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Abstract. A situation between several moving aircraft is a conflict when
their position is less than the internationally specified distance. To solve
aircraft conflicts, air traffic controllers consider many parameters includ-
ing the positioning coordinate, speed, direction, weather, etc. of the in-
volved aircraft. This is a complex task, specifically considering the in-
crease of the traffic. Assisting systems could help controllers in their
tasks. Most conflict resolution models are based on trajectory data of
a fixed number of input aircraft. Under this constraint, it is possible to
resolve conflicts using machine learning models, including convolutional
neuron network models. Such models cannot resolve conflicts that imply
a variable number of aircraft because the input size of the model is fixed.
To solve this challenge, we transformed the trajectory data into images
which size does not depend on the number of planes. We developed a
multi-label conflict resolution model that we named ACRnet, based on
a convolutional neural network to classify the obtained images. ACRnet
model achieves an accuracy of 99.16% on the training data and of 98.97%
on the test data set for two aircraft. For both two and three aircraft, the
accuracy is 99.05% (resp. 98.96%) on the training (resp. test) data set.

Keywords: Air traffic control, Convolutional neural network, Machine
learning, Deep learning, Multi-label classification.

1 Introduction

One of the frequent tasks an air traffic control (ATC) does is to resolve conflicts
between different aircraft. When two or more planes come close to each other
at a certain distance, it is called a conflict. Conflict resolutions by Air Traffic
Control Officer (ATCO) vary depending on the position of the aircraft at differ-
ent altitudes. In this research, we tackle the en-route level (high altitude) where
conflicts are resolved by changing the aircraft’s heading. As the number of air-
craft is increasing rapidly, providing an automated solution to conflicts would
drastically help ATCOs.

Kuchar and Yang reviewed aircraft conflict detection and resolution [12] re-
search. Although this review was conducted two decades ago, it is worth men-
tioning it as the authors present the basis of conflict identification and resolution,
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which was mainly mathematically grounded [4, 16]. Following the other scientific
domains, researchers have recently moved on to machine learning [20] including
deep learning to solve aircraft conflicts [5, 6, 18].

Most models for conflict resolution are designed considering a fixed number
of aircraft. Under such constraints, machine learning models where the input
size cannot be changed in real-time can be applied. The resolution of conflicts
where a variable number of aircraft are involved however cannot be handled and
remains an important challenge. Brittain and Wei [6] applied long short-term
memory (LSTM) and Zhao and Liu [21] convert trajectory data to image data
to handle a variable number of aircraft in real-time using reinforcement learning.
The computation of their model depends on the number of aircraft when using
LSTM, and finding the perfect reward function when using reinforcement is
challenging. Here, inheriting ideas from Zhao and Liu [21], we convert trajectory
data to image data. The benefits of converting trajectory data to images are
given below:

(a) The trajectory of a variable number of planes can be plotted without resizing
the image;

(b) The model complexity will not change even if the number of planes changes;
(c) Convolutional neural network (CNN) can be applied with data augmenta-

tion;
(d) Not only can conflicts be resolved between aircraft but also between aircraft

and other airspaces such as weather, military zones, etc.

To reflect the fact a conflict can be solved in different ways, we annotated each
image with multi-labels, each corresponding to a possible solution. While previ-
ous research considers a single solution, we think providing several solutions is
better because one solution can result into new conflicts [12].

We developed a machine learning model based on a CNN with the multi-label
classification that we named ACRnet for aircraft conflict resolution CNN.

This paper is organized as follows. Section 2 discusses related work. Section 3
explains the conversion from trajectories to images. Section 4 discusses model
architectures. Section 5 presents the evaluation framework. Section 6 presents the
results and comparisons between different models. Finally, Section 7 concludes
this paper.

