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Effect of Diffraction on Wigner Distributions of Optical
Fields and how to Use It in Optical Resonator Theory.
[T — Unstable Resonators
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Laboratoire de Mathématiques de Bretagne Atlantique UMR CNRS 6205
Université de Bretagne Sud, B. P. 92116, 56321 Lorient cedex, France

Abstract. The second part of the article is devoted to field transfers by diffraction
that are represented by fractional Fourier transformations whose orders are complex
numbers. The corresponding effects on the Wigner distributions associated with
optical fields are still represented by 4 x 4 matrices operating on the scaled phase-
space, but unlike matrices involved in the first part, those matrices decompose into two
matrices that essentially represent 2—dimensional hyperbolic rotations, not elliptical
rotations. The result is applied to the theory of unstable resonators.
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1 Introduction

Diffraction phenomena considered in the first part of the paper are represented by fractional Fourier
transformations whose orders are real numbers (see Part I ) In the scaled phase-space, the
effect of diffraction on the Wigner distribution of an optical field is then expressed by a 4 x 4
matrix which splits into two matrices representing pure (or elliptical) rotations operating on two
2-dimensional disjoint subspaces. If the field transfer between two mirrors of an (open) optical
resonator corresponds to such a diffraction phenomenon—associated with a real-order fractional
Fourier transformation— the resonator is said to be stable, and usual properties of such a resonator
can be deduced from the invariance of Wigner distributions associated with the resonator transverse

modes .
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Sometimes, a real fractional-order cannot, indeed, be associated with a given diffraction phe-
nomenon, and in completing the theory, we introduce complex orders [214]; that is done in this
part. Using complex orders leads us to define complex scaled variables; nevertheless, the method
we employ remains similar to the one developed in the first part. Pure rotations of the first part
are changed into hyperbolic rotations. More precisely, the effect of a given diffraction phenomenon
on Wigner distributions is represented by a 4 x 4 matrix which splits into two matrices correspond-
ing to hyperbolic rotations, plus an elliptical rotation in some cases, operating on appropriate
2—-dimensional disjoint subspaces of the scaled phase-space, as will be shown.

If the field transfer between two mirrors of an optical resonator is expressed by a complex-
order fractional Fourier transformation, the resonator is said to be unstable [2H4], as confirmed by
analyzing how Wigner distributions behave in the transfer.

2 Field transfer by diffraction: complex-order transfer

2.1 Complex order associated with a diffraction phenomenon

Once more we consider the field transfer from a spherical emitter .4; (curvature radius R;) to a
spherical receiver A, (radius Ry) at a distance D. The field amplitude U, on Aj; is related to the
field amplitude U; on A; by Eq. (I.2)E| of the first part, that is,

. . 1 1
Us(r') = ﬁexp {—I;\T <R2 + D) r - r’] (1)

im (1 1 2im ,
X /Rz)exp {—)\ (D—R1>r-r] exp<)\D1'-r> Ui(r)dr,

where 72 and /2 have been replaced respectively by the Euclidean scalar products r - r and 7'+ 7/,
which will be more convenient for generalizing to complex scaled-variables.
Let f be a function of a two-dimensional real variable. We recall that the 2—dimensional
fractional Fourier transform of order « of f is defined by
1pl

Falfllp) = (—irp - p/ t)/ (—i t ) Zinp’-p f(p)d (2)
o P _sinanp 1mp - p cota RSXP 1Tp - pcot o) exp Sna p)ap,

where @ may be a complex number [5/6].

To express the right-hand member of Eq. by using a fractional-order Fourier transformation,
we look at the parameter J such that
Ry — D)(R2+ D) 3)
D(D — R1 + Ry)

The case J > 0 is considered in the first part of the paper and corresponds to real-order
transfers, since the associated parameter « is a real number.

In this part, we assume J < 0, and since complex « will be used, we say that the transfer from

Aq to As is a “complex-order” transfer. We first note that J = —1 is not realistic (it corresponds
to Ry =0 or Ry = 0) and will not be considered. Then, when J < 0, we choose « as follows.

1. If J < —1, let 8 be the real number whose sign is the sign of D (then 8D > 0), and such
that coth? 8 = —J. We choose a = if3, so that cot & = —icoth 3.

g

2. If -1 < J < 0, let B be the real number whose sign is the sign of D, and such that
coth? 3 = —1/.J. To obtain cot a = —i/ coth 3, we choose a as follows:

e If D >0, then « = 7/2 +i8. (Remark: 5 > 0.)
e If D <0, then @ = —7/2 +ip. (Remark: 8 < 0.)

In every case (items 1 and 2 above), we have cot?a = J, a result similar to the one given by
Eq. (I.5) in part I, but now « is a complex number.

!Equation (n) of part I is referred as Eq. (I.n).



2.2 Complex scaled-variables and complex scalar-product

To express Eq. by using a fractional-order Fourier transformation, that is, in the form of
Eq. , and to take an example, we have to match exp(—imp - pcot ) with exp(—imrAr - r),
where A is a real number. If the fractional order is chosen to be a = if (8 a real number, see
above), we notice that icota = coth 8 is a real number, and we have to reintroduce a complex
quantity in exp(—irp - pcot ). That is done by using complex scaled-variables, namely, replacing
two-dimensional real vectors p and p’ by two-dimensional complex vectors, as will be shown. The
same can be done when a = £(7/2) 4 i.

On the other hand, the dot product used in Egs. and is a two—dimensional Euclidean
scalar product, defined for real vectors p = (p., py) and p’ = (¢, p,) (Where p., py, p, and pj, are
real numbers) by

PP = paply+ pypl, (4)

A complex vector, say o, is written o = (04,0,) = (ry + iS4, 7y + is,) where 1y, 7, s, and s,
are real numbers. The complex scalar product of vectors o = (04,0,) = (ry + 185, 7y +1s,) and
o' = (o}, 0;) = (rl, +1is, r; + iS;J) is defined by

/
Y

!

r_ / _ / ’ / . / / / ’
0-0' = 0,0, +0y0, = 1yT, + Ty, — 828, — SyS, + i(res, + TySy + T3Sz + Tysy) . (5)

Indeed, it is a symmetric bilinear form (it is not an Hermitian scalar product) and a generalization
of the previous Euclidean scalar product.

2.3 Comparing signs of Ri(R; — D) and Ry(Rs + D)

The signs of Ri(Ry — D) and R2(R2 + D) will be useful both for the definition of appropriate
scaled variables and fractional parameters, and for expressing some results. From the identity
D(D — Ry + RQ) = Ri1Ry — (Rl — D)(Rg + l))7 we deduce

1 D(D— R+ Ry) RiRs _q ()
J (Bi—-D)(R:+D) (R1—D)(Rz2+D) ,
that is,
RiRs 1
=1+-—. 7
(R1 — D)(Ry + D) J (7)
We conclude as follows:
1. If J < —1, then —1 < 1/J < 0, so that
RiR
ke >0, (8)

(R1 — D)(Ry + D)
and Ri(R; — D) and Ry(R2 + D) have the same sign.
2. If -1 < J <0, then 1/J < —1, and

R Ry
(R1 — D)(Re + D)

<0, 9)

which means that Ry (R; — D) and Ro(Rs + D) have opposite signs.



