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Effect of Diffraction on Wigner Distributions of Optical
Fields and how to Use It in Optical Resonator Theory.

II – Unstable Resonators
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Laboratoire de Mathématiques de Bretagne Atlantique UMR CNRS 6205
Université de Bretagne Sud, B. P. 92116, 56321 Lorient cedex, France

Abstract. The second part of the article is devoted to field transfers by diffraction
that are represented by fractional Fourier transformations whose orders are complex
numbers. The corresponding effects on the Wigner distributions associated with
optical fields are still represented by 4 × 4 matrices operating on the scaled phase-
space, but unlike matrices involved in the first part, those matrices decompose into two
matrices that essentially represent 2–dimensional hyperbolic rotations, not elliptical
rotations. The result is applied to the theory of unstable resonators.
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1 Introduction
Diffraction phenomena considered in the first part of the paper are represented by fractional Fourier
transformations whose orders are real numbers (see Part I [1]). In the scaled phase-space, the
effect of diffraction on the Wigner distribution of an optical field is then expressed by a 4 × 4
matrix which splits into two matrices representing pure (or elliptical) rotations operating on two
2-dimensional disjoint subspaces. If the field transfer between two mirrors of an (open) optical
resonator corresponds to such a diffraction phenomenon—associated with a real-order fractional
Fourier transformation— the resonator is said to be stable, and usual properties of such a resonator
can be deduced from the invariance of Wigner distributions associated with the resonator transverse
modes [1].
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Sometimes, a real fractional-order cannot, indeed, be associated with a given diffraction phe-
nomenon, and in completing the theory, we introduce complex orders [2–4]; that is done in this
part. Using complex orders leads us to define complex scaled variables; nevertheless, the method
we employ remains similar to the one developed in the first part. Pure rotations of the first part
are changed into hyperbolic rotations. More precisely, the effect of a given diffraction phenomenon
on Wigner distributions is represented by a 4×4 matrix which splits into two matrices correspond-
ing to hyperbolic rotations, plus an elliptical rotation in some cases, operating on appropriate
2–dimensional disjoint subspaces of the scaled phase-space, as will be shown.

If the field transfer between two mirrors of an optical resonator is expressed by a complex-
order fractional Fourier transformation, the resonator is said to be unstable [2–4], as confirmed by
analyzing how Wigner distributions behave in the transfer.

2 Field transfer by diffraction: complex-order transfer

2.1 Complex order associated with a diffraction phenomenon
Once more we consider the field transfer from a spherical emitter A1 (curvature radius R1) to a
spherical receiver A2 (radius R2) at a distance D. The field amplitude U2 on A2 is related to the
field amplitude U1 on A1 by Eq. (I.2)1 of the first part, that is,

U2(r
′) =

i

λD
exp

[
− iπ

λ

(
1

R2
+

1

D

)
r′ · r′

]
(1)

×
∫
R2

exp

[
− iπ

λ

(
1

D
− 1

R1

)
r · r

]
exp

(
2iπ

λD
r · r′

)
U1(r) dr ,

where r2 and r′2 have been replaced respectively by the Euclidean scalar products r · r and r′· r′,
which will be more convenient for generalizing to complex scaled-variables.

Let f be a function of a two-dimensional real variable. We recall that the 2–dimensional
fractional Fourier transform of order α of f is defined by

Fα[f ](ρ′) =
ieiα

sinα
exp(−iπρ′ · ρ′ cotα)

∫
R2

exp(−iπρ · ρ cotα) exp
(
2iπρ′ · ρ
sinα

)
f(ρ) dρ , (2)

where α may be a complex number [5, 6].
To express the right-hand member of Eq. (1) by using a fractional-order Fourier transformation,

we look at the parameter J such that

J =
(R1 −D)(R2 +D)

D(D −R1 +R2)
. (3)

The case J ≥ 0 is considered in the first part of the paper and corresponds to real-order
transfers, since the associated parameter α is a real number.

In this part, we assume J < 0, and since complex α will be used, we say that the transfer from
A1 to A2 is a “complex-order” transfer. We first note that J = −1 is not realistic (it corresponds
to R1 = 0 or R2 = 0) and will not be considered. Then, when J < 0, we choose α as follows.

1. If J < −1, let β be the real number whose sign is the sign of D (then βD > 0), and such
that coth2 β = −J . We choose α = iβ, so that cotα = −i cothβ.

2. If −1 < J < 0, let β be the real number whose sign is the sign of D, and such that
coth2 β = −1/J . To obtain cotα = −i/ cothβ, we choose α as follows:

• If D > 0, then α = π/2 + iβ. (Remark: β > 0.)
• If D < 0, then α = −π/2 + iβ. (Remark: β < 0.)

In every case (items 1 and 2 above), we have cot2 α = J , a result similar to the one given by
Eq. (I.5) in part I, but now α is a complex number.

1Equation (n) of part I is referred as Eq. (I.n).
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2.2 Complex scaled-variables and complex scalar-product
To express Eq. (1) by using a fractional-order Fourier transformation, that is, in the form of
Eq. (2), and to take an example, we have to match exp(−iπρ · ρ cotα) with exp(−iπA r · r),
where A is a real number. If the fractional order is chosen to be α = iβ (β a real number, see
above), we notice that i cotα = cothβ is a real number, and we have to reintroduce a complex
quantity in exp(−iπρ ·ρ cotα). That is done by using complex scaled-variables, namely, replacing
two-dimensional real vectors ρ and ρ′ by two-dimensional complex vectors, as will be shown. The
same can be done when α = ±(π/2) + iβ.

On the other hand, the dot product used in Eqs. (1) and (2) is a two–dimensional Euclidean
scalar product, defined for real vectors ρ = (ρx, ρy) and ρ′ = (ρ′x, ρ

′
y) (where ρx, ρy, ρ′x and ρ′y are

real numbers) by

ρ · ρ′ = ρxρ
′
x + ρyρ

′
y . (4)

A complex vector, say σ, is written σ = (σx, σy) = (rx + isx, ry + isy) where rx, ry, sx and sy
are real numbers. The complex scalar product of vectors σ = (σx, σy) = (rx + isx, ry + isy) and
σ′ = (σ′x, σ

′
y) = (r′x + is′x, r

′
y + is′y) is defined by

σ·σ′ = σxσ
′
x + σyσ

′
y = rxr

′
x + ryr

′
y − sxs′x − sys′y + i(rxs

′
x + rys

′
y + r′xsx + r′ysy) . (5)

Indeed, it is a symmetric bilinear form (it is not an Hermitian scalar product) and a generalization
of the previous Euclidean scalar product.

2.3 Comparing signs of R1(R1 −D) and R2(R2 +D)

The signs of R1(R1 − D) and R2(R2 + D) will be useful both for the definition of appropriate
scaled variables and fractional parameters, and for expressing some results. From the identity
D(D −R1 +R2) = R1R2 − (R1 −D)(R2 +D), we deduce

1

J
=

D(D −R1 +R2)

(R1 −D)(R2 +D)
=

R1R2

(R1 −D)(R2 +D)
− 1 , (6)

that is,

R1R2

(R1 −D)(R2 +D)
= 1 +

1

J
. (7)

We conclude as follows:

1. If J < −1, then −1 < 1/J < 0, so that

R1R2

(R1 −D)(R2 +D)
> 0 , (8)

and R1(R1 −D) and R2(R2 +D) have the same sign.

2. If −1 < J < 0, then 1/J < −1, and

R1R2

(R1 −D)(R2 +D)
< 0 , (9)

which means that R1(R1 −D) and R2(R2 +D) have opposite signs.
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2.4 Field transfer for D > 0 and J < −1
2.4.1 Complex scaled-variables and scaled field-amplitudes (D > 0 and J < −1)

Let s be the sign of R1(R1 −D) and let

χ1 = s
D

R1 −D
cothβ . (10)

Since βD > 0, we have D cothβ > 0, and then

χ1R1 = s
R1D

R1 −D
cothβ > 0 . (11)

Let χ2 be such that

χ2 = s
D

R2 +D
cothβ . (12)

Since R1(R1 −D) and R2(R2 +D) have the same sign, and since D cothβ > 0, we obtain

χ2R2 = s
R2D

R2 +D
cothβ > 0 . (13)

Introducing s in Eq. (10) is a way for obtaining χ1R1 > 0 (and then χ2R2 > 0), a condition that
will be useful later.

