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Abstract—We consider the problem of a drone having to
traverse a terrain. Traversal of the terrain exposes the drone
to certain risks, e.g., concentration of chemicals, severe thunder-
storm wind gusts or any disturbing weather phenomenon. The
goal of the drone is to navigate the terrain while minimizing
the amount of risk. We develop a framework for quantifying
the exposure to risk factors in a circular zone model. We
propose risky zone avoidance navigation strategies for rectilinear
or curvilinear drone trajectories. We validate the work using
numeric simulations.

Index Terms—Drone, collision avoidance, obstacle avoidance,
zone avoidance, risk evaluation, risk mitigation.

I. INTRODUCTION

Communications with drones Beyond Visual Line of Sight

(BVLOS) are expected to be one of the important applica-

tions of 5G networks [1], [2]. With BVLOS, pilots maintain

communications with drones across arbitrarily large distances

over cellular networks. It is a significant technological ad-

vancement. An enabler for drone applications requiring wide

geographical area coverage such as the delivery of parcels or

medical supplies. However, this new technology has its own

challenges. Among others, safety is essential. Several incidents

can be prevented by taking into account the existence of risky

zones and avoiding to fly over them as much as possible. This

includes collisions with flying birds or other flying objects.

Thus, drones may avoid traversing zones with concentrations

of wild bird populations or heavy air traffic.

In this paper, we address the following problem. Consider a

drone having to fly over a given terrain. While traversing the

terrain, the drone is exposed to risks related to the geographical

locations of factors. For example, a relative risk can be

estimated as a function of the 2D density of a population

of individuals or as a function of the 3D concentration of

chemicals or disturbing weather phenomena. The goal is to

navigate the terrain so as to find a path of minimum risk.

We develop a metric for quantifying the exposure of a drone

to risk factors in a circular zone model. We design new zone

avoidance strategies for drones traversing terrains comprising

several risky zones while following either a rectilinear (i.e.,

straight-line) or a curvilinear (i.e., non straight-line) trajectory.

Related work is briefly reviewed in Section II. In Section III,

we describe details of a metric for quantifying the exposure

to a risk factor suiting a circular zone model. Risky zone

avoidance techniques for rectilinear trajectories are presented

in Section IV, while they are defined for curvilinear strategies

in Section V. Simulation work is presented in Section VI. We

conclude with Section VII.

II. RELATED WORK

The need for zone avoidance emerges from the requirement

to avoid collisions or obstacles. Collision avoidance algorithms

tend to focus on reaction rather than prevention. Low latency

reaction to events observed on cameras or detected with

sensors is of paramount importance [3], [4]. In contrast to

our concept of zone, obstacles are solid structures that cannot

be traversed. We assume, however, structures that are not

necessarily bounded by rigid compounds They can be tra-

versed by drones, but with a certain risk. Traditional obstacle

avoidance techniques can be adapted to control the way how

drones can prevent exposure to such intangible areas. We

adapt strategies from the field of robotics [5], e.g., potential-

function-based control [6], [7], curve following [8] strategies

and bug algorithms [9]. There are also studies (some of which

are very recent) on various collision and obstacle avoidance

approaches for drones [10]–[13]. In all these situations, one

assumes the presence of a physical boundary, like wall or

fence, which is to be avoided. Our work is complementary to

the research on collision and obstacle avoidance. In contrast

to obstacles, zones are also relatively large geographical areas.

Our goal is to minimize risk and travel time through risky

zones, if they cannot be avoided entirely.

III. MEASURING RISK EXPOSURE

We define a new metric for measuring the amount of risk

resulting from a selected path. This leads to methods for

navigating a terrain. We develop strategies for navigating a

terrain comprising risky zones.
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Fig. 1. A drone is traversing a circular zone with a rectilinear trajectory from
A (entrance) to B (exit) at distance h from the source point p. The shaded
area represents the total amount of exposure to risk by the drone.



A. Circular Zone Model

As depicted in Figure 1, a zone is determined by a source

point p in the plane together with a radius r, greater than zero.