2.4 Field transfer for D >0 and J < —1
2.4.1 Complex scaled-variables and scaled field-amplitudes (D > 0 and J < —1)
Let s be the sign of R1(R; — D) and let

X1 :sRl_Dcothﬂ. (10)
Since 8D > 0, we have D coth 8 > 0, and then
R1D
R = th 0. 11
x1R1 5R1_Dco 8> (11)
Let x2 be such that
= th 3. 12
X2 =S5 0 B (12)
Since Ry (R1 — D) and Ra(R2 + D) have the same sign, and since D coth § > 0, we obtain
RoD
Ry = th 0. 13
X24t2 5R2 D coth g > ( )

Introducing s in Eq. is a way for obtaining x1R; > 0 (and then y2R2 > 0), a condition that
will be useful later.
Finally, we note that £; and €5 defined by

D D
h =
oD TR D

g1 =—s5ix; =—i cota, (14)

and

oth 8 =

‘ 15
RotD° R 1D (15)

Eg9 = —51)(2 = —i
are complex extensions of €; and €5, defined in the first part of the paper: with respect to a, they
are as in the real case—see Eqgs. (I1.7) and (I1.8).

To define complex scaled-variables, we proceed in two steps. Since x1R; > 0 and yoRs > 0,
we first introduce real scaled-variables p on A; and p’ on Ay, such that

,,,,I

d p=——r 16
VT (16)

r
P=—"F7F——),
VAx1R1

and scaled field-amplitudes

Vl(p)=\/X1/\7RlU1( Alelp), (17)
Va(p') = \/X2)\7R2U2( Ax2RRo P') . (18)

Then we define complex scaled-variables o on A; and o’ on As by

and

_ 1+si 1+ si

o= p=— 19
V2 V2 a Ry (19)

and
U,:5+i r_ 5+1 , (20)

—_—.
V2 p V2Ax2Ra
In the following, we denote I' = (1 4+ si)R and I" = (s +1)R, sothat 0 € ' x "'and 6’ € I x I".



The corresponding scaled amplitudes, defined on I" x I" and I x I"' respectively, are

Valo) =1 (o) = 2, (e e

(Index ¢ indicates that V.3 and V.o are defined for complex variables.)

and

2.4.2 Explicit expression of the field transfer by a hyperbolic fractional-order Fourier
transform (D >0, J < —1)

By using the previous scaled variables, scaled functions and complex scalar product, we prove in
Appendix A that for o/ € I'" x I'’, Eq. can be written

is
Vea(o') =

o
exp(—iro’- o’ cot a)/ exp(—imo - o cot a) eXp(sul:TaU'U/) Vei(o)do, (23)

sin o I'sxT’ i

where « is chosen as in Sect. a =if (B a real number with 5D > 0).

Apart from a constant factor, the right-hand part of Eq. is formally identical to the
fractional Fourier transform of order « of the amplitude V,;—see Eq. —but variables are (two-
dimensional) complex variables and the integration domain is I" x I" in place of R%2. The image
domain (to which ¢’ belongs) is I x I'". It is in this sense, and with some abuse, that the field
transfer is said to be expressed by a fractional-order Fourier transform; and since the order is a
complex number, the field transfer is called a complex-order transfer.

Nevertheless, in practice, we prefer to use real scaled variables, which will be helpful in intro-
ducing Wigner distributions on a scaled phase-space identical to the one used in Part I. Indeed,
integration in Eq. (23) can be achieved on R? in place of I" x I' changing o into p = (1 —si)o/v/2.
For p' = (s —i)o’/v2, Eq. becomes

i .
Valp') = Sinhﬁexp(—lswp’-p’cothﬁ)
X /eXp(*iMp-pcothﬂ)eXP Qiipwo’ Vi(p)dp. (24)
R2 sinh 3

Since p and p’ are real vectors, we have p- p = ||p||*> = p? and p' - p' = ||p'||* = p*.
We define the “hyperbolic fractional Fourier transform” of order 5 (8 € R) of function f by

Hslf1(p') = Siifl;; exp(—imp’” coth 3) /R exp(—imp® coth ) eXp(Siifﬂp-p’> flp)dp, (25)
so that, for s = 1, Eq. becomes
Va(p') = " Hp[Vil(p'). (26)
and for s = —1
Va(p') = —e P H_p[Vi](=p') (27)
Equations and are synthetized in
Va(p') = se™ Hop[Vi](sp') , (28)

which is similar to Eq. (I.12) apart that it expresses the field transfer from A; to Ay by a first
kind of “hyperbolic fractional-order Fourier transformation”.



2.5 Field transfer for D <0 and J < —1

For D < 0, the field transfer from A; to As is virtual. We define o = i with § < 0 and
coth? 3 = —J, and we show in Appendix B

Vea(o') =

o
exp(iro’ o’ cot a)/ exp(iro - o cot a) exp(— T 0'-0") Vai(o)do,  (29)

sin o sl sin o

for appropriate complex scaled-variables (given in Appendix B). Formally, up to a multiplicative
factor, we have a fractional Fourier transformation of order —a.
By changing complex scaled variable into real one, we obtain
Va(p') = Sinlh 5 exp(ismp’ - p’ coth )

2im
i . h .
X /Rzexp(lsﬂ'p p coth ) eXp(sinhﬁp p) Vilp)dp, (30)

which can be written as
Va(p') = —se P H_g5[V1](—sp'), (31)
which is similar to Eq. .

2.6 Field transfer for D >0 and -1 < J <0
2.6.1 An additional condition

In the previous sections, since o = i3, we had i/sina = 1/sinh 8, so that using complex scaled-
variables according to Egs. and reintroduced a factor i in 2iweo - 0’/ sin a; this factor was
necessary to match with the factor 2izr - v’ /AD of Eq. .

For —1 < J < 0 and D > 0, the fractional order is chosen to be « = 7/2+if, with 8 > 0. Since
cot & = —i/ coth 8, matching for example imp - pcot a with imrAr - r (where A is a real number)
leads us to introduce complex vectors. But here, we have sina = cosiff = cosh 3, which is a real
number, and the previous scaled variables do not allow matching 2ire - o’/ sin a with 2irr -7’ /AD.
This is why we will use different complex scaled-variables.

2.6.2 Complex scaled-variables and scaled field-amplitudes (D >0, —1 < J < 0)
Let s still denote the sign of Ry (R; — D). We define
sD 1

_ 32
XU= R~ D coth g’ (32)
and since D and 8 have the same sign, we have
R1D 1
Ri=s—— >0. 33
XU =52 77D coth 8 (33)
We then define x5 by
D 1
_ 34
X2 = "SRy D coth g (34)
and since the sign of Ra(Rs2 + D) is opposite to the sign of Rj(R; — D), we obtain
RyD 1
Ry = — 0. 35
X2l2 =TSR D coth B (35)
Finally, we define
. D 1 D
€1 =—5ix; = cot v, (36)

'R, —Dcothg  Ri—D



and

. D 1 D
_1 P
Ry + Dcoth  Ro+D

g =6ixg = cot ar, (37)

which are, with respect to «, as in the real case.
We use p and p’ as in Eq. and scaled field amplitudes V7 and V5 as in Egs. and .
Then we define complex scaled variables on A; and As by

1+ 1+i

o= p= T, 38
\/i v 2>\X1R1 ( )

and
P Sab SRS St SRS (39)

.
2 T ek

The corresponding scaled amplitudes are

Vaalo) =/ 18 m(lf_;\/Alel a) 7 (40)

and

Vea(o') = \/XQ)\TQUz (1\;;\/)0(2732 0') ~ (41)

2.6.3 Field-amplitude transfer

By using the previous scaled vectors and scaled field amplitudes, we obtain that Eq. can be
written as

i

Vea(o') = e exp(—siro’ - o’ cot a)
. 2im ,
X exp(—sino-ocota)exp| —o-0'| Vei(o) do, (42)
I SN &

where I = (1 +1)R and where ¢’ € (1 —i)R x (1 —i)R. The proof is given in Appendix C.
Formally, Eq. involves (up to a multiplicative factor) a fractional Fourier transformation
defined on I x I'”, whose order is o or ™ — av.
For studying the effect of diffraction on Wigner distributions, we use real variables, according

to Egs. and , and write Eq. in the form

o (2522 o (252 o (B2 ) i
We define a second kind of “hyperbolic fractional Fourier transformation” of order 5 (5 € R)
by
. 42 . .
Kaldl(p!) = 2o (Cﬂ ﬂ> [ (—ng;) xo (228 fip)ap. (44)
so that Eq. can be written
Va(p') = ie*Kep[Va](p') - (45)



3 Complex scaled angular-variables

If U denotes the field amplitude on a spherical cap, the corresponding spherical angular-spectrum
is [1]

(&) = % o <‘f) , (46)

where @ denotes the angular spatial-frequency, related to the spatial frequency F by @ = \F'.