Finally, we note that ε1 and ε2 defined by

ε1 = −s iχ1 = −i D

R1 −D
cothβ =

D

R1 −D
cotα , (14)

and

ε2 = −s iχ2 = −i D

R2 +D
cothβ =

D

R2 +D
cotα , (15)

are complex extensions of ε1 and ε2, defined in the first part of the paper: with respect to α, they
are as in the real case—see Eqs. (I.7) and (I.8).

To define complex scaled-variables, we proceed in two steps. Since χ1R1 > 0 and χ2R2 > 0,
we first introduce real scaled-variables ρ on A1 and ρ′ on A2, such that

ρ =
r√

λχ1R1

, and ρ′ =
r′√
λχ2R2

, (16)

and scaled field-amplitudes

V1(ρ) =

√
χ1R1

λ
U1

(√
λχ1R1 ρ

)
, (17)

and

V2(ρ
′) =

√
χ2R2

λ
U2

(√
λχ2R2 ρ

′
)
. (18)

Then we define complex scaled-variables σ on A1 and σ′ on A2 by

σ =
1 + si√

2
ρ =

1 + si√
2λχ1R1

r , (19)

and

σ′ =
s+ i√

2
ρ′ =

s+ i√
2λχ2R2

r′ . (20)

In the following, we denote Γ = (1+ si)R and Γ ′ = (s+ i)R, so that σ ∈ Γ × Γ and σ′ ∈ Γ ′ × Γ ′.
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The corresponding scaled amplitudes, defined on Γ × Γ and Γ ′ × Γ ′ respectively, are

Vc1(σ) = V1

(
1− si√

2
σ

)
=

√
χ1R1

λ
U1

(
1− si√

2

√
λχ1R1 σ

)
, (21)

and

Vc2(σ
′) = V2

(
s− i√

2
σ′
)

=

√
χ2R2

λ
U2

(
s− i√

2

√
λχ2R2 σ

′
)
. (22)

(Index c indicates that Vc1 and Vc2 are defined for complex variables.)

2.4.2 Explicit expression of the field transfer by a hyperbolic fractional-order Fourier
transform (D > 0, J < −1)

By using the previous scaled variables, scaled functions and complex scalar product, we prove in
Appendix A that for σ′ ∈ Γ ′ × Γ ′, Eq. (1) can be written

Vc2(σ
′) =

i s

sinα
exp(−iπσ′· σ′ cotα)

∫
Γ×Γ
exp(−iπσ · σ cotα) exp

(
2iπ

sinα
σ·σ′

)
Vc1(σ) dσ , (23)

where α is chosen as in Sect. 2.1: α = iβ (β a real number with βD > 0).
Apart from a constant factor, the right-hand part of Eq. (23) is formally identical to the

fractional Fourier transform of order α of the amplitude Vc1—see Eq. (2)—but variables are (two-
dimensional) complex variables and the integration domain is Γ × Γ in place of R2. The image
domain (to which σ′ belongs) is Γ ′ × Γ ′. It is in this sense, and with some abuse, that the field
transfer is said to be expressed by a fractional-order Fourier transform; and since the order is a
complex number, the field transfer is called a complex-order transfer.

Nevertheless, in practice, we prefer to use real scaled variables, which will be helpful in intro-
ducing Wigner distributions on a scaled phase-space identical to the one used in Part I. Indeed,
integration in Eq. (23) can be achieved on R2 in place of Γ ×Γ changing σ into ρ = (1− si)σ/

√
2.

For ρ′ = (s− i)σ′/
√
2, Eq. (23) becomes

V2(ρ
′) =

i

sinhβ
exp(−i sπρ′ · ρ′ cothβ)

×
∫
R2

exp(−i sπρ · ρ cothβ) exp
(

2iπ

sinhβ
ρ · ρ′

)
V1(ρ) dρ . (24)

Since ρ and ρ′ are real vectors, we have ρ · ρ = ||ρ||2 = ρ2 and ρ′ · ρ′ = ||ρ′||2 = ρ′2.
We define the “hyperbolic fractional Fourier transform” of order β (β ∈ R) of function f by

Hβ [f ](ρ′) =
ie−β

sinhβ
exp(−iπρ′2 cothβ)

∫
R2

exp(−iπρ2 cothβ) exp
(

2iπ

sinhβ
ρ · ρ′

)
f(ρ) dρ , (25)

so that, for s = 1, Eq. (24) becomes

V2(ρ
′) = eβHβ [V1](ρ′) , (26)

and for s = −1

V2(ρ
′) = −e−βH−β [V1](−ρ′) , (27)

Equations (26) and (27) are synthetized in

V2(ρ
′) = s esβHsβ [V1](sρ

′) , (28)

which is similar to Eq. (I.12) apart that it expresses the field transfer from A1 to A2 by a first
kind of “hyperbolic fractional-order Fourier transformation”.

5



2.5 Field transfer for D < 0 and J < −1
For D < 0, the field transfer from A1 to A2 is virtual. We define α = iβ with β < 0 and
coth2 β = −J , and we show in Appendix B

Vc2(σ
′) =

s i

sinα
exp(iπσ′· σ′ cotα)

∫
Γ×Γ
exp(iπσ · σ cotα) exp

(
− 2iπ

sinα
σ·σ′

)
Vc1(σ) dσ , (29)

for appropriate complex scaled-variables (given in Appendix B). Formally, up to a multiplicative
factor, we have a fractional Fourier transformation of order −α.

By changing complex scaled variable into real one, we obtain

V2(ρ
′) =

i

sinhβ
exp(i sπρ′ · ρ′ cothβ)

×
∫
R2

exp(i sπρ · ρ cothβ) exp
(

2iπ

sinhβ
ρ · ρ′

)
V1(ρ) dρ , (30)

which can be written as

V2(ρ
′) = −s e−sβH−sβ [V1](−sρ′) , (31)

which is similar to Eq. (28).

2.6 Field transfer for D > 0 and −1 < J < 0

2.6.1 An additional condition

In the previous sections, since α = iβ, we had i/ sinα = 1/ sinhβ, so that using complex scaled-
variables according to Eqs. (19) and (20) reintroduced a factor i in 2iπσ ·σ′/ sinα; this factor was
necessary to match with the factor 2iπr · r′/λD of Eq. (1).

For −1 < J < 0 and D > 0, the fractional order is chosen to be α = π/2+iβ, with β > 0. Since
cotα = −i/ cothβ, matching for example iπρ · ρ cotα with iπA r · r (where A is a real number)
leads us to introduce complex vectors. But here, we have sinα = cos iβ = coshβ, which is a real
number, and the previous scaled variables do not allow matching 2iπσ ·σ′/ sinα with 2iπr ·r′/λD.
This is why we will use different complex scaled-variables.

2.6.2 Complex scaled-variables and scaled field-amplitudes (D > 0, −1 < J < 0)

Let s still denote the sign of R1(R1 −D). We define

χ1 =
sD

R1 −D
1

cothβ
, (32)

and since D and β have the same sign, we have

χ1R1 = s
R1D

R1 −D
1

cothβ
> 0 . (33)

We then define χ2 by

χ2 = −s D

R2 +D

1

cothβ
, (34)

and since the sign of R2(R2 +D) is opposite to the sign of R1(R1 −D), we obtain

χ2R2 = −s R2D

R2 +D

1

cothβ
> 0 . (35)

Finally, we define

ε1 = −s iχ1 = −i D

R1 −D
1

cothβ
=

D

R1 −D
cotα , (36)
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and

ε2 = s iχ2 = −i D

R2 +D

1

cothβ
=

D

R2 +D
cotα , (37)

which are, with respect to α, as in the real case.
We use ρ and ρ′ as in Eq. (16) and scaled field amplitudes V1 and V2 as in Eqs. (17) and (18).

