sense that it requires that a to be of bounded variation.
In fact, it shows that any reconstruction would be impossible without this minimal regularity.

Proposition 3.4: Consider a ∈ A0 ∩BV (Ω) and let the internal displacement v be given by (2).
We have the following estimate:

‖av − a‖L1(Ω) ≤ C|Da|(Ω)η

with C depending only on the space dimension d.

Proof. Let us consider an approximation sequence (aε)ε>0 ⊂ C0(Ω) such that supp (ae−a) ⊂ D
and ‖aε − a‖L1(Ω) ≤ ε. Now, we define the flow ϕ ∈ C∞

(
Rd × [0, 1]

)
by ϕ(x, t) = x + tvη(x).

The condition w′ > −1 ensures that this flow is invertible in the sense that there exists a flow
ϕ−1(x, t) of class C∞ such that ϕ(ϕ−1(x, t), t) = ϕ−1(ϕ(x, t), t) = x for all (x, t) ∈ Rd × [0, 1].
In particular, it satisfies for any x ∈ Rd, ϕ−1(x, 0) = x and ϕ−1(x, 1) = (Id+ vη)

−1(x).
For all x ∈ Rd, ε > 0, we get

aεvη(x)− aε(x) = aε ◦ ϕ−1(x, 1)− aε ◦ ϕ−1(x, 0) =

∫ 1

0
∇aε ◦ ϕ−1(x, t)∂tϕ

−1(x, t)dt∥∥∥aεvη(x)− aε(x)
∥∥∥
L1(Ω)

≤
∫ 1

0

∫
Ω

∣∣∇aε ◦ ϕ−1(x, t) · ∂tϕ−1(x, t)
∣∣ dxdt

≤
∫ 1

0

∫
Ω

∣∣∇aε(x) · ∂tϕ−1(ϕ(x, t), t)
∣∣ | det dxϕ(x, t)|dxdt.

A similar computation to the one in the proof of (3.3) leads to

|∂tϕ−1(ϕ(x, t), t) det dxϕ(x, t)| ≤
(

1 +
d(d− 1)

2

)
|vη(x)|

and so, ∥∥∥aεvη(x)− aε(x)
∥∥∥
L1(Ω)

≤
(

1 +
d(d− 1)

2

)
η

∫
Ω
|∇aε|.

Passing now to the limit when ε goes to zero, we get the expected result. �
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As a consequence of Proposition 3.4, we deduce that the modified light fluence Φv is close
to Φ in H2(Ω) when η is small.

By combining (3.4) and (2.4), the following result holds.

Corollary 3.5: Consider a ∈ A0 ∩BV (Ω) and the internal displacement v given by (2). We have
the following estimate:

‖Φv − Φ‖H2(Ω) ≤ CΦ(a− a)
1
2 |Da|(Ω)

1
2 η

1
2 ,

where C depends on d and Ω.

Lemma 3.6: Consider a subdomain Ω′ ⊂ Ω such that dist(Ω′, Y ) ≥ r0 > 0. There exists a
constant C > 0 depending on Ω, Φ and a such that∥∥T [vy,r,η](., y)− Φ2

∥∥
L∞(Ω′)

≤ Cη
1
2 .

Proof. For fixed η > 0 and (y, r) ∈ Σ, for t ∈ [0, 1] and x ∈ Ω′,

|(ΦΦv)(x+ tv(x))− Φ2(x)| ≤ |Φ2(x+ tv(x))− Φ2(x)|+ |(ΦΦv)(x+ tv(x))− Φ2(x+ tv(x))|
≤ 2Φ|Φ(x+ tv(x))− Φ(x)|+ Φ|(Φv(x+ tv(x))− Φ(x+ tv(x))|

≤ 2Φ ‖Φ‖
C0,

1
2 (Ω)

η
1
2 + ΦC1η

1
2

≤ Cη1/2.

Recalling that for x ∈ Ω′, |x− y| ≥ r0, we use the previous inequality in (20) to get the desired
result. �

Now, we are ready to prove Theorem 3.1.

Proof. (of Theorem 3.1) For any (y, r) ∈ Σ,

|Mη − M̃η|(y, r) ≤
∫

Ω
|T [vy,r,η](x, y)− Φ2(x)| |vy,r,η(x)|

η2
|Da|(dx)

≤
∥∥T [vy,r,η]− Φ2

∥∥
L∞(Ω′)

∫
Ω
wη(|x− y| − r)|Da|(dx).

Applying Lemmas 3.6 and 3.2, we get the first inequality,∥∥∥Mη − M̃η

∥∥∥
L2(Σ)

≤ Cη
d−1
2d .

Next, taking the derivative with respect to the variable y, it follows that

dy(Mη − M̃η)(y, r) =

∫
Ω
dy

((
T [vy,r,η](x, y)− Φ2(x)

) vy,r,η(x)

η2

)
·Da(dx)

with

dy

((
T [vy,r,η](x, y)− Φ2(x)

) vη(x, y, r)
η2

)
= dvT [vy,r,η](x, y) · dyvy,r,η(x)

vy,r,η(x)

η2

+
(
T [vy,r,η](x, y)− Φ2(x)

) dyvy,r,η(x)

η2

+ dyT [vy,r,η](x, y)
vy,r,η(x)

η2
.
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The vector field vy,r,η satisfies

dyvy,r,η = ∂rvy,r,η + |vy,r,η|B(y, r, x),

where B(y, r, x) is a matrix uniformly bounded with respect to all variables. Moreover,

dyT [vy,r,η](x, y) = O(η)

with reminder uniform with respect to all variables. Thus we write

dy

((
T [vy,r,η](x, y)− Φ2(x)

) vη(x, y, r)
η2

)
= ∂r

((
T [vy,r,η](x, y)− Φ2(x)

) vy,r,η(x)

η2

)
(x− y)T

|x− y|

+R(y, r, x)
|vy,r,η(x)|

η2
,

where the reminder R(y, r, x) = O(η1/2) uniformly with respect to all variables. Here, T denotes
the transpose.

Using this identity, we can integrate by parts with respect to r to get∫ r

0

1

ρd−2
dy

((
T [vη(y, ρ)](x, y)− Φ2(x)

) vη(y, ρ)(x)

η2

)
dρ

=
1

rd−2

((
T [vy,r,η](x, y)− Φ2(x)

) vy,r,η∇(x)

η2

)
(x− y)T

|x− y|

+ (d− 2)

∫ r

0

1

ρd−1

((
T [vη(y, ρ)](x, y)− Φ2(x)

) vη(y, ρ)(x)

η2

)
dρ

(x− y)T

|x− y|

+

∫ r

0
R(y, ρ, x)

|vη(y, ρ)(x)|
η2

dρ.