The transfer of the spherical spectrum by diffraction is governed by the same laws as that of
the field amplitude [7]. This holds true for the scaled angular-spectrum, namely, Egs. ,
and hold true if scaled field-amplitudes V; and V5 are replaced by the scaled spherical angular
spectra ‘71 and 172, and scaled spatial-variables are replaced by scaled angular-frequencies (see Egs.
(I.12) and (I1.24) [1]).

We now provide the scaled angular-variables corresponding to the scaled spatial-variables of
Sect. [2l They are helpful in expressing the transfer of the spherical angular-spectrum and we will
use some of them in the third part of the article. In defining scaled angular-variables, we manage to
preserve Egs. (I1.21-22). First, we introduce real scaled angular-variables on A; and As according
to

X2 P2
A

X1
A

¢ = P, and ¢ = P . (47)

Then complex scaled angular-variables on A; (denoted 8) and Ay (0') are defined as follows.

e If J < —1, we choose

o 1—si _ X1R1 .
0= \/5 b= 3\ (1 51)45, (48)
and
r_ 5 —-i, _ X212 Y
0 = \/i ¢ = 3\ (5 1)?15 . (49)

o If —1 < J <0, we choose

_ 1-—1 X1R1

6 — 7 ¢=1\/"5 1D, (50)
and

R R PV X2 R N

0 = \/§¢_ o (14+1)d . (51)

(Scaled variables ¢, ¢', @ and 6’ are 2-dimensional (vectorial) variables.)

In both cases we obtain

1
r-F:Xr-sﬁ:p-qb:U-O, (52)
and
1
T’-F/:XT’-SP/:p/-d)/:a/-BI, (53)

which generalize Eqgs. (1.21-22) to complex scaled-variables.



4 Effect of diffraction on Wigner distributions: complex-order
transfers

4.1 Hyperbolic rotations

In R2, the hyperbolic rotation of parameter 3 (a real number) transforms the point P = (z,) into
the point P’ = (2/,y’) such that

'\ _ (coshf sinhp T
(y’>_<sinhﬁ coshﬁ) (y) (54)

We also call “angle” of the hyperbolic rotation the parameter 3.

Consider a hyperbolic rotation of angle 3 and a point P = (z,y). Let A = 22 — y? and assume
A #0. Eq. (54) leads to 2'? —y'? = 22 —y® = A, which means that point P and its image P’ in the
previous hyperbolic rotation belong to the equilateral hyperbola H, whose equation is 22 —y? = A,
and whose asymptotes are the bisectors of the x and y—axes. For A > 0, the hyperbola H is as H;
in Fig. [I} and for A <0, it is as Hs.

Since

cosh 8/ sinh g’ coshf8 sinhf3
( sinh 3’ cosh 8’ ) ( sinh 3 cosh B)

_ (cosh(B+ @) sinh(B+ 7))
~ \sinh(B+B') cosh(B+4) )’

the (commutative) composition of two hyperbolic rotations, with respective angles 5 and ', is the
hyperbolic rotation of angle 8 + 3'.

Let P = (z,y) # (0,0) and P’ = (2/,y) be as in Eq. (54), and let P” = (z”,y") be the image of
P’ in the hyberbolic rotation of angle 5’. Then points P, P’ and P” are on the previous hyperbola
H, and P” is the image of P by the hyperbolic rotation whose angle is 3 + ' (see Fig. [1| where
both 8 and 8’ are positive).

By applying successive hyperbolic rotations, we obtain a sequence of points that belong to the
same branch of a same hyperbola.

(55)

Figure 1: Equilateral hypberbolas H; (equation z? —y*> = A > 0) and Hz (equation y* — z? = A > 0).
Each hyperbola has two branches. Let P be a point on ;1. By applying successive hyperbolic rotations, P
becomes P’, then P”, etc. and all these points remain on the same branch of the same hyperbola. Arrows
indicate how hyperbola branches are run for increasing values of the rotation angle (denoted 3).

4.2 Diffraction and Wigner distribution
4.2.1 Wigner distribution

We use the scaled phase-space related to real scaled-variables. The Wigner distribution associated
with a scaled field-amplitude V' is defined by

W(p, o) = /}R2 Vv (p + %) Vv (p - %) exp(2ir¢ - T)dr. (56)



In the following, we consider a spherical emitter A; and a spherical receiver As. The Wigner
distribution associated with the field amplitude on A; (j = 1,2) is denoted W;.

We will show that the result obtained in Part I for real o (Eq. (I.30), Sect. 5) can be extended
to complex «, with o =i or a« = £(7/2) 4+ if.

4.2.2 Transfer of the Wigner distribution for J < —1 and s =1
Transformation expression

We have a = i. We will show that the equivalent of Eq. (I.30) takes the form

Wa(p, p) = Wi(pcosh 8 — ¢psinh §, —psinh 8 + ¢ cosh ) , (57)

which means that the elliptical rotation involved in Eq. (I.30) is replaced by a hyperbolic one, as
we will explain.

Proof. We define E(x) = exp(inz), as in Part I. We consider Eq. with § = 1 and obtain

Walp, ) = /R Va(p+ 2) Va(p— 2) expl2ing - 7) dr

= < L7 (o 51 eoms)
x { /}R B(=p" coth §) E ij 5 (p+ ;)} Vi(p') dp'

2
x B (Hp— %H cothﬁ)
1/

2 _
% N E(IO//2 coth6> FE |:_Sinphﬂ . (P— 72-):| Vl(p//) dp//} E(2T . ¢) dr

1 2p-p'
= ——— [ E(—p?coth E< )V ") dp’
S5 e (=p B) b g 1(p')dp
2p‘ p// -
E(p"*cothB)E| — Vi(p")dp”
X/Rz (p"" coth B) b 1(p")dp
p/_"_pll
E(-2p- th5) E . EQ2T-¢)dr. 58
XAQ(PTCO B)(Smhﬁf (27 - @) dr (58)
If 6 denotes the Dirac generalized function, the last integral in Eq. is equal to
/ /!
1) <q§ — pcoth 8 + ;) +Ifﬁ) = 4sinh?8 5(2¢sinhﬂ —2pcosh B+ p' eru) , (59)
sin

so that Eq. becomes

Wa(p, ¢) = 4/RzE(_p/2 Cothﬁ)E(iﬁil%) E(|| — 2pcosh B — 2¢psinh 3 — p'[|? coth )

x F {_miﬁﬁ - (2pcosh B — 2¢psinh 3 — p')} Vi(p')
x V1(2pcosh B — 2¢sinh 8 — p’) dp’ . (60)
We change p’ into 7 = 2p’ — 2pcosh 8 + 2¢ sinh 3, so thatﬂ dr = 4dp’, and Eq. (60) becomes
Wa(p, @) = /}R Vi (pcoshﬂ — ¢sinh B + g) Vi (pcoshﬁ — ¢sinh g — g)
X E[2(¢cosh5 — psinh ) - T] dr

