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Abstract: Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and
as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is
part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the
deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance
and the resolution of infection. The control mechanisms of cell death processes by viruses have been
extensively studied. Apoptosis can be triggered by different viral determinants through different
pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV)
induces Zika disease in humans, which has caused severe neurological forms, birth defects, and
microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to
persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting
antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in
the etiology of the disease have been widely studied and debated. In this review, we examined the
interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with
this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending
on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral
persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the
use of ZIKV as an oncolytic agent.

Keywords: apoptosis; cell death; Zika virus; ZIKV

1. Introduction

The recent COVID pandemic reminds us of how vulnerable the world’s population
is to zoonotic RNA viruses of medical concern. Between 2007 and 2016, the emergence
of epidemic strains of mosquito-borne Zika virus (ZIKV), a member of the flavivirus
genus of Flaviviridae family, was in the spotlight. [1]. At that time, the rapid expansion of
the Zika epidemic throughout the intertropical zone had already received international
attention. Health authorities from several countries were concerned and had to deal with a
disease whose clinical outcomes such as congenital syndromes and microcephaly in infants
were more severe and frequent than previously known [2]. The international scientific
community had to react to a poorly documented infectious agent whose interactions with
its hosts (human or mosquitoes), pathogenesis, and unusual transmission pathways had
been only partially or not described [3].

The pathogenicity of an infectious agent depends largely on the cytopathic effects it
will produce in its target cells. In contrast, programmed cell death (PCD) is an urgent and
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necessary defense response, implemented by the infected host to disrupt virus multiplica-
tion and propagation, thereby preserving other cells and surrounding tissue [4]. The death
of infected cells by apoptosis also plays a crucial role in promoting antigen presentation
and recruiting immune cells, thus facilitating the infection resolution [5,6]. Failures in viral
clearance are widely attributed to defects in the infected cells’ auto-destruction [7].

Despite the tissue damage and the subsequent critical loss of cell populations, PCD by
apoptosis is thus considered a ‘necessary evil’ of the body’s response in its efforts to get rid
of the infectious agent.

In the case of ZIKV infection and pathogenesis, massive apoptosis of neuronal progen-
itor cells (NPCs), early in fetal development, has been proposed as an explanation for the
specific induced central nervous system (CNS) disorders in newborns and infants [8,9]. At
the same time, the finding that ZIKV can persist in adults in the urinary and reproductive
tracts and semen, for many months after the acute infection episode, is an indication that
viral clearance may be incomplete and associated with impaired or delayed apoptosis [10].

In this review, we propose examining the available data on ZIKV-induced apoptosis
and the state of knowledge regarding the virus’s ability to manipulate, delay, or inhibit
the cell death response. We also discuss antiviral therapies based on the remediation of
apoptosis, and given its unique dual relationship with cell death, the possibility of using
ZIKV as an oncolytic agent.

2. Apoptotic Cell Death
2.1. Features of Apoptosis

Apoptosis is one of the genetically programmed cell deaths that regulates tissue home-
ostasis and aims to eliminate non-viable, stressed, injured, or infected cells [11]. Cell death
by apoptosis is a process defined by canonical morphological and molecular criteria. Apop-
tosis induces specific morphological changes that lead to cell implosion and disappearance.
This is supported by the condensation and fragmentation of the nucleus (pyknosis and
karyorrhexis), followed by plasma membrane blebbing and cell disassembly [12]. The
process ends by efferocytosis, with cell residues such as blebs or apoptotic bodies being
engulfed by non-dying neighboring cells or professional phagocytes [13]. At the molecular
level, the caspase family of proteases is required for the completion of the operation, which
entails initiation and execution phases [14]. Mitochondria plays a major role in the initiation
of apoptosis through the permeabilization of its outer membrane (MOMP) [15]. The mem-
bers of the BCL-2 protein family are the main actors of the MOMP (Figure 1). Among the
family are proteins with the BH3 domain only (e.g., BID, BIM, NOXA, BAD), which activate
or control other BCL-2 proteins (the pro-apoptotic BAX and BAK) to initiate the complex
formation required for MOMP, while anti-apoptotic regulators such as BCL-2, BCL-XL, and
MCL-1 inhibit its formation [16]. MOMP leads to the release of cytochrome-c from the mi-
tochondria and the activation of the protein apoptosis protease activating factor 1 (APAF-1).
Oligomerized cytochrome-c-APAF-1, together with pro-caspase-9, form a macromolecular
complex called apoptosome [17]. Activated caspase-9 from the apoptosome complex will
then process the executioner pro-caspase-3 into active caspase-3, which in turn degrades
numerous substrates such as poly ADP-ribose polymerase (PARP) [18].

Several typical situations are capable of initiating apoptosis (Figure 1). Receiving death
signals activates the extrinsic pathway through TNF receptors (TNFR) and Fas receptors
(CD95) and leads to death-inducing signaling complex (DISC) formation and activation of
caspase-8. This initiating caspase can activate BID, which will then activate the mitochon-
drial pathway [19,20]. Cell stresses decompensations, damages of physico-chemical origin
(UV, drugs, reactive oxygen species) or following endoplasmic reticulum (ER) stress, and
an unresolved unfolded protein response (UPR), lead to an intrinsic pathway of apoptosis
with mitochondrial membrane modifications and caspase-9 activation [21,22].
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Figure 1. The different pathways of apoptosis. Apoptosis can follow several pathways, depending on
the signals integrated by the cell and the respective influence of the mobilized pro- and anti-apoptotic
factors. The extrinsic pathway is induced by external death signals such as TNFα and mediated by
death receptors (FAS, DR4 expressed on the cell surface. The intrinsic pathway is induced by internal
stimuli such as DNA damage, oxidative stress, or intracellular parasites. Apoptosis could also be
activated by unresolved endoplasmic reticulum stress (ER stress) and unfolded protein response
(UPR) through C/EBP HOmologous Protein (CHOP) [15–22]. Viruses such as BHV, DENV, WNV,
JEV, and HSV (in red) can induce apoptosis by the activation of different pathways [23–35].

2.2. Virus-Induced Apoptosis

Each stage of a viral infection cycle is likely to drive pro-apoptotic signaling. First,
some viruses can trigger an extrinsic pathway, just upon attachment and entry. In the cases
reported in the literature (e.g., for the bovine herpesvirus (BHV),) functional proximity
between the viral cell surface binding site and death receptors seems to be involved [23].
Second, intrinsic pro-apoptotic signaling in infected cells is the logical consequence of
the multiple decompensations caused by viral multiplication on cellular homeostasis. It
is argued that to ensure its replication cycle and the production of its progeny, the virus
robs the cell of its resources for its own benefit. This hijacking of cellular metabolism, the
diversion of protein synthesis, and nucleotide pools have been described as being able to
disrupt mitochondrial homeostasis and activate the intrinsic pathway of apoptosis [24–26].