Finally, we integrate over Ω and use Lemma 3.2 in order to control these three terms. We

control all of these by η
d−1
2d . �

3.2 Step 2: Linking the measurement with Φ2Da

In the previous subsection, we have shown that the measurement Mη is approximated by

M̃η(y, r) = − 1

η2

∫
Ω

Φ2(x)vy,r,η(x) ·Da(dx)

in a certain sense when η goes to zero. We suggest here another form of M̃η using the spherical
operators defined in subsection 2.3. As Da is a finite measure compactly supported, it is a
tempered distribution on Rd. Since Φ ∈ C0

(
Ω
)
, the vector field Φ2Da is a tempered distribution

on Rd defined by

〈
Φ2Da,ϕ

〉
S′(Rd)d,S(Rd)d

=

∫
Ω

Φ2ϕ ·Da.

The following result holds.
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Proposition 3.7: For any a ∈ A, η > 0 we have the formula

M̃η = −1

r

[(
rd−1 ~R[Φ2Da]

)
∗ wη(−.)

]
in Σ, (20)

where ∗ is the one dimensional convolution product with respect to the variable r and wη(r) =
1

η
w

(
r

η

)
.

Proof. Consider a test function ϕ ∈ S(Σ). We have

−
∫

Σ
M̃ηϕ = −

∫
Y

∫ ∞
0

Mη(y, r)ϕ(y, r)σ(dy)dr

=
1

η2

∫
Ω

Φ2(x)

(∫
Y

∫ ∞
0

vy,r,η(x)ϕ(y, r)σ(dy)dr

)
·Da(dx)

=

∫
Ω

Φ2(x)

(∫
Y

∫ ∞
0

1

r
wη (|x− y| − r)ϕ(y, r)dr

x− y
|x− y|

σ(dy)

)
·Da(dx)

=

∫
Ω

Φ2(x)

(∫
Y

(
wη ∗

ϕ(y, .)

r

)
(|x− y|) x− y

|x− y|
σ(dy)

)
·Da(dx)

=

∫
Ω

Φ2(x) ~R∗
[
rd−1

(
wη ∗

ϕ(y, .)

r

)]
(x) ·Da(dx)

=

〈
Φ2Da, ~R∗

[
rd−1

(
wη ∗

ϕ(y, .)

r

)]〉
S′(Rd),S(Rd)

=

〈
~R[Φ2Da], rd−1

(
wη ∗

ϕ(y, .)

r

)〉
S′(Σ),S(Σ)

=

〈
1

rd−1
~R[Φ2Da], wη ∗

ϕ(y, .)

r

〉
S′(Σ),S(Σ)

=

〈
1

r

(
rd−1 ~R[Φ2Da]

)
∗ wη(−.), ϕ

〉
S′(Σ),S(Σ)

.

�

3.3 Step 3: Helmholtz decomposition of Φ2Da

Since Φ2Da is a tempered distribution, we can consider its Fourier transform. As a ∈ Hs(Ω)
with s ∈ [0, 1/2[ and Da is supported in some compact subset K of Ω , it follows that Da ∈
Hs−1
K (Ω)d (see Appendix B for the definition of Hs−1

K (Ω)). Moreover, as Φ2 is in H2(Ω), we also

have that Φ2Da ∈ Hs−1
K (Ω)d. From Appendix B, we deduce that Φ̂2Da belongs to L1

loc(Rd)d
and satisfies ∫

Rd

∣∣∣Φ̂2Da
∣∣∣2 (ξ)

(
1 + |ξ|2

)(s−1)
dξ < +∞.

Let the Sobolev space Hα+1
curl (Rd) be defined by

Hα+1
curl (Rd) :=

{
A ∈ Hα(Rd)d, ∇×A ∈ Hα(Rd)d

}
.

The following proposition gives a generalization of the Helmholtz decomposition for some com-
pactly supported distributional vector fields.
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Proposition 3.8: Consider α ∈ R and U ∈ Hα
K(Ω)d, where K is a compact of Ω. There exists

u ∈ Hα+1(Rd) and A ∈ Hα+1
curl (Rd) such that

U = Du+∇×A

in the sense of distributions.

Proof. As U ∈ Hα
K(Ω), Û ∈ L1

loc(Rd)d. We define now û = Û ·ξ
i|ξ|2 ∈ L

1
loc(Rd) and Â = Û∧ξ

i|ξ|2 ∈
L1

loc(Rd)d. We have the decomposition Û = iûξ+ iξ ∧ Â. As iûξ is the Fourier transform of ∇u
where u is the inverse Fourier transform of û and has the same integrability as Û , we deduce
that u ∈ Hα+1(Rd) and A, the inverse Fourier transform of Â, is in Hα+1

curl (Rd). �

Using this last result, we write

Φ2Da = DΨ +∇×G (21)

with ψ ∈ Hs(Rd) and therefore, we get

~R[Φ2∇a] = ∂rR[ψ] (22)

in the sense of distributions. Using this last identity in (20) we obtain that

M̃η = −1

r

[(
rd−1∂rR[Ψ]

)
∗ wη

]
in Σ. (23)

Equation (23) plays an important role to recover the internal data in the next step.

3.4 Step 4: Approximating R[Ψ]

We can show now that from the previous identity, the quantity R[Ψ] can be approximated up

to a function depending only in y in H
d−1
2 (Σ) in order to apply Palamodov’s theorem (see [12]).

Theorem 3.9: Let s ∈
]

1
3 ,

1
2

[
and α > 0 and consider a ∈ As+α. Then P [M̃η] converges to

R[Ψ]− g in H
d−1
2

+s(Σ) where g is a function depending only on y. More precisely, there exists
a constant C depending on d, s, α, and Σ such that∥∥∥P [M̃η]−R[Ψ] + g

∥∥∥
H
d−1
2 +s(Σ)

≤ Cη
α
α+1 ‖Ψ‖Hs+α(Σ) .

Proof. Starting from (23) and integrating by parts, we write

M̃η(y, r) =

∫
R
R[Ψ](y, ρ)∂ρ

(
1

r
wη(ρ− r)ρd−1

)
dρ.