The value r is called the sensitivity distance. Its value depends

on the intensity of the source causing the risk factor. The larger

the r, the farther the range of the source. A drone traversing

a zone is exposed to some risk. The risk level depends on the

distance between the drone and source point. Beyond distance

r, the source represents no risk. The sensitivity distance is

used to define a risk evaluation metric.

B. Risk Evaluation Metric

When traversing a zone, it is assumed that the closer a

drone is to the source point p, the greater is the exposure

to risk. Let us assume that when a drone is at distance x from

a source point, with x ≤ r, it gets gets an amount of risk

exposure defined by the function V (r, x). There are several

possibilities for choosing the function V . For example, in the

simple linear model we employ in our present work, we may

assume that V (r, x) = r − x units. This leads to assume that

the total amount of the risk incurred by a drone during its

entire trajectory within p’s range from A to B is measured by

the area of the circular segment AEBD (represented by the

shaded domain in Figure 1).

The following lemma formally captures this idea and pro-

vides a metric for measuring the risk.

Lemma 1. Assume a drone is traversing a rectilinear tra-

jectory at distance h from a source point p with sensitivity

distance r, where r ≥ h ≥ 0. The total amount V (r, h) of risk

exposure that the drone incurs for its entire trajectory within

the zone is equal to

V (r, h) = arccos

(

h

r

)

· r2 − h ·
√

r2 − h2. (1)

Proof. Referring to Figure 1, a drone is traversing a rectilinear

trajectory whose distance h from the source point is p; the

drone is entering the circle at A and exiting it at B. We are

interested to measure the risk exposure for the duration of

the entire trajectory from A to B. We calculate the total risk

exposure of a drone traversing a zone on a rectilinear trajectory

from A to B. Let pDB denote the circular sector and α =
∠(BpD). Note that

Area(AEBD) = 2·(Area(Sector(pDB))−Area(△(BpE))
(2)

Since cosα = h
r

. we see that

Area(Sector(pDB)) =
α

2
· r2 =

arccos
(

h
r

)

2
· r2 (3)

and

Area(△(BpE)) =
1

2
· h · r · sinα

=
1

2
· h · r ·

√

1−
(

h

r

)2

=
1

2
· h ·

√

r2 − h2 (4)

Using Equations (2), (3), (4) we conclude that

Area(AEBD) = arccos

(

h

r

)

· r2 − h ·
√

r2 − h2,

which proves the lemma.

C. Risk Associated with Multiple Zones Traversal

When a drone is traversing a terrain within which k
source points p1, p2, . . . , pk reside with respective sensitivity

distances r1, r2, . . . , rk, the total risk exposure accumulated

by a drone will be equal to

k
∑

i=1

V (ri, hi), (5)

where hi is the distance of the trajectory of the drone from

source point pi, for i = 1, . . . , k, respectively. Figure 2 depicts

M

Fig. 2. A drone M is traversing a terrain following a rectilinear trajectory.
Its exposure during the trajectory is the sum of the exposures to every source.

the rectilinear trajectory of a drone M in a given terrain

and its total risk exposure from sources in its proximity. The

latter is measured as the sum of the risks for all the sources

encountered, given by Equation (5).

IV. STRATEGIES FOR RECTILINEAR TRAJECTORIES

We consider the problem of navigating a terrain while at the

same time minimizing the amount of risk that a flying drone is

exposed to, when following a rectilinear trajectory. The main

problem of interest can be specified as follows:

Determine the rectilinear trajectory a drone should

follow so as to minimize the risk when traversing a

rectangular terrain.

More precisely, consider a rectangular terrain represented by

two parallel lines at distance one from each other. Between the

two lines there are source points of some risk. In the first type

of trajectories considered, we assume the drone keeps a given

fixed direction (see Figure 3) and accumulates the minimum

amount of risk for this direction, For example, the trajectory

depicted in Figure 3 represents a straight line that is parallel

to the two sides of the rectangular area.