= Wi(pcoshf — ¢sinh 3, —psinh 8+ ¢ cosh ). (61)
which is Eq. (57)). The proof is complete.
2Remember that both 7 and p’ are real 2-dimensional variables. If T = (72, 7y) = 2(p},py) = 2p’, then

d7 = d7p dry = 4dp; dpy, = 4dp’.
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Matrix expression

According to Equation , the value taken by Wy at point (p, ¢) is the value taken by W; at
point (pcosh 8 — ¢sinh 3, —psinh 8 + ¢cosh 3). In the subspace p,—¢,, this corresponds to a
hyperbolic rotation of angle 8. To understand that, consider the value taken by W, at point
Py, = (pz, ¢) = (1,0), which is equal to the value taken by W; at point P; = (cosh 8, —sinh j3).
For 3 > 0, the point P, is deduced from P; as shown in Fig. [2}-a, that is, in the hyperbolic rotation
of angle S3.

The same conclusion is obtained by considering point My = (0, 1), which is deduced from point
M, = (—sinh 8, cosh ), and point Ny = (—1,0), which comes from N; = (— cosh 3, sinh j).

In the p,—¢, plane, the matrix expression of the corresponding hyperbolic rotation is

pr\ _ [coshB sinhp P (62)
¢l ] \sinhB coshf obp )’
whose angle is 3.
The same result is obtained in the p,~¢,, so that the effect of diffraction in the whole scaled-
space is a 4—dimensional Wigner rotation which can be seen as the product of two hyperbolic

rotations in two 2-dimensional subspaces. Then Eq. (57) can be written as a coordinate transfor-
mation, whose matrix form is

ol cosh  sinh 0 0 Pz

¢, | | sinhp coshf 0 0 . (63)
oy | 0 0 cosh sinhf py |’

by, 0 0 sinh 3 coshf Oy

that is,

8 cosh 8 0 sinh g8 0 Pz

Py | _ 0 cosh 8 0 sinh g8 Py (64)
¢, ] | sinhp 0 cosh 8 0 o

by 0 sinh /3 0 cosh 3 by

With p = (p, @), Eq. is the matrix form of p’ = Wp, where W denotes a 4-dimensional
Wigner rotation, and eventually Eq. takes the form

Wa(p') =W W™ tp'), or Wa(Wp)=Wi(p). (65)

Ho A‘ ¢y Ho A o 5/‘

B |

Figure 2: Effect of diffraction in the scaled subspace pz—¢, (the same would hold in the p,—¢, subspace).
The value taken by Wa at P> is equal to the value taken by Wi at Pi. (a) a =i, 8 > 0, s = 1; the effect
of diffraction is a hyperbolic rotation of angle 8. (b) a =i8, 8 > 0, s = —1; the effect of diffraction is a
m-rotation followed by a hyperbolic rotation of angle —8. (¢) a = (7/2) +i8, 8 > 0, s = 1; the effect of
diffraction is a —m/2-rotation followed by a hyperbolic rotation of angle —f.
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4.2.3 Transfer of the Wigner distribution for J < —1 and s = —1
Transformation expression

We now show that, for J < —1 and s = —1, the transfer by diffraction from A; to A5, operates
on the corresponding Wigner distributions according to

Wa(p, @) = Wi(—pcosh B — ¢psinh 8, —psinh 8 — ¢ cosh ) . (66)

Proof. By the definition of the Wigner distribution and by Eq. , we obtain, for s = —1,

W)= [ Va(p+7) Va(o—3) xplaing - m)dr

—# E(H +TH2cothﬂ>
_sinhQﬂ R2 p 2

| [ B oms | 2 (o4 )| i) an

x E < Hp — 72-H2coth6>

x [ E(—p"*cothp) E

R2
1 2p-p

=—— [ E(p?cothp)E Vi(p')dp’

sinth’/Rz (% coth ) <sinhﬂ) 1(p") dp

2 /!
oy (- 3)] W} -1

FE th dp’
Rz( oo A E < smhﬁ)v( )
_|_p//
E2p - hpB)FE (2
[ Bep- oo B( 2B 1) per- g)a (67)
The last integral in Eq. (67) is equal to
5 ¢ _|_ p/ + p// _ . 2 iy / 7
pcoth § + 2snnd) = 4sinh’B §(2¢sinh B + 2pcosh B+ p' + p”) , (68)

so that Eq. becomes

Wa(p, @) = 4/RZE(p’2 cothﬂ)E(iﬁﬁ%) E(—||2pcosh B+ 2¢sinh B + p||* coth 3)

2
E [Smﬁﬁ - (2pcosh 3 + 2¢sinh B + p')] Vi(p')

x Vi(—2pcosh 8 —2¢sinh B — p/')dp’. (69)

We change p’ into 7 = 2p’ + 2p cosh 8 + 2¢ sinh 3, so that Eq. becomes

Wg(p,qb):/RZVl( pcosh B — ¢sinh 5 + )Vl (fpcoshﬁfqbsinhﬂf%)

E[2(¢cosh B + psinh 8) - 7] dT
= Wi(—pcoshf — ¢sinh 5, —psinh § — ¢ cosh 3) . (70)

which is eq. . The proof is complete.
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Matrix expression

From Eq. we conclude that in the subspace p,—¢, the effect of diffraction is the product of an
elliptical rotation of angle 7w and a hyperbolic rotation of angle —3. To understand that, consider
the point P, = (1,0): according to Eq. , the value taken by the function W5 at Ps is the value
taken by W at point P, = (— cosh 3, —sinh ), as shown in Fig. b7 for 8 > 0. Geometrically,
P, is transformed into P; (m-rotation) and Pj into P, in the hyperbolic rotation of angle —3. The
same result is obtained from M = (0,1), which is the image of M; = (—sinh 8, — cosh 8). The
point M is transformed into M in a m-rotation, and My is deduced from M in the hyperbolic
rotation of angle —3. The previous w-rotation and the hyperbolic rotation commute.
In the p,—¢, subspace, we have

p\ [ coshB —sinhf -1 0 pz\ _ [ —coshp sinhp Pz (71)
¢, )]\ —sinhp coshp 0 -1 ¢/ \ sinhB —coshp Oz )’
The same holds in the p,—¢, subspace.
Finally, Eq. can be written in matrix form as

i —coshf8  sinhf 0 0 P
¢, | | sinhB —coshp 0 0 O (72)
oy | 0 0 —cosh3  sinhp py |
by 0 0 sinh3 —coshpj by
4.2.4 Transfer of the Wigner distribution for —1 < .J <0
Transformation expression
For —1 < J < 0, we will prove
Wa(p, @) = Wi(—s psinh 8 — ¢ cosh 8, pcosh 5 + s¢psinh j3) . (73)

Proof. (i) We first provide the proof for s = 1. We use Eq. and, by definition, we obtain