Now, applying P to M̃η, we get

P [M̃η](y, r) = −
∫
R
R[Ψ](y, ρ)∂ρ

(∫ r

r0

wη(ρ− s)
ρd−1

sd−1
ds

)
dρ.

Let us develop the test function as follows:

∂ρ

∫ r

r0

wη(ρ− s)
ρd−1

sd−1
ds = wη(ρ− r0)

ρd−1

rd−1
0

− wη(ρ− r)
ρd−1

rd−1
− θη(ρ, r)
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with

θη(ρ, r) = (d− 1)

∫ r

r0

w(ρ− s)(s− ρ)
ρd−2

sd
ds,

which satisfies ‖θη‖H1(]0,R[2) ≤ Cη
1/2, where C depends on r0, R, and d. Finally, we write

P [M̃η](y, r) =
1

rd−1

∫ R

0
ρd−1R[Ψ](y, ρ)wη(ρ− r)dρ−

1

rd−1
0

∫ R

0
ρd−1R[Ψ](y, ρ)wη(ρ− r0)dρ

+

∫ R

0
R[Ψ](y, ρ)θη(ρ, r)dρ.

Using Lemma C.1, we bound the H
d−1
2 (Σ) norm of the third term by Cη

1
2 ‖R[Ψ]‖

H
d−1
2 (Σ)

.

Moreover, using Lemma C.2, we say that as R[Ψ] ∈ H
d−1
2

+s+α(Σ), the first term converges to

R[Ψ] for the norm of H
d−1
2

+s(Σ) with an error controlled by η
α
α+1 ‖R[Ψ]‖

H
d−1
2 +s+α(Σ)

. Using

the same argument, the second term goes to g(y) = R[Ψ](y, r0) in the same manner. We finally
obtain that ∥∥∥P [M̃η]−R[Ψ] + g

∥∥∥
H
d−1
2 +s(Σ)

≤ Cη
α
α+1 ‖R[Ψ]‖

H
d−1
2 +s+α(Σ)

,

where C depends on d and the manifold Σ. �

3.5 Step 5: Approximating Ψ

We recall here that we have assumed the invertibility of the spherical means Radon transform.
We apply R−1 to the inequality given in Theorem 3.9 to get∥∥∥R−1 ◦ P [M̃η]−Ψ +R−1[g]

∥∥∥
Hs(D)

≤ Cη
α
α+1 ‖Ψ‖Hs+α(Σ) (24)

for some positive constant C independent of η.
The problem that we have here is that we do not know the map h = R−1[g]. Nevertheless,

if we assume that Y = ∂D′ with D b D′ being smooth, then, since Da vanishes outside of D
and Y ⊂ Ω \D, we can find Ψ̃ ∈ Hs such that Ψ̃|Y = 0 and the Helmholtz decomposition [16]

Φ2Da = DΨ̃ +∇× G̃

holds in D′. Extending Ψ̃ by zero outside D′ yields an Hs function for s ∈]0, 1/2[. Because
∂rR[h] = 0 and using Proposition 2.7, we have R[4h] = 0 and therefore 4h = 0 in D′. The
boundary condition Ψ̃|Y = 0 shows that h is uniquely determined by solving a Dirichlet problem
for the Laplacian.

To summarize five steps of this section, we state the following theorem.

Theorem 3.10: Consider a ∈ A0 ∩ SBV∞(Ω) satisfying supp (Da) ⊂ D b Ω and assume that
Y satisfies the wrap condition around D and surrounds D. Then there exists Ψ ∈ Hs(Rd) with
s ∈]0, 1/2[ and of class C∞ outside of supp (Da) satisfying Ψ|Y = 0 and

Φ2Da = DΨ +∇×G, (25)

where G ∈ Hs
curl(Rd) and Φ = F [a]. Moreover, R−1 ◦ P [Mη] + h converges strongly to Ψ in

Hs(D) when η goes to zero at a speed bounded by O
(
η

1
4

)
. Here, h is determined as above.
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This map Ψ will be now the starting point of the reconstruction procedure. In the next
section, we assume that Ψ is known in Hs(D) up to a small error in Hs(D). We will see how
to approximate the absorption parameter a from this data.

4 Stable reconstruction of the absorption map

In this section, we assume that the assumptions of Theorem 3.10 are satisfied and suppose in
addition that Y = ∂D. This is possible since Da is assumed to be compactly supported in D.
It simply suffices to enlarge D. As a consequence, we assume the knowledge of Ψ ∈ Hs(D)
of class C∞ in a neighborhood of ∂D, which satisfies Ψ|∂D = 0. The goal of this section is to
present a method to estimate the absorption map a from the knowledge of Ψ. We choose s such
that Hs+1(Ω) is embedded in L∞(Ω) in dimensions 2 and 3. This is true for any s ∈]1/3, 1/2[.

Let us take the divergence of (25) in the sense of distributions to get

∇ · (Φ2Da) = 4Ψ,

which looks like an elliptic equation with unknown a. There are two difficulties here. The first
one is that we do not have enough regularity to deal with this equation using a variational
approach. To do so, we should have Ψ in H1(D) and look for a solution a in H1(D). The
second difficulty is that the diffusion term Φ2 is unknown here and depends on a by Φ2 = F [a]2,
where F is the light fluence operator.

Finally, we recall the definition of the set of admissible absorption distributions:

As =
{
a ∈ A0 ∩Hs(Ω), ‖a‖Hs(Ω) ≤ RAs

}
and define

Bs =
{

Φ ∈W 1,∞(D), Φ ≤ Φ ≤ Φ, ‖∇Φ‖L∞ ≤ RBs
}
,

where RBs = supa∈As ‖∇F [a]‖L∞(D). Note that F maps As into Bs.

4.1 The change of function argument

The main idea is to introduce a new variable:

ã = a− a0 −
Ψ

Φ2
, (26)

which is well defined in Hs(D) since Φ ≥ Φ.

Proposition 4.1: For all a ∈ As and Φ = F [a], we have ã ∈ H1
0 (D) .

