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Fatigue crack growth under large-scale yielding condition is studied for high-temperature loading.
The applied strains are so important that diffuse damage phenomena are visible as a network
of micro-cracks in front of the major crack. The survey of a macroscopic cracked surface is
nevertheless possible, and numerical simulations with explicit representation of this crack are
carried out to evaluate crack driving forces. The proposed numerical scheme takes into account
plastic wake in the course of crack growth in a 3D model. A non-local model of fatigue crack
growth rate, based on partition of strain energy density into elastic and plastic terms, yields
improved results as compared to classical assessment of ∆J by numerical methods1.

Keywords low cycle fatigue, strain energy method, high temperature fatigue, non-local model, adaptive
remeshing

Highlights
• large and general scale yielding are investigated
• explicit crack growth is achieved by conform remeshing
• 3D model yields access to plastic wake
• non local partition of strain energies is used to model FCGR
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1 Introduction
Fatigue crack growth under large scale yielding condition should be considered for many
structures designed in the low cycle fatigue (LCF) regime. Cases could be separated
in first macroscopic loading with LCF regime inducing sustained cyclic plasticity at
the structure scale (e.g. combustion chambers, aerospace components, automotive
turbocharger...), and second for crack initiated in region where large scale yielding is
induced by stress concentration (e.g. pores, defects, local modification of the geometry...).
Whereas in-depth analysis of short fatigue crack regime accounting for plasticity has
been widely studied since the pioneer work of (Miller 1982; Vormwald et al. 1991; Döring
et al. 2006), most of long crack analyses under fatigue plastic regime correspond to
limited plasticity (Vormwald 2013). Besides, for long crack associated to loading inducing
large scale yielding, fatigue crack growth mechanisms differ to some extent from fatigue
crack growth in small scale yielding condition. Main features observed for fatigue crack
growth under large scale yielding can be summarized as follows:

• crack tip blunting is observed (Tanaka et al. 1984); see red square in figure 1;
• plastic wake increases with crack growth (Kolednik et al. 2014); see variation of

contrast in figure 1(a) and surface variations in figure 2(b);
• for strain-controlled tests, negative stresses are observed yielding pronounced

crack closure and plasticity in compression (Rao et al. 1988);
• strain localization exceeds the crack vicinity up to so-called general scale yielding

(Kolednik et al. 2014);
• microcracks are observed in the strain localization pattern before major crack

increment (Maurel et al. 2017); see red square in figure 1;
• both transgranular and intergranular cracking (e.g. for ferritic stainless steel tested

at rather low temperature 300 °C (Maurel et al. 2009)), intergranular cracking (e.g.
for Co-base superalloys at very high temperature 900 °C (Maurel et al. 2017)),
brittle particles failure (e.g. for cast Al-alloys (Dezecot et al. 2018))... are different
sources of this micro-cracks pattern;

• the crack growth mechanism implies the coalescence of a major crack to a network
of micro-cracks (Schweizer et al. 2011; Dezecot et al. 2017); see figure 1(b).

Last but not least, when considering the major crack to micro-crack coalescence, it
is worthy that the stress triaxiality play a key role in that process. Consequently, the
mechanisms involved in fatigue crack growth reaching large and general scale yielding
present similarities with ductile failure, consistently with observed high fatigue crack
growth rate (see e.g. Benzerga et al. (1999); Zhang et al. (2018)).

To illustrate the above features, lets consider in situ observation of a high temperature
test achieved for Ha188 Co-based superalloys, using a single edge notch tension (SENT)
specimen of 18 mm wide and a crack length a of about 3 mm (see testing and geometry
details in section 3), Figure 1. Large crack opening is observed, Figure 1(a), together with
evidence of crack tip blunting, Figure 1(b). Detailed view of the crack tip, thanks to in
situ observation made at maximum applied load, evidences the micro-cracks network, in
which the major crack is prone to grow, Figure 1(b). In this view, micro-cracks associated
to the major crack in previous location are closed (previous location of the major crack
corresponding to a lower number of cycles). This is due to the crack shielding effect
of these micro-cracks by the major crack: only some traces of these micro-cracks can
be observed in this static view. Reader has to refer to previous work to have detailed
observation of this step by step process (Maurel et al. 2017; Trabelsi 2019).

For the same set of experiments, detailed in section 3, plastic wake and transition
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Figure 1: Observation of crack at maximum loading achieved in situ at 900 °C for Ha188 material
using a SENT specimen (a) and detail of red square (b) for ∆ε/2=0.25% and Rε=0

from large to general scale yielding can be evidenced. For that purpose, roughness
has been measured on one side of SENT specimens for increasing strain amplitude,
see Figure 2. As a first approximation, these variations of surface roughness could be
correlated to strain localization inducing local necking of the specimen. The increase of
surface roughness, in both size and value, with increasing applied strain, illustrates
the transition from relatively small scale yielding to general scale yielding condition.
Besides, the fluctuation from positive to negative displacement observed for the largest
applied strain, ∆ε/2=0.45% Figure 2(c), is associated to flat to slant evolution of the crack.
This crack twisting (corresponding to a crack rotation around the direction of crack
propagation) is again a characteristic of general scale yielding. The observed necking
implies that 3D model should be achieved to take into consideration this effect on crack
behaviour.