Walp, &) = / oo+ 2) Va(p - T) exploing 1) dr

= i B (e 3
B cosh?B Jg2 P 21 cothp
" 2p’ T ’ ’
E(- E . z
x{/Rz ( cothﬂ) [coshﬂ (p+2)} Vi(p')dp
T2 1
XE<_HP_2H cothﬂ)
p//2 2p// T — "
X/RZE(cothB) E[ cosh g3 (p 5) Vilp")dp™ EQT - ¢)dr
1 p" 20-p Ny
= — El- E
coshgﬂ R2 ( cothﬂ) <cosh6 Vi(p') dp
P . 2p- p" 7 1
X /DQQE‘(cothB) E< cosh 8 Vile") dp
x/E 20-73 p(P P N Bar. ¢)ar (74)
r2  \cothp cosh 8 '

The last integral in Eq. is equal to

p P +p"
1)
<¢ + coth g3 + 2 cosh 8

> = 4cosh®B §(2¢ cosh B + 2psinh B + p’ + p) (75)
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so that Eq. becomes

g(- 2"\ (2P \g |2psinh 8 + 2¢ cosh B + p/||2
coth 8 cosh 8

Wa(p, ) = 4/

R2

2p . ! /
E [COSM - (2psinh 8 + 2¢ cosh B + p )} Vi(p')

x Vi(—2psinh 8 —2¢cosh B — p')dp’. (76)
We change p’ into 7 = 2p’ 4+ 2psinh 8 + 2¢ cosh §, so that Eq. becomes

1
coth ﬁ)

Wa(p, @) = /}R2 1 (—psinhﬂ — ¢pcosh § + g) %1 (—psinhﬂ — ¢ cosh g — %)
x E[2(pcosh 3+ ¢sinh B) - 7] dT
= Wi(—psinh — ¢ cosh 3, pcosh 8 + ¢sinh ). (77)
which is Eq. fors = 1.

(ii) The proof for s = —1 is as follows. We remark that changing s = 1 into s = —1 in Eq. is
equivalent to changing 8 into —3. Then the previous derivations lead to

Wa(p, @) = /]Rz Vi (psinhﬁ — ¢cosh S + %) % (psinhﬁ — ¢cosh 3 — g)
x E[2(pcosh 3 — ¢sinh B) - 7] dT
= Wi(psinh 3 — ¢ cosh B, pcosh § — ¢psinh j3) . (78)

(iii) Equations and are synthetized in Eq. (73).

Matrix expression

To obtain the matrix expression of Eq. , we consider the point P, = (1,0) in the p,—¢,
subspace. According to Eq. the value taken by Wy at P; is the value taken by Wj at point
P = (—ssinh 8,cosh ). Then P, is deduced from P; in rotation of angle —7/2 followed by a
hyperbolic rotation of angle —s 3, as illustrated in Fig. [2}-c, for 8 > 0. In matrix form, we obtain

oL\ cosh3  —ssinhf3 0 1\(ps\_ [ ssinhf  coshf P 79)
¢, )]\ —ssinhB  coshp -1 0)\¢r) \—coshB —ssinhB /\ ¢, /)" (

The matrix product in Eq. (79)) is not commutative.

The matrix form of Eq. (73] is then
o s sinh 8 cosh 3 0 0 Pz
¢, | | —coshB —ssinhf 0 0 D (80)
oy | 0 0 ssinh3  coshp Py
by, 0 0 —coshf3 —s sinh 3 by

Remark. The matrix in Eq. is such that
s sinh 8 cosh 8 (0 1 coshf3 s sinh (81)
—coshf3 —ssinhf ) \—-1 0/ \ssinhB coshfB /)’

and also corresponds to a hyperbolic rotation of angle s 8 followed by a rotation of angle —m /2.

4.3 Complex rotations

In the previous section the effect of diffraction on the Wigner distribution associated with an optical
field is analyzed in the real scaled phase-space (coordinates p and ¢). The previous hyperbolic
rotations can also be expressed with complex coordinates, as done in the present section.
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4.3.1 Analysis for J < —1
We use o = (1 + si)p//2, that is,

()7 &) G)-F6) <82>

(#)-7 ()
o) V2 \P)
We then obtain
oY 1 (s + i O
0.) — V2
5 cosh B sinh g Pa
2 sinh3  scosh 3 D
1 s+i 0 scosh 8 sinhf 1—si 0 O
) §—1i sinh3  scoshf 0 1+si)\6,
_ coshff  isinhp Oy
o —isinh /3 coshf 0,

cosa  sina O
- <—sina cosa) (%)’ (84)

where a = i. The same can be written with p, and ¢, so that

and

ol cosa  sina 0 0 Oy

0. | —sina cosa 0 0 0 (85)
o, | 0 0 cosa  sina o, |’

0y 0 0 —sina  cosa 0y

which is similar to Eq. (1.37).

4.3.2 Analysis for -1 < J <0
We obtain

0_/
(#) -

Sl Sl

1—-i 0 gsinh 8 cosh g Pa

0 1+i —cosh8 —ssinhpf o)
1—-1 0 ssinh 3 cosh 8 1—-1i 0 Oy
0 1+4i —cosh 3 —ssinh 3 0 141 0.

—sisinh3  coshf Oz
—cosh 3 5isinhﬂ) (93«> ' 0

I
o N =
7 N

We introduce o = (7/2) + i3 so that cosa = sinif = i sinh § and sin« = cosh 3, and we obtain

oL\ [ scosa sina o
(9;) o (—sina 5cosa) (Ha:) ' (87)

For s = 1, we have a rotation of angle —«, as in Eq. . For s = —1, we write

o\ [ —cosa sina or\ _ [cosa —sind O (88)
0 ) \ —sina —cosa 0, ) \sina’ cosco 0, )"
which is a rotation of angle o/ = a — 7 = —(7/2) + 1.
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5 Application to unstable optical resonators

5.1 Direct and back transfers in a resonator

We consider an optical resonator made up of two spherical mirrors M; (object radius R; and
image radius R}) and My (radii Re and R)}). The algebraic measure from 2; (the vertex of M)
to 25 (the vertex of M) is D = 21(2, and it is D' = (227 from (25 to ;. Since algebraic
measures are positive if taken in the sense of light propagation, which changes after a reflection,
we have D = D’ and we use the algebraic length of the resonator, which is L = D = D’. (For
definitions of object and image radii, see Sect. 7.1 Part I; for a definition of the algebraic length
L, see Sect. 7.2, Part I [1].)

For the field transfer from M; to Ma, the emitter is M; (image radius R}) and the receiver is
My (object radius Rs), so that by Eq. we obtain

(R —L)(Ra + L)

J= L(L - R, + Ry)

(89)

For the field transfer from My to M;, the emitter is My (image radius R}) and the receiver is
M, (object radius R;) and we compute

Ry — L)(Ba + L)
L(L — RIQ + R1) ’

Since R} = —R; and R} = — R, we obtain J = J'.

We conclude that the direct and back transfers in a resonator are of the same kind: they are
both real-order transfers, or both complex-order transfers. Moreover, if the order of the transfer
from M; to My is 8, and 3’ for the transfer from My to My, since L has the same sign for both
transfers, we have g = '.

=t (90)

5.2 Interpretation in the scaled phase-space for J =J < —1 and s =1

If we use complex scaled-variables, for J = J' < —1, the field transfer from M; to My is represented
by a fractional Fourier transformation whose order is o = i3, and the field transfer from M5 to M
by a fractional Fourier transformation whose order is o/ = if’, with coth? 3 = J = J’ = coth? 3.
Since both 8 and 8’ have the sign of L, we have § = 3. If we use real scaled-variables, to which the
scaled phase-space is referred, and according to Egs. and , the field transfer is expressed
by a hyperbolic fractional Fourier transform whose order is 4.