Then we define complex scaled variables on A1 and A2 by

σ =
1 + i√

2
ρ =

1 + i√
2λχ1R1

r , (38)

and

σ′ =
1− i√

2
ρ′ =

1− i√
2λχ2R2

r′ . (39)

The corresponding scaled amplitudes are

Vc1(σ) =

√
χ1R1

λ
U1

(
1− i√

2

√
λχ1R1 σ

)
, (40)

and

Vc2(σ
′) =

√
χ2R2

λ
U2

(
1 + i√

2

√
λχ2R2 σ

′
)
. (41)

2.6.3 Field-amplitude transfer

By using the previous scaled vectors and scaled field amplitudes, we obtain that Eq. (1) can be
written as

Vc2(σ
′) =

i

sinα
exp(−s iπσ′ · σ′ cotα)

×
∫
Γ ′′×Γ ′′

exp(−s iπσ·σ cotα) exp

(
2iπ

sinα
σ·σ′

)
Vc1(σ) dσ , (42)

where Γ ′′ = (1 + i)R and where σ′ ∈ (1− i)R× (1− i)R. The proof is given in Appendix C.
Formally, Eq. (42) involves (up to a multiplicative factor) a fractional Fourier transformation

defined on Γ ′′ × Γ ′′, whose order is α or π − α.
For studying the effect of diffraction on Wigner distributions, we use real variables, according

to Eqs. (38) and (39), and write Eq. (42) in the form

V2(ρ
′) = − 1

coshβ
exp

(
s iπρ′2

cothβ

)∫
R2

exp

(
− s iπρ2

cothβ

)
exp

(
2iπρ · ρ′

coshβ

)
V1(ρ) dρ . (43)

We define a second kind of “hyperbolic fractional Fourier transformation” of order β (β ∈ R)
by

Kβ [f ](ρ′) =
ie−β

coshβ
exp

(
iπρ′

2

cothβ

)∫
R2

exp

(
− iπρ2

cothβ

)
exp

(
2iπρ · ρ′

coshβ

)
f(ρ) dρ , (44)

so that Eq. (43) can be written

V2(ρ
′) = iesβKsβ [V1](ρ

′) . (45)
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3 Complex scaled angular-variables
If U denotes the field amplitude on a spherical cap, the corresponding spherical angular-spectrum
is [1]

S(Φ) =
1

λ2
Û

(
Φ

λ

)
, (46)

where Φ denotes the angular spatial-frequency, related to the spatial frequency F by Φ = λF .
The transfer of the spherical spectrum by diffraction is governed by the same laws as that of

the field amplitude [7]. This holds true for the scaled angular-spectrum, namely, Eqs. (28), (31)
and (45) hold true if scaled field-amplitudes V1 and V2 are replaced by the scaled spherical angular
spectra V̂1 and V̂2, and scaled spatial-variables are replaced by scaled angular-frequencies (see Eqs.
(I.12) and (I.24) [1]).

We now provide the scaled angular-variables corresponding to the scaled spatial-variables of
Sect. 2. They are helpful in expressing the transfer of the spherical angular-spectrum and we will
use some of them in the third part of the article. In defining scaled angular-variables, we manage to
preserve Eqs. (I.21–22). First, we introduce real scaled angular-variables on A1 and A2 according
to

φ =

√
χ1R1

λ
Φ , and φ′ =

√
χ2R2

λ
Φ′ . (47)

Then complex scaled angular-variables on A1 (denoted θ) and A2 (θ′) are defined as follows.

• If J < −1, we choose

θ =
1− si√

2
φ =

√
χ1R1

2λ
(1− si)Φ , (48)

and

θ′ =
s− i√

2
φ′ =

√
χ2R2

2λ
(s− i)Φ′ . (49)

• If −1 < J < 0, we choose

θ =
1− i√

2
φ =

√
χ1R1

2λ
(1− i)Φ , (50)

and

θ′ =
1 + i√

2
φ′ =

√
χ2R2

2λ
(1 + i)Φ′ . (51)

(Scaled variables φ, φ′, θ and θ′ are 2-dimensional (vectorial) variables.)

In both cases we obtain

r · F =
1

λ
r ·Φ = ρ · φ = σ · θ , (52)

and

r′ · F ′ = 1

λ
r′ ·Φ′ = ρ′ · φ′ = σ′ · θ′, (53)

which generalize Eqs. (I.21–22) to complex scaled-variables.

8



4 Effect of diffraction onWigner distributions: complex-order
transfers

4.1 Hyperbolic rotations
In R2, the hyperbolic rotation of parameter β (a real number) transforms the point P = (x, y) into
the point P ′ = (x′, y′) such that(

x′

y′

)
=

(
coshβ sinhβ
sinhβ coshβ

)(
x
y

)
. (54)

We also call “angle” of the hyperbolic rotation the parameter β.
Consider a hyperbolic rotation of angle β and a point P = (x, y). Let A = x2 − y2 and assume

A 6= 0. Eq. (54) leads to x′2−y′2 = x2−y2 = A, which means that point P and its image P ′ in the
previous hyperbolic rotation belong to the equilateral hyperbola H, whose equation is x2−y2 = A,
and whose asymptotes are the bisectors of the x and y–axes. For A > 0, the hyperbola H is as H1

in Fig. 1; and for A < 0, it is as H2.
Since(

coshβ′ sinhβ′

sinhβ′ coshβ′

)(
coshβ sinhβ
sinhβ coshβ

)
=

(
cosh(β + β′) sinh(β + β′)
sinh(β + β′) cosh(β + β′)

)
, (55)

the (commutative) composition of two hyperbolic rotations, with respective angles β and β′, is the
hyperbolic rotation of angle β + β′.

Let P = (x, y) 6= (0, 0) and P ′ = (x′, y′) be as in Eq. (54), and let P ′′ = (x′′, y′′) be the image of
P ′ in the hyberbolic rotation of angle β′. Then points P , P ′ and P ′′ are on the previous hyperbola
H, and P ′′ is the image of P by the hyperbolic rotation whose angle is β + β′ (see Fig. 1, where
both β and β′ are positive).

By applying successive hyperbolic rotations, we obtain a sequence of points that belong to the
same branch of a same hyperbola.

β ↗
β ↗

β ↗
β ↗

H1H1

H2

H2

x

y

P

P ′′

P ′

Figure 1: Equilateral hypberbolas H1 (equation x2 − y2 = A > 0) and H2 (equation y2 − x2 = A > 0).
Each hyperbola has two branches. Let P be a point on H1. By applying successive hyperbolic rotations, P
becomes P ′, then P ′′, etc. and all these points remain on the same branch of the same hyperbola. Arrows
indicate how hyperbola branches are run for increasing values of the rotation angle (denoted β).

4.2 Diffraction and Wigner distribution
4.2.1 Wigner distribution

We use the scaled phase-space related to real scaled-variables. The Wigner distribution associated
with a scaled field-amplitude V is defined by

W (ρ,φ) =

∫
R2

V
(
ρ+

τ

2

)
V
(
ρ− τ

2

)
exp(2iπφ · τ ) dτ . (56)

9



In the following, we consider a spherical emitter A1 and a spherical receiver A2. The Wigner
distribution associated with the field amplitude on Aj (j = 1, 2) is denoted Wj .

We will show that the result obtained in Part I for real α (Eq. (I.30), Sect. 5) can be extended
to complex α, with α = iβ or α = ±(π/2) + iβ.

4.2.2 Transfer of the Wigner distribution for J < −1 and s = 1

Transformation expression

We have α = iβ. We will show that the equivalent of Eq. (I.30) takes the form

W2(ρ,φ) =W1(ρ coshβ − φ sinhβ,−ρ sinhβ + φ coshβ) , (57)

which means that the elliptical rotation involved in Eq. (I.30) is replaced by a hyperbolic one, as
we will explain.
Proof. We define E(x) = exp(iπx), as in Part I. We consider Eq. (24) with s = 1 and obtain

W2(ρ,φ) =

∫
R2

V2

(
ρ+

τ

2

)
V2

(
ρ− τ

2

)
exp(2iπφ · τ ) dτ

=
1

sinh2β

∫
R2

E

(
−
∥∥∥ρ+

τ

2

∥∥∥2 cothβ)
×
{∫

R2

E(−ρ′2 cothβ)E
[

2ρ′

sinhβ
·
(
ρ+

τ

2

)]
V1(ρ

′) dρ′

× E
(∥∥∥ρ− τ

2

∥∥∥2cothβ)
×
∫
R2

E(ρ′′2 cothβ) E

[
− 2ρ′′

sinhβ
·
(
ρ− τ

2

)]
V1(ρ′′) dρ

′′
}
E(2τ · φ) dτ

=
1

sinh2β

∫
R2

E(−ρ′2 cothβ)E
(
2ρ · ρ′

sinhβ

)
V1(ρ

′) dρ′

×
∫
R2

E(ρ′′2 cothβ)E

(
−2ρ · ρ′′

sinhβ

)
V1(ρ′′) dρ

′′

×
∫
R2

E(−2ρ · τ cothβ)E

(
ρ′ + ρ′′

sinhβ
· τ
)
E(2τ · φ) dτ . (58)