We use Lemma 1 to determine the trajectory of drone M
which ensures minimal risk exposure for the passage of a

drone in two situations: first when the direction of movement

of the drone is known, and second when the starting point

of the drone is known. To be more specific, we establish the

following statement.
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enter exit
M

Fig. 3. A rectangular terrain delimited on its length by two parallel lines at
distance one from each other. The rectilinear trajectory of the drone M is
assumed to be parallel to the two parallel lines along the length of the terrain.

Theorem 2 (Exposure in Directional Trajectory). Delimited

along its length by two parallel lines, consider a rectangular

terrain enclosing k source points p1, p2, . . . , pk, of respective

sensitivity distances r1, r2, . . . , rk. When moving in parallel to

the delimiting lines, for any choice of entry point, in time O(k)
we can compute a trajectory for the drone that minimizes its

total risk exposure.

Proof. Without loss of generality, we assume that the trajec-

tory of the drone is parallel to the length of rectangular area,

see Figure 3. The proof is similar for any choice of entry point.

Consider the scenario depicted in Figure 4 with k source

points p1, p2, . . . , pk placed within a rectangular area delimited

by two parallel lines.

enter exit

y

M

p1

p2
pk

pi

Fig. 4. A drone M is traversing a rectangular terrain following rectilinear
trajectory, at distance y from the bottom delimiting line.

We want to find a rectilinear trajectory parallel to the terrain

frontiers that minimizes the drone’s risk. Without loss of

generality, let us assume that the width (vertical distance of

the two parallel horizontal delimiting lines) of the area is 1,

and let the bottom horizontal line be the line at y = 0 (x-

axis) and top horizontal line be the line at y = 1. Let us

assume that a potential drone trajectory is along a horizontal

line where 0 ≤ y ≤ 1. The problem reduces to finding the

y that minimizes the total risk of a drone that traverses the

terrain following the trajectory determined by y.

Assume a horizontal line is vertically sliding, with range 0
to 1. We consider events that occur as the line intersects

various circular zones (see Figure 5). Consider a circular zone

with the source point p and sensitivity distance r. As y is

increasing, the line scans the zone. It first intersects the circle

at the tangent point pb, then passes through its center p, and

finally intersects the circle at the tangent point pa.

Consider scanning with a horizontal line crossing the disk

centered at p between the tangent points pb and pa on its

perimeter. Recall that h is the distance of the horizontal line

pa

pb

p

y

Fig. 5. For any source point p consider the circle with center p and sensitivity
r. As y is increasing, the line scans the circle area. It first intersects the circle
at the tangent point pb, then passes through the center p, and finally intersects
the circle at the tangent point pa.

to the center p. The evaluation of function V (r, h) starts at

0 with y = pb and h = r. It then keeps increasing; until the

horizontal line passes through the center p of the circular zone

(y = p). As the line is moving towards the tangent point pa
(y = pa), the evaluation of function V (r, h) keeps decreasing

and assumes again the value 0 when the line passes through

the point pa, in which case y = pa and h = r. It is clear that

the function V (r, h) is maximized when y = p.

Consider a trajectory for the drone M that is parallel to the

side length of the terrain and at distance y from the bottom

line. Let I, J ⊆ {1, 2, . . . , k} be the subsets of indices of

nodes such that

• for each i ∈ I the line y intersects the circle centered at

pi, below pi, and

• for each j ∈ J the line y intersects the circle centered at

pj , above pj .

The drone accumulates a total risk amount for its entire

trajectory equal to

∑

i∈I

V (ri, |y − pi|) +
∑

j∈J

V (rj , |y − pj |), (6)

where ri, rj denote the respective ranges of the circular

zones centered at pi, pj where i ∈ I , and j ∈ J , and

V (r, h) := arccos
(

h
r

)

· r2 − h ·
√
r2 − h2 is the function

in Equation (1) that measures the amount of risk of the

drone M . While the configuration of sets of indices I, J
remains unchanged during the scanning of the line, the first

summand in Equation (6) is monotone increasing in y. The

second summand in Equation (6) is monotone decreasing in

y. Therefore while the configuration I, J remains the same,

we can compute the minimal value of the sum in Equation (6).