In addition to metabolic reprogramming, the increasing amounts of viral compounds
following virus replication are likely to generate stresses that lead to apoptosis initiation.
The considerable input of proteins to be processed by the endoplasmic reticulum leads to
ER stress and UPR. This adaptive response is implemented by cells for its antiviral effects
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at the end. UPR is a way to reduce viral protein synthesis and ultimately results in the
self-destruction of the cell, thus bypassing the virus. Many viruses have replication cycles
that lead to UPR-dependent apoptosis. This kind of viral induced cellular stress, followed
by cell death has been extensively documented, for example, in Japanese encephalitis virus
(JEV) and herpes simplex virus (HSV) infections [27–29]. Viral compounds have been
identified as capable of inducing apoptosis on their own. Among the flaviviruses, the
overexpression of viral proteins, both of structural and non-structural origin, or of peptides
derived from these proteins such as the peptide called apoptoM has demonstrated their
cytotoxic capacity [30–33]. Unfortunately, the exact mechanisms of their pro-apoptotic
action remain poorly understood. One assumption is that some of them may be more
specifically responsible for the UPR response by initiating the formation of misfolded
aggregates in the ER lumen.

The literature on virus-induced apoptosis frequently reports that viruses can change
the dominant relationship between pro- and anti-apoptotic factors. It has been shown that
Dengue virus (DENV2) induces apoptosis via the expression of XIAP associated factor
1 (XAF1), an inhibitor of the anti-caspase activity of the XIAP protein [34]. Additionally,
several viruses are known to upregulate the expression of pro-apoptotic factors. West
Nile virus (WNV), for example, induces apoptosis via increased transcription of the pro-
apoptotic factor BAX [35] (Figure 1).

Furthermore, it is increasingly suggested that pattern recognition receptor (PRR)
activation by viral compounds, in particular viral genomes in all their forms (DNA, cDNA,
single-, and double-stranded RNA) and the subsequent innate immunity signaling, can
result in apoptosis [36]. The mitochondrial antiviral-signaling protein (MAVS) recruitment
by RIG-I and MDA5 sensing can disrupt the mitochondrial membrane potential and lead
to caspase activation [37]. IRF3, an interferon response factor, can directly promote BAX
oligomerization at the outer mitochondrial membrane or act as a transcription factor able
to upregulate the expression of BH3-only NOXA [38,39]. Of note, activation of PRRs,
in addition to promoting the immune response with inflammatory cytokine production,
seems to lead to various forms of cell death such as pyroptosis and necroptosis [40]. This
diversity of signaling pathways in response to viral infections has led to the emergence
of a PANoptosis concept, based on the crosstalk between key molecules of each type of
PCD [41].

3. Zika Infection
3.1. Zika Virus, Historical Data

Zika virus (ZIKV) is a pathogenic arbovirus, vectorized by mosquitoes of the genus
Aedes (Ae.) [42]. It belongs to the Flaviviridae family and the Flavivirus genus such as DENV,
WNV, and many others. It was initially isolated in 1947 from a sentinel rhesus monkey
during a study on the circulation of the Yellow Fever virus (YFV) in Uganda and found
later in Ae. Africanus mosquitoes [43]. The first human case was described in 1952 [44], but
little research on ZIKA arbovirosis has been conducted over the past century as only a few
outbreaks and sporadic cases have been reported, with only mild characteristics evoked
for the symptoms. This has changed over the last twenty years with the re-emergence of
ZIKV, associated with major epidemics and severe forms of ZIKA diseases. ZIKV returned
to the spotlight in 2007 in Micronesia [45], then the virus reached French Polynesia in
2013 [46], and affected Brazil in 2015, where an estimated 1.5M people were infected [47].
This epidemic emergence led the World Health Organization (WHO) to declare ZIKA
disease as a public health emergency in February 2016. Analysis of circulating viruses
revealed the existence of two lineages, an African lineage and an Asian-American lineage
containing all the strains that have led to the epidemic outbreaks [48]. Today, the virus
circulates endemically in several regions and outbreaks are occasionally observed such
as in Jaipur in India [49]. Further emergences could lead to sporadic outbreaks in certain
places described as being at high risk of introduction [50,51].
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3.2. Zika Virus Transmission and Clinical Outcomes

Associated with the virus’s emergence, new modes of transmission have been discov-
ered. Several hypotheses have been put forward to explain the extent and rapid expansions
of the last outbreaks. Among them was the switch from historical African and sylvatic
species of mosquitoes to more urban vectors, mainly Ae. Aegypti, but also Ae. Albopictus,
Ae. Polynesiensis, Ae. Vittatus, Ae. Unilineatus, and Ae. Hensilli [52]. More unusual among
flaviviruses, non-vector modes of transmission have been reported for ZIKV such as sexual
transmission. This has led the Centers for Disease Control (CDC) and the WHO to recom-
mend the use of condoms or avoidance of sex for at three months [53,54]. Maternal–fetal
vertical transmissions were also reported during pregnancy [55].

Clinical forms are in most cases common to many arbovirosis and include fever, rash,
arthralgia, and sometimes conjunctivitis due to direct eye infection [56]. The febrile state
usually resolves in less than a week [45].

However, serious complications have occurred after infection with ZIKV. The most
outstanding ones have been neurodevelopmental injuries during mother-to-fetus transmis-
sion, but peripheral nervous system disorders such as Guillain-Barré syndrome in adults
have also alerted the international scientific community. High levels of anti-ganglioside
antibodies in affected patients with this syndrome may be linked to this pathology [57,58].

Numerous cases of congenital Zika syndrome (CZS) including microcephaly due to
arrested development of the cerebral cortex [59], brain calcifications, intrauterine growth
restriction, and fetal death were reported during the 2013 Polynesian and 2015 Brazilian
epidemics and among imported cases all over the world [9,59]. The case fatality rate for
microcephalic infants is estimated to be around 10%, with the worst outcomes seen in late
preterm and/or low birth weight newborns [60,61].

Another surprising feature of Zika infection was the discovery that viral RNA could be
found until 40 days in serum and until 120 days in semen after the onset of symptoms [62,63].
Moreover, a recent report suggests that viremia could be found three years after infection,
probably due to genetic susceptibility [64]. All these data suggest that ZIKV can persist in
the host body after the acute phase of the viral infection.

