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Abstract: We present an error tolerant path planning algorithm for Micro Aerial Vehicle (MAV)
swarms. We assume navigation without GPS-like techniques. The MAVs find their path using
sensors and cameras, identifying and following a series of visual landmarks. The visual landmarks
lead the MAVs towards their destination. MAVs are assumed to be unaware of the terrain and
locations of the landmarks. They hold a priori information about landmarks, whose interpretation
is prone to errors. Errors are of two types, recognition or advice. Recognition errors follow from
misinterpretation of sensed data or a priori information, or confusion of objects, e.g., due to faulty
sensors. Advice errors are consequences of outdated or wrong information about landmarks, e.g.,
due to weather conditions. Our path planning algorithm is cooperative. MAVs communicate and
exchange information wirelessly, to minimize the number of recognition and advice errors. Hence,
the quality of the navigation decision process is amplified. Our solution successfully achieves an
adaptive error tolerant navigation system. Quality amplification is parameterized with respect to the
number of MAVs. We validate our approach with theoretical proofs and numeric simulations.

Keywords: micro aerial vehicles (MAVs); autonomous aerial vehicles; MAV swarm; goal location;
quadcopters; information sharing; localization; location; path planning

1. Introduction

Micro Aerial Vehicles (MAVs) are a popular type of drones. They are equipped with
sensors and cameras, enabling hovering and navigation over complex three-dimensional
terrains. They are used in a variety of applications, including sewer inspection [1], search
and rescue operations [2] and parcel delivery [3]. Large terrains can be covered by so
called swarms, namely collaborative teams of MAVs that exchange information gathered
during navigation. They are required to be resilient to failures of all kinds, such as during
navigation or due to sensor malfunctions. We are interested in designing swarm algorithms
that are resilient in the presence of failures.

We present an error tolerant path planning algorithm for MAV swarms. We assume
MAV navigation without using any GPS-like technique. MAVs find their way using
sensors and cameras, in order to identify and follow a series of visual landmarks. The
visual landmarks lead the MAVs towards the destinations. We assume that the MAVs are
unaware of the terrain and locations of the landmarks. Figure 1 shows the idea. A number
of landmarks are highlighted. A swarm of MAVs collectively identify a series of such
landmarks over an inspected terrain. The identification of landmarks determines paths
that must be followed.
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Figure 1. Sample picture taken from an aerial vehicle, together with the identification of six landmarks
at the campus of Carleton University.

Swarms fly over terrains comprising multiple landmarks. The landmarks also include
the starting and terminal points of a well-defined path. The MAVs may hover over the
landmarks either on their own or in formation. They may hop from any one landmark
to any other. The landmarks are identified as vertices. The resulting system forms a
complete graph. Recall that the MAVs are unaware of the terrain and locations of the
landmarks. However, they have the capability to visually recognize them. Furthermore,
the MAVs may communicate and exchange information wirelessly as long as they are
within communication range of each other. The MAVs are required to find a flight path
from the starting point, leading to the terminal point.

We assume that the MAVs hold information about landmarks. Interpretation of this
information is error prone. We consider two types of errors: recognition and advice.
Recognition errors are due to misinterpretation of sensed data or a priori information,
or confusion of objects, e.g., due to faulty sensors. Advice errors follow from changing
or wrong information associated with landmarks, e.g., due to weather conditions. Path
planning builds upon swarm cooperation. MAVs communicate and exchange information
wirelessly, with the aim to reduce the amount of recognition and advice errors. Collabora-
tively exchanging information, the MAVs amplify the quality of decisions pertaining to the
navigation process. The swarm gets equipped with an adaptive error tolerant navigation,
where the degree of quality is related to the number of participating MAVs.

We show that the approach augments the probability of navigation correctness pro-
portionally to the number of MAVs in a swarm, when wireless communications allow
cooperation and exchange of information about landmarks. Indeed, single MAV navigation
is directly affected by recognition and advice errors. The MAV can get disrupted and
lost. With an increasing number of MAVs in a swarm, communications and exchange of
information take place. Quality of sensor fusion increases. We analyze the reduction of the
error probability induced by this algorithm. Quality amplification is demonstrated both
analytically and with simulation.

Section 2 reviews related work. Sections 3 and 4 present our navigation algorithm.
Section 5 evaluates the work. Section 6 concludes the paper.