The interpretation of how Wigner distributions behave in an unstable resonator is carried out
in the scaled phase-space and is as follows. We first consider the matrix of Eq. , that is s = 1.
We analyze the situation in the p,—¢, subspace, in which the effect of diffraction is expressed
by Eq. . We consider a point Py = (p14, ¢12) # (0,0) and the hyperbola whose equation is
Pz’ — bu” = pra® — ¢1m2 = A, to which P; belongs. The value taken at point P; by the Wigner
distribution on M; equals the value the Wigner distribution on My takes at point P, that is
deduced from P; in the hyperbolic rotation of parameter 5. The back transfer from Ms to M is
expressed by a hyperbolic rotation of parameter 3’ = 3, which transforms P, into P;. The value
taken at Ps3 by the Wigner distribution on M; is equal to the value taken at P» by the Wigner
distribution on My, namely, to the value taken at P, by the Wigner distribution on M;. The
point Ps is deduced from P; in a hyperbolic rotation of parameter 23. If § > 0, the sequence
of points P; corresponds to increasing values of 8 (see Fig. . If d; = OP;, the sequence (d;) is
diverging (see Fig. [3). The same result holds in the p,—¢, subspace. Eventually, the resonator is
unstable, since the support of the Wigner distribution on each mirror spreads over an increasingly
wide area after every reflection. This can also be understood by considering light rays in such a
resonator, as will be done in Part III.

The same analysis can be done for g < 0.
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Figure 3: A sequence (P;) for J = J' < —1, 8 > 0 and s = 1. The values taken at points Pi, P3, Ps etc. by
the Wigner distribution on M are equals. They are also equals to the values of the Wigner distribution
on My taken at points P, P4, etc. Point P;41 is deduced from P; in a hyperbolic rotation of angle 3. If
d; = OP;, both sequences (d2;) and (d2i4+1) are diverging, which shows that the Wigner distribution on
each mirror spreads over an increasingly wide area after every reflection: the resonator is unstable.

Remark. General properties of unstable resonators are described by Anan’ev [§] and also by
Siegman [9]. Qualifying optical resonators as stable or unstable is conventional, but no judicious,
since many laser whose cavities are unstable resonators perfectly work. The difference between the
two kinds of resonators can be done according to the behaviors of Wigner distributions. In stable
resonators, Wigner distributions undergo elliptical rotations so that, after every reflection on a
mirror, the luminous energy remains near the optical axis; these stable resonators are sometimes
called “confined-mode resonators.” On the contrary, in unstable resonators, Wigner distributions
undergo hyperbolic rotations and the energy spread over wider and wider areas after reflections.

5.3 Interpretation in the scaled phase-space for J =J < —1 and s = —1

In this section, points P;, P», etc. have the same interpretations as in the previous section. We start
with point P;. If s = —1, according to Eq. , P5 that can be deduced from P; as follows: point
P, (and more generally point P;) undergoes an elliptic rotation of angle = and becomes P; (P/) on
the other branch of the hyperbola (see Fig. [4). Then P; (P/) undergoes the hyperbolic rotation
of parameter (angle) —f8 and becomes P, (P;11) (see Fig. [4l drawn for positive ). We obtain a
sequence (FP;) as shown in Fig. 4| If d; = OP;, the sequences (da;) and (dg;4+1) are diverging. The
same result holds in the p,—¢, subspace, and the resonator is unstable.

Figure 4: The case J = J' < —1, 8 > 0 and s = —1. Points P; are defined as in Fig.[3| Point P/ is deduced
from P; in a m-rotation, and Pi41 is deduced from P; in a hyperbolic rotation of angle —3. If d; = OF;,
the sequences (d2;) and (d2:+1) are diverging. The resonator is unstable.
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5.4 Interpretation in the scaled phase space for —1 < J=J <0

We assume L > 0, so that 8 = 3’ as explained in Sect. For the field transfer from M to My,
light is issued from M, which is the emitter, and the radius of M; to be taken into account is
RY; and since M, is the receiver, light is incident on Ms, and the radius of My to be taken into
account is Rp. The parameter s is then the sign of R} (R} — L). According to the result established
in Sect. the sign of Ro(Ry + D) is —s.

For the field transfer from My to My, mirror M5 is the emitter and M the receiver, so that
radii to be taken into account are R}, and R;. The sign to be considered, denoted &', is that of
R,(R, — L). Tt is opposite to the sign of Ry(R; + L), which is —s.

Since Ry = —RY, we have Ry(Ry; + L) = R{(R} — L), so that s’ = —s. And since Ry = —R),
we also have Ry(Rg + L) = R,(R) — L).

We assume > 0 and conclude as follows.

e The field transfer from M; to Ms is described according to the sign s. Its effect on the
respective Wigner distributions on M; and M, is a rotation of angle —7/2 followed by a

hyperbolic rotation of angle —s 3, according to Eq. , Sect.

e The field tranfer from My to M;j is described according to the sign s'. Its effect on the
respective Wigner distributions on Mo and M is a rotation of angle —m/2 followed by a
hyperbolic rotation of angle —s’ 8. Since s’ = —s, the effect of diffraction is a rotation of
angle —7/2 followed by a hyperbolic rotation of angle s 3.

The consequence for an optical resonator is illustrated by Fig. [5, where o = 7/2 +i8 (8 > 0)
and s = 1 and is explained as follows. The interpretation of point P; is that of Sect. [5.2] once more.

Let Py = (p1s, $12) be the initial point where the Wigner distribution on mirror Mj is con-
sidered, and let A = p?, — ¢7,. Let H; be the hyperbola whose equation is p2 — ¢2 = A and to
which P; belongs; and Hs the hyperbola whose equation is ¢2 — p2 = A. We assume 3 > 0, and
build a sequence (P;) as follows. Let P be the image of P; in the elliptical (or pure) rotation of
angle —m /2. Then P, is the image of P; in the hyperbolic rotation of parameter —3. Both P and
P5 belong to Ho. The following back transfer from My to M; transforms P into Ps, which is
obtained after an elliptical rotation of angle —7/2 (P, becomes Pj) and a hyperbolic rotation of
parameter § (in which Pj becomes P3).

The sequence of points P; is the following (see Fig. [5)):

i. Point P; is assumed to be on H;, branch 1.
ii. First transfer from M to Ms: from P; to P.

e From P; to Pj: elliptical rotation of —7/2; P € Ha, branch 2.

e From P] to P»: moving on Hs corresponding to a hyperbolic rotation of angle —f;
P, € Hs, branch 2.

iii. Back transfer from My to My: from P, to Ps.

e From P, to Pj: elliptical rotation of —m/2; Py € H;, branch 2.

e From P, to P3: moving on H; corresponding to a hyperbolic rotation of angle §; and
P; € H,q, branch 2.

iv. Second transfer from M; to Ms: from P3 to Pj.

e From P; to Pj: elliptical rotation of —m/2; Pj € Ha, branch 1.

e From P} to P,: moving on Hs corresponding to a hyperbolic rotation of angle —g3;
P, € H,, branch 1.
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Px

Figure 5: Case —1 < J < 0. Fractional parameter a = 7/2 + i (8 > 0). The sequence of points P; is
analyzed in the text. If d; = OP;, sequences (dz2;) and (d2;+1) are diverging. The corresponding resonator
is unstable.

v. Second back transfer from My to M;y: from P, to Ps.

e From Py to Pj: elliptical rotation of —m/2; P; € H;, branch 1.

e From P; to Ps: moving on H; corresponding to a hyperbolic rotation of parameter 3;
Ps; € H,q, branch 1.