3.3. Zika Virus Structure and Life Cycle

The ZIKV genome is composed of a positive 11 kb single-stranded RNA that encodes
10 proteins. Among these proteins, three are structural (C, prM, E) and seven are non-
structural (NS1, NS2A/B, NS3, NS4A/B, NS5) as shown in Figure 2A and reviewed by
Petersen et al. [65]. In classical vector transmission, an infected mosquito will deliver
the virus to the epidermis of the host during its blood meal. ZIKV will further enter its
target cells and move along the endocytic pathway to reach the endosome. Fusion of
the viral envelope and decapsidation will release the viral genome into the cytoplasm
where it will be directly translated into a polyprotein further cleaved by viral proteases
(NS2B/NS3) and host proteases of the endoplasmic reticulum (ER) and Golgi apparatus.
The envelope protein (E) is involved in virus entry and receptor recognition. The membrane
(prM) protein present in the immature virion prevents premature fusion during egress; it
is further cleaved in M protein. The nucleocapsid protein (C) holds the viral RNA. The
non-structural proteins participate mainly in viral replication. The NS5 protein implements
genome replication platforms at the ER membrane, with cofactor proteins such as NS1,
NS4A, and NS4B. NS1 is a singular flaviviral protein that can be secreted and found
circulating in the bloodstream. Its role in Zika disease is not clearly identified, but it is
known to be highly immunogenic and potentially involved in metabolic modifications [66].
After incorporation of neo-synthesized viral genomes in capsids, and budding from the
ER membrane, virions move to the Golgi apparatus where the host furins lead to a mature
virion. The non-coding regions of the viral RNA (3′UTR), which leads to the production of
small flavivirus RNA (sfRNA) that accumulate in infected cells, are known to be important
in modulating cell responses [67].
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Figure 2. Zika virus structure and life cycle. (A) Scheme of Zika virus genome and structure. Zika
virus genome encodes 10 viral proteins, three structural, and seven non-structural. 5′ and 3′ UTR refer
to untranslated regions [65]. (B) ZIKV binds its specific receptors and is subsequently internalized
into the target cell via clathrin-mediated endocytosis (1). Viral RNA is released into the cytoplasm
following virus fusion with the endosomal membrane and capsid disassembly (2). Upon release,
positive-sense RNA is translated into a polypeptide incorporated in the endoplasmic reticulum (ER)
membrane and cleaved by proteases into structural and non-structural proteins (3,4). It will also
be transcribed into negative-sense RNA that will serve as a template for RNA replication that takes
place in ER vesicle packets (5,6). Viral proteins are accumulated and structured at the level of the ER
(7). Virus assembly, budding, and maturation then occur in the ER-Golgi intermediate compartment
(ERGIC) and in the Golgi apparatus, respectively (8,9). New viruses are released by exocytosis (10).
Adapted from Lebeau et al. [66].
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3.4. Zika Virus Tropism and Pathogenesis

Although not classified as an encephalitic flavivirus, ZIKV has been responsible
for debilitating CNS disorders in neonates in the severe forms of infection described
from 2013 in Polynesia and 2015 mainly in Brazil [68]. Most of the documented CZS
mention hypoplasia of the cerebellum, delayed myelination, calcifications, and many
cortical abnormalities [69]. ZIKV infection during the first or second trimesters of pregnancy
also resulted in hearing loss and blindness in newborns [70]. In-vitro, ex-vivo, and in-vivo
study models have been developed to understand the pathological processes behind these
clinical outcomes.

Multiple strains of ZIKV of African or Asian-American origin have been isolated and
used for the study of ZIKV tropism and pathogenesis. Some studies have used recent
epidemic clinical isolates and other infectious clones for the analysis of (i) viral tropism
and (ii) molecular determinants of pathogenesis [71]. Some teams [72,73] have reported
in their reviews that ZIKV infection in mouse models (neonatal wild-type mice, adult
immunocompromised Ifnar1−/− mice) had reproduced the main features of the human
disease including infection of the placenta and neuro-invasiveness, leading to reduced
brain development and fetus size. Many studies have shown that in these models, the
virus could accumulate in various organs such as the brain with associated damages, in
the spinal cord, in eye associated tissues, male and female reproductive tracts, gonads,
and kidneys. Neurotropic pathogenesis has been attributed to the depletion of neural
progenitor cells; however, their infection does not appear to be the only cause of their
loss [74–76]. In non-human primate models, infection also resulted in fetal brain lesions
and ZIKV RNA was found in saliva and seminal fluids for at least three weeks after the
end of viremia [76].

In the field of in-vitro models to investigate the interaction of the virus with its human
host, Marazzo and colleagues recently reviewed how the development of neurosphere
organoid cultures has provided insights into the specific neuropathological mechanisms
of ZIKV [77]. The different studies that have been carried out using these models have
confirmed that neuronal and neural progenitor cells were susceptible to ZIKV [78].

Finally, ZIKV was shown able, in-vitro and in-vivo, to infect trophoblasts, fetal en-
dothelial cells of the placenta, placental macrophages (Hofbauer cells), and perivascular
cells [79,80]. It has also been shown to infect a variety of cultured cells and cell lines of both
fibroblast and epithelial origin [81].

4. Zika Virus and Apoptosis

As the cytopathic activity of the virus may explain the pathogenic processes and
some clinical outcomes, many studies have evaluated the viral-induced forms of PCD in
in-cellulo, ex-vivo, in-vivo, and in animal models of ZIKV infection. The onset timing of
cytopathic effects and the search for markers specifying the virally mediated cell death
were conducted and compared to the course of infection and completion of the viral cycle.
Various apoptosis data obtained for different ZIKV strains and infection models have been
compiled in Table 1. Hence, the main protagonists of apoptosis that are under the control
of ZIKV are highlighted in Figure 3.
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Table 1. Apoptotic induction in different biological models infected by ZIKV.

Virus Strain Cellular Model Apoptotic Cues Apoptosis and ZIKV
Infection Interplay Reference

MR766: East African
strain isolated from
sentinel rhesus in

Uganda in 1947 (Dick,
Kitchen, and Haddow

1952)

HT1080
(Human epithelial cells

derived from
fibrosarcoma)

Apoptotic cell death markers
were cleavage of Caspase 3

and PARP.

Apoptosis was shown to be
delayed by inhibition of the

JAK-STAT pathway by ZIKV
NS2B/3 proteins.

[82]

Brazil 2015 (KU940228)
Brazilian strain 2015
(Calvet et al., 2016)

hNPCs
(Human Neural
Progenitor cells)

Early apoptosis was induced
at 24 h.p.i. with caspase 8, 9,
and 3 activation. This viral

strain was found to be highly
deleterious to human neural

progenitor cells.

Apoptosis was shown to
limit viral production. This
was reversed by the use of
Z-VAD which induced an

increase in intracellular viral
RNA.

[83]

MR766 hNPCs

Apoptotic cell death was
induced at 72 h.p.i. Caspase

3 expression was highly
increased 3 d.p.i.

N.D. [84]

cDNA encoding the E,
prM-E and M-E

proteins of the Haitian
ZIKV strain

(KU509998.3)
isolated in 2014

(Lednicky et al., 2016)

PC12 cells
(Rat

pheochromocytoma
cells)

Intrinsic mitochondrial
pathway.

Envelope viral protein
induces apoptosis by

increasing BAX expression
and decreasing Bcl-2

expression at the
transcriptional and

translational levels at
48 h.p.t.