If δ denotes the Dirac generalized function, the last integral in Eq. (58) is equal to

δ

(
φ− ρ cothβ +

ρ′ + ρ′′

2 sinhβ

)
= 4 sinh2β δ

(
2φ sinhβ − 2ρ coshβ + ρ′ + ρ′′

)
, (59)

so that Eq. (58) becomes

W2(ρ,φ) = 4

∫
R2

E(−ρ′2 cothβ)E
(
2ρ · ρ′

sinhβ

)
E
(
‖ − 2ρ coshβ − 2φ sinhβ − ρ′‖2 cothβ

)
× E

[
− 2ρ

sinhβ
·
(
2ρ coshβ − 2φ sinhβ − ρ′

)]
V1(ρ

′)

× V1(2ρ coshβ − 2φ sinhβ − ρ′) dρ′ . (60)

We change ρ′ into τ = 2ρ′ − 2ρ coshβ + 2φ sinhβ, so that2 dτ = 4dρ′, and Eq. (60) becomes

W2(ρ,φ) =

∫
R2

V1

(
ρ coshβ − φ sinhβ +

τ

2

)
V1

(
ρ coshβ − φ sinhβ − τ

2

)
× E

[
2(φ coshβ − ρ sinhβ) · τ

]
dτ

= W1(ρ coshβ − φ sinhβ,−ρ sinhβ + φ coshβ) . (61)

which is Eq. (57). The proof is complete.
2Remember that both τ and ρ′ are real 2–dimensional variables. If τ = (τx, τy) = 2(ρ′x, ρ

′
y) = 2ρ′, then

dτ = dτx dτy = 4dρ′x dρ′y = 4dρ′.

10



Matrix expression

According to Equation (57), the value taken by W2 at point (ρ,φ) is the value taken by W1 at
point (ρ coshβ − φ sinhβ,−ρ sinhβ + φ coshβ). In the subspace ρx–φx, this corresponds to a
hyperbolic rotation of angle β. To understand that, consider the value taken by W2 at point
P2 = (ρx, φx) = (1, 0), which is equal to the value taken by W1 at point P1 = (coshβ,− sinhβ).
For β > 0, the point P2 is deduced from P1 as shown in Fig. 2–a, that is, in the hyperbolic rotation
of angle β.

The same conclusion is obtained by considering point M2 = (0, 1), which is deduced from point
M1 = (− sinhβ, coshβ), and point N2 = (−1, 0), which comes from N1 = (− coshβ, sinhβ).

In the ρx–φx plane, the matrix expression of the corresponding hyperbolic rotation is(
ρ′x
φ′x

)
=

(
coshβ sinhβ
sinhβ coshβ

)(
ρx
φx

)
, (62)

whose angle is β.
The same result is obtained in the ρy–φy, so that the effect of diffraction in the whole scaled-

space is a 4–dimensional Wigner rotation which can be seen as the product of two hyperbolic
rotations in two 2-dimensional subspaces. Then Eq. (57) can be written as a coordinate transfor-
mation, whose matrix form is

ρ′x
φ′x
ρ′y
φ′y

 =


coshβ sinhβ 0 0
sinhβ coshβ 0 0

0 0 coshβ sinhβ
0 0 sinhβ coshβ



ρx
φx
ρy
φy

 , (63)

that is,
ρ′x
ρ′y
φ′x
φ′y

 =


coshβ 0 sinhβ 0

0 coshβ 0 sinhβ
sinhβ 0 coshβ 0

0 sinhβ 0 coshβ



ρx
ρy
φx
φy

 . (64)

With p = (ρ,φ), Eq. (64) is the matrix form of p′ = Wp, where W denotes a 4–dimensional
Wigner rotation, and eventually Eq. (57) takes the form

W2(p
′) =W1(W−1p′) , or W2(Wp) =W1(p) . (65)

β↗

β↗
H2

P1

P2

M1 M2

H2

H1

H1

N2

N1

ρx

β↗

β↗
H2

P2

H2 β↗

β↗

H2

ρx

P1

P ′
1

M ′
1M2

M1

H1H1

H1 H1

H2

P2 ρx

P1

P ′
1

cba

φy φx φx

β↗β↗β↗

β↗ β↗ β↗

Figure 2: Effect of diffraction in the scaled subspace ρx–φx (the same would hold in the ρy–φy subspace).
The value taken by W2 at P2 is equal to the value taken by W1 at P1. (a) α = iβ, β > 0, s = 1; the effect
of diffraction is a hyperbolic rotation of angle β. (b) α = iβ, β > 0, s = −1; the effect of diffraction is a
π–rotation followed by a hyperbolic rotation of angle −β. (c) α = (π/2) + iβ, β > 0, s = 1; the effect of
diffraction is a −π/2–rotation followed by a hyperbolic rotation of angle −β.
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4.2.3 Transfer of the Wigner distribution for J < −1 and s = −1

Transformation expression

We now show that, for J < −1 and s = −1, the transfer by diffraction from A1 to A2, operates
on the corresponding Wigner distributions according to

W2(ρ,φ) =W1(−ρ coshβ − φ sinhβ,−ρ sinhβ − φ coshβ) . (66)

Proof. By the definition of the Wigner distribution and by Eq. (24), we obtain, for s = −1,

W2(ρ,φ) =

∫
R2

V2

(
ρ+

τ

2

)
V2

(
ρ− τ

2

)
exp(2iπφ · τ ) dτ

=
1

sinh2β

∫
R2

E

(∥∥∥ρ+
τ

2

∥∥∥2 cothβ)
×
{∫

R2

E(ρ′2 cothβ)E

[
2ρ′

sinhβ
·
(
ρ+

τ

2

)]
V1(ρ

′) dρ′

× E
(
−
∥∥∥ρ− τ

2

∥∥∥2cothβ)
×
∫
R2

E(−ρ′′2 cothβ) E
[
− 2ρ′′

sinhβ
·
(
ρ− τ

2

)]
V1(ρ′′) dρ

′′
}
E(2τ · φ) dτ

=
1

sinh2β

∫
R2

E(ρ′2 cothβ)E

(
2ρ · ρ′

sinhβ

)
V1(ρ

′) dρ′

×
∫
R2

E(−ρ′′2 cothβ)E
(
−2ρ · ρ′′

sinhβ

)
V1(ρ′′) dρ

′′

×
∫
R2

E(2ρ · τ cothβ)E

(
ρ′ + ρ′′

sinhβ
· τ
)
E(2τ · φ) dτ . (67)

The last integral in Eq. (67) is equal to

δ

(
φ+ ρ cothβ +

ρ′ + ρ′′

2 sinhβ

)
= 4 sinh2β δ

(
2φ sinhβ + 2ρ coshβ + ρ′ + ρ′′

)
, (68)

so that Eq. (67) becomes

W2(ρ,φ) = 4

∫
R2

E(ρ′2 cothβ)E

(
2ρ · ρ′

sinhβ

)
E
(
−‖2ρ coshβ + 2φ sinhβ + ρ′‖2 cothβ

)
× E

[
2ρ

sinhβ
·
(
2ρ coshβ + 2φ sinhβ + ρ′

)]
V1(ρ

′)

× V1(−2ρ coshβ − 2φ sinhβ − ρ′) dρ′ . (69)

We change ρ′ into τ = 2ρ′ + 2ρ coshβ + 2φ sinhβ, so that Eq. (69) becomes

W2(ρ,φ) =

∫
R2

V1

(
−ρ coshβ − φ sinhβ +

τ

2

)
V1

(
−ρ coshβ − φ sinhβ − τ

2

)
× E

[
2(φ coshβ + ρ sinhβ) · τ

]
dτ

= W1(−ρ coshβ − φ sinhβ,−ρ sinhβ − φ coshβ) . (70)

which is eq. (66). The proof is complete.
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Matrix expression

From Eq. (66) we conclude that in the subspace ρx–φx the effect of diffraction is the product of an
elliptical rotation of angle π and a hyperbolic rotation of angle −β. To understand that, consider
the point P2 = (1, 0): according to Eq. (66), the value taken by the function W2 at P2 is the value
taken by W1 at point P1 = (− coshβ,− sinhβ), as shown in Fig. 2–b, for β > 0. Geometrically,
P1 is transformed into P ′1 (π–rotation) and P ′1 into P2 in the hyperbolic rotation of angle −β. The
same result is obtained from M2 = (0, 1), which is the image of M1 = (− sinhβ,− coshβ). The
point M1 is transformed into M ′1 in a π–rotation, and M2 is deduced from M ′1 in the hyperbolic
rotation of angle −β. The previous π-rotation and the hyperbolic rotation commute.