A change occurs when an event occurs as depicted in Figure 5

in which case the configuration of sets I, J changes.
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Our strategy is described in more detail in Algorithm 1.

Algorithm 1 Rectilinear traversal (Source points: p1, . . . , pk,

Sensitivity distances: r1, . . . , rk)

1: Start with the line y = 0, where 0 ≤ y ≤ 1, from bottom

y = 0 to top y = 1;

2: For each event encountered with line y, determine the risk

amount using Equation (6);

3: Determine the next event;

4: Compute the minimum risk amount given by Equation (6)

for events between y = 0 and y = 1;

5: Return minimum risk exposure;

It follows that as we run through our event space, for each

pair (I, J) of sets of indices we can determine easily the value

of y that minimizes the sum. Since there are O(k) events there

are O(k) such pairs (I, J). Therefore, we can compute the

optimal trajectory of the drone in O(k) time. This completes

the proof of the theorem.

Although we do not know how to compute the overall

optimal rectilinear trajectory, we can approximate it as close

to the optimal as required.

Corollary 3 (Approximate Exposure Trajectory). Consider a

rectangular terrain consisting of two delimiting parallel lines

and k source points p1, p2, . . . , pk, of respective sensitivities

r1, r2, . . . , rk. For any integer n ≥ 1, in time O(nk) we can

compute a trajectory for a drone whose total risk exposure

V is such that |Vopt − V | ≤ A/n, where Vopt is the optimal

exposure and A is the area of the terrain.

Proof. Divide the plane into n directions iπ/n spaced at an

angle of π/n radians, where n is sufficiently large. For each

i = 0, 1, . . . , n−1 we can run the directional algorithm in this

direction and compute the minimum value, say Vi. Let Vmin

be defined as min0≤I<n Vi. The computation of each Vi can

be done in O(k) time and therefore the computation of Vmin

in O(nk) time.

Now, consider a rectilinear trajectory that attains the optimal

exposure, say Vopt. Clearly, there is a direction i such that

the Vi ≤ Vopt + A/n, where A is the area of the terrain

traversed by the drone. It follows that Vmin ≤ Vi ≤ Vopt +
A/n. Therefore Vmin − A/n ≤ Vopt ≤ Vmin, where Vopt ≤
Vmin follows from the fact that Vopt is the optimal exposure

of any rectilinear trajectory. This completes the proof.

In the second type of trajectory the drone must start from

a given point S (see Figure 6) and accumulates the minimum

amount of risk for this starting position,

A similar algorithm will work if we are looking for rectilin-

ear trajectory starting from a given source location, say S. The

event space is now determined by a rotating line emanating

from the point S (see Figure 7).

Theorem 4. Consider a rectangular area consisting of two

parallel lines and k source points p1, p2, . . . , pk, delimited

on its length by these two lines. Then for any given starting

enter

exit

M
S

Fig. 6. A rectangular terrain delimited on its length by two parallel lines
at distance 1 from each other. The rectilinear trajectory of the drone M is
assumed to emanate from a given origin point S and lie between the two
parallel lines of the area.

pa

pb

p

S

Fig. 7. For any source point p consider the zone with center p and sensitivity
distance r. A line emanating from the source S scans the area rotating
clockwise: it first intersects the zone circle at the tangent point pb, then passes
through the center p, and finally intersects the zone circle at the tangent point
pa.

position S, in time O(k) we can compute a drone trajectory

which minimizes its total risk when starting from position S.

V. STRATEGIES FOR CURVILINEAR TRAJECTORIES

In Section IV, we provided an algorithm that yields optimal

trajectories, in a given direction, and asymptotically optimal

rectilinear ones, overall. However, reduction of the amount

of risk incurred is possible by adopting general curvilinear

trajectories.