2. Related Work

Surveys on path planning algorithms for unmanned aerial vehicles have been au-
thored by Goerzen et al. [4] and Radmanesh et al. [5]. Several algorithms build on solutions
originally created for computer networks. Some of the proposed solutions leverage algo-
rithms created in the field of classical robotics, such as approaches using artificial potential
functions [6], random trees [7], or Voronoi diagrams [8]. Path planning may be addressed
in conjunction with team work and formation control [9]. There are ideas that have been
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tailored specifically to quadcopters [10]. Other constraints that the MAVs in the swarm
must satisfy include the capability of each MAV to match the velocity of its neighbors
in the swarm, as well as staying close to the neighbors while addressing collision avoid-
ance. Recent works have addressed these issues applying Lyapunov theory [11,12] and
attraction–repulsion functions [13,14].

Our research is closely related to works on navigation using topological maps [15].
Navigation does not rely on coordinates. The MAVs find their way recognizing landmarks.
Weinstein et al. [16] propose the use of visual odometry as an alternative localization
technique to, e.g., GPS-like techniques. The idea is as follows. The MAVs use their
onboard cameras (e.g., downward facing cameras), combined by some inertial sensors,
to identify and follow a series of visual landmarks. The visual landmarks lead the MAV
towards the target destination. Unlike GPS, the technique allows the MAV to operate
without boundaries in both indoor and outdoor environments. No precise information
about concrete visual odometry techniques are reported by Weinstein et al. in their work.
However, some ideas can be found in [15,17].

Maravall et al. [15,17] propose the use of probabilistic knowledge-based classification
and learning automata for the automatic recognition of patterns associated with the visual
landmarks that must be identified by the MAVs. A series of classification rules in their
conjunctive normal form (CNF) are associated with a series of probability weights that
are adapted dynamically using supervised reinforcement learning [18]. The process is
conducted using a two-stage learning procedure. During the first process, a series of
variables are associated with each rule. For instance, the variables associated with the
construction of a landmark recognition classifier are constructed using images’ histogram
features, such as standard deviation, skewness, kurtosis, uniformity and entropy. During
the second process, a series of weights are associated with every variable. Weights are
obtained by applying a reinforcement algorithm, i.e., incremental R-L algorithm in [15,18],
over a random environment. As a result, the authors obtain a specific image classifier for
the recognition of landmarks, which is then loaded to the MAVs.

The resulting classifiers had been tested via experimental work. MAVs with high-
definition cameras, recording images at a resolution of 640 × 360 pixels, at the speed of
30 fps (frames per second) are loaded a given classifier, to evaluate a visual classification
ratio. Each experiment consists of building a classifier and getting the averaged ratio.
Results by Maravall et al. in [17,19] show an average empirical visual error ratio of
about 20% (i.e., 80% chances of properly identifying the landmarks, on average). The
results are compared to some other well-established pattern recognition methods for
the visual identification of objects, such as minimum distance and k-nearest neighbor
classification algorithms. The previous contribution is complemented by Fuentes et al. and
Maravall, et al. in [15,20], by combining the probabilistic knowledge-based classifiers with
bug algorithms [8], to provide the MAVs with a navigation technique to traverse a visual
topological map composed of several visual landmarks. A technique is used to compute
the entropy of the images captured by the MAV, in case a decision must be made (e.g., to
decide whether to go go in a south or north direction). The idea is as follows. The MAV
uses the camera onboard and takes images from several directions. Afterward, it processes
the images to chose a given direction. The lower the entropy of a captured image, the lower
the probability of going towards an area containing visual landmarks. Conversely, the
higher the entropy of a captured image, the higher the probability of going towards an area
surrounded by landmarks. Using this heuristic, the MAV collects candidate images with
maximum entropy (e.g., by driving the MAV forward and backward some meters) prior
executing a bug algorithm to locate the landmarks [15].

The main contribution of our work is the introduction of a new MAV swarm path
planning algorithm building upon drone-to-drone communication and collaboration. The
algorithm does not require the use of GPS localization technology. Path planning and
navigation use solely a priori provided visual facts and real-time visual data analysis.
We acknowledge that provided facts may be wrong and that visual data analysis may
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fail. The impacts of wrong facts or analysis failures are mitigated by drone-to-drone
communication, exchange of information and a majority-based decisional framework. The
algorithm performance versus recognition and advice error rates is analyzed in depth. We
demonstrate that, in this setting, when the number of MAVs in a swarm increases, the
quality of the decision process is amplified, thanks to the exchange of information collected
by the individual MAVs. We also look into the energy cost of this process with respect to
the number of MAVs in a swarm and advice recognition rates.