Proof. In the sense of distributions, we have

Dã = Da− DΨ

Φ2
+ 2Ψ

∇Φ

Φ3
,

Φ2Dã = Φ2Da−DΨ + 2Ψ∇ log Φ,

∇ · (Φ2Dã) = ∇ · (2Ψ∇ log Φ),

Φ24ã = ∇ · (2Ψ∇ log Φ)−∇(Φ2) ·Dã,

4ã =
1

Φ2
∇ · (2Ψ∇ log Φ)− 2∇(log Φ) ·Dã.
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Consider a test function ϕ ∈ D(D) and using the fact that ∇Φ ∈ L∞(D), which follows from
the fact that Φ ∈ H2+s(Ω), we have〈

1

Φ2
∇ · (2Ψ∇ log Φ), ϕ

〉
D′(D),D(D)

=
〈
∇ · (2Ψ∇ log Φ),

ϕ

Φ2

〉
H−1(D),H1

0 (D)

= −2

∫
D

Ψ

Φ2
∇(log Φ) · (∇ϕ− 2ϕ∇(log Φ))

≤ 2

Φ3 ‖Ψ‖L2(D) ‖∇Φ‖L∞(D)

(
‖∇ϕ‖L2(D) +

2

Φ
‖∇Φ‖L∞(D) ‖ϕ‖L2(D)

)
≤ C ‖ϕ‖H1

0 (D)

and so 1
Φ2∇ · (2Ψ∇ log Φ) ∈ H−1(D). We also have

〈2∇(log Φ) ·Dã, ϕ〉D′(D),D(D) = 〈Dã, 2∇(log Φ)ϕ〉H−1(D),H1
0 (D)

= −2

∫
D
ã
(
ϕ4(log Φ) +∇(log Φ) · ∇ϕ

)
= −2

∫
D
ã

(
aϕ− |∇Φ|2

Φ2
ϕ+∇(log Φ) · ∇ϕ

)
≤ 2 ‖ã‖L2(D)

(
a ‖ϕ‖L2(D) +

‖∇Φ‖2L∞(D)

Φ2 ‖ϕ‖L2(D) +
‖∇Φ‖L∞(D)

Φ
‖∇ϕ‖L2(D)

)
≤ C ‖ϕ‖H1

0 (D)

and so 2∇(log Φ)·Dã ∈ H−1(D). Finally, since4ã ∈ H−1(D) and ã is smooth in a neighborhood
of ∂D and satisfies ã|∂D = 0, it follows from the standard regularity theory that ã ∈ H1

0 (D).�

From the previous computation, it follows that ã is defined as the unique solution of{
∇ · (Φ2∇ã) = ∇ · (2Ψ∇ log Φ) in D,

ã = 0 on ∂D.
(27)

This system allows us to define an operator

G̃Ψ : Bs −→ H1
0 (Ω)

Φ 7−→ ã
(28)

and the one which gives a from Φ,

GΨ : Bs −→ Hs(Ω)

Φ 7−→

 a0 + G̃Ψ[Φ] +
Ψ

Φ2
in D,

a0 in Ω\D.

(29)

The global problem that we have to solve now is to find a pair (ã,Φ) ∈ H1(D) × Bs such
that
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−4Φ +

(
a0 + ã+

Ψ

Φ2
1D

)
Φ = 0 in Ω,

∇ · (Φ2∇ã) = ∇ · (2Ψ∇ log Φ) in D,

l∂νΦ + Φ = g on ∂Ω,

ã = 0 on ∂D,

ã = 0 in ∂Ω\D,
where 1D denotes the characteristic function of D.

4.2 Fixed point algorithm

We look for a solution a as the fixed point of the map GΨ ◦F : As −→ Hs(Ω). In order to cycle
this operator, we introduce the truncation operator

T : Hs(Ω) −→ Hs(Ω)

a 7−→ max
(

min(a, a), a
)

and look for a fixed point of the operator T ◦GΨ ◦ F : As −→ Hs(Ω).

Theorem 4.2: Consider Ψ in Hs(D). The operator T ◦GΨ ◦ F : As −→ Hs(Ω) is Hs-Lipschitz
and, for any a, a′ ∈ A, we have

‖T ◦GΨ ◦ F‖Lip(Hs(Ω)) ≤ c(s, d,Ω,Φ,Φ, RBs) ‖Ψ‖Hs(Ω)

and if ‖Ψ‖Hs(Ω) is small enough, T ◦ GΨ ◦ F is a contraction from As into As and admits a
unique fixed point in As called aΨ.

Proof. Reconsidering the Lipschitz estimate of the system 9 with a ∈ Hs(Ω) and taking into
account that F [a] belongs to W 1,∞(Ω) (see the last paragraph of Subsection 2.2) we can deduce
that F : Hs(Ω) −→W 1,∞(D) is Lipschitz and obtain that

‖F‖Lip(Hs(Ω),W 1,∞(D)) ≤ c(s, d,Ω)
(
RBs + Φ

)
.

Consider now Φ and Φ′ in Bs, then

|∇ log Φ−∇ log Φ′| ≤ 1

Φ
|∇(Φ− Φ′)|+ |∇Φ′|

Φ2 |Φ− Φ′|,

and so

∥∥∇ log Φ−∇ log Φ′
∥∥
L∞(Ω)

≤ 1

Φ

(
1 +

RBs
Φ

)∥∥Φ− Φ′
∥∥
W 1,∞(Ω)

.

This inequality proves that G̃Ψ : Bs −→ H1
0 (Ω) is Lipschitz and that∥∥∥G̃Ψ

∥∥∥
Lip(W 1,∞(D),H1

0 (Ω))
≤ 1

Φ3

(
1 +

RBs
Φ

)
‖Ψ‖L2(D) .

We can now control the Lipschitz norm of GΨ. Noticing that∥∥∥∥ 1

Φ2
− 1

Φ′2

∥∥∥∥
W 1,∞(D)

≤ 1

Φ3

(
2 + 3

RBs
Φ

(
Φ

Φ

)2
)∥∥Φ− Φ′

∥∥
W 1,∞(D)

,
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we get

∥∥GΨΦ−GΨΦ′
∥∥
Hs(Ω)

≤
∥∥∥G̃ΨΦ− G̃ΨΦ′

∥∥∥
H1

0 (Ω)
+ ‖Ψ‖Hs(Ω)

∥∥∥∥ 1

Φ2
− 1

Φ′2

∥∥∥∥
W 1,∞(D)

≤ 1

Φ3

[
3 + 3

RBs
Φ

(
1 +

(
Φ

Φ

)2
)]
‖Ψ‖Hs(Ω)

∥∥Φ− Φ′
∥∥
W 1,∞(D)

and finally,

‖GΨ‖Lip(W 1,∞(D),Hs(Ω)) ≤
1

Φ3

[
3 + 3

RBs
Φ

(
1 +

(
Φ

Φ

)2
)]
‖Ψ‖Hs(Ω) .