In the ρx–φx subspace, we have(
ρ′x
φ′x

)
=

(
coshβ − sinhβ
− sinhβ coshβ

)(
−1 0
0 −1

)(
ρx
φx

)
=

(
− coshβ sinhβ
sinhβ − coshβ

)(
ρx
φx

)
, (71)

The same holds in the ρy–φy subspace.
Finally, Eq. (66) can be written in matrix form as

ρ′x
φ′x
ρ′y
φ′y

 =


− coshβ sinhβ 0 0
sinhβ − coshβ 0 0

0 0 − coshβ sinhβ
0 0 sinhβ − coshβ



ρx
φx
ρy
φy

 . (72)

4.2.4 Transfer of the Wigner distribution for −1 < J < 0

Transformation expression

For −1 < J < 0, we will prove

W2(ρ,φ) =W1(−sρ sinhβ − φ coshβ,ρ coshβ + sφ sinhβ) . (73)

Proof. (i) We first provide the proof for s = 1. We use Eq. (43) and, by definition, we obtain

W2(ρ,φ) =

∫
R2

V2

(
ρ+

τ

2

)
V2

(
ρ− τ

2

)
exp(2iπφ · τ ) dτ

=
1

cosh2β

∫
R2

E

(∥∥∥ρ+
τ

2

∥∥∥2 1

cothβ

)
×
{∫

R2

E

(
− ρ′2

cothβ

)
E

[
2ρ′

coshβ
·
(
ρ+

τ

2

)]
V1(ρ

′) dρ′

× E
(
−
∥∥∥ρ− τ

2

∥∥∥2 1

cothβ

)
×
∫
R2

E

(
ρ′′2

cothβ

)
E

[
− 2ρ′′

coshβ
·
(
ρ− τ

2

)]
V1(ρ′′) dρ

′′
}
E(2τ · φ) dτ

=
1

cosh2β

∫
R2

E

(
− ρ′2

cothβ

)
E

(
2ρ · ρ′

coshβ

)
V1(ρ

′) dρ′

×
∫
R2

E

(
ρ′′2

cothβ

)
E

(
−2ρ · ρ′′

coshβ

)
V1(ρ′′) dρ

′′

×
∫
R2

E

(
2ρ · τ
cothβ

)
E

(
ρ′ + ρ′′

coshβ
· τ
)
E(2τ · φ) dτ . (74)

The last integral in Eq. (74) is equal to

δ

(
φ+

ρ

cothβ
+
ρ′ + ρ′′

2 coshβ

)
= 4 cosh2β δ

(
2φ coshβ + 2ρ sinhβ + ρ′ + ρ′′

)
, (75)

13



so that Eq. (74) becomes

W2(ρ,φ) = 4

∫
R2

E

(
− ρ′2

cothβ

)
E

(
2ρ · ρ′

coshβ

)
E

(
‖2ρ sinhβ + 2φ coshβ + ρ′‖2 1

cothβ

)
× E

[
2ρ

coshβ
·
(
2ρ sinhβ + 2φ coshβ + ρ′

)]
V1(ρ

′)

× V1(−2ρ sinhβ − 2φ coshβ − ρ′) dρ′ . (76)

We change ρ′ into τ = 2ρ′ + 2ρ sinhβ + 2φ coshβ, so that Eq. (76) becomes

W2(ρ,φ) =

∫
R2

V1

(
−ρ sinhβ − φ coshβ +

τ

2

)
V1

(
−ρ sinhβ − φ coshβ − τ

2

)
× E

[
2(ρ coshβ + φ sinhβ) · τ

]
dτ

= W1(−ρ sinhβ − φ coshβ,ρ coshβ + φ sinhβ) . (77)

which is Eq. (73) for s = 1.
(ii) The proof for s = −1 is as follows. We remark that changing s = 1 into s = −1 in Eq. (43) is
equivalent to changing β into −β. Then the previous derivations lead to

W2(ρ,φ) =

∫
R2

V1

(
ρ sinhβ − φ coshβ +

τ

2

)
V1

(
ρ sinhβ − φ coshβ − τ

2

)
× E

[
2(ρ coshβ − φ sinhβ) · τ

]
dτ

= W1(ρ sinhβ − φ coshβ,ρ coshβ − φ sinhβ) . (78)

(iii) Equations (77) and (78) are synthetized in Eq. (73).

Matrix expression

To obtain the matrix expression of Eq. (73), we consider the point P2 = (1, 0) in the ρx–φx
subspace. According to Eq. (73) the value taken by W2 at P2 is the value taken by W1 at point
P1 = (−s sinhβ, coshβ). Then P2 is deduced from P1 in rotation of angle −π/2 followed by a
hyperbolic rotation of angle −sβ, as illustrated in Fig. 2–c, for β > 0. In matrix form, we obtain(

ρ′x
φ′x

)
=

(
coshβ −s sinhβ
−s sinhβ coshβ

)(
0 1
−1 0

)(
ρx
φx

)
=

(
s sinhβ coshβ
− coshβ −s sinhβ

)(
ρx
φx

)
. (79)

The matrix product in Eq. (79) is not commutative.
The matrix form of Eq. (73) is then

ρ′x
φ′x
ρ′y
φ′y

 =


s sinhβ coshβ 0 0
− coshβ −s sinhβ 0 0

0 0 s sinhβ coshβ
0 0 − coshβ −s sinhβ



ρx
φx
ρy
φy

 (80)

Remark. The matrix in Eq. (79) is such that(
s sinhβ coshβ
− coshβ −s sinhβ

)
=

(
0 1
−1 0

)(
coshβ s sinhβ
s sinhβ coshβ

)
, (81)

and also corresponds to a hyperbolic rotation of angle sβ followed by a rotation of angle −π/2.

4.3 Complex rotations
In the previous section the effect of diffraction on the Wigner distribution associated with an optical
field is analyzed in the real scaled phase-space (coordinates ρ and φ). The previous hyperbolic
rotations can also be expressed with complex coordinates, as done in the present section.
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4.3.1 Analysis for J < −1

We use σ = (1 + si)ρ/
√
2, that is,(

ρx
ρy

)
=

1− si√
2

(
σx
σy

)
,

(
φx
φy

)
=

1 + si√
2

(
θx
θy

)
, (82)

and (
σ′x
σ′y

)
=

s+ i√
2

(
ρ′x
ρ′y

)
,

(
θ′x
θ′y

)
=

s− i√
2

(
φ′x
φ′y

)
. (83)

We then obtain(
σ′x
θ′x

)
=

1√
2

(
s+ i 0
0 s− i

)(
ρ′x
φ′x

)
=

1√
2

(
s+ i 0
0 s− i

)(
s coshβ sinhβ
sinhβ s coshβ

)(
ρx
φx

)
=

1

2

(
s+ i 0
0 s− i

)(
s coshβ sinhβ
sinhβ s coshβ

)(
1− si 0
0 1 + si

)(
σx
θx

)
=

(
coshβ i sinhβ
−i sinhβ coshβ

)(
σx
θx

)
=

(
cosα sinα
− sinα cosα

)(
σx
θx

)
, (84)

where α = iβ. The same can be written with ρy and φy so that
σ′x
θ′x
σ′y
θ′y

 =


cosα sinα 0 0
− sinα cosα 0 0

0 0 cosα sinα
0 0 − sinα cosα



σx
θx
σ′y
θ′y

 , (85)

which is similar to Eq. (I.37).