3. Error Prone Navigation

We identify the landmarks with the n vertices of a complete graph G = (V, E). Starting
at s and ending at t, the MAVs are seeking flight path connecting k + 1 vertices

s := v0, v1, . . . , vi, vi+1, . . . , vk := t

where v0, v1, . . . , vi, vi+1, . . . , vk are in V, see Figure 2. The MAVs have to navigate and
find a flight path from s to t using clues. When hovering over an area, a MAV acquires
data through its camera and other sensors, which may be visual, acoustic, etc. These
data are used for landmark searching. A priori, the MAVs are given clues and specific
characteristics about the landmarks. For example, the MAVs may be seeking a green door
or a tall building.

s

t
vi

vi+1

Figure 2. Flight path from source s to destination t. Edge (vi, vi+1) is an intermediate segment
connecting landmarks vi and vi+1.

The landmarks provided have a priori information whose interpretation (by the MAVs)
is prone to errors. We distinguish two types of errors, namely, recognition and advice.
Recognition errors are due to misinterpretation of sensed data and a priori information or
confusion of objects. For example, a MAV has found a green door which in fact is not a
door but rather a window. The recognized object is incorrect. We assume that, for some
real number p in the interval [0, 1], the value p is the probability that a MAV performs
recognition erroneously and 1− p that it is correct.

Advice errors about landmarks occur because the information provided is not up to
date or even wrong. For example, upon finding a landmark, a MAV is advised to traverse
a certain distance within the terrain in a northern direction where it will find the next
landmark, say a restaurant, but this information is wrong because the restaurant is no
longer there. We assume that, for some real number q in the interval [0, 1], the value q is the
probability that the advice provided to a MAV about a landmark is invalid or erroneously
interpreted and 1− q that it is valid and correctly interpreted.

Recognition and advice errors are independent of each other. An important point
to be made is that we assume that recognition and advice are random processes. For all
MAVs, we make the assumption that recognition errors are independent and identically
distributed and advice errors are also independent and identically distributed. The MAVs
act independently of each other. Moreover, the outcome of the recognition process is ran-
dom with a probability of success that depends on the parameter p. A similar observation
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applies to the advice process. As a consequence, we can use this to our advantage so as to
improve the recognition and advice mechanisms for swarms of MAVs.

Assume a MAV is navigating the terrain through a flight path, denoted as P, consisting
of k vertices v0 := s, v1, . . . , vi, vi+1, . . . , vk := t from s to t. An edge {vi, vi+1} correspond-
ing to a segment of flight path P is said to be correctly traversed if and only if the advice
provided about the landmark associated with vertex vi is valid and correctly interpreted
and the landmark associated with vertex vi+1 is correctly recognized. For i = 0, . . . , k− 1,
the flight path P is correctly traversed if and only if each of its segments defined by an edge
{vi, vi+1} is correctly traversed.

At the start, a MAV is given a flight plan. The flight plan defines the flight path P.
For each vertex vi, i = 0, . . . , k− 1, the flight plan comprises advice for searching the next
landmark, such as directional data. For each vertex vi+1, the flight plan contains recognition
data, such as landmark characteristics. A flight plan is correctly performed solely if every
single segment is correctly traversed.

We obtain the following quantitative characterization of segment correctness and
flight path in terms of recognition and advice probabilities.

Lemma 1. A flight plan leading to a path of length k is correctly performed with probability
(1− p)k(1− q)k.

Proof. For individual segments i = 0, . . . , k− 1, we have

Pr[{vi, vi+1} is correct] = Pr[advice at vi and recognition

at vi+1 are correct] = (1− p)(1− q).

For the whole flight plan for path P, we have

Pr[P is correct] = Pr[∀i({vi, vi+1} is correct)]

=
k−1

∏
i=0

Pr[{vi, vi+1} is correct]

= (1− p)k(1− q)k.

This proves the lemma.

Lemma 1 is valid for a single MAV that is recognizing landmarks and navigating from
a start point to a terminal point. In Section 4, it is shown how to improve the probability of
correctness for a swarm of co-operating MAVs that communicate and exchange information
with each other.