2 Related work

Most of the initial research in conflict detection and resolution was based on
mathematics [2, 4, 7, 16]. According to Pham et al. [14], it is essential for these
models that the information is noise-free and accurate positioning, which is not
possible because trajectory information comes from the approximate combined
results of different surveillance radars. Recent research has thus focused rather
on machine learning [1, 5, 9, 14, 20].

Many methods were proposed in which all the flights are assumed to be al-
lowed for free routing or free-flight and that the planes share their information
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from the onboard system [1, 2, 9]. In this case, the pilots of all the aircraft involved
in the conflict can resolve the conflict by communicating within themselves with-
out the help of ATCO. Although it is interesting, in reality, its application is
still a long way off.

Since annotated ATC data is difficult to obtain, many methods have been
proposed based on reinforcement learning to resolve aircraft collisions. Brittain
and Wei in [5] applied two-level deep reinforcement learning in a hierarchical
way while Pham et al. [14, 15] proposed a single agent-based deep reinforcement
learning model for two aircraft at the same altitude. Zhao and Liu [21] also
applied reinforcement learning and CNN using image data where each image
contains the current position of aircraft associated with the conflict. However,
a proper reward function is required for the best resolution of reinforcement
learning and finding that function is the most challenging task because it depends
on features like certain rules and conditions.

There are very few supervised learning applications for aircraft collision de-
tection and resolution [10, 17, 20]. Recently, Rahman et al. [13, 17] introduced
a fully supervised deep neural network (NN) model based on simulated data.
The advantages of using simulated data are that many variations are possible
with simulation data that may not be obtained from actual data. Kim et al. [10]
considered two different supervised models, one based on a NN and the other
based on multiple support vector machines (SVM). Both are based on multi-class
classification where the best output is selected based on the highest probability
score. The NN model for horizontal (resp. vertical) conflict achieved 71.3% (resp.
93.1%) of accuracy, while the SVM-based model for horizontal (resp. vertical)
conflict achieved 72.2% (resp. 93.3%) of accuracy. CRMLnet model in [18] is sim-
ilar but for multi-label classification (multiple resolutions for one conflict) using
the last 5-minute of trajectories (series of locations) of all the aircraft associated
with the conflict. This model only solves the horizontal conflict at the en-route
level and achieved an accuracy of 98.72% and ROC of 0.999. The main remain-
ing challenge is that there is no supervised learning method that can handle a
variable number of aircraft.

By combining both ideas of 5-minute trajectory and image data [18, 21], we
suggest here a multi-label classification model based on a CNN where each image
contains a 5-minute trajectory for each aircraft associated with the conflict. The
main purpose of this research is not to find the best image processing model but
to easily overcome many challenges of existing sequence-based models through
image processing with higher performance to resolve the aircraft conflict.

3 Data

We used two different datasets in the evaluation part (a) initial trajectory data
from [18] and (b) converted trajectories into images.

(a) Initial trajectory data: Each conflict sample of initial data contains the
last 5-minute of the trajectory (a series of positions) for each aircraft associated
with the conflict. The resolution can be made for each conflict by changing the
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ownship’s (see Figure 1 (a) aircraft A heading from 30 degrees left to 30 degrees
right by 5 degrees (total 12 heading directions). Each conflict is associated with
multiple heading resolutions (multi-labels) for a single conflict. The position of
each aircraft changes every 10 seconds following a 5-minute trajectory. Trajectory
data contains 9 features: time, latitude (aircraft A and B), longitude (aircraft A
and B), altitude (aircraft A and B), heading (aircraft A and B). These 9 features
repeat every 10 seconds in the 5 minutes (300 seconds). The total parameters
for 5 minutes including an angle between the aircraft is: 271 (1 (angle) + 9
(features) × 30 (300 sec ÷ 10 sec)).
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(a) Conflict scenario (b) Converted image

Fig. 1. Aircraft conflict trajectory with heading resolutions and conversion
into the image. (a) the black solid line just behind the plane represents the last 5
minutes of trajectory before the conflict is detected. All dotted lines show possible
heading changes to resolve the conflict (b) plots the positioning coordinate of the last
5 minutes where the black line is the current distance between aircraft and red lines
are the distance between aircraft and the conflict point.