The core idea developed in this section is the following.

During the traversal of a rectilinear trajectory ℓ, when a risky

zone is encountered, the drone abandons ℓ. It flies along the

perimeter of the risky zone until it encounters ℓ again. Then,

it resumes the traversal of the rectilinear trajectory ℓ, see

Figure 8. Because it follows its perimeter, it is evident that

Drone A B
ℓ

Fig. 8. The drone abandons its rectilinear trajectory ℓ (dotted line). Starting
at A, it traverses clockwise the arc AB. It resumes its rectilinear trajectory
at B. Note that the drone has two choices at A: it may traverse the perimeter
either clockwise (depicted in the figure) or counter clockwise.

the drone reduces the risk from the encountered zone. Note

that when the drone reaches the perimeter of a risky zone at

A for the first time it has two choices. It may traverse the

perimeter either clockwise (depicted in the figure) or counter

clockwise. Although the two paths may differ in the time, it

takes to complete the traversal, the choice does not affect the
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ultimate goal of reaching the destination T and minimizing

the risk for the zone encountered.

Drone

Forward

Backward

Fig. 9. During its trajectory (dotted line) the drone may encounter either a
forward (left) arc, that brings the drone closer, or backward (right) arc, that
brings the drone away from the target.

Let S be the starting position of a drone and T its des-

tination. The main difficulty arises in making sure that the

drone is not lost in the maze of risky zones and reaches its

target. The drone knows the coordinates of both S and T
and can remember the straight line ST . In addition, it knows

(or can determine) the source point of a risky zone when

it encounters its perimeter during its trajectory. During its

traversal, the drone may encounter either forward circles, that

may lead closer to the target T , or backward circles, that never

lead closer to the target T , see Figure 9. The drone accepts

a forward circle only if T does not lie within the zone, but

it never accepts a backward circle. We now describe in more

detail the update rule for the trajectory of the drone in the

Algorithm 2 for curvilinear traversal.

Algorithm 2 Curvilinear traversal from S to T

1: Start at S and follow the straight line ST
2: repeat

3: When a forward circle C is encountered...

4: if C contains T then

5: Follow the straight line ST
6: else

7: Follow the perimeter of C until meeting line ST
8: Follow the straight line ST
9: end if

10: until target T is reached

Using Algorithm 2, two example curvilinear trajectories are

depicted in Figure 10.

enter exit

p1

p2

pk

pi

enter exit

p1

pk

pi

Fig. 10. Curvilinear trajectory following Algorithm 2: for zones with overlaps
(top), and without overlaps (bottom).

Theorem 5. Algorithm 2 always finds a trajectory from the

source S to the target T . In a sparse environment of pairwise

non-overlapping circles so that S, T do not lie in the interior

of any circle the trajectory is also of zero risk.

Proof. Observe that there is a linear number of circles that the

drone may encounter during its traversal. Therefore, the proof

follows from the fact that the algorithm always moves forward

and closer to the target. The second assertion follows from the

fact that the circles are pairwise non-overlapping.

Algorithm 2 can be realized using attraction and repulsion

potential functions [6], [7]. To follow the straight-line ST ,

the drone is attracted to landmarks on ST . To minimize

contact with risky zones, the drone is repelled from source

points. Although Algorithm 2 is best effort, we can enhance

the performance of the algorithm in selecting trajectories by

scanning many possible directions and accepting the optimal

one, at the cost of additional complexity. Implementation using

attraction and repulsion forces, performance and simulation of

Algorithm 2 are discussed further in Section VI.

VI. SIMULATION RESULTS

We implemented Algorithms 1 and 2 using and extend-

ing SwarmLab [14], a Matlab™ simulation environment for

swarms of drones supporting object collision avoidance algo-

rithms, based on attraction and repulsion functions authored

by Olfati-Saber and Murray [12] and Vásárhelyi et al. [13].

We also review our simulations results.