And so on. If d; = OP;, the sequences (dz;) and (dz;+1) are diverging and the considered resonator
is unstable.

6 Conclusion

Given two spherical caps, the field transfer by diffraction from one spherical cap to the other can
be expressed by a fractional-order Fourier transformation. According to the distance between the
spherical caps and to their curvature radii, the order of the transformation may be a real number
(the field transfer is then said to be a real-order transfer) or a complex number (complex-order
transfer). If the spherical caps are the two mirrors of an optical resonator, the order is a real
number, if the resonator is stable, and a complex number, if the resonator is unstable. A unified
theoretical approach can thus be developed and similarly applied to both kinds of resonators.

The effect of diffraction on the Wigner distribution associated with an optical field is shown to
be a rotation, provided that the Wigner distribution is related to a scaled phase-space on which
an appropriate Euclidean structure is defined. The rotation can split into two elliptical rotations,
if the field transfer is a real-order transfer; and mainly into two hyperbolic rotations, if the field
transfer is a complex-order transfer. A graphical analysis clearly illustrates differences between the
two kinds of resonators, according to the results of Part I and Part II of the article.

Finally, a point in the scaled phase-space corresponds to a light ray, characterized by a point in
the physical space and a direction of propagation, as will be shown in the third part of the article.
The evolution of a point in the scaled phase-space can then be interpreted like the transformation
of a ray after refraction, reflection or propagation, and can be applied to light-ray tracing [10] as
will be done in Part III, with applications to ray tracing in optical resonators.

Appendix A. Proof of Eq. (D <0and J< —1)

We recall that o is an element of I' x I' = (1 + si)R x (1 4+ si)R. According to Eq. (19), for
r = (z,y) we introduce—see Eq. — the real scaled variable p = (ps,p,) and the complex
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scaled variable o = (0, 0y,) with
1+ 1+si 1+ 1+si

Oy = = T, Oy = = 91
vz T Uk TR T VR oD
We then obtain
51
o-o=s5ip-p= rer 92
pp )\XlRl ( )
and
s5i s5i
do =do,do, =sidp = dzdy = dr. 93
Y p Ax1 Ry Y Ax1 Ry (93)
Derivation of dr/\D
We start with
x12R? _ R 9 —R/? 9 Ry+D RiD R Ry
= coth 62700'6 o= —
D2 (R — D)? (Ry — D)? ReD Ry —D D(D— Ry + R»)
_ —x14 R Ry (94)
x2 R2 D(D — R+ Rg) '
Since
2 - D D
C.OSQ Y cot?a = (£ )(F> + D) , (95)
sin” a D(D - R; + Rs)
we obtain
1 RiRy
_ ’ 96
sina D(D — Ry + Ry) (96)
and then
X%R% _ _XlRl 1 _ XlRl 1 (97)
D2 x2Rzsin?a x2Rz sinh? 8

Since x1R; > 0, x2R2 > 0, since sinh 5 has the sign of 8 which is also the sign of D, we may write

a1 xak i X111
D sinhB\/ xoR2 sina\ xaRs

Finally, we use Eq. and write

dr six1 Ry 5 X111
_— —7(10' = — 7d0’.
D D sina \l x2Ra

Derivation of r - v’ /AD

We use Eqgs. and and obtain

rer —i —i
D = E\/ A2x1R1x2R o-0' = B\/X1R1X2R2 0"0'/,

and then
X1Bix2Ra R Ry 2,5 — Ry Ry -1 1
5 = coth” g = ==
D (R, — D)(Ry + D) DD —R1+ R;) sin“a  sinh®f
Since x1R; > 0 and y2R2 > 0, and since § has the sign of D, we obtain

vVxiRixaRe 1 i

D _sinhB:sinoz7
and then
r-r’  o-o
AD  sina

20

(98)

(99)

(100)

(101)

(102)

(103)



Derivation of the quadratic phase terms

We begin with

1 /1 1 —si Ry — D
X (D_ Rl)r-r: % 11)R1 Ax1Rio-0=—ioc-ocothf=0:0 cota, (104)
and we remark that o - o cot a is a real number.
Then
1 /1 1 —si R D
X (D + R2> rer = % ]_2);2 Ax2Re0' -0’ = —io’ -0’ cothf =0’ -0 cota, (105)

and o’ - 0’ cot « is also a real number.

Integral
The previous results lead us to write Eq. in the form

5—1 s5i x1R1 .

Us | —=Ax2Ra 0’ | = — ‘.o’ cot 106
5 ( 7 vV Ax2Ra a) o\ o exp(—im o'’ cot a) (106)

2ir 1—si

X —iro- t o | U Ax1R d
/inxp( ino-o cota) exp(sinaa a) 1( 7 VAx1 10') o,
that is

/ si o . 2ir ,

Vea(o') = —— exp(—ino’-o' cota) [ exp(—imo-ocota)exp| —o-0'| Voi(o)do, (107)
sin « rxr sin «v

which is Eq. .

Appendix B. Proof of Eq. (D<0and J< —1)

This is the case 8 < 0 and s is the sign of Ry (Ry — D). Complex scaled variables are

1+5si 1+si - 1+si 1+si y (108)
Op = r = s g, = = .
vz T Bk VTR T Uk
and
, s+1 , 541 , , s+1 , 541 ,
o, =— =2, o,=- =y 109
TR T T UNGRs TR T T VR (109)
We then obtain
51
o-0=5ip-p= rer 110
pp )\XlRl ( )
and
s5i s5i
do =do,do, =sidp = dedy = dr. 111
Y p Ax1 R Y Ax1 Ry (111)
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Derivation of dr/AD

We start with
Y2R? R? —R? _Ry+D RiD RiR

2
02 = oD = m o = " RD R-D DDt )
xR Ry Ry . (112)
x2R2 D(D — Ry + R»)
Since
cos? o 9 (R — D)(Ry+ D)
Sinza:cot a = D(D — R + Ra) ) (113)
we obtain
1 RiRs
sinfa D(D— Ry + Ry)’ (114
and then
X3R? _oxal 1 a1 (115)
D2 x2R2sin?a  x2Rasinh’®

Since x1R1 > 0, x2R2 > 0, since sinh § has the sign of § which is also the sign of D, we may write

X1R1: 1 X1R1: i X111 (116)
D sinhB\/ xoRs sina\ xa2Rs

Finally, we use Eq. and write

dr —sixyiRi s [xiR
—=—"—do=—4/~——do. 11
D D 7 sina \l x2Ra 7 (117)

Derivation of r - v/ /AD
We use Egs. (108)) and (109) and obtain

rer i i
e oo = SRR o, (118)

and then
X1R1x2R2 R Ry

—Ri Ry -1 1

— coth2 = = = . 119
D2 (R1 — D)(Rs + D) b D(D - Ri+ Ry) sin®a sinh?p (119)
Since xy1R1 > 0 and xRz > 0, and since 8 has the sign of D, we obtain
Vxilixel, 1 i (120)
D sinh sina’
and then
rer o-o'
=— . 121
AD sin o (121)
Derivation of the quadratic phase terms
We begin with
1/1 1 —si Ry — D
X <D - 31) rer= % 1DR1 M1Rio-0=—ic-0ocothf =00 cota, (122)
and we remark that o - o cot « is a real number.
Then
1 /1 1 —s5i R D
3 (D + R2> rer = % %A)@Rga' -0’ =—io’'-0'cothB=0"-0' cotar, (123)

and o’ - 0’ cot « is also a real number.
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Integral
The previous results lead us to write Eq. in the form

Us <_f/—21_1\/)\)(232 o”) = % i;i; exp(ir o’-a’ cot o) (124)

—2i 1—si
></ exp(iT oo cot ) exp< =l a'-a"> U1< \/51\/)\)(1]%1 a‘> do,
r

«T sin o

that is

—51 2
Vea(o') = = ! exp(ira’-o’ cot a)/ exp(iTo-o cot ) exp (— “I7 U-a") Vea(o)do, (125)
sin o <D sin a

which is Eq. .