In a swarm, we may take advantage of communications and collaboration among the
MAVs so as to amplify the quality of a priori and sensed data. To this end, we use the
principle of maximum likelihood.

Algorithms 1 and 2 define the main processes. Algorithm 1 applies majority recog-
nition. Algorithm 2 applies the advice. It should be emphasized that the amplification of
recognition and advice, implied by the majority rule used in the two algorithms above, is
based on a binary decision. To illustrate this fact, consider the case of amplification of the
quality of recognition. First of all, it is assumed that all the MAVs in the swarm run the
same visual recognition software. Hence, the set of possible outcomes of the MAVs’ visual
systems is partitioned into two mutually disjoint sets. The first set can be interpreted as
the container of positive outcomes, the second set as the container of negative outcomes.
This is to be the same for all the MAVs. For a binary decision example, consider a swarm of
five MAVs which is to decide whether the object viewed is either a Door (D) or a Window
(W). If the answers of the individual MAVs are D, W, D, W, D, then the majority output
will be Door.
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A similar interpretation is being used for the advice algorithm software which is
executed by “smart landmarks” giving advice to the MAVs, i.e., providing the direction the
swarm should follow next. For a binary example with a swarm of five MAVs, assume that
the landmarks may give either the answer North (N) or South (S). If the advice collected by
the MAVs are N, S, S, N, N, then the majority decision will be North.

Algorithm 1 Majority Recognition Algorithm for a swarm of m MAVs

1: Each MAV performs landmark recognition
2: MAVs exchange information
3: if there is a landmark common to the majority (of at least dm/2eMAVs) then
4: the MAV swarm adopts this common landmark
5: else
6: every MAV adopts its own recognized landmark
7: end if

Algorithm 2 Majority Advice Algorithm for a swarm of m MAVs

1: Each MAV takes the advice provided for the visited landmark
2: MAVs exchange information
3: if there is a majority advice interpretation (for at least dm/2eMAVs) then
4: all MAVs follow this common advice interpretation
5: else
6: the MAVs follow their own advice interpretation
7: end if

4. Quality Amplification and Error Reduction
4.1. Reducing the Error Probability

The collaborative landmark recognition process defined by Algorithm 1 applies to
a swarm composed of m MAVs. Let pm denote the error probability of the majority rule
applied in Algorithm 1; this is given by the following formula:

pm = 1−
m

∑
i=dm/2e

(
m
i

)
(1− p)i pm−i (1)

Now, we show that the majority rule improves the error probability p.

Lemma 2. For p < 1/2, we have the following inequality:

1− p < pm
m

∑
i=dm/2e

(
m
i

)(
1
p
− 1
)i

. (2)

Proof. (Lemma 2) The inequality is proved by considering two cases depending on the
parity of m, the number of MAVs.

Case 1 (m is odd): If m is odd, we can express the value as m = 2d + 1, for some
integer d ≥ 1 so that dm/2e = d + 1. Let a = 1

p − 1 and observe that a > 1, since p < 1
2 .

From the binomial theorem, we have that

(a + 1)m =
m

∑
i=0

(
m
i

)
ai

=
d

∑
i=0

(
m
i

)
ai +

m

∑
i=d+1

(
m
i

)
ai

= L + U, (3)
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where L and U are defined as follows:

L :=
d

∑
i=0

(
m
i

)
ai =

d

∑
i=0

(
m

d− i

)
ad−i, and (4)

U :=
m

∑
i=d+1

(
m
i

)
ai =

d

∑
i=0

(
m

d + i + 1

)
ad+i+1. (5)

Now, observe that L and U have the same number of summands with identical
respective binomial coefficients, namely(

m
d− i

)
ad−i and

(
m

d + i + 1

)
ad+i+1,

for i = 0, 1, . . . , d. In Formulas (4) and (5), observe that the left term when multiplied by
a2i+1 is equal to the right term, namely a2i+1( m

d−i)ad−i = ( m
d+i+1)ad+i+1, for i = 0, 1, . . . , d.

Since a > 1 and d ≥ 1, we conclude that

aL =
d

∑
i=0

a
(

m
d− i

)
ad−i <

d

∑
i=0

a2i+1
(

m
d− i

)
ad−i = U. (6)

From Equations (3) and (6), it follows that (a + 1)m = L + U <
(

1
a + 1

)
U.

Since a + 1 = 1
p , we conclude that

U >
(a + 1)m

1
a + 1

=
1− p

pm .