The SwarmLab simulation environment captures physical

properties of quadcopters and fixed-wing drones, based on

software implementation of the models in Refs. [15], [16]. The

models include mass, aerodynamics and control parameters;

path planning variables represented by a series of waypoints

(e.g., starting position S and intermediate waypoints in rect-

angular terrains); and graphic tools to plot state variables

associated to the drones and obstacles.

We have extended the obstacle avoidance algorithms in

Ref. [14], and their implementation in Swarmlab, to exper-

iment with risky zone avoidance algorithms applying curvi-

linear trajectory strategies. We adapted the original potential

functions for the attraction between agents and repulsion from

obstacles, by assuming that solid obstacles are now non-solid

zones, hence relaxing the threshold potential schemes in [12],

[13]. The idea is as follows. Drones, modeled in Swarmlab

as mobile agents, can pass through what were originally

considered to be obstacles, but minimizing the overlap. Drones

are repelled from a risky zone by applying repulsion potential

functions, and attracted to stationary landmarks, represented

as non-mobile agents (already modeled as attraction potential

functions in Refs. [12], [13]). As a result, we can support

both rectilinear and curvilinear itineraries, trough a series of

intermediate waypoints, in addition to source starting position

S and target exit position T , as discussed in Sections IV and V.

Monte Carlo simulation results obtained with our extended

version of Swarmlab allows us to track and compare the

amount of cumulative risk levels (w.r.t. Eq. (5)) vs. battery

5



consumption of drones using either rectilinear or curvilinear

trajectories. Battery consumption functionality comes directly

from the Swarmlab Matlab™ code, available in the github

repository cited in Ref. [14]. Simulations use randomized

configurations with regard to zone sparsity and overlaps (cf.

for instance results plotted in Figure 11). We validate that

curvilinear trajectories minimize the risk, at the cost of in-

creasing the battery consumption. Additional results, together

with the code of our modifications w.r.t. the original Swarmlab

simulator, are available in a companion github repository [17].
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(a) Rectilinear trajectory

y

x

S

T

(b) Curvilinear trajectory
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(c) Rectilinear results

0 20 40 60 80 100 120 140

Time 

-20

0

20

0 20 40 60 80 100 120 140

Time 

0

100

200

0 20 40 60 80 100 120 140

Time 

0

2

4

(d) Curvilinear results

Fig. 11. Simulation results using the new features of our modified Swarm-
Lab [14] simulation environment, available in a companion github repos-
itory [17]. (a) Rectilinear single drone simulation. (b) Curvilinear trajec-
tory simulation (following curvilinear references adapted from the collision
avoidance algorithms in [12], [13]) (c) Simulation results for rectilinear
trajectory simulations, plotting risk exposure (top), cumnulative risk level
w.r.t. Equation (5) (middle), and battery consumption (bottom). (d) Simulation
results for curvilinear trajectory simulations.

VII. CONCLUSION

We have considered the problem of drones traversing ter-

rains that may expose them to certain risks, e.g., disturbing

weather phenomena. The goal is to provide means to drones

to navigate terrains while minimizing the amount of risk. We

have developed a model for quantifying the exposure to a risk

factor in a circular zone model. We proposed two main risk

reduction strategies, for rectilinear or curvilinear trajectories.

We have validated the work by extending SwarmLab [14], a

Matlab™ environment for swarms of drones. We have shown

that curvilinear trajectories minimize the risk, at the cost of

increasing the energy consumption. In our analysis, we use a

circular zone model. We note that a similar analysis is also

valid if instead of the area of the sector ADBE the length of

the chord AB (cf. Figure 1) is being used as risk metric. It is

also possible to extend the analysis in Section IV to arbitrary

convex (or even polygonal) zones. However, the cost of search-

ing for an optimal traversal algorithm becomes higher as it

depends on the total number of vertices of the polygonal zones.

More complicated curvilinear strategies are possible. One has

to consider the resulting trade-off beradeween minimizing the

risk and the the time of arrival to the target. This would be an

interesting question to consider in future work.
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