The question of a criterion able to describe fatigue crack growth rate associated to
these mechanisms is still open.

Furthermore, new tools are now available to describe in a robust manner fatigue
crack growth based on either XFEM technique (Ribeaucourt et al. 2007) or conform
remeshing technique (Chiaruttini et al. 2012) to describe explicit 3D crack shape and its
evolution with fatigue crack growth. For elastic-plastic material, the preservation of the
internal variables being essential, both the sub-cutting technique of the X-FEM methods
and conformal remeshing are requiring sounded field transfer operations. Furthermore,
this FEA crack simulation process has already been successfully applied to a wide range
of cases, in the scope of linear elastic fracture mechanic (LEFM) mechanics based on G-θ
analysis (Destuynder et al. 1981; Suo et al. 1992; Fessler et al. 2017b; Maurel et al. 2020).

This paper develops a 3D finite element analysis (FEA) method to describe evolution
of crack from small to general scale yielding condition in fatigue and proposes fatigue
crack growth rate criterion relevant to this context. The paper is organized as follows:
a review of some criteria highlights their strength and weakness, then experimental
details are recalled from a previous paper, this set of experiments being used for
model identification. The core of the paper being the methodology of crack growth
modelling, based on conform remeshing technique accounting for plastic wake, and the
definition of a FCGR model based on partition of strain energy into elastic and plastic
contribution. The paper concludes with some guidelines for FCGR in a context of FEA
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Figure 2: Measurements of surface roughness for (a) ∆ε/2=0.0625% (b) ∆ε/2=0.25% and (c)
∆ε/2=0.45% and Rε=0 (adapted from Trabelsi (2019)); SENT specimen corresponding to Figure 3

and simplification made for FCGR model.

2 Short review of FCGR criteria applied to general scale yielding
From the fatigue crack mechanisms detailed above, the question of driving forces for
fatigue crack growth under large to general scale yielding could be analyzed through
simplified energetic approach. Basically, the external power given to a system Π is
decomposed into different terms:

Π = Πe + Πp + ∆ , (1)

where Πe and Πp correspond to elastic and inelastic power respectively and ∆ corresponds
to dissipated power (Doudard et al. 2005). Besides, within the scope of dissipation
analysis, it has been widely commented that the dissipation is shared into self-heating
and damage process (Charkaluk et al. 2002). On the other hand, within the scope of
linear elastic fracture mechanic (LEFM) concepts, the elastic strain energy is assumed to
be stored into the material, being releasable for crack growth.

These energetic analyses combined to observations of fatigue crack growth mech-
anisms from small to general scale yielding conditions are helpful to establish some
conclusions: i) in small scale yielding condition, elastic model are convenient, by the way
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most of stored elastic energy remains available for fatigue crack growth ii) in general
scale yielding conditions, the presence of micro-cracks pattern should be a source of
dissipation by damage iii) transition from small to general scale yielding conditions
questions the energy fluxes and iv) plasticity induces complex residual stress state
function of crack growth and subsequent stress redistribution.

Both the experimental features of large to general scale yielding fatigue crack growth,
and the above analysis of driving forces for crack growth could be useful to achieve a
short overview of models for fatigue crack growth rate (FCGR) assessment in this context.
A general form, of a fatigue crack growth model is da/dN=f(driving force). The driving
forces proposed by authors depend on several aspects, including fatigue domain, HCF or
LCF, the possibility of assessment in linear elasticity, non linear elasticity, and general
visco-plastic materials, describing short or/and long crack behavior. Some contributions
of FCGR models suitable for LCF are listed in table 1.

Table 1: Model review, da
dN = f (driving force); *here the criterion is related to the failure of one

finite element (see details in the core of the text)

Model expression, f Driving force short/long crack non-local
C∆Jm ∆J both yes

Dowling et al. 1976

C(∆CTOD)m ∆CTOD long yes
McMillan et al. 1970

αB∆εpa
with B = 1

cos
(

π
2

∆σ
2T

) − 1 ∆σ and ∆εp long no

Tomkins 1968

C∆Km
ε

with ∆Kε = f (a)∆ε
√

πa ∆εt both no
Haigh et al. 1978

Wp(cum) ≥ Wcr(*) Wp(cum) long yes
Cojocaru et al. 2009

λ
[(we

γe
a
)me +

(wp
γp

a
)mp] Wp and We long no

Maurel et al. 2009

Wp and We both yes
Maurel et al. 2017

In addition to these aspects, two main points should be considered in the scope
of 3D FEA. First, FCGR models are either local or non-local, however this point is a
requirement to limit the mesh dependency of FCGR assessment. Exception made of J
and CTOD based models, most models consider a stress or a strain amplitude, associated
to non-linear elasticity to mimic viscoplastic behavior (Haigh et al. 1978; Kamaya 2015;
Cussac 2020; Chandran 2018). This constitutes a second drastic limitation, considering
FEA for structure applications.