Case 2 (m is even): The proof is similar to the case when m is odd. Since m is even,
it can be written as m = 2d, for some integer d ≥ 1 so that dm/2e = d. Let a = 1

p − 1 and

observe that a > 1, since p < 1
2 . From the binomial theorem, we have that

(a + 1)m =
m

∑
i=0

(
m
i

)
ai

=
d−1

∑
i=0

(
m
i

)
ai +

m

∑
i=d

(
m
i

)
ai

= L′ + U′, (7)

where L′ and U′ are defined as follows:

L′ :=
d−1

∑
i=0

(
m
i

)
ai =

d

∑
i=1

(
m

d− i

)
ad−i, and (8)

U′ :=
m

∑
i=d

(
m
i

)
ai =

d

∑
i=0

(
m

d + i

)
ad+i. (9)

Now, we compare summands in L′ and U′, namely(
m

d− i

)
ad−i and

(
m

d + i

)
ad+i,
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for i = 0, 1, . . . , d. In Formulas (8) and (9), observe that the left term when multiplied by a2i

is equal to the right term, namely a2i( m
d−i)ad−i = ( m

d+i)ad+i, for i = 0, 1, . . . , d. Since a > 1
and d ≥ 1, we conclude that

aL′ ≤
d

∑
i=0

a
(

m
d− i

)
ad−i <

d

∑
i=0

a2i
(

m
d− i

)
ad−i = U′. (10)

From Equations (7) and (10), it follows that (a + 1)m = L + U <
(

1
a + 1

)
U. Since

a + 1 = 1
p , we conclude that

U′ >
(a + 1)m

1
a + 1

=
1− p

pm .

Therefore, Inequality (2) is proved in both cases of m odd and m even. Thus, the proof
of Lemma 2 is complete.

We may now conclude the following.

Theorem 1. The majority rule applied to a swarm of m MAVs executing Algorithm 1 reduces the
probability of error of the recognition process as long as p is less than 1/2.

Proof. Let m be the number of MAVs. Therefore, 1− pm is the probability that the majority
is at least composed of dm/2eMAVs correctly performing recognition, i.e.,

1− pm =
m

∑
i=dm/2e

(
m
i

)
(1− p)i pm−i

= pm
m

∑
i=dm/2e

(
m
i

)(
1
p
− 1
)i

. (11)

Now, for p < 1/2, Lemma 2 says that

1− p < pm
m

∑
i=dm/2e

(
m
i

)(
1
p
− 1
)i

, (12)

which, in view of Equation (11), implies that pm < p, i.e., the probability of error for a
swarm of m MAVs is less than for MAV in solo. This proves the theorem.

A similar proof also yields the following.

Theorem 2. The majority rule applied to a swarm of m MAVs executing Algorithm 2 reduces the
probability of error of the advice process as long as q < 1/2,

Proof. The proof is similar to the proof of Theorem 2.

Note that there are additional possibilities in Algorithm 2. The MAVs in a swarm
could also acquire information either from the same landmark or from different landmarks
(although we do not investigate the latter case further).

4.2. Approximating the Majority

Let Sm be the sum of m mutually independent random variables each taking the
value 1 with probability p and the value 0 with probability 1− p (i.e., Bernoulli random
trials). The majority probability discussed above is given by the formula Pr[Sm ≥ dm

2 e].
Good approximations of the majority probability for large values of m can be obtained
from the central limit theorem, which states that

Pr

[
a ≤ Sm −mp√

mp(1− p)
≤ b

]
→ 1√

2π

∫ b

a
e−x2/2dx. as m→ ∞ (13)
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(see, for instance [21]). For example, for any m, we have that

Sm ≥
⌈m

2

⌉
⇔ Sm −mp√

mp(1− p)
≥

⌈m
2
⌉
−mp√

mp(1− p)
.

Hence, the central limit theorem (13) is applicable with a =
dm

2 e−mp√
mp(1−p)

and b = +∞,

where p < 1/2 is a constant.

5. Experiments and Simulations

There is an interesting trade-off between the majority probability pm and cost of using
a swarm of m MAVs. This helps put the probabilistic gains in context w.r.t. the energy
consumption and time cost of the swarm.

5.1. Cost Measures and Tradeoffs

From Theorem 1, we know that, for any number m of MAVs, the error probability p
is reduced to pm, similarly for Theorem 2. We now examine quantitative estimates of this
error reduction in relation to specific numbers m of MAVs involved.