4.3.2 Analysis for −1 < J < 0

We obtain(
σ′x
θ′x

)
=

1√
2

(
1− i 0
0 1 + i

)(
ρ′x
φ′x

)
=

1√
2

(
1− i 0
0 1 + i

)(
s sinhβ coshβ
− coshβ −s sinhβ

)(
ρx
φx

)
=

1

2

(
1− i 0
0 1 + i

)(
s sinhβ coshβ
− coshβ −s sinhβ

)(
1− i 0
0 1 + i

)(
σx
θx

)
=

(
−s i sinhβ coshβ
− coshβ −s i sinhβ

)(
σx
θx

)
. (86)

We introduce α = (π/2) + iβ so that cosα = sin iβ = i sinhβ and sinα = coshβ, and we obtain(
σ′x
θ′x

)
=

(
s cosα sinα
− sinα s cosα

)(
σx
θx

)
. (87)

For s = 1, we have a rotation of angle −α, as in Eq. (84). For s = −1, we write(
σ′x
θ′x

)
=

(
− cosα sinα
− sinα − cosα

)(
σx
θx

)
=

(
cosα′ − sinα′

sinα′ cosα′

)(
σx
θx

)
, (88)

which is a rotation of angle α′ = α− π = −(π/2) + iβ.
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5 Application to unstable optical resonators

5.1 Direct and back transfers in a resonator
We consider an optical resonator made up of two spherical mirrors M1 (object radius R1 and
image radius R′1) andM2 (radii R2 and R′2). The algebraic measure from Ω1 (the vertex ofM1)
to Ω2 (the vertex of M2) is D = Ω1Ω2, and it is D′ = Ω2Ω1 from Ω2 to Ω1. Since algebraic
measures are positive if taken in the sense of light propagation, which changes after a reflection,
we have D = D′ and we use the algebraic length of the resonator, which is L = D = D′. (For
definitions of object and image radii, see Sect. 7.1 Part I; for a definition of the algebraic length
L, see Sect. 7.2, Part I [1].)

For the field transfer fromM1 toM2, the emitter isM1 (image radius R′1) and the receiver is
M2 (object radius R2), so that by Eq. (3) we obtain

J =
(R′1 − L)(R2 + L)

L(L−R′1 +R2)
. (89)

For the field transfer from M2 to M1, the emitter is M2 (image radius R′2) and the receiver is
M1 (object radius R1) and we compute

J ′ =
(R′2 − L)(R1 + L)

L(L−R′2 +R1)
, (90)

Since R′1 = −R1 and R′2 = −R2, we obtain J = J ′.
We conclude that the direct and back transfers in a resonator are of the same kind: they are

both real-order transfers, or both complex-order transfers. Moreover, if the order of the transfer
fromM1 toM2 is β, and β′ for the transfer fromM2 toM1, since L has the same sign for both
transfers, we have β = β′.

5.2 Interpretation in the scaled phase-space for J = J ′ < −1 and s = 1

If we use complex scaled-variables, for J = J ′ < −1, the field transfer fromM1 toM2 is represented
by a fractional Fourier transformation whose order is α = iβ, and the field transfer fromM2 toM1

by a fractional Fourier transformation whose order is α′ = iβ′, with coth2 β = J = J ′ = coth2 β′.
Since both β and β′ have the sign of L, we have β = β′. If we use real scaled-variables, to which the
scaled phase-space is referred, and according to Eqs. (28) and (31), the field transfer is expressed
by a hyperbolic fractional Fourier transform whose order is ±β.

The interpretation of how Wigner distributions behave in an unstable resonator is carried out
in the scaled phase-space and is as follows. We first consider the matrix of Eq. (63), that is s = 1.
We analyze the situation in the ρx–φx subspace, in which the effect of diffraction is expressed
by Eq. (62). We consider a point P1 = (ρ1x, φ1x) 6= (0, 0) and the hyperbola whose equation is
ρx

2 − φx2 = ρ1x
2 − φ1x2 = A, to which P1 belongs. The value taken at point P1 by the Wigner

distribution on M1 equals the value the Wigner distribution on M2 takes at point P2 that is
deduced from P1 in the hyperbolic rotation of parameter β. The back transfer fromM2 toM1 is
expressed by a hyperbolic rotation of parameter β′ = β, which transforms P2 into P3. The value
taken at P3 by the Wigner distribution on M1 is equal to the value taken at P2 by the Wigner
distribution on M2, namely, to the value taken at P1 by the Wigner distribution on M1. The
point P3 is deduced from P1 in a hyperbolic rotation of parameter 2β. If β > 0, the sequence
of points Pi corresponds to increasing values of β (see Fig. 3). If di = OPi, the sequence (di) is
diverging (see Fig. 3). The same result holds in the ρy–φy subspace. Eventually, the resonator is
unstable, since the support of the Wigner distribution on each mirror spreads over an increasingly
wide area after every reflection. This can also be understood by considering light rays in such a
resonator, as will be done in Part III.

The same analysis can be done for β < 0.
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ρx

φx

P4

P3

P2

P1
O

Figure 3: A sequence (Pi) for J = J ′ < −1, β > 0 and s = 1. The values taken at points P1, P3, P5 etc. by
the Wigner distribution onM1 are equals. They are also equals to the values of the Wigner distribution
onM2 taken at points P2, P4, etc. Point Pi+1 is deduced from Pi in a hyperbolic rotation of angle β. If
di = OPi, both sequences (d2i) and (d2i+1) are diverging, which shows that the Wigner distribution on
each mirror spreads over an increasingly wide area after every reflection: the resonator is unstable.

Remark. General properties of unstable resonators are described by Anan’ev [8] and also by
Siegman [9]. Qualifying optical resonators as stable or unstable is conventional, but no judicious,
since many laser whose cavities are unstable resonators perfectly work. The difference between the
two kinds of resonators can be done according to the behaviors of Wigner distributions. In stable
resonators, Wigner distributions undergo elliptical rotations so that, after every reflection on a
mirror, the luminous energy remains near the optical axis; these stable resonators are sometimes
called “confined-mode resonators.” On the contrary, in unstable resonators, Wigner distributions
undergo hyperbolic rotations and the energy spread over wider and wider areas after reflections.

5.3 Interpretation in the scaled phase-space for J = J ′ < −1 and s = −1
In this section, points P1, P2, etc. have the same interpretations as in the previous section. We start
with point P1. If s = −1, according to Eq. (71), P2 that can be deduced from P1 as follows: point
P1 (and more generally point Pi) undergoes an elliptic rotation of angle π and becomes P ′1 (P ′i ) on
the other branch of the hyperbola (see Fig. 4). Then P ′1 (P ′i ) undergoes the hyperbolic rotation
of parameter (angle) −β and becomes P2 (Pi+1) (see Fig. 4, drawn for positive β). We obtain a
sequence (Pi) as shown in Fig. 4. If di = OPi, the sequences (d2i) and (d2i+1) are diverging. The
same result holds in the ρy–φy subspace, and the resonator is unstable.

P1P2

P ′
2

P3

P ′
3

P4

P ′
4

P5

ρx

φx

P ′
1 O

Figure 4: The case J = J ′ < −1, β > 0 and s = −1. Points Pi are defined as in Fig. 3. Point P ′
i is deduced

from Pi in a π–rotation, and Pi+1 is deduced from P ′
i in a hyperbolic rotation of angle −β. If di = OPi,

the sequences (d2i) and (d2i+1) are diverging. The resonator is unstable.
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5.4 Interpretation in the scaled phase space for −1 < J = J ′ < 0

We assume L > 0, so that β = β′ as explained in Sect. 5.1. For the field transfer fromM1 toM2,
light is issued from M1, which is the emitter, and the radius of M1 to be taken into account is
R′1; and sinceM2 is the receiver, light is incident onM2, and the radius ofM2 to be taken into
account is R2. The parameter s is then the sign of R′1(R′1−L). According to the result established
in Sect. 2.3, the sign of R2(R2 +D) is −s.

For the field transfer fromM2 toM1, mirrorM2 is the emitter andM1 the receiver, so that
radii to be taken into account are R′2 and R1. The sign to be considered, denoted s′, is that of
R′2(R

′
2 − L). It is opposite to the sign of R1(R1 + L), which is −s′.

Since R1 = −R′1, we have R1(R1 + L) = R′1(R
′
1 − L), so that s′ = −s. And since R2 = −R′2,

we also have R2(R2 + L) = R′2(R
′
2 − L).

We assume β > 0 and conclude as follows.

• The field transfer from M1 to M2 is described according to the sign s. Its effect on the
respective Wigner distributions on M1 and M2 is a rotation of angle −π/2 followed by a
hyperbolic rotation of angle −sβ, according to Eq. (79), Sect. 4.2.4.