The truncation operator T : Hs(Ω) −→ Hs(Ω) satisfies

‖T‖Lip(Hs(Ω),Hs(Ω)) = 1.

The proof is then complete. �

In the case of a contraction map, the iterative algorithm converges exponentially to the fixed
point aΨ and yields a map

I : Hs(D) −→ As
Ψ 7−→ aΨ.

From the Lipschitz continuity of G̃Ψ with respect to Ψ, the following stability result holds.

Proposition 4.3: For all Ψ,Ψ′ ∈ Hs(D) such that GΨ ◦F and GΨ′ ◦F are contractions, we have

‖I[Ψ]− I[Ψ′]‖Hs(D) ≤ C‖Ψ−Ψ′‖Hs(D)

for some positive constant C.

Proof. Consider Ψ,Ψ′ ∈ Hs(D) such that GΨ ◦ F and GΨ′ ◦ F are contractions and call aΨ

and aΨ′ their fixed points. We have for any Φ ∈ Bs,

‖GΨ[Φ]−GΨ′ [Φ]‖Hs(Ω) ≤
∥∥∥G̃Ψ[Φ]− G̃Ψ′ [Φ]

∥∥∥
Hs(Ω)

+

∥∥∥∥Ψ−Ψ′

Φ2

∥∥∥∥
Hs(Ω)

.

Remarking that u := GΨ[Φ]−GΨ′ [Φ] satisfies{
∇ · (Φ2∇u) = 2∇ ·

[
(Ψ−Ψ′)∇ log Φ

]
in D,

u = 0 on ∂D,

it follows that ∥∥∥G̃Ψ[Φ]− G̃Ψ′ [Φ]
∥∥∥
Hs(Ω)

≤ 2RBs
Φ3

∥∥Ψ−Ψ′
∥∥
L2(Ω)

and so

‖GΨ[Φ]−GΨ′ [Φ]‖Hs(Ω) ≤
4RBs
Φ3

∥∥Ψ−Ψ′
∥∥
Hs(Ω)

.

We can now estimate
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‖aΨ − aΨ′‖Hs(Ω) = ‖GΨ ◦ F [aΨ]−GΨ′ ◦ F [aΨ′ ]‖Hs(Ω)

≤ ‖GΨ ◦ F [aΨ]−GΨ′ ◦ F [aΨ]‖Hs(Ω) + ‖GΨ′ ◦ F [aΨ]−GΨ′ ◦ F [aΨ′ ]‖Hs(Ω)

≤ ‖GΨ −GΨ′‖Hs(Ω) + ‖GΨ′ ◦ F [aΨ]−GΨ′ ◦ F [aΨ′ ]‖Hs(Ω)

≤ 4RBs
Φ3

∥∥Ψ−Ψ′
∥∥
Hs(Ω)

+ ‖GΨ′ ◦ F‖Lip(Hs(Ω)) ‖aΨ − aΨ′‖Hs(Ω) .

Let κ := ‖GΨ′ ◦ F‖Lip(Hs(Ω)) < 1. It follows that

‖aΨ − aΨ′‖Hs(Ω) ≤
4RBs

Φ3(1− κ)

∥∥Ψ−Ψ′
∥∥
Hs(Ω)

,

which completes the proof. �

5 Numerical simulations

In this section, we show how this new technique allows a very good reconstruction of highly
discontinuous absorption map. We consider here a realistic absorption map taken from a blood
vessels picture.

5.1 Forward problem

As we said in introduction, the main application of this acousto-optic method would be the
imaging of red light absorption which has high contrast in tumors due to the high level of
vascularization.
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1.4
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1.8

Fig. 5.1: Realistic biological light absorption map. (1) A real picture of living membrane by
transparency. (2) The absorption map chosen for the numerical experiments. The
resolution is about 132k pixels.

In the following, the domain is fixed to Ω =]0, 1.6[×]0, 1[ and we consider the absorption map
a given by Figure 5.1 (2). We define our domain D as a disk strictly included in Ω represented
by the red circle in Figure 5.2.

Using the same method as in the numerical simulation in [3] we compute the forward problem
in order to generate virtual measurements. For some centers y taken on Y := ∂D, r > 0 and
η = 10−4 fixed, we compute a discrete form of the map
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Fig. 5.2: Absorption map in Ω and the domain of interest D := D
(
(0.8, 0.5), 0.48

)
in red.

vy,r,η(x) =
η

r
w

(
|x− y| − r

η

)
x− y
|x− y|

,

where the wave shape w is defined by

w(t) =

 exp

(
1

t2 − 1

)
t ∈]− 1, 1[,

0 otherwise.

From this map, we compute the displaced absorption as av = a ◦ (Id + v)−1 and the variation
of the fluence Φv − Φ. Its cross correlation on the boundary leads to the measurement

Mη(y, r) =

∫
Ω

(avy,r,η − a)ΦΦvy,r,η ,

represented in Figure 5.3 (1). From that, we apply Theorems 3.1 and 3.9 to get an approximation
of R[Ψ] up to a function depending only on y.
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Fig. 5.3: Computed measurement Mη(y, r) and the deduced approximation of R[Ψ]. We used
128 acoustic centers on ∂D.

The non vertical visible lines on the illustration of R[Ψ] are due to the presences of blood
vessels. The vertical lines are just numerical artifacts due to the integration. As we only need to
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knowR[Ψ] up to a function depending only on y to theoretically reconstruct the absorption, this
last numerical issue is not important. Now, from numerical spherical means Radon transform
inversion, we compute the internal data map Ψ inside D.

0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

Ψ
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−0.5

0

0.5

1
·10−4

Fig. 5.4: Internal data map Ψ computed inside the domain of interest D.