[85]

H/PF/2013:
French Polynesian 2013

clinical isolate
(Cao-Lormeau et al.,

2014)

A549
(Human

Adenocarcinomic
human alveolar basal

epithelial cell)

ZIKV induces mitochondrial
apoptosis 48 h.p.i. by

activating caspase 9 and 3.

Apoptosis is detected when
the viral progeny reaches the

peak.
[81]

MR766

HuH7 (Human
hepatoma cell lines)
and BCLXKO HuH7

cells

MCL1 expression decreases
in cells infected with ZIKV
while BCLXL expression is

not affected. BCLXL
down-regulation induces cell

apoptosis.

Decreased MCL1 expression
during ZIKV infection

promotes viral replication
in vitro.

[86]

H/PF/2013
MR766

and Brazil 2015
BeH819015

(molecular clones)

A549, U251MG
(derived from a human

malignant
glioblastoma), HEK293

(Human embryonic
kidney 293 cells)

ZIKV infection leads to
mitochondrial apoptosis
when most of the ZIKV

progeny is released by the
infected cells. (48 h.p.i),

ZIKV delays apoptosis in
infected cells and confers

protection against exogenous
apoptosis induced by either

intrinsic or extrinsic
pathways.

[87]

PLCal ZV: Asian strain
isolated in 2013 in

Thailand (Ellison et al.,
2016)

PRVABC-59: Asian
strain isolated in Puerto
Rico in 2015 (Lanciotti

et al., 2016)

HFAs (Human fetal
astrocytes),

A549

Late apoptosis was induced
in ZIKV HFA infected cells.
Under 50% of the infected
HFAs exhibited apoptosis

compared to more than 90%
for A549 5 d.p.i. This

indicates that HFAs are
remarkably resistant to

apoptosis induced by ZIKV.

Although HFAs have a
strong antiviral response, it
has been shown that they

keep excreting ZIKV for up
to 28 d.p.i.

[88]
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Table 1. Cont.

Virus Strain Cellular Model Apoptotic Cues Apoptosis and ZIKV
Infection Interplay Reference

MR766 (molecular
clone)

PRVABC-59

Primary human Sertoli
cells

Less than 10% of Sertoli
PRVABC59 infected cells are
apoptotic versus around 70%

of A549 infected cells at 72
h.p.i. These percentages are
half as low when cells are
infected with the MR766
strain. The low level of

ZIKV-induced apoptosis
detected in Sertoli cells

explains the persistence of
both American and African
ZIKV strains in these cells.

The limited percentage of
apoptosis observed in

ZIKV-infected Sertoli cells
allows the virus to replicate

furthermore. The peak of
viremia was detected
between 3 and 4 d.p.i.

[89]

r-MRV (recombinant
MR766 strain)
PRVABC-59

HTR-8 cells
(Human immortalized
first-trimester placental

trophoblast cells),
JEG-3 and JAR

(choriocarcinoma-
derived third-trimester
placental trophoblast

cell lines)

Apoptosis was induced in all
three cell lines at 48 h.p.i.
CHOP upregulation and

nuclear translocation were
observed 24 h.p.i.

Trophoblast
induced-apoptosis involved

activation of caspases,
ER-Stress markers and most

importantly JNK protein.

Apoptosis was strongly
inhibited by the use of JNK

inhibitors.
[90]

MR766,
SZ01 (Asian strain,
isolated in China in

2016)

hRPTEpiCs
human renal proximal
tubular epithelial cells

MR766 induced a higher
degree of cell apoptosis (48
h.p.i.) compared to SZ01 (9

d.p.i.)

ZIKV persisted for more
than 30 d.p.i within the

hRPTEpiCs.
[91]

h.p.i.: hours post-infection. d.p.i.: days post-infection h.p.t.: hours post-transduction N.D.: not determined.
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Figure 3. Zika virus controls apoptosis. ZIKV acts on anti-apoptotic factors such as Bcl-2 or Bcl-xL
mainly through an effect mediated by the non-structural proteins. ZIKV controls CHOP activity
during UPR, limiting its pro-apoptotic activity [92]. DsRNA/TLR3 induced apoptosis is controlled
by ZIKV through NS2B/3 [82]. ZIKV also stimulates the expression of pro survival factors such as
fibroblast growth factor 2 (FGF2) [88,93].

4.1. Is Early Apoptosis in Development Responsible for the Irreversible Damage Produced by ZIKV
Infection?

Most of the studies carried out suggest that ZIKV elicits apoptosis in vitro, around
48- or 72-h post-infection in cultured cell models. We and others have thus evidenced the
mitochondrial events typical of PCD by apoptosis and the implication of BAX and caspases
in fibroblast HT1080, in epithelial cell lines such as A549, HEK 293 [81,94], in glioblastoma
astrocytoma U-251 MG [95], and in neuroblastoma cell line SH-SY5 [96] and neural crest
cells PC-12 [85].

Cells that may be key players in the unique pathogenic process of ZIKV, which depends
on maternal–fetal transmission, blood–brain barrier crossing, or important points in the
neurodevelopment, were specifically studied.

One of the main issues raised by the CZS observed during the last outbreaks was how
ZIKV spread into the fetal compartment early in gestation and whether apoptosis could
be involved in the process. The mechanisms of crossing the uterine–placental interface
(UPI) by ZIKV have been extensively studied and reviewed. Many cell types of the UPI
support ZIKV replication. Placental infection, associated cytopathic effects and injury were
characterized ex vivo, in villus explants from the first-trimester of pregnancy, in primary
cells isolated from placental tissues, and in several relevant cell-lines [97–100].

Santara et al. found that in the first-trimester placenta, infected trophoblasts under
severe ER stress were being destroyed, particularly through direct killing by maternal
decidual natural killer cells (dNK) [101]. Thus, Muthuraj et al. showed that human immor-
talized placental trophoblasts and human choriocarcinoma-derived cell lines responded
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to infection by implementing an UPR-dependent apoptosis, with activation of JNK and
that this feature could contribute in the dissemination of ZIKV from mother to fetus [90].
As above-mentioned (Section 2.2), virus-induced apoptosis may be the result of ER stress
and unresolved UPR. During ZIKV infection, not all PERK, ATF6, and IRE1 pathways of
the UPR are activated in the same way in all models [102,103]. It was found that ZIKV was
actually able to control these responses during infection, acting de facto on the downstream
UPR-dependent apoptosis. Thus, the ATF6 pathway appears to be little or not active,
depending on the model and potentially inhibited during ZIKV infection [87,104–106]. If
it is admitted that the IRE-1 pathway of UPR could activate apoptosis through JNK phos-
phorylation [107], an important factor in UPR-dependent-apoptosis is the transcription
factor CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), whose
expression is directly linked to the PERK pathway [108]. However, if we and others have
noticed a significant increase in the transcriptional expression of CHOP [104], there is a
lack of information concerning the CHOP protein presence in ZIKV infected cells. Thus, in
the A549 model, we showed that the CHOP factor and its pro-apoptotic translational pro-
gram were not induced [92]. Assessment of its role in the virally induced UPR-dependent
apoptosis is therefore difficult. Furthermore, the control that the virus may exert over this
factor instead suggests that ZIKV deploys strategies to inhibit or delay apoptosis.