(b) Conversion of trajectories into images: Using trajectory data to
resolve conflicts, the number of input parameters depends on the number of
aircraft. Converting trajectories into images helps to keep the model input size
unchanged even if the number of planes changes. The model can then be applied
whatever the number of planes is.

In Figure 1, (a) shows a conflict scenario with the last 5 minutes of trajectories
and (b) shows the image that converted from trajectory indicating the distance
from the conflict point to the aircraft (red lines). The thin black line indicates
the current distance between aircraft; it is the last point of the aircraft before
the conflict is detected. The image size is 300px× 300px, fixed. It is possible to
plot trajectories of multiple planes without changing the size of the image. Thus,
there will be no change in the input size if the number of aircraft changes at run
time. We applied image augmentation to increase the volume of the training data.
Typically, image augmentation includes rotation, shifting, zooming, flipping, etc.
We applied rotation only. We cannot apply some of the usual data augmentations
because the resulting samples may be labeled differently. We created a total of
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1,656 image samples, of which 1,516 images contain two aircraft and 140 contain
three aircraft.

4 ACRnet: Aircraft conflict resolution CNN model

We focused on two different supervised models: (a) CRMLnet, a model based on
a NN [18] and (b) ACRnet, the model based on CNN we proposed. CRMLnet
model consists of three layers: input, output, and a hidden layer. Input and hid-
den layers are of the same size, 271 nodes (neurons), as the number of trajectory
parameters while output layer is 12. For ACRnet, the performance of a CNN
model depends on its hyper-parameters such as the number of convolutional lay-
ers, the number of nodes in each layer, percentage of dropout, different activation
functions, etc. We use random search [3] algorithm to choose the hyperparameter
values.

30
0 

px

Conv2D Activation MaxPooling2D Dense Dropout

300 × 300 × 28

150 × 150 × 28

75 × 75 × 28

37 × 37 × 28

Fig. 2. ACRnet: Aircraft conflict resolution CNN model. The size of the first
convolutional layer (Conv2D) is 300 × 300 with 28 nodes (filters) as the image size is
300px × 300px. This model contains 3 hidden layers and each hidden layer (Conv2D)
of this model has 28 nodes (filters). The activation function is ReLU except for the
output layer that is sigmoid. Finally, there are 12 nodes in the output layer.

We designed ACRnet as a simpler model than the other image processing
model, with a lower number of layers and nodes, to avoid overfitting given the
relatively small number of samples we have. Figure 2 shows the architecture of
the model. We chose the widely used rectified linear units (ReLU) activation
function (Figure 2, red blocks), for all the hidden layers. Several MaxPooling
layers with size 2 × 2 are used to reduce the dimension of each Conv2D layer by
half. All filter sizes are halved from the previous layer to the next layer. After the
final Conv2D, there is a Dense layer or fully connected layer that converts the
final Conv2D into a 1D vector. Right after this dense activation layer (ReLU),
there is a Dropout layer to exclude the less important information (in this case,
we exclude 50%). Finally, there are 12 nodes in the output layer that provide
binary decisions for 12 headings described in Figure 1 (a) using the sigmoid
activation function.
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5 Evaluation framework

We use 10-fold cross-validation [11]. We trained the CRMLnet model with tra-
jectory data and the ACRnet model with image data (see Section 3) using up
to 100 epochs, where 1 epoch means a complete cycle of training data passes
through the model network. We keep 15% of test data separate from the 10-fold
cross-validation training. We also applied two widely used image classification
models: VGG16 [19] and ResNet [8] to compare with the ACRnet model. For
both VGG16 and ResNet, we only resize the input layer to 300px × 300px and
the output layer to 12 nodes of the initial model. Activation functions are the
same for all the models in this paper as in ACRnet (Section 4). We used the
usual performance measures as follows:

Accuracy (Acc) is the total number of correctly classified samples over the
total number of actual inputted sample. Sensitivity(Sn) also known as recall
corresponds to the true positive rate. Specificity (Sp) presents the true-negative
rate. Precision also called positive predictive value (PPV) is the percentage of
correctly classified positive samples among all positive predictions. F1 score com-
bines precision (PPV) and recall (sensitivity).