As we can observe the blood vessels in the representation of the map Ψ, we shall confirm
that there is a good information about the absorption map. If we try the algorithm presented
in [3], we take the derivative of the data map Ψ in order to compute the source term 4Ψ
which destroys the information due to the numerical noise. It is even worse with additional
measurement noise. Here, we use the fixed point algorithm proposed in Theorem 4.2. We
compute the fixed point sequence (an,Φn)n∈N defined by

(a0,Φ0) :


a0 = 1 in Ω,

Φ0 :

{
−4Φ0 + a0Φ0 = 0 in Ω,

l∂νΦ0 + Φ0 = g on ∂Ω,

and

∀ n ∈ N, (an+1,Φn+1) :



ãn+1 :


∇ · (Φ2

n∇ãn+1) = 2∇ · (Ψ∇ log Φn) in D,

ãn+1 = − Ψ

Φ2
n

on ∂D,

an+1 :

 1 +
Ψ

Φ2
n

+ ãn+1 in D,

1 in Ω\D,

Φn+1 :

{
−4Φn+1 + anΦn+1 = 0 in Ω,

l∂νΦn+1 + Φn+1 = g on ∂Ω.

After few iterations of this sequence, we get a good reconstruction of the absorption map a.
To fix the ideas, let us say that the variational information about a is in the map Ψ/Φ2. We
correct it with a smooth function ã in order to reach the map a. The difference of these two
functions gives an approximation of a− 1 at each iteration.

Remark 5.1: The power of this algorithm is that we avoid the derivation of the data map Ψ
and we only solve elliptic equation for smooth solutions Φn and ã. This provides a good
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Fig. 5.5: The map Ψ/Φ2 where the blood vessels are visible and the map ã after 10 iterations
of the fixed point algorithm.

reconstruction of the discontinuities of the absorption map a and illustrates the fixed point
Theorem 4.2 which works for functions in Hs(Ω) with s < 1/2.

Remark 5.2: Our finest reconstruction is given in Figure 5.6 (4). Even if the vessels are easy
to recognize, two problems occur. The first one is that the reconstructed solution is lightly
attenuated. This is due to the approximation made using the asymptotic formula given in
Theorem 3.9. A nice improvement would be to solve a deconvolution problem instead of the
asymptotic formula. The second problem is the strong attenuation close to the boundary ∂D.
This phenomenon is normal and is due to the fact that the measurements have no sense for
small radius r. In the mathematical part, we have supposed that a = a0 in a neighborhood of
∂D. In this numerical example, this hypothesis is not respected and the consequence is that
the reconstruction is not valid close to ∂D. Nevertheless, the inside part of the reconstruction
is quite satisfying.

6 Concluding remarks

In this paper we have introduced for the first time a mathematical and numerical framework
for reconstructing highly discontinuous contrast distributions from internal measurements. The
framework yields stable and accurate reconstructions. We have illustrated our approach on a
highly discontinuous absorption map, chosen from a real biological tissue data. Many challeng-
ing problems are still open. It would be very interesting to develop an optimal control scheme
for reconstructing highly discontinuous contrast distributions and prove its convergence, start-
ing from a good initial guess. Another challenging problem is to estimate the resolution of the
developed approach in terms of the signal-to-noise ratio in the data.

A Spherical density of Da

Lemma A.1: Consider a ∈ SBV∞(Ω) constant out of the convex < D ⊂ Ω and the mollifier

sequence wη(r) = 1
ηw
(

1
η

)
. Suppose that Y satisfies the wrap condition around D, then the

sequence of functions defined on Σ
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Fig. 5.6: Reconstruction of the absorption map after 10 iterations of the fixed point sequence.
(1) The true absorption. (2) Reconstruction using uniform mesh of 5k triangles. (3)
Reconstruction with non uniform mesh of 13k triangles. (4) Reconstruction with non
uniform mesh of 106k triangles.

ϕη(y, r) =

∫
Ω
wη(|x− y| − r)|Da|(dx)

satisfies

‖ϕη‖L2(Σ) ≤ Cη
− 1

2d ,

where C depends on |Da|(Ω), |Y |, and the wrap constant.
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Proof. We develop ‖ϕη‖2L2(Σ) norm as

‖ϕη‖2L2(Σ) =

∫
Σ

∫
Ω

∫
Ω
wη(|x− y| − r)wη(|x′ − y| − r)|Da|(dx)|Da|(dx′)dydr

=

∫
Y

∫
Ω

∫
Ω

∫ R

0
wη(|x− y| − r)wη(|x′ − y| − r)dr|Da|(dx)|Da|(dx′)dy

=

∫
Y

∫
Ω

∫
Ω
wη(|x− y| − |x′ − y|)|Da|(dx)|Da|(dx′)dy,

where

wη(r) =

∫
R
wη(r − ρ)wη(−ρ)dρ

satisfies supp (wη) ⊂ [−2η, 2η], ‖wη‖L1(R) ≤ 1 and wη ≤ 1
η . Let us fix ε > 0 and define

Zε = {(x, x′) ∈ Ω2, |x− x′| ≤ ε}. First, we have

∫
Y

∫
Zε

wη(|x− y| − |x′ − y|)|Da|(dx)|Da|(dx′)dy ≤ 1

η
|Y |
∫

Ω

∫
B(x,ε)

|Da|(dx′)|Da|(dx)

≤ 1

η
|Y |
∫

Ω
|Da|(B(x, ε))|Da|(dx).

Using the fact that a ∈ SBV∞(Ω), the Radon measure |Da| can be decomposed as

|Da| = |∇la|Ld + |[a]S |Hd−1
S ,

where |∇la| ∈ L∞(Ω) and |[a]S | ∈ L∞(S). Thus, we can control the upper (d-1)-densities of
|Da| using that for any x ∈ Ω′

1

εd−1
|Da|(B(x, ε)) ≤ ‖∇la‖L∞(Ω) ω

dε+ ‖[A]S‖L∞(S)

1

εd−1
Hd−1(S ∩B(x, ε)).

In fact, [10, Theorem 6.2] says that for any x ∈ S,

lim sup
ε→0

1

εd−1
Hd−1(S ∩B(x, ε)) ≤ 2d−1 a.e. on S,

lim sup
ε→0

1

εd−1
Hd−1(S ∩B(x, ε)) = 0 a.e. on Ω′\S,

which implies for |Da| that

lim sup
ε→0

1

εd−1
|Da|(B(x, ε)) ≤ ‖[A]S‖L∞(S) 2d−1 a.e. on S,

lim sup
ε→0

1

εd−1
|Da|(B(x, ε)) = 0 a.e. on Ω′\S.

Using Fatou lemma, it follows that

lim sup
ε→0

∫
Ω′

1

εd−1
|Da|(B(x, ε))|Da|(dx) ≤

∫
Ω′

lim sup
ε→0

1

εd−1
|Da|(B(x, ε))|Da|(dx)

≤ ‖[A]S‖L∞(S) 2d−1Hd−1(S).