To complete the available data on the mechanisms of maternal–fetal transmission,
it is also worth mentioning that a pro-inflammatory context, likely to alter the physical
placental barrier function, a cell-to-cell infection process, and a Trojan horse role for infected
Hofbauer cells would be the major causes of viral dissemination through the placenta and
then to the fetus. It is therefore interesting to note that primary Hofbauer cells have been
shown to be resistant to virus-induced cell death [109]. Furthermore, in contrast to the
African strains, the Asian-American epidemic strains showed more frequent replication in
Hofbauer cells, increased dissemination, and longer viremia, but with lower viral titers.
It was then proposed that the African strains, which were found to be more cytotoxic,
might induce a better immune response and less accessibility to crossing the maternal–fetal
barrier [110]. The timing or extent of apoptosis in placental tissue could be an example of
the dual action of ZIKV on cell death to improve its dissemination strategy.

To gain an insight into the pathophysiology of ZIKV in neurodevelopment, infections
have been conducted in neuronal models. Apoptosis was then shown to be induced in
human neural progenitors (hNPC) and associated with P53 and cell cycle impairments [111].
In addition, in vitro models of hNPC derived from induced pluripotent stem cells (iPSC)
were found to be susceptible to infection with mitosis abnormalities and cytopathic effects
marked by caspase-3 activation [83].

Among the studies conducted ex vivo, sliced human fetal brain tissues from 14 to 21
weeks of gestation were infected with ZIKV. Activated caspase 3 and DNA fragmentation
could be found in numerous infected and non-infected cells. Targeted cells were inter-
mediate progenitor cells (IPCs) and post-mitotic neurons, confirming that ZIKV-induced
neuropathogenesis could be the consequence of the disappearance of these cell popula-
tions [112].

Several in vivo study models support this assertion. In a mouse model of intracranial
infection at different stages of embryonic development, co-immunoreactivity throughout
the brain of cleaved caspase-3 and ZIKV are indicators of deleterious cell death [8]. In
a recent study, oligodendrocyte loss in spinal cord and white matter has been linked
to neurodevelopmental defects and perinatal ZIKV induced pathogenesis in mice [113].
In another chick embryo model, virus-induced apoptosis of cranial neural crest cells
was shown to be responsible for aberrations in cranial osteogenesis and to lead to birth
defects [114]. Finally, studies in pregnant non-human primate infection models revealed
that neuroprogenitor apoptosis followed placental and fetal vascular compromise [115].

It should be noted that the study of ZIKV-induced patho-neuro-physiology has greatly
benefited from the development of complex neurosphere and brain organoid models.
Organoids are 3D cell cultures of self-organized progenitor cells that mimic the tissue
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architecture and development [116]. Several studies on these models have shown a size
reduction in ZIKV infected neurospheres and brain organoids and a depletion in neural
progenitors [75,78,110].

Transcriptome analyses performed on infected hNPCs, SH-SY5Y neuroblastoma cells
or brain organoids revealed that ZIKV modified the expression of several factors related to
apoptosis, neuronal development, and differentiation [75,84,96,117,118]. ZIKV infection
resulted in increased expression of BAX, BID, and APAF1 in SH-SY5Y [96,117]. Caspase-3
gene was overexpressed in hNPCs [84] such as BAX, Bcl-2, and genes involved in tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and TRAIL-mediated
apoptosis such as death receptors DR4 and DR5 [119]. ZIKV infection could increase cell
susceptibility to extrinsic death, suggesting that a bystander cytotoxic effect in developing
brain tissue should not be minimized. Among the molecular mechanisms that could lead to
cell death, it has been shown that ZIKV was able to induce p53 activation and to inhibit the
mTOR pathway with an early switch from glycolysis to oxidative phosphorylation [120].
The changes in cellular metabolism initiated by the virus at a vulnerable period of neuronal
development would then be responsible for the defects in differentiation of immature neu-
ral stem cells and their exhaustion. Another study showed that an epidemic strain of ZIKV
provoked cell cycle arrest in neural stem cells by activating the p53-p21 signaling path-
way [121]. This suggests that in addition to cell death, ZIKV-induced neuropathogenesis
could also be due to proliferation and differentiation failures.

As a first look at all the data linking cell death and post-infection pathophysiology,
it seems that a consensus has emerged on the capacity of ZIKV to induce an excess of
apoptosis too soon during the particular situation of gestation and fetal development.
This cell death would occur at the level of placental cells, which would facilitate the
dissemination of the virus to the fetus. Apoptosis would then concern the neuronal
progenitors and astrocytes. It would be responsible for a depletion of neuronal populations
and for definitive damage during the development of the fetal brain.

4.2. Is Delayed and Impaired Apoptosis Responsible for ZIKV Persistence and Unusual
Transmission Pathways?

A delayed apoptosis controlled by ZIKV was supported by mathematical models [122]
and experimental approaches. By comparing studies describing the onset of in vitro virus-
induced apoptosis in different cell models (Table 1), it appears that ZIKV triggers a delay of
this cellular response and that this delay is to its own benefits. In in vitro infection models
of epithelial cells, the first cytopathic effects occur after the completion of the viral cycle and
the release of the viral progeny [81,87]. This timing is very different from that produced
by infection with other arboviruses of the alphavirus family such as Chikungunya virus
(CHIKV) or Ross River virus (RRV) [87,123]. At equivalent multiplicities of infection in the
same cell types, the latter induced apoptosis as early as 6h post-infection, whereas with
ZIKV, the first signs of PCD were only visible 48 h post-infection. In their studies, Limonta
and colleagues argued that astrocytes were infected by ZIKV with reduced cytopathic
effects including apoptosis, probably through FGF-2 upregulation during infection [88,93].
Therefore, they hypothesized that a ZIKV-driven anti-apoptotic activity was correlated
with long-term infection and with the persistence of replicating virus in astrocytes.

A body of evidence points to the ability of ZIKV to manipulate cell death in order to
limit the antiviral action produced by the cell auto-destruction. Thus, several studies have
shown that apoptosis has an antiviral effect on ZIKV. Addition of the pan-caspase inhibitor,
zVAD-FMK during infection leads to an intracellular increase in viral RNA [83]. The use
of inhibitors of the anti-apoptotic Bcl-2 family proteins, triggered an earlier apoptosis
in infected cells by ZIKV [86]. In the same publication, Suzuki and colleagues reported
that HuH7 cells that were knocked out for the anti-apoptotic gene BclXL underwent an
accelerated apoptosis with a suppressed viral dissemination. This was observed with ZIKV
and other flaviviruses such as DENV and JEV. BclXL gene suppression led to a reduction in
the viral loads in cells and animal models. Last but not least, this apoptosis remediation also
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increased animal survival in JEV infected mouse models. Suzuki and co-authors concluded
from their study that delayed apoptosis was associated with high viral pathogenicity,
whereas early apoptosis combined with accelerated efferocytosis inhibited viral spread in
the body and limited pathogenicity.