False-positive rate (FPR) is the percentage of false-positive (FP) prediction
among the total number of negative ground truth (FP + TN). False-negative
rate (FNR) is the proportion of false-negative (FN) prediction among the total
number of positive ground truth (FN + TP). Matthews correlation coefficient
(MCC) is usually used for binary classification. It ranges between -1 and 1. MCC
is 1 if FP = FN = 0, TP 6= 0 and TN 6= 0 which means there is no incorrectly
classified sample. MCC is -1 if TP = TN = 0, FP 6= 0, and FN 6= 0 which means
the model cannot correctly classify a single sample.

6 Results and Discussion

Figure 3 (a) and Figure 3 (b) show the loss and the accuracy curve respectively
of the CRMLnet model for 10-fold cross-validation. Figure 3 (c) and Figure 3 (d)
show the loss and the accuracy curve for the ACRnet model. In both cases, the
x-axis represents the number of epochs used to train the model up to 100. The
y-axis in Figure 3 (a) and (c) show the losses in between the range of 0.0 and
0.6 and Figure 3 (b) and (d) show the accuracy. In parallel with the visual loss
and accuracy, Table 1 reports the test and validation results of the models using
10-fold cross-validation. In this table, Block 1 shows the ACRnet model’s score
for two different datasets. ACRnet2 is the scores using image data containing
two aircraft while ACRnet3 is the scores using images containing both two and
three aircraft. For both two and three aircraft, the ACRnet model architecture
remained unchanged. Block 2 represents the performance score of the CRMLnet
model using trajectory data while Block 3 shows the performance score of VGG16
[19] and ResNet [8] using the same image data as ACRnet. According to loss and
accuracy functions in Figure 3, CRMLnet looks a little better than ACRnet but
the scores, especially the highlighted scores, in Table 1 shows ACRnet is much
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Fig. 3. Up to 100 epochs both CRMLnet and ACRnet models performed
well without any overfitting. The comparison between losses (a) & (c) and accuracy
(b) & (d) shows that the performances of both models are very close to each other while
CRMLnet is a little better than ACRnet comparing the training and validation curve.

better than others. So, using image data not only we handle a variable number
of aircraft but also we increase the performance of the model. Table 1 Block 3
shows the scores of VGG16 and ResNet; they do not perform well compare to
ACRnet. This may be due to their many layers. If there were more samples,
the performance of those two models may be better. The main purpose of our
research was not to find the best image processing model but to easily overcome
the challenge of existing sequence-based models through image processing with
higher performance.

We further tested ACRnet and CRMLnet to see the probability score of each
heading decision and to know how image data helps in increasing performance.
Figure 4 (a) and (b) plot the predicted probability scores of all the individual
heading resolutions for ACRnet and CRMLnet. The green horizontal line in
the middle of both figures (a) and (b) indicate 50% of the probability score
line exactly. All positive classes (‘1’) are above the green horizontal line and all
negative classes (‘0’) are below that line. The green dots represent the samples
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Table 1. ACRnet performs much better than CRMLnet, VGG16, and
ResNet. Here, the 1st column corresponds to the models’ name. The 2nd column
is the test accuracy of models. All subsequent columns are: accuracy (Acc), area under
receiver operating characteristic curve (auROC), area under precision-recall (auPR),
specificity(Sp), sensitivity (Sn), positive predictive value (PPV), false-negative rate
(FNR), false-positive rate (FPR), Mathew’s correlation coefficient (MCC), and F1

score. Block 1 shows the ACRnet model’s score for two aircraft (ACRnet2) and mixed
(two and three) aircraft (ACRnet3). The highlighted scores (Block 1) are the most
significant where ACRnet is much better than CRMLnet (Block 2), VGG16 (Block 3),
ResNet(Block 3).