• The field tranfer from M2 to M1 is described according to the sign s′. Its effect on the
respective Wigner distributions on M2 and M1 is a rotation of angle −π/2 followed by a
hyperbolic rotation of angle −s′ β. Since s′ = −s, the effect of diffraction is a rotation of
angle −π/2 followed by a hyperbolic rotation of angle sβ.

The consequence for an optical resonator is illustrated by Fig. 5, where α = π/2 + iβ (β > 0)
and s = 1 and is explained as follows. The interpretation of point Pi is that of Sect. 5.2 once more.

Let P1 = (ρ1x, φ1x) be the initial point where the Wigner distribution on mirror M1 is con-
sidered, and let A = ρ21x − φ21x. Let H1 be the hyperbola whose equation is ρ2x − φ2x = A and to
which P1 belongs; and H2 the hyperbola whose equation is φ2x − ρ2x = A. We assume β > 0, and
build a sequence (Pi) as follows. Let P ′1 be the image of P1 in the elliptical (or pure) rotation of
angle −π/2. Then P2 is the image of P ′1 in the hyperbolic rotation of parameter −β. Both P ′1 and
P2 belong to H2. The following back transfer from M2 to M1 transforms P2 into P3, which is
obtained after an elliptical rotation of angle −π/2 (P2 becomes P ′2) and a hyperbolic rotation of
parameter β (in which P ′2 becomes P3).

The sequence of points Pi is the following (see Fig. 5):

i. Point P1 is assumed to be on H1, branch 1.

ii. First transfer fromM1 toM2: from P1 to P2.

• From P1 to P ′1: elliptical rotation of −π/2; P ′1 ∈ H2, branch 2.

• From P ′1 to P2: moving on H2 corresponding to a hyperbolic rotation of angle −β;
P2 ∈ H2, branch 2.

iii. Back transfer fromM2 toM1: from P2 to P3.

• From P2 to P ′2: elliptical rotation of −π/2; P ′2 ∈ H1, branch 2.

• From P ′2 to P3: moving on H1 corresponding to a hyperbolic rotation of angle β; and
P3 ∈ H1, branch 2.

iv. Second transfer fromM1 toM2: from P3 to P4.

• From P3 to P ′3: elliptical rotation of −π/2; P ′3 ∈ H2, branch 1.

• From P ′3 to P4: moving on H2 corresponding to a hyperbolic rotation of angle −β;
P4 ∈ H2, branch 1.
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P1 ρx

φx

P ′
2

P ′
3

P4

P3

P ′
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P5

P ′
1 P2

H1 branch 2

H1 branch 1

H2 branch 1
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O

Figure 5: Case −1 < J < 0. Fractional parameter α = π/2 + iβ (β > 0). The sequence of points Pi is
analyzed in the text. If di = OPi, sequences (d2i) and (d2i+1) are diverging. The corresponding resonator
is unstable.

v. Second back transfer fromM2 toM1: from P4 to P5.

• From P4 to P ′4: elliptical rotation of −π/2; P ′4 ∈ H1, branch 1.

• From P ′4 to P5: moving on H1 corresponding to a hyperbolic rotation of parameter β;
P5 ∈ H1, branch 1.

And so on. If di = OPi, the sequences (d2i) and (d2i+1) are diverging and the considered resonator
is unstable.

6 Conclusion
Given two spherical caps, the field transfer by diffraction from one spherical cap to the other can
be expressed by a fractional-order Fourier transformation. According to the distance between the
spherical caps and to their curvature radii, the order of the transformation may be a real number
(the field transfer is then said to be a real-order transfer) or a complex number (complex-order
transfer). If the spherical caps are the two mirrors of an optical resonator, the order is a real
number, if the resonator is stable, and a complex number, if the resonator is unstable. A unified
theoretical approach can thus be developed and similarly applied to both kinds of resonators.

The effect of diffraction on the Wigner distribution associated with an optical field is shown to
be a rotation, provided that the Wigner distribution is related to a scaled phase-space on which
an appropriate Euclidean structure is defined. The rotation can split into two elliptical rotations,
if the field transfer is a real-order transfer; and mainly into two hyperbolic rotations, if the field
transfer is a complex-order transfer. A graphical analysis clearly illustrates differences between the
two kinds of resonators, according to the results of Part I and Part II of the article.

Finally, a point in the scaled phase-space corresponds to a light ray, characterized by a point in
the physical space and a direction of propagation, as will be shown in the third part of the article.
The evolution of a point in the scaled phase-space can then be interpreted like the transformation
of a ray after refraction, reflection or propagation, and can be applied to light-ray tracing [10] as
will be done in Part III, with applications to ray tracing in optical resonators.

Appendix A. Proof of Eq. (23) (D < 0 and J < −1)
We recall that σ is an element of Γ × Γ = (1 + s i)R × (1 + s i)R. According to Eq. (19), for
r = (x, y) we introduce—see Eq. (16)— the real scaled variable ρ = (ρx, ρy) and the complex
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scaled variable σ = (σx, σy) with

σx =
1 + s i√

2
ρx =

1 + s i√
2λχ1R1

x , σy =
1 + s i√

2
ρy =

1 + s i√
2λχ1R1

y . (91)

We then obtain

σ · σ = s iρ · ρ =
s i

λχ1R1
r · r , (92)

and

dσ = dσx dσy = s i dρ =
s i

λχ1R1
dxdy =

s i

λχ1R1
dr . (93)

Derivation of dr/λD

We start with
χ1

2R1
2

D2
=

R1
2

(R1 −D)2
coth2 β =

−R1
2

(R1 −D)2
cot2 α = −R2 +D

R2D

R1D

R1 −D
R1R2

D(D −R1 +R2)

=
−χ1R1

χ2R2

R1R2

D(D −R1 +R2)
. (94)

Since
cos2 α

sin2 α
= cot2 α =

(R1 −D)(R2 +D)

D(D −R1 +R2)
, (95)

we obtain
1

sin2 α
=

R1R2

D(D −R1 +R2)
, (96)

and then
χ2
1R

2
1

D2
= −χ1R1

χ2R2

1

sin2 α
=
χ1R1

χ2R2

1

sinh2 β
. (97)

Since χ1R1 > 0, χ2R2 > 0, since sinhβ has the sign of β which is also the sign of D, we may write

χ1R1

D
=

1

sinhβ

√
χ1R1

χ2R2
=

i

sinα

√
χ1R1

χ2R2
. (98)

Finally, we use Eq. (93) and write

dr

λD
= −s iχ1R1

D
dσ =

s

sinα

√
χ1R1

χ2R2
dσ . (99)

Derivation of r · r′/λD

We use Eqs. (19) and (20) and obtain

r · r′

λD
=
−i
λD

√
λ2χ1R1χ2R2 σ · σ′ = −i

D

√
χ1R1χ2R2 σ · σ′ , (100)

and then
χ1R1χ2R2

D2
=

R1R2

(R1 −D)(R2 +D)
coth2 β =

−R1R2

D(D −R1 +R2)
=
−1

sin2 α
=

1

sinh2 β
. (101)

Since χ1R1 > 0 and χ2R2 > 0, and since β has the sign of D, we obtain
√
χ1R1χ2R2

D
=

1

sinhβ
=

i

sinα
, (102)

and then
r · r′

λD
=
σ · σ′

sinα
. (103)
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Derivation of the quadratic phase terms

We begin with

1

λ

(
1

D
− 1

R1

)
r · r =

−s i
λ

R1 −D
DR1

λχ1R1σ · σ = −iσ · σ cothβ = σ · σ cotα , (104)

and we remark that σ · σ cotα is a real number.
Then

1

λ

(
1

D
+

1

R2

)
r′ · r′ = −s i

λ

R2 +D

DR2
λχ2R2σ

′ · σ′ = −iσ′ · σ′ cothβ = σ′ · σ′ cotα , (105)

and σ′ · σ′ cotα is also a real number.

Integral

The previous results lead us to write Eq. (1) in the form

U2

(
s− i√

2

√
λχ2R2 σ

′
)

=
s i

sinα

√
χ1R1

χ2R2
exp(−iπσ′·σ′ cotα) (106)

×
∫
Γ×Γ

exp(−iπσ·σ cotα) exp

(
2iπ

sinα
σ·σ′

)
U1

(
1− s i√

2

√
λχ1R1 σ

)
dσ ,

that is

Vc2(σ
′) =

s i

sinα
exp(−iπσ′·σ′ cotα)

∫
Γ×Γ

exp(−iπσ·σ cotα) exp

(
2iπ

sinα
σ·σ′

)
Vc1(σ) dσ , (107)

which is Eq. (23).