From Equation (11), observe that we can derive the following identity expressing the
ratio of improvement of the probability of correctness:

1− pm

1− p
=

m

∑
i=dm/2e

(
m
i

)
(1− p)i−1 pm−i (14)

In a way, one can think of the right-hand side of Equation (14) as the “fractional gain”
in the correctness probability (because we are employing a majority rule) that improves
from 1− p to 1− pm. In general, we would like on the one hand to ensure that 1−pm

1−p is
greater than one, i.e., there is effectively a gain, and on the other hand to optimize the
right-hand side of Equation (14). Since we are also interested in applying the majority
algorithms for a relatively small number of MAVs, we give close form expressions and
precise estimates of the optimal value of p and the maximum fractional gain, for m equal to
2, 3, 4, 5, 6 and 7 MAVs.

Theorem 3. For m equal to 2, 3, 4, 5, 6 and 7 MAVs, the maximum attainable fractional gain 1−pm
1−p

and the corresponding error probability p are as listed in the second and third column, respectively,
of Table 1.

Table 1. Maximum fractional gain vs. number of MAVs (m).

m Maximum Fractional Gain Corresponding p

2 1 +1 /2 1/2
3 1 + 1/8 1/4
4 1.379 1+

√
10

9
5 1.198 0.276
6 1.368 0.398
7 1.249 0.294

Proof. Each of the six cases is examined individually. Recall that the fractional gain is the
ratio 1−pm

1−p whose expression as given by Equation (14) yields a polynomial which is easily
optimized with analytical methods, namely by setting its first derivative equal to zero, or
numerical methods.

Case m = 2. The fractional gain ratio is 1−p2
1−p , which is equal to 1−p2

1−p or the linear
polynomial 1 + p. It is maximized for p equal to 1/2, i.e., the maximum value that can be
assumed by p. The maximum fractional gain is therefore 1 + 1/2.
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Case m = 3. The fractional gain ratio is 1−p3
1−p , which is equal to the polynomial

1 + p− 2p2. Setting its derivative equal to 0, we obtain 1− 4p = 0 and therefore p = 1/4.
Therefore, the fractional gain attains the maximum value 1 + 1/8.

Case m = 4. The fractional gain ratio satisfies 1−p4
1−p = (1− p)(3p2 + 2p + 1). Differen-

tiating the last polynomial and setting it equal to 0, we obtain−9p2 + 2p +−1 = 0. Solving
the quadratic, we obtain that the fractional gain is maximized when p = 1+

√
10

9 and attains
the maximum value 1.379.

Case m = 5. The fractional gain ratio is 1−p5
1−p , which is equal to the polynomial

10(1− p)2 p2 + 5(1− p)3 p + (1− p)4. Its first derivative is equal to the polynomial 24p3 −
27p2 + 2p + 1. One of the roots of this polynomial is 1. We have that 24p3 − 27p2 + 2p + 1
is equal to (p− 1)(24p2 − 3p + 1). The positive root of the quadratic 24p2 − 3p + 1 is equal
to 3+

√
9+96

48 , or approximately 0.276. The fractional gain ratio attains the maximum value
1.1917.

Case m = 6. The fractional gain ratio is 1−p6
1−p , which is equal to the polynomial

1+ p+ p2 + p3− 14p4 + 10p5. Using the Wolfram Mathematica™ function, solve(diff(1+
p + p2 + p3 − 14p4 + 10p5),p)) we obtain the optimal value

p =
6 + (38016− 1350

√
730)1/3 + 3(2(704 + 25

√
730))1/3

150
≈ 0.39751 . . .

Case m = 7. The fractional gain ratio is 1−p7
1−p , which is equal to the polynomial

(1− p)3(1 + 4p + 10p2 + 20p3)

Using the Wolfram Mathematica™ function solve(diff((1− p)3(1 + 4p + 10p2 +
20p3), p)), we obtain the optimal value

p =
10 + (217000− 15120

√
190)1/3 + 2(35(775 + 54

√
(190)))1/3

360
≈ 0.29357

For m = 2, . . . 7, Table 2 displays the polynomials modeling the fractional gains and
the majority error probability pm.