Block 1 Test Validation

Model Acc Acc auROC auPR Sp Sn PPV FNR FPR MCC F1

ACRnet2 98.97% 99.16% 0.999 0.999 99.41% 98.66% 98.82% 1.34% 0.59% 0.981 0.987
ACRnet3 98.96% 99.05% 1.000 0.999 99.20% 98.78% 98.63% 1.22% 0.80% 0.980 0.987

Block 2

CRMLnet 96.38% 98.76% 0.999 0.999 99.20% 97.87% 98.40% 2.13% 0.80% 0.972 0.981

Block 3

VGG16 79.97% 80.93% 0.771 0.607 88.93% 65.05% 74.78% 34.95% 11.07% 0.561 0.694
ResNet 92.79% 91.34% 0.973 0.951 92.30% 89.44% 85.42% 10.56% 7.70% 0.809 0.874

(a) ACRnet: predicted probability (b) CRMLnet: predicted probability

Fig. 4. ACRnet is more confident in predicting using image data than
CRMLnet with trajectory data. Here x-axis of both (a) and (b) present the total
number of heading decisions (288 (test conflict sample) × 12 (heading degree) = 2736)
and the y-axis is the probability between 0% and 100%. All the dots above the green
line in the middle (threshold = 50%) are the positive class (‘1’) and below are the nega-
tive class (‘0’). All red dots are incorrectly classified that are bounded by the blue lines
while green dots are correctly classified. The distance between blue lines (incorrectly
classified boundaries) is shorter for ACRnet than it is for CRMLnet. The blue lines
are overlapping on the 0% and 100% scoreline for CRMLnet. It means there are some
incorrectly classified samples that are closed to 0% and 100%. Thus, ACRnet is more
confident than CRMLnet because the shorter the distance between the blue lines, the
more confident the model is.
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that are correctly classified while the red is for misclassified. All misclassified
samples (red-colored) are fallen inside the blue line boundaries. For both (a) and
(b) in Figure 4, the x-axis presents the total number of heading degrees (288
(test conflict sample) × 12 (heading degree) = 2736) and the y-axis presents
the probability score of each heading resolution between 0% and 100%. The
blue boundary (misclassified) for CRMLnet is overlapped on the 0% scoreline
line and 100% scoreline, so, it is invisible in Figure 4 (b) while it is clearly
visible for ACRnet in Figure 4 (a). This means that CRMLnet classifies many
samples incorrectly but with high confidence. Thus, ACRnet is more confident
than CRMLnet because the shorter the distance between the blue lines, the more
confident the model is.

7 Conclusion

This research aims to provide a generalized model to resolve a conflict where a
variable number of aircraft are involved. Two things were considered: (a) create
image data from trajectory sequence (b) find a CNN-based model to classify
these images. We defined a relatively small CNN-based model, ACRnet, and
found an accuracy of 98.97% and 98.96% for the conflict resolution classification
of two and mixed (both two and three) aircraft. We compared our ACRnet model
with the CRMLnet [18] model using 10-fold cross-validation where the input
data of ACRnet are images and of CRMLnet are trajectory sequences. We also
compared ACRnet with two other widely used CNN-based models: VGG16 [19]
and ResNet [8]. Overall, ACRnet performs much better than the other models.
The main purpose of this research was not to find the best image processing
model, but rather to show that the use of image data not only overcomes the
input dimension problem but also increases the performance of the model. An
interesting aspect of using image data is that it can be used not only for conflict
between planes but can also contain other information without changing the
image size such as weather, thunderstorms, military zones, etc. Thus, our future
research will include that information for better resolution of aircraft conflicts
as well as more than 3 aircraft.
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