In the case of ZIKV infection and its unique pathogenesis with neurological compli-
cations, the role of anti-apoptotic factors and the control of their expression or activity by
the virus have been examined. A clinical study of cases of fatal microcephaly found that
the parenchyma of infected newborns had a two-fold increase in the anti-apoptotic Bcl-2
protein. This feature appears to be specific to CZS as microcephalies of other origin do not
have variation in Bcl-2 expression [124]. Based on the observation that ZIKV seemed to
be able to counteract apoptosis, our team had the idea of testing the protection that the
virus could offer to cells against an exogenously induced apoptosis. Surprisingly, cell death
hallmarks could not be observed in A549 cells when apoptosis was artificially induced
two hours after infection with ZIKV. Inhibition of cell death in the presence of ZIKV was
achieved whether the induction of apoptosis was extrinsic, with TNF-alpha, or intrinsic,
with etoposide or blasticidin. This protection from exogenous apoptosis was potentially
dependent on the presence of ZIKV non-structural proteins [87]. In addition, another
study indicates that double-stranded RNA (Poly I:C) induced apoptosis is reduced by
overexpressing the ZIKV NS2B/3 non-structural proteins [82].

We investigated which protagonists of apoptosis ZIKV was able to act upon and also
observed that the amount of anti-apoptotic protein Bcl-2 was increased during in vitro
infection. A privileged role for the Bcl-2-family of anti-apoptotics was confirmed by the
use of the inhibitor ABT-737, which abrogated ZIKV-mediated protection, led to restoration
of apoptosis, and reduced viral infection [87]. As previously mentioned, we also found
that ZIKV was able to subvert the CHOP pro-apoptotic program and thus override ER-
dependent apoptosis [92].

This viral ability to inhibit one of the main cellular defense responses to infection
legitimately raises the question of its effect on the outcome of infection and, if unsuccess-
ful, the possibility that the virus will not be properly eliminated. There is an extensive
literature on the strategies developed by infectious agents to manipulate apoptosis and
the link between impaired apoptosis, deficiencies in viral clearance, and viral persistence
in privileged niches [125–128]. Numerous studies on the mechanisms and issues of ZIKV
infection have revealed that the virus can indeed persist for a long time after the primary
infection.

Initially puzzling to the scientific community, a first case of sexual transmission of
ZIKV was reported in 2011 [129]. The confirmation that this route of transmission was
far from anecdotal, and observed with both Asian and African strains of ZIKV raised the
possibility that ZIKA could persist in the male reproductive organs [10]. Indeed, viral RNA
have been detected in semen for up to six months post infection, suggesting that men may
therefore act as potential reservoirs of ZIKV [130]. Reproductive tract and testis certainly
offer a suitable immune-privileged environment for ZIKV persistence.

High-level and persistent viruria could also be observed for up to 15 days after
the onset of infection symptoms. Several cell types of the infected renal tissue such as
glomerular cells or renal proximal tubular epithelial cells (hRPTEpiCs) may be susceptible
as reservoirs for long-term excretion of ZIKV in urine [91,131].

The maintenance of viral replication in these different cells, whether or not associated
with their survival and incomplete apoptosis, deserves further investigation.

Then, the first clinical indications that the virus might also persist in the CNS were
given when worrying cases of neurological complications were reported in infants a long
time after their birth and their in-utero exposure to ZIKV [132,133].

In conclusion, a body of evidence indicates that ZIKV manipulates apoptosis, which is
an adverse response of the cell to virus multiplication. This ability could account for the
persistence of the virus in immunoprivileged niches. Inhibited or delayed apoptosis and
viral persistence could influence pathogenesis and could explain the unique features of
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ZIKV infection. These main singularities are the non-vectorial routes of transmission and
the ability to induce neuropathogenesis long after infection.

4.3. Apoptosis in the Mosquito Vectors

In mosquito cells, arbovirus infections rarely cause cytopathic effects, and the limited
data currently available assessing the role of apoptosis in vector competence suggests that
apoptosis is detrimental to the virus. Virus/vector interactions appear to have co-evolved
by limiting apoptosis, probably to an initial regulation by non-retroviral integration RNA
virus sequences (NIRVS) and the piRNA antiviral pathway [134]. In invertebrate cells
infected with Zika virus, very few, if any, cytopathic effects are observed [135]. Further-
more, it seems that sfRNA from ZIKV could inhibit apoptosis whereas sfRNA mutants
showed increased TUNEL positive cells in-vivo. Adding caspase inhibitors rescued a ‘wild
type’ virus transmission rate in a sfRNA mutant, showing that apoptosis decreases the
transmission rate in mosquitoes [136]. This confirms previous studies on arboviruses and
apoptosis in mosquitoes [137].

Infection with ZIKV leads, in particular, to a reprogramming of cellular glucose
metabolism in a human cell model by enhancing ATP production via the use of the tricar-
boxylic acid cycle [26]. In contrast, during infection of mosquitoes’ cells, ZIKV increased
the use of glucose through the pentose phosphate pathway. Thus, this differential repro-
gramming of glucose metabolism changes the cellular ratio of AMP/ATP, which leads
to the differential status of the AMPK phosphorylation level between mosquitoes and
humans during ZIKV infection. The AMPK activation in human cells contributes to
caspase-mediated cell death, and conversely, low activation of AMPK in mosquitoes’ cells
prevents apoptosis [26].

All of these different apoptosis control mechanisms are important for vector compe-
tence, and thus virus spread between mosquitoes and humans.

5. Therapeutics Related to ZIKV, A Role for Apoptosis?

In addition to preventive measures, which mainly involve personal protection against
mosquito bites, it is essential to respond to the Zika threat by developing treatments and
vaccines. Currently, we have neither one nor the other, although a vaccine candidate using
mRNA technology has recently shown promising results in mice [138]. The development
of anti-ZIKV drugs must take into consideration several specificities such as the passage
of the virus in immune-privileged sites (central nervous system, placenta, gonads) and it
must be adapted for the particularly fragile target of pregnant women or women planning
a pregnancy.

One approach to containing the infection is to fight the virus early by acting on the virus
particle itself or at a particular stage of the viral cycle (entry, replication). Unfortunately,
although many studies have been carried out and have proposed molecules with promising
effects in vitro, no validated treatment has yet been improved [139–141].

Alternative strategies focus on enhancing the natural antiviral responses of host cells
by repurposing already known active therapeutic molecules. Trials using the proteasome
inhibitor bortezomib have demonstrated antiviral activity in in vivo models and have
provided some hope [142,143]. The advantage of targeting host responses is to limit the risk
of the emergence of treatment-resistant viral variants, as has been observed with nucleotide
analogues [144,145].