Appendix B. Proof of Eq. (29) (D < 0 and J < −1)
This is the case β < 0 and s is the sign of R1(R1 −D). Complex scaled variables are

σx =
1 + s i√

2
ρx =

1 + s i√
2λχ1R1

x , σy =
1 + s i√

2
ρy =

1 + s i√
2λχ1R1

y . (108)

and

σ′x = −s+ i√
2
ρ′x = − s+ i√

2λχ2R2
x′ , σ′y = −s+ i√

2
ρ′y = − s+ i√

2λχ2R2
y′ . (109)

We then obtain

σ · σ = s iρ · ρ =
s i

λχ1R1
r · r , (110)

and

dσ = dσx dσy = s i dρ =
s i

λχ1R1
dxdy =

s i

λχ1R1
dr . (111)
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Derivation of dr/λD

We start with
χ2
1R

2
1

D2
=

R2
1

(R1 −D)2
coth2 β =

−R2
1

(R1 −D)2
cot2 α = −R2 +D

R2D

R1D

R1 −D
R1R2

D(D −R1 +R2)

=
−χ1R1

χ2R2

R1R2

D(D −R1 +R2)
. (112)

Since
cos2 α

sin2 α
= cot2 α =

(R1 −D)(R2 +D)

D(D −R1 +R2)
, (113)

we obtain
1

sin2 α
=

R1R2

D(D −R1 +R2)
, (114)

and then
χ2
1R

2
1

D2
= −χ1R1

χ2R2

1

sin2 α
=
χ1R1

χ2R2

1

sinh2 β
. (115)

Since χ1R1 > 0, χ2R2 > 0, since sinhβ has the sign of β which is also the sign of D, we may write

χ1R1

D
=

1

sinhβ

√
χ1R1

χ2R2
=

i

sinα

√
χ1R1

χ2R2
. (116)

Finally, we use Eq. (93) and write

dr

λD
=
−s iχ1R1

D
dσ =

s

sinα

√
χ1R1

χ2R2
dσ . (117)

Derivation of r · r′/λD

We use Eqs. (108) and (109) and obtain
r · r′

λD
=

i

λD

√
λ2χ1R1χ2R2 σ · σ′ = i

D

√
χ1R1χ2R2 σ · σ′ , (118)

and then
χ1R1χ2R2

D2
=

R1R2

(R1 −D)(R2 +D)
coth2 β =

−R1R2

D(D −R1 +R2)
=
−1

sin2 α
=

1

sinh2 β
. (119)

Since χ1R1 > 0 and χ2R2 > 0, and since β has the sign of D, we obtain
√
χ1R1χ2R2

D
=

1

sinhβ
=

i

sinα
, (120)

and then
r · r′

λD
= −σ · σ′

sinα
. (121)

Derivation of the quadratic phase terms

We begin with
1

λ

(
1

D
− 1

R1

)
r · r =

−s i
λ

R1 −D
DR1

λχ1R1σ · σ = −iσ · σ cothβ = σ · σ cotα , (122)

and we remark that σ · σ cotα is a real number.
Then

1

λ

(
1

D
+

1

R2

)
r′ · r′ = −s i

λ

R2 +D

DR2
λχ2R2σ

′ · σ′ = −iσ′ · σ′ cothβ = σ′ · σ′ cotα , (123)

and σ′ · σ′ cotα is also a real number.
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Integral

The previous results lead us to write Eq. (1) in the form

U2

(
−s+ i√

2

√
λχ2R2 σ

′
)

=
−s i
sinα

√
χ1R1

χ2R2
exp(iπσ′·σ′ cotα) (124)

×
∫
Γ×Γ

exp(iπσ·σ cotα) exp

(
−2iπ
sinα

σ·σ′
)
U1

(
1− s i√

2

√
λχ1R1 σ

)
dσ ,

that is

Vc2(σ
′) =

−s i
sinα

exp(iπσ′·σ′ cotα)
∫
Γ×Γ

exp(iπσ·σ cotα) exp

(
− 2iπ

sinα
σ·σ′

)
Vc1(σ) dσ , (125)

which is Eq. (29).

Appendix C. Proof of Eq. (42) (D > 0 and −1 < J < 0)
We have α = (π/2)+iβ, where β > 0, since it has the sign ofD. Then cosα = −i sin iβ = sinhβ > 0,
and sinα = cos iβ = coshβ > 0.

Complex scaled-variables are

σx =
1 + i√

2
ρx =

1 + i√
2λχ1R1

x , σy =
1 + i√

2
ρy =

1 + i√
2λχ1R1

y , (126)

and

σ′x =
1− i√

2
ρ′x =

1− i√
2λχ2R2

x′ , σ′y =
1− i√

2
ρ′y =

1− i√
2λχ2R2

y′ . (127)

We then obtain

σ · σ = iρ · ρ =
i

λχ1R1
r · r , (128)

and

dσ = dσx dσy = i dρ =
i

λχ1R1
dxdy =

i

λχ1R1
dr . (129)

Derivation of dr/λD

From Eq. (33) we deduce

χ2
1R

2
1

D2
=

R2
1

(R1 −D)2
1

coth2 β
= −J R2

1

(R1 −D)2
= − R1

2

D(D −R1 +R2)

R2 +D

R1 −D

=
χ1R1

χ2R2

R1R2

D(D −R1 +R2)
. (130)

Since

cos2 α

sin2 α
= cot2 α =

(R1 −D)(R2 +D)

D(D −R1 +R2)
, (131)

we obtain
1

sin2 α
=

R1R2

D(D −R1 +R2)
, (132)

and then

χ2
1R

2
1

D2
=
χ1R1

χ2R2

1

sin2 α
=
χ1R1

χ2R2

1

cosh2 β
. (133)
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Since χ1R1 > 0, χ2R2 > 0, since sinhβ has the sign of β which is also the sign of D, we may write

χ1R1

D
=

1

coshβ

√
χ1R1

χ2R2
=

1

sinα

√
χ1R1

χ2R2
. (134)

Finally, we use Eq. (129) and write

dr

λD
=
−iχ1R1

D
dσ =

−i
sinα

√
χ1R1

χ2R2
dσ . (135)

Derivation of r · r′/λD

We start with
r · r′

λD
=

1

λD

√
λ2χ1R1χ2R2 σ · σ′ = 1

D

√
χ1R1χ2R2 σ · σ′ , (136)

and we use Eqs. (33) and (35) to obtain

χ1R1χ2R2

D2
=

−R1R2

(R1 −D)(R2 +D)

1

coth2 β
=

R1R2

D(D −R1 +R2)
=

1

sin2 α
=

1

cosh2 β
. (137)

Since χ1R1 > 0 and χ2R2 > 0, and since D > 0, we obtain
√
χ1R1χ2R2

D
=

1

coshβ
=

1

sinα
, (138)

and then
r · r′

λD
=
σ · σ′

sinα
. (139)

Derivation of the quadratic phase terms

We begin with

1

λ

(
1

D
− 1

R1

)
r · r =

−i
λ

R1 −D
DR1

λχ1R1 σ · σ =
−s iσ · σ
cothβ

= sσ · σ cotα , (140)

and we remark that σ · σ cotα is a real number.
Then

1

λ

(
1

D
+

1

R2

)
r′ · r′ = i

λ

R2 +D

DR2
λχ2R2 σ

′ · σ′ = −s iσ
′ · σ′

cothβ
= sσ′ · σ′ cotα , (141)

and σ′ · σ′ cotα is also a real number.

Integral

The previous results lead us to write Eq. (1) in the form

U2

(
1 + i√

2

√
λχ2R2 σ

′
)

=
−i
sinα

√
χ1R1

χ2R2
exp(−s iπσ′·σ′ cotα) (142)

×
∫
Γ×Γ

exp(−s iπσ·σ cotα) exp

(
2iπ

sinα
σ·σ′

)
U1

(
1− i√

2

√
λχ1R1 σ

)
dσ ,

that is

Vc2(σ
′) =

−i
sinα

exp(−s iπσ′·σ′ cotα)

×
∫
Γ×Γ

exp(−s iπσ·σ cotα) exp

(
2iπ

sinα
σ·σ′

)
Vc1(σ) dσ , (143)

which is Eq. (42).
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