Appendix C. Proof of Eq. (D>0and —1 < J <0)

We have oo = (7/2)+i8, where 8 > 0, since it has the sign of D. Then cos @ = —isinif = sinh 8 > 0,
and sina = cosif = cosh 5 > 0.
Complex scaled-variables are

1+ 1+i 1+ 1+i

O = —F=Pr = —Fe—aT, Oy=—py=—=1, 126
\/§ \/2)\X1R1 Y \/5 Y \% 2)\XlRl ( )
and
1-—1 1-—1i 1—1 1-—1
0'/27 /:7«7:/7 O'/: /: /' 127
TR T UG R, VAT Uvak: ! (127)
We then obtain
i
oc-o=ip-p= T-eT, 128
PPk (128)
and
1 i
do =do,do, =idp = derdy = dr. 129
v p Ax1 Ry Y Ax1 Ry (129)
Derivation of dr/\D
From Eq. we deduce
iRy R} 1, R Ry’ Ry +D
D2 (R1 — D)2 C()th2 153 (Rl — D)2 D(D — Ry + Rz) Ry —D
R RiR
_ X14v1 - 1412 ' (130)
X2R2 D(D — Ry + Rg)
Since
cos? o 5 (R — D)(Ry+ D)
=cot“a = , 131
sinfa 0 YT DD Ryt Ry (131)
we obtain
1 Ri1Rs
= ) 132
sinfa D(D— Ry + Ry) (132)
and then
iR xR 1 xaR 1 (133)

D?  yoRssin®a x2Racosh?B
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Since x1R1 > 0, x2Rs > 0, since sinh § has the sign of § which is also the sign of D, we may write

X1t _ X1k X1t (134)
D coshﬁ X2R2 sina \/ xoRs

Finally, we use Eq. ( and write

dj”’f —ix1Ry do = —i X1
AD D " sina X2 R2

do . (135)

Derivation of r - v/ /AD
We start with

=3V ANXx1Ri1x2R2 0 - o' \/ x1Rix2R2 o - 0, (136)

/\D
and we use Eqs. and ([35)) to obtain
X1R1X2R2 _ *RlRQ 1 R Ry 11
B = 5 = == 5 - (137)
D (R1 — D)(R2+ D) coth® 3 D(D —Ri+ Rs) sin“a  cosh®

Since x1R; > 0 and y2R2 > 0, and since D > 0, we obtain

vVxiflixa2le 1 1 (138)

D coshB sina’
and then
r-r o-o
= . 139
AD sin a (139)
Derivation of the quadratic phase terms
We begin with
1/1 1 —iRi—D —sio-o
[, - MW Rioo=—" " — . t 140
/\(D R1> TTN DR, NYMTTTT Tootmp TN (140)
and we remark that o - o cot « is a real number.
Then
1/1 1 , , 1R+ D , , -—sio’.-o’ ;o
_— . = - )\ R . = = . t 14].
/\<D+R2> " A DRy Xaf2 @ coth 8 §Oe o (141)

and o’ - 0’ cot « is also a real number.

Integral
The previous results lead us to write Eq. in the form

1 —i R
Us ( \;—51\/)\)(2]?2 o’) = sinloz i:R; exp(—siro'-o’ cot o) (142)

2i 1—i
x/ exp(—simo-o cot @) exp (m 0'-0") U1< ﬁlx/Alel 0') do,
r S

< in o
that is
Vea(o!) = ! exp(—siro’-o’ cot a)
sin o
. 2im ,
X exp(—sino-ocota)exp| —o-0'| Vei(o) do, (143)
rxI’ SIn &«

which is Eq. .

24



References

[1]

2]

3]

4]

[5]

[6]

7]

18]
19]
[10]

P. Pellat-Finet, E. Fogret, “Effect of Diffraction on Wigner Distributions of Optical Fields
and how to Use It in Optical Resonator Theory. I — Stable Resonators and Gaussian Beams,”
arXiv 2005.13430v1 (2020) 1-20. (2005.13430v2: 2022.)

P. Pellat-Finet, Optique de Fourier. Théorie métaxiale et fractionnaire, Springer, Paris, 2009.

P. Pellat-Finet, E. Fogret, “Complex order fractional Fourier transforms and their use in
diffraction theory,” Opt. Comm. 258 (2006) 103-113.

P. Pellat-Finet, E. Fogret, “Fractional Fourier optics theory of optical resonators,” in: P. S.
Emersone (Ed.), Progress in optical fibers, Nova Science Publishers, New York (2011) 299—
351.

V. Namias, “The fractional order Fourier transform and its applications to quantum mechan-
ics,” J. Inst. Maths Applics 25 (1980) 241-265.

A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math.
39 (1987) 159-175.

P. Pellat-Finet, P.-E. Durand, E. Fogret, “Spherical angular spectrum and the fractional order
Fourier transform,” Opt. Lett. 31 (2006) 3429-3431.

Y. A. Anan’ev, Optical resonators and the beam divergence problem, IOP, Bristol, 1992.
A. E. Siegman., Lasers, University Science Books, Mill Valley, 1986.

P. Pellat-Finet, E. Fogret, “Ray tracing based on the Wigner representation of optical fields,”
Optica Pura y Aplicada 51 (2018) 49025:1-10.

25



	1 Introduction
	2 Field transfer by diffraction: complex-order transfer
	2.1 Complex order associated with a diffraction phenomenon
	2.2 Complex scaled-variables and complex scalar-product
	2.3 Comparing signs of R1(R1-D) and R2(R2+D)
	2.4 Field transfer for D>0 and J<-1
	2.4.1 Complex scaled-variables and scaled field-amplitudes (D>0 and J<-1)
	2.4.2 Explicit expression of the field transfer by a hyperbolic fractional-order Fourier transform (D>0, J<-1)

	2.5 Field transfer for D<0 and J<-1
	2.6 Field transfer for D>0 and -1<J<0
	2.6.1 An additional condition
	2.6.2 Complex scaled-variables and scaled field-amplitudes (D>0, -1<J<0)
	2.6.3 Field-amplitude transfer


	3 Complex scaled angular-variables
	4 Effect of diffraction on Wigner distributions: complex-order transfers
	4.1 Hyperbolic rotations
	4.2 Diffraction and Wigner distribution
	4.2.1 Wigner distribution
	4.2.2 Transfer of the Wigner distribution for J<-1 and s=1
	4.2.3 Transfer of the Wigner distribution for J<-1 and s=-1
	4.2.4 Transfer of the Wigner distribution for -1<J<0

	4.3 Complex rotations
	4.3.1 Analysis for J<-1
	4.3.2 Analysis for -1<J<0


	5 Application to unstable optical resonators
	5.1 Direct and back transfers in a resonator
	5.2 Interpretation in the scaled phase-space for J=J'<-1 and s=1
	5.3 Interpretation in the scaled phase-space for J=J'<-1 and s=-1
	5.4 Interpretation in the scaled phase space for -1<J=J'<0

	6 Conclusion