5.1. Antiviral Treatment through Apoptosis Remediation

Based on the observation that many viruses, and this is the case of ZIKV, manipulate
the cell death response and that this capacity contributes to infectious processes (outcome,
pathogenesis, viral persistence), therapeutic options using apoptosis remedial action have
been explored. The underlying idea is that restoring apoptosis can improve or accelerate the
resolution of infection and free the body from potential virus persistence [146]. Apoptosis
sensitizers such as inhibitors of the Bcl-2 family or molecules mimicking suppressors
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of apoptosis inhibitors (synthetic SMAC/DIABLO proteins) have thus been tested as
antiviral candidates [147]. From this theory of a ‘functional reactivation of apoptosis’
during infection, an antiviral strategy caused a sensation in 2011. By combining the
double-stranded RNA recognition domain of the PKR protein and the caspase interaction
domain (CARD) of the Apaf1 protein, the technology called double-stranded RNA (dsRNA)
activated caspase oligomerizer (DRACO) showed broad-spectrum antiviral activity and
lack of toxicity in murine, human, and in vivo non-human primate cells [148]. It resulted in
an 80% reduction in mortality in a mouse model of H1N1 A/PR/8/34 infection. Following
the same idea, the antiviral therapeutic potential of molecules known to act by reactivating
apoptosis in cancer pathologies was tested on ZIKV infection, with the project of a possible
drug repositioning. One study successfully evaluated the anti-ZIKV activity of the anti-
cancer obatoclax or GX15-070, a pan-blocker of the Bcl-2 family of proteins [149]. It should
be noted that the use of inhibitors of Bcl-2 family proteins had previously been validated for
their capacity to inhibit several viruses other than ZIKV, in in vitro and in vivo studies [147].

5.2. ZIKV as Oncolytic Virotherapy

Interestingly, ZIKV has been considered as an oncolytic candidate, notably for therapy
of brain cancer [150]. The modes of action of ZIKV on the tumor and the advantages and
disadvantages of using this virus, which may be genetically modified, are summarized in
Figure 4. Briefly, oncolytic viruses are replicative viruses capable of specific replication in
cancer cells. These biological agents have cancer therapeutics potential due to their ability
to induce selective tumor cell death through direct cytopathic effects. They induce an
immunogenic cell death similar to apoptosis, which releases cell debris and viral antigens.
Dendritic cells from the microenvironment will then allow the immune system to be
educated against the tumor [151,152]. Countering the frequent immune escape phenomena
induced by the tumor microenvironment is therefore one of the major goals of new anti-
cancer therapies. Showing the important potential of this type of treatment, the FDA already
approved the use of Talimogene Laherparepvec (T-VEC), a modified herpes simplex virus
type I, for metastatic melanoma management [151].

As aforementioned, ZIKV has a privileged tropism for neuronal cells in which it
produces cytopathic effects [83,111]. This specificity is due to the high level of neuronal
expression of the main known ZIKV membrane receptors such as AXL or CD24. Interest-
ingly, these receptors are overexpressed in cancer cells. Due to this ability, ZIKV has been
proposed as a promoter of tumor mass reduction for some brain cancers (e.g., glioblastoma
multiforme (GBM) and neuroblastoma). Indeed, in 2017, a selective oncolytic activity was
shown against glioma stem cells (GSCs) [153], which are therapy-resistant self-renewing
tumor precursor cells responsible for the local recurrence of cancer. ZIKV infection in these
cells leads to a loss of self-renewal and proliferation due to increased apoptosis, whereas
no detrimental effects were observed on normal cells. However, this feature is not a general
property of neurotropic flaviviruses, since WNV causes the cell death of GSCs and normal
cells. In order to confirm these promising results and show the usefulness of ZIKV as a
therapy to treat brain cancer, the authors used a mouse model of glioma. Mice receiving
ZIKV injection showed prolonged survival in comparison to mock-infected mice due to
extensive tumor cell death.

Consistent with these results, intracerebral injection of a live attenuated Zika virus
(ZIKV-LAV) in a mouse model of human GBM significantly reduced intracerebral tumor
growth and prolonged animal survival by selectively killing SOX2+ GSCs within the
tumor [154]. Recently, the same team reported some details on the mechanism underlying
ZIKV oncolytic activity against GSCs [155]. They found out that SOX2 expression in
GSCs leads to downregulation of the IFN signaling pathway, this being essential for
ZIKV infection and replication in GSCs. Indeed, SOX2 is a core regulator of antiviral
response and apoptosis, and is found to be highly expressed in GSCs, which partly explains
the preferential lytic effect on GSCs. Moreover, SOX2 has also been associated with the
regulation of Integrin αV expression. Integrin αV forms heterodimers, notably with Integrin
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β5, whose blockade with specific antibodies has led to reduced ZIKV-induced oncolytic
effects on GSCs. Thus, the SOX2–Integrin αVβ5 axis seems to be crucial for oncolytic
activity against GSCs, and therefore GBM treatment.

Figure 4. Zika as an oncolytic agent, pros and cons. ZIKV has natural tropism for neurons but
its replication is counteracted by antiviral pathways. Tumor cells overexpress receptors for viral
entry, have a high metabolism that efficiently supports ZIKV replication, and have frequent defects
in antiviral pathways. These natural capacities enhance viral infection (1). To further improve its
tropism toward the tumor, ZIKV could be modified to specifically target tumor cell receptors or to
be more dependent on the tumor’s singular properties (2). Delayed apoptosis induced by ZIKV
replication allows for a more immunogenic cell death, which can turn an immunosuppressive tumor
microenvironment into an immunoactivating one (3). Delayed apoptosis also promotes transgene
expression allowing for more efficient delivery of therapeutics (4).

It has also been shown that ZIKV oncolytic activity requires CD8+ T cell recruit-
ment to the tumor microenvironment, as the survival benefits are lost if CD8+ T cells
are depleted [156]. ZIKV infection enhances immune infiltration, which is favorable for
combination with an anti-PD1, an immune checkpoint inhibitor to remove microenviron-
ment induced T-anergy. Moreover, this education of CD8 by ZIKV induced tumor cell
death persists over time. Hence, they protect mice against syngeneic tumor rechallenge.
Additionally, neuroblastoma cells’ permissiveness for Zika virus has been reported [157].
In neuroblastoma cells, ZIKV-induced cytopathic effects lead to a decrease in tumor cell
viability. Nevertheless, not all neuroblastoma cell lines were sensitive to ZIKV oncolytic
activity. It was shown that CD24 expression, a receptor expressed on the surface of metabol-
ically active cells including cancer cells [158] is essential to ZIKV oncolytic activity [157].
Restoring CD24 (SK-N-AS) expression in a low-permissive neuroblastoma cell line restores
ZIKV oncolytic activity, unlike the CD24-deficient cell line. CD24 is rather a brake on
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apoptosis, which could promote ZIKV replication in metabolically active cells and conse-
quently induce a better immunogenicity [152,158]. Therefore, ZIKV seems to be a powerful
tool for the treatment of brain cancers that are of critical concern. As raised by several
teams [151,154,155], the use of ZIKV as oncolytic therapy can only be considered if the
safety conditions are met. Data currently available from these studies indicate that viral
RNA remained localized to the tumor until two weeks after treatment, showing the absence
of viral spread following injection [153].