Table 2. Fractional gain polynomials and majority error probability pm, for m = 2 to m = 7.

m Fractional Gain Polynomial pm

2 1 + p 0.25
3 −2p2 + p + 1 0.15

4 −3p3 + p2 + p + 1 0.25

5 6p4 − 9p3 + p2 + p + 1 0.13

6 10p5 − 14p4 + p3 + p2 + p + 1 0.179

7 −20p6 + 50p5 − 34p4 + p3 +
p2 + p + 1

0.113

Table 3 displays the optimal error probability, fractional gain and majority error
probability pm versus a given number m of MAVs, where m ≤ 20.
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Table 3. Left to right, the columns provide (1) the number of MAVs, (2) the optimal value (p), (3) the
fractional gain 1−pm

1−p from m = 9 to m = 20 and (4) the corresponding majority error.

m Optimal Value (p) Fractional Gain pm

8 0.381 1.380 0.144
9 0.307 1.287 0.111
10 0.372 1.396 0.120
11 0.317 1.319 0.103
12 0.370 1.411 0.110
13 0.326 1.345 0.098
14 0.370 1.426 0.101
15 0.333 1.368 0.083
16 0.371 1.440 0.092
17 0.339 1.387 0.084
18 0.373 1.452 0.084
19 0.344 1.404 0.073
20 0.374 1.464 0.077

Figure 3a plots the evaluation of equation 1−pm
1−p from m = 2 to m = 7. Figure 3b plots

the same evaluation, from m = 8 to m = 20. The curves indicate the maximum fractional
gains as a function of the probability p.
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Figure 3. Plots of the fractional gain function 1−pm
1−p for varied p’s and m’s.

5.2. Numerical Simulations

Algorithms 1 and 2 have been integrated into a Java simulator, which implements
swarm populations modeled as mobile agents. Each swarm executes the algorithms within
a terrain of interconnected landmarks. It consists of a simple discrete event, time-step
based simulation engine, in which the swarm executes our algorithms at every step of
simulated time. The simulation engine implements a discrete event scheduler, a graphical
view, a data collection system and the simulated objects themselves, i.e., landmarks and
agents. Videocaptures and source code are available online [22].

Using our Java simulation, we validate five different scenarios. Every scenario relates
the number of MAVs with the error probability of the majority edasrule varying the
recognition and advice error ratios among the percentages 70%, 80% and 90% (cf. Section 3).
Figure 4a,b represent two grid structures of MAVSIM, i.e., a 10× 10-grid and a 25× 25-
grid. Figure 5a is a topological structure imported from the OpenStreetMap (OSM (https:
//www.openstreetmap.org (accessed on 9 July 2021))) project, using Carleton University
as the location; Figure 5b is a topological structure imported from OSM using Telecom
SudParis (at the campus of the Institut Polytechnique de Paris (IPP)) as the location;

https://www.openstreetmap.org
https://www.openstreetmap.org
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Figure 5c is a topological structure imported from OSM using the University of Campinas
as a location.

(a) 10× 10-grid scenario (b) 25× 25-grid scenario
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(e) Energy consumption, 10× 10-grid scenario
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Figure 4. Experimental results for the two first scenarios. (a) depicts the 10× 10-grid scenario. (b)
depicts the 25× 25-grid scenario. (c,d) show the relation between the number of MAVs and error
probability of the majority rule (pm) varying the recognition and advice error ratios between 70%
(red), 80% (blue) and 90% (black). The vertical axis represents pm. The horizontal axis represents the
number of MAVs. (e,f) show the relation between the number of MAVs vs. energy consumption,
when varying the recognition and advice error ratios. The vertical axis represents the energy
consumption (joules).
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(a) Carleton University scenario (b) IPP – T. SudParis scenario (c) Campinas – Unicamp scenario
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(g) Energy consumption, Carleton scenario
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(h) Energy consumption, IPP scenario
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Figure 5. Experimental results for the three last scenarios. (a) depicts the Carleton University map scenario. (b) depicts the
IPP—T. SudParis scenario. (c) depicts the Campinas—Unicamp scenario. (d–f) show the relation between the number of
MAVs and error probability of the majority rule (pm) varying the recognition and advice error ratios between 70% (red), 80%
(blue) and 90% (black). The vertical axis represents pm. The horizontal axis represents the number of MAVs. (g–i) show the
relation between the number of MAVs vs. energy consumption, when varying the recognition and advice error ratios. The
vertical axis represents the energy consumption (joules).