That simply shows that the left-hand integral is bounded when ε goes to zero. We finally arrive
at
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∫
Y

∫
Zε

wη(|x− y| − |x′ − y|)|Da|(dx)|Da|(dx′)dy ≤ C1
εd−1

η
, (30)

where the constant C1 depends on |Da|(Ω) and |Y |. The second integral that we have to control
is ∫

Y

∫
Ω′2\Zε

wη(|x− y| − |x′ − y|)|Da|(dx)|Da|(dx′)dy.

For that, we define for any (x, x′) ∈ Ω2 the set

Yη(x, x
′) =

{
y ∈ Y,

∣∣|x− y| − |x′ − y|∣∣ ≤ 2η
}
.

As Y satisfies the wrap condition around Ω′, a computation leads to

Hd−1
(
Yη(x, x

′)
)
≤ 2C2

η

ε
∀ (x, x′) ∈ Ω′2\Zε,

where C2 is the wrap constant relative to Y and Ω′. We can now control the second term,∫
Y

∫
Ω′2\Zε

wη(|x− y| − |x′ − y|)|Da|(dx)|Da|(dx′)dy ≤ 1

η

∫
Ω′2
Hd−1

(
Yη(x, x

′)
)
|Da|(dx)|Da|(dx′)

≤ C2

ε
|Da|(Ω)2.

(31)
Finally, putting together (30) and (31), we obtain

‖ϕη‖2L2(Σ) ≤ C1
εd−1

η
+ 2

C2

ε
|Da|(Ω)2,

which is true for any choice of ε > 0. So, we fix it at the best choice ε = η1/d to obtain

‖ϕη‖2L2(Σ) ≤ (C1 + 2C2|Da|(Ω)2)η−
1
d ,

which concludes the proof. �

B Sobolev spaces with fractional order and Helmholtz decomposition

On the smooth open domain D of Rd, for any α ≥ 0 the Sobolev space Hα(D) is defined
as usual. We shall also consider the space of functions of Hα(D) supported in a compact K
denoted Hα

K(D). As the functions of Hα
K(D) can be extended by zero outside of D, we can

define their Fourier transform and use the following characterization,

Definition B.1: For any α ≥ 0, K ⊂ D compact we define

Hα
K(D) =

{
f ∈ L2(D), supp (u) ⊂ K,

∫
Rd
|f̂ |2(ξ)(1 + |ξ|2)αdξ < +∞

}
and for any f ∈ Hα

K(D) we will denote

‖f‖Hα(D) =

(
1

(2π)d

∫
Rd
|f̂ |2(ξ)(1 + |ξ|2)αdξ

) 1
2

.
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We define now H−αK (D) by duality.

Definition B.2: For any α > 0, K ⊂ D compact we define

H−αK (D) =
{
u ∈ Hα(D)′, supp (u) ⊂ K

}
endowed with the continuity norm.

Fortunately, these spaces have also a Fourier characterization. For any u ∈ H−αK (D), u is a
compact supported distribution, i.e., an element of E ′(D), which naturally embeds in S ′(Rd).
So, the Fourier transform û is defined in S ′(Rd).

Proposition B.1: For any α > 0, K ⊂ D compact,

H−αK (D) =

{
u ∈ E ′(D), supp (u) ⊂ K, û ∈ L1

loc

(
Rd
)
,

∫
Rd
|û|2(ξ)(1 + |ξ|2)−αdξ < +∞

}
.

Proof. Let us take u ∈ H−αK (D). As u ∈ S ′(Rd), we take û ∈ S ′(Rd), ϕ ∈ S ′(Rd) and we
compute ∣∣∣∣〈(1 + |ξ|2)−α/2û, ϕ

〉
S′(Rd),S(Rd)

∣∣∣∣ =

∣∣∣∣〈u, ̂[
(1 + |x|2)−α/2ϕ

]〉
S′(Rd),S(Rd)

∣∣∣∣
≤ ‖u‖Hα(D)′

∥∥∥ ̂[
(1 + |x|2)−α/2ϕ

]∥∥∥
Hα(D)

≤ (2π)d/2 ‖u‖Hα(D)′ ‖ϕ‖L2(D) ,

which proves that (1 + |ξ|2)−α/2û ∈ L2(Rd) and(
1

(2π)d

∫
Rd
|û|2(ξ)(1 + |ξ|2)−αdξ

)1/2

≤ ‖u‖Hα(D)′ .

Conversely, if u satisfies these conditions, we show that it is in Hα(D)′ and that

‖u‖Hα(D)′ ≤
(

1

(2π)d

∫
Rd
|û|2(ξ)(1 + |ξ|2)−αdξ

)1/2

.

Then the proof is complete. �

We can now define the Helmholtz decomposition of a distribution vectorial field in the
Sobolev sense for fractional order greater than −1. This allows us to precise the regularity of
Ψ depending on the regularity of a.

C Kernel operators in partial Sobolev spaces

In this appendix, we give two useful results about some kernel operators acting on one variable
of a function. These results are given for functions defined in Rd in order to use the Fourier
transform. They stay valid for functions defined on any manifold isomorphic to an open domain
of Rd up to a multiplicative constant depending on the isomorphism.
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Lemma C.1: Consider a kernel θ ∈ L2(R2) and the operator T : L2(Rd) −→ L2(Rd) defined by

T [f ](x) =

∫
R
f(t, x̃)θ(t, x1)dt

for a.e. x ∈ Rd with x̃ = (x2, . . . , xd). If, for s > 0, f ∈ Hs(Rd) and θ ∈ Hs(R2), then
T [f ] ∈ Hs(Rd) and we have

‖T [f ]‖Hs(Rd) ≤ ‖θ‖Hs(R2) ‖f‖Hs(Rd) .

Proof. Let us compute the Fourier transform of T [f ],

T̂ [f ](ξ) =

∫
R

∫
R

∫
Rd−1

f(t, x̃)θ(t, x1)e−ix1ξ1e−ix̃·ξ̃dx̃dx1dt

=

∫
R

x̃

f̂ (t, ξ̃)
x1

θ̂ (t, ξ1)dt,

so

|T̂ [f ]|2(ξ) ≤
∫
R
|
x̃

f̂ (t, ξ̃)|2dt
∫
R
|
x1

θ̂ (t, ξ1)|2dt.