However, as discussed above, ZIKV can persist in the body and has a broad tissue
tropism. There is therefore concern that it may affect several organs other than the target
tumor. These issues could be circumvented by improving ZIKV specificity to tumor cells.
Indeed, receptors essential for ZIKV entry such as AXL and CD24 that are overexpressed in
glioblastoma and neuroblastoma cancer cells, respectively, are also present on many other
cell types [158,159]. Thus, addressing ZIKV to a specific receptor on tumor cells would
reduce its entry into healthy cells. Technically, modifications can be made to the viral
genome to fine-tune its oncolytic capabilities. However, engineering the viral envelope to
control the interaction of the viral particle with the cell surface is difficult to design and
implement. If retargeting is not possible or not sufficient, another option is to increase the
dependence of the virus on the singular properties of the tumor cells. Indeed, it would
be possible to make the virus more conditional on the specific enhanced metabolism of
the tumor cell, as is the case for the vaccinia virus TK-RR- [160] (or the measles virus
vaccinal strain [161]. Genetically-modified ZIKV strains should then be envisaged to
further improve the safety of a ZIKV based oncolytic virotherapy [153,154].

Finally, and regarding the ambiguity revealed by our literature review on the ability
of ZIKV to promote apoptosis too early or too late, it would appear that delayed or
attenuated cell death is not a pitfall, but may be an advantage in oncolytic therapy. Thus,
cytolytic effects on infected cells, by being delayed, will promote immunogenicity with
a progressive and sustained recruitment of immune cells [156,162]. This mechanism is
decisive in overcoming immunosuppression induced by the tumor environment, one of the
main strengths of virotherapy. It should also be noted that the possibilities of manipulating
oncolytic viruses have led to their proposal as vectors for therapeutic agents such as T-
VEC, which encodes for granulocyte-macrophage colony-stimulating factor to increase
its immunostimulant properties [163]. In this context, a virus with persistent replication
still has an advantage in that it can increase the production of the therapeutic protein
over time. In addition, delayed apoptosis becomes an advantage for this vectorization
process. Whether strictly for oncolytic purposes or as a genetic backbone for the delivery of
a recombinant therapeutic agent, this ability of ZIKV to induce delayed cell death makes
it a potentially good vector for antitumor therapy. However, these beneficial effects may
be mitigated by the ability of ZIKV to persist in some tissues, with detrimental effects on
patients. Despite this, studies have shown that, in dogs with glioblastoma, the use of a
Brazilian ZIKV reduced tumor size and did not induce clinical side effects [164]. Further
research is needed to decipher the potential of ZIKV as an oncolytic treatment for brain
cancers [153,154].

6. Discussion and Conclusions

In the last decade, a series of epidemics has put global human health at risk. This
pressure is due to the threat of mainly viral pathogens that do not spare any region,
regardless of the economic levels or medical capacities of countries. In this context, better
knowledge of infectious agents, their mechanisms of dissemination/transmission in the
environment, and their interactions with their hosts, particularly humans, is essential.
This is necessary to face the risks of viral emergence or re-emergence as well as current
and future epidemics and pandemics. Understanding the mechanics of host–pathogen
interactions at the cellular and molecular levels is also essential for the development of
preventive and/or therapeutic strategies. Among the cellular and molecular responses
that are crucial for eliminating the pathogen, but that may also be involved in pathological
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processes is cell death by apoptosis. Just as humans evaluate the benefits and risks of
an action, the cell must make a choice between survival and self-killing to resolve an
infection. The decision to commit suicide is based on a precise control of pro-apoptotic and
anti-apoptotic factors. The process of ZIKV infection seems to be a wonderful example of
manipulation of this pro-death or survival balance of the host cell.

ZIKV, similar to other flaviviruses (such as JEV, DENV or WNV), is capable of inducing
apoptosis in various types of infected cells. Therefore, an excess of placental cell apoptosis,
early in gestation, seems to be one of the main causes of horizontal maternal–fetal transmis-
sion. Dissemination of the virus into fetal tissues, infection of the brain, and early apoptosis
of neuronal progenitors seem to be involved in Zika pathology and SCZ development
(Figure 5).

Figure 5. Too soon or too late, graphical abstract. ZIKV-related apoptosis is ambivalent. On one
hand, the virus transmission to the central nervous system via microglia and astrocytes induces early
apoptosis of neuroprogenitor cells. This leads to a set of symptoms and defects grouped under the
term of ZIKV congenital syndrome. On the other hand, ZIKV has been shown to persist for a while
in infected organisms due to delayed apoptosis. Persisting in the genital tract could lead to sexual
transmission that is unusual for an arbovirus.

Conversely, cell death by apoptosis has been shown to occur late in many cell types.
This delay in the onset of cell death involves anti-apoptotic proteins such as Bcl-2, whose
stability and half-life are increased by a mechanism that remains to be defined. It also
involves a defect in the induction of the expression of pro-apoptotic factors (BIM, PUMA,
NOXA...) that are cruelly lacking to tip the balance. This defect is in part due to the ability
of ZIKV to ‘hack’ the communication pathway between ER stress, UPR, and apoptosis by
inhibiting the CHOP factor. Other studies have described that paraptosis is sometimes
induced by ZIKV, with hyper vacuolation of cells without caspase activation. This could be



Int. J. Mol. Sci. 2022, 23, 1287 19 of 26

in place of apoptotic death and apparently allows the virus to replicate more abundantly
in the cell [165]. This confirms that apoptosis is detrimental to the virus and this raises
the question of the impact of delayed apoptosis on pathophysiological processes and viral
persistence following ZIKV infection. A persistence capacity of ZIKV is established. The
virus, which remains in the genital tract and is secreted for a long time in the semen, is
the cause of sexual transmission (Figure 5). In addition to the complications observed in
newborns, the evidence of neuropathologies in children after birth [132] raises questions
about the mechanisms involved long after the acute infection. Recent work also suggests
that ZIKV exposure may contribute to the development of neurodegenerative pathologies
in adults in the longer term [103,166]. Of note, data on microcephalic brains of ZIKV-
infected neonates have shown an increase in Bcl-2 protein, opening up the hypothesis
of viral persistence mediated by overexpression of anti-apoptotic proteins [124]. Taken
together, these insights into ZIKV infection confirm the interest in understanding the
mechanisms of apoptosis control. This understanding is important for the development of
antiviral therapies based on the restoration of the ability of infected cells to die. It could
also be useful in the fight against late-onset forms of Zika. This understanding is ultimately
important for considering the use of this singular virus in oncolytic virotherapy.
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