5.3. Performance Evaluation

Table 4 shows key characteristics for each of the five scenarios. For every scenario, the
second column lists the types of landmarks that are present. The third column lists the
number of nodes contained in the map. The fourth column specifies the quantity of nodes
used as landmarks.

For each of the five scenarios, Figures 4 and 5 (cf. Parts Figures 4c,d and 5d–f) show the
relation between the number of MAVs and error probability pm of the majority rule varying
the recognition and advice error ratios among the percentages 70%, 80% and 90%. The
horizontal axis lists the numbers of MAVs. The vertical axis represents the majority error
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probability pm. For every scenario, there are three curves corresponding to the recognition
and advice error percentages 70% (red), 80% (blue) and 90% (black). For each of the five
scenarios, Figures 4 and 5 confirm that the majority rule applied to a swarm of m MAVs
reduces the probability of error of the recognition process. Our solution benefits from
swarm cooperation.

Table 4. Characteristics of each scenario.

Scenario Landmark Types # of Nodes # of Landmarks

10× 10-grid Random nodes 100 1/4 of the nodes

25× 25-grid Random nodes 625 1/4 of the nodes

Carleton University Traffic signals, junctions, etc. 3511 335

IPP—Telecom
SudParis

Crossing paths, tourism
viewpoint, etc. 1413 97

Campinas—Unicamp Crossing paths, round-about,
etc. 1559 29

5.4. Energy Evaluation

To move a distance d at speed si, the energy consumed by a straight line flight E f ly
can be quantified as the integral of the power P(si) as a function of the speed along the
time [23]:

E f ly(d, si) =
∫ t=d/si

t=0
P(si)dt = P(si)

d
si

(15)

For the five scenarios, Figures 4 and 5 (cf. Parts Figures 4e,f and 5g–i) show the relation
between the number of MAVs and energy consumption varying the recognition and advice
error ratios among the percentages 70%, 80% and 90%. In each case, the horizontal axis
represents the number of MAVs. The vertical axis represents the energy consumption
metric. There are three bars corresponding to the recognition and advice error ratios 70%
(red), 80% (blue) and 90% (black). The speed is set to 5 m/s. In the first four scenarios,
the results show that the energy consumption of the MAVs reduces to approximately 35%,
when the number of MAVs increases. This is because the error probability of the majority
rules pm decreases as well. On the other hand, the University of Campinas scenario is a
sparse graph. The number of landmarks is relatively small. Energy consumption is less
sensitive to the number of MAVs.

6. Conclusions

We have presented an error tolerant path planning algorithm for MAV swarms. We
have assumed a navigation system in which the MAVs find their path by using their
on board cameras, by identifying and following a series of visual landmarks. We have
assumed landmarks’ a priori information, but for which interpretation by the MAVs is
error prone. We have defined two types of errors: (1) recognition errors, e.g., due to faulty
sensors that misinterpret the sensed data, and (2) advice errors caused by the landmarks,
e.g., due to weather conditions or outdated information. Our solution benefits from swarm
cooperation. When the MAVs in a swarm can communicate and exchange information, the
recognition and advice error ratios get minimized to one fourth at the expense of increasing the
total number of MAVs by twenty. We validated the proposal via simulations, implemented in
Java, available in a companion repository on github [22].

The recognition and advice algorithms presented are based on binary decision-making.
An interesting setting worth exploring is non-binary. For example, consider a swarm of five
MAVs required to decide its next move based on the majority color of a door, say, among
Yellow (Y), Green (G) and Blue (B); in this case, it is assumed that Y is to be a positive
outcome while G, B are negative outcomes. On the one hand, if the respective outputs of
the visual systems are Y, G, Y, Y, B, then the Yellow Door is considered to be the positive
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outcome and occurs three out of five times. On the other hand, if the respective outputs of
the visual systems are Y, G, Y, B, B, then there is no majority of identical colors. In particular,
the majority can be formed by three identical answers. Such situations can be handled
using voting schemes and fuzzy logic, which would be the focus of future research.

The basic idea of our algorithms is to enhance the quality of recognition and advice by
having multiple MAVs make a decision after exchanging information they have obtained.
Naturally, this increases the cost of movement since multiple MAVs will be traveling to a
destination. Therefore, it would be interesting to look at trade-offs of the cost of the search
that take into account either time or total energy versus the number of MAVs in the swarm
for a given budget.
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