Then, using Plancherel theorem,∫
R
|
x̃

f̂ (t, ξ̃)|2dt =
1

2π

∫
R
|f̂(ξ)|2dξ1

and ∫
R
|
x1

θ̂ (t, ξ1)|2dt =
1

2π

∫
R
|θ̂(τ, ξ1)|2dτ.

Hence,

|T̂ [f ]|2(ξ) ≤ 1

(2π)2

∫
R
|f̂(ξ)|2dξ1

∫
R
|θ̂(τ, ξ1)|2dτ

|T̂ [f ]|2(ξ)
(
1 + |ξ|2

)s ≤ 1

(2π)2

∫
R
|f̂(ξ)|2

(
1 + |ξ̃|2

)s
dξ1

∫
R
|θ̂(τ, ξ1)|2

(
1 + ξ2

1

)s
dτ

1

(2π)d

∫
Rd
|T̂ [f ]|2(ξ)

(
1 + |ξ|2

)s
dξ ≤

1

(2π)d

∫
Rd
|f̂(ξ)|2

(
1 + |ξ|2

)s
dξ

1

(2π)2

∫
R2

|θ̂(τ, ξ1)|2
(
1 + ξ2

1 + τ2
)s
dτdξ1,

which completes the proof. �

In the case where the kernel is approaching a delta function, it is useful to understand how
the operator is approaching the identity.

Lemma C.2: Consider w ∈ C∞c (R) supported in [−1, 1], non negative and satisfying ‖w‖L1(R) =

1. For any η > 0, t ∈ R we denote wη(t) = 1
ηw
(
t
η

)
. Let us consider the sequence of operator

Tη : L2(Rd) −→ L2(Rd) defined by

Tη[f ](x) =

∫
R
f(t, x̃)wη(x1 − t)dt.
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For all α ≥ 0 and η > 0, Tη is continuous operator Tη : Hα(Rd) −→ Hα(Rd) and for all
β > 0, f ∈ Hα+β(Rd), Tη[f ] converges to f in Hα(Rd). More precisely,

‖Tη[f ]− f‖(Hα(Rd) ≤ 2η
β
β+1 ‖f‖Hα+β(Rd) .

Proof. Let us compute the Fourier transform of T [f ],

T̂ [f ](ξ) =

∫
R

∫
R

∫
Rd−1

f(t, x̃)wη(x1 − t)e−ix1ξ1e−ix̃·ξ̃dx̃dx1dt

=

∫
R

∫
R

∫
Rd−1

f(t, x̃)wη(u)e−iuξ1e−itξ1e−ix̃·ξ̃dx̃dudt

= f̂(ξ)ŵη(ξ1),

where ŵη ≤ 1. This proves that ‖Tη[f ]‖Hα(Rd) ≤ ‖f‖Hα(Rd). Now consider β > 0 and f ∈
Hα+β(Rd), we have (

T̂ [f ]− f̂
)

(ξ) = f(ξ)

∫
R
wη(t)(e

−itξ1 − 1)dt,∣∣∣T̂η[f ]− f̂
∣∣∣2 (ξ) ≤ |f̂ |2(ξ)

∫
R
wη(t)|e−itξ1 − 1|2dt

by convexity, and we write,∣∣∣T̂η[f ]− f̂
∣∣∣2 (ξ) = |f̂ |2(ξ) sup

|t|≤η
|e−itξ1 − 1|2.

A study of the function ξ1 7→ sup|z|≤η |e−izξ1 − 1|2 gives us that

sup
|t|≤η
|e−itξ1 − 1|2 ≤ 4η

2β
β+1
(
1 + |ξ|2

)β
,

and we finally get∫
Rd

∣∣∣T̂η[f ]− f̂
∣∣∣2 (ξ)

(
1 + |ξ|2

)α
dξ ≤ 4η

2β
β+1

∫
Rd
|f̂ |2(ξ)

(
1 + |ξ|2

)α+β
dξ,

which is equivalent to

‖Tη[f ]− f‖Hα(Rd) ≤ 2η
β
β+1 ‖f‖Hα+β(Rd) .

Hence, the proof is complete. �

References

[1] G. Alberti and C. Mantegazza. A note on the theory of SBV functions. Boll. Un. Mat.
Ital., B (7) 11 (1997), no. 2, 375–382.

[2] H. Ammari. An Introduction to Mathematics of Emerging Biomedical Imaging. Vol. 62,
Mathematics and Applications, Springer-Verlag, Berlin, 2008.

[3] H. Ammari, E. Bossy, J. Garnier, L. H. Nguyen and L. Seppecher. A reconstruction al-
gorithm for ultrasound-modulated diffuse optical tomography. Proc. Amer. Math. Soc., to
appear.

30



[4] H. Ammari, E. Bossy, J. Garnier, and L. Seppecher. Acousto-electromagnetic tomography.
SIAM J. Appl. Math., 72 (2012), 1592–1617.

[5] H. Ammari, J. Garnier, L.H. Nguyen, and L. Seppecher. Reconstruction of a piecewise
smooth absorption coefficient by an acousto-optic process. Comm. Part. Differ. Equat., 38
(2013), no. 10, 1737–1762.

[6] S.R. Arridge. Optical tomography in medical imaging. Inverse Problems, 15 (1999), R41–
R93.

[7] M. Born and E. Wolf. Principles of Optics. Cambridge University Press, Cambridge, 1999.

[8] M. Fink and M. Tanter. Multiwave imaging and super resolution. Phys. Today, 63 (2010),
28–33.

[9] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order.
Springer-Verlag, Berlin, 1977.

[10] P. Mattila. Geometry of Sets and Measures in Euclidian Spaces. Fractals and rectifiability.
Cambridge Press, 1995.

[11] W. Naetar and O. Scherzer. Quantitative photoacoustic tomography with piecewise con-
stant material parameters. Arxiv: 1403.2620.

[12] V. Palamodov. Remarks on the general Funk transform and thermoacoustic tomography.
Inverse Probl. Imaging, 4 (2010), no. 4, 693–702.

[13] E.T. Quinto. Support theorems for the spherical Radon transform on manifolds. Int. Math.
Res. Lett., 2006, 1–17 (Article ID 67205).

[14] J. C. Schotland. Direct reconstruction methods in optical tomography. Lecture Notes in
Math., Vol. 2035, 1–29, Springer-Verlag, Berlin, 2011.

[15] J.K. Seo and E.J. Woo. Nonlinear Inverse Problems in Imaging. Wiley, 2013.
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