On the other hand, strain energy models are straightforward for any mechanical
behavior in the framework of standard generalized materials (Chaboche 1993). It could
be either based solely on plastic strain energy, (Cojocaru et al. 2009), or on a partition
of strain energy into elastic and plastic contributions (Maurel et al. 2009; Maurel et al.
2017). These latters are consistent with general observation in fatigue life similarly to
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Manson-Coffin partition of mechanical strain into elastic and plastic terms (Manson 1953;
Coffin 1954), and will be detailed in the sequel.

The most standard model is based on energy release rate, assumed to be equivalent
to integral J amplitude, ∆J (Dowling et al. 1976). The associated model was:

da
dN

= C∆Jm

with ∆J =
∫

Γ

(
∆Wdy − ∆σ∼ .n

∂∆u
∂x

ds
)

and ∆W =
∫ ∆ε

0
∆σ∼ : d(∆ε∼) ,

(2)

with C and m the models parameters, Γ the contour chosen for integration, W the
total strain energy and n the vector normal to the contour Γ, as detailed in Vormwald
2013. This model has been successfully identified for relatively low strain amplitude
for isothermal fatigue crack growth (see e.g. Haddar et al. (2013)). The driving force
for fatigue crack growth being either ∆J as proposed by Dowling or a decomposition
into elastic and plastic contribution, namely ∆J = ∆Je + ∆Jp (Shih et al. 1976). These
models are based on the underlying framework of non-linear elasticity, which is not able
to model a wide range of materials. It is worth noting that on these basis, associating
macroscopic analysis of a given specimen and non linear elasticity assumption, specific
analytical formulations are able to describe short fatigue crack growth (Vormwald 2013).
However, the question of adaptation of these models to structure are not fully addressed.
To get rid of this limitation, numerical model to assess ∆J are needed, among which the
G-θ method is straightforward. This point will be detailed in section 4.4. However, for
long crack and general scale yielding condition, Kolednik and coworkers have clearly
evidenced that strain localization initiated on crack tip could interact with other strain
localization sources in the considered structure, resulting in the lost of consistency of
invariance assumption for contour integral (Kolednik et al. 2014; Simha et al. 2008;
Ochensberger et al. 2015): modifying the integration contour, the numerical evaluation of
∆J will be modified.

On the other hand, in the LCF regime, the interest in plastic strain energy, namely
∆wp as an indirect measurement of dissipation has been widely documented for life
model based on initiation criterion (Charkaluk et al. 2002). Karlsson et al have proposed
a numerical scheme based on FEA, modeling a priori the crack shape with crack increase
driven by debonding of nodes in the crack path, when the crack extension criterion is
reached (Cojocaru et al. 2009; Nittur et al. 2014). This criterion is based on the plastic
strain energy, Wp, considered as the driving force for fatigue crack growth, see Figure
4(b), which is able to account for overload model in the Paris regime (Smith 2011; Nittur
et al. 2013). The associated model was:

a crack increment ∆a is considered if Wp(cum) ≥ Wcr , (3)

with Wp(cum) = ∑ welt
p and welt

p the plastic strain energy in elements located in a chosen
domain used for non-local averaging, and Wcr the critical energy at crack propagation
being the model parameter. Indeed, the plastic strain energy is cumulated cycle by cycle
up to reaching the failure criterion for a given crack increment. The numerical scheme is
robust but is limited to a priori known crack path, and the FCGR model questions the
way to reach general scale yielding condition with a single parameter approach.

To obtain a clear distinction of driving forces for fatigue crack growth between
small scale yielding and general scale yielding, the partition of strain energy into elastic
opening strain energy and distortion plastic strain energy has been proposed (Maurel
et al. 2009). The basic idea is that both stored elastic strain energy and dissipated plastic
strain energy contribute to crack growth. However, the amount of plastic strain energy
available for crack growth could not be of the same order of magnitude as compared
to elastic strain energy, because of dissipation into self heating, plastic straining and
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micro-cracks network processing. The associated model was:

da
dN

= λ

[(
We

γe
a
)me

+

(
Wp

γp
a
)mp

]
(4)

with We =
1
3

∫
cycle

< tr(σ∼ ) > . < tr(dε∼e) > (5)

and Wp =
∫

cycle
s∼ : dε∼vp , (6)

with a the crack length, We and Wp the elastic and plastic strain energy respectively,
γe and me, and γp and mp the models parameters associated to elastic and plastic
contributions respectively. The λ parameter is used only to address consistency in units.
For strain energy definition, the authors proposed to use σ∼ , ε∼e and ε∼vp corresponding
respectively to stress, elastic strain and viscoplastic strain tensors. The trace of tensor is
symbolized by tr, and <.> corresponds to the Macaulay brackets, e.g. < tr(σ∼ ) >= tr(σ∼ ) if
tr(σ∼ ) > 0 and < tr(σ∼ ) >= 0 otherwise. Considering uniaxial condition, We corresponds
to the area below positive elastic loading curve, see grey area in Figure 4(b), and Wp
corresponds to the total area delineated by the hysteretic curve, see dashed area in
Figure 4(b). The enrichment of the above model considering partitioned strain energy
into elastic and plastic terms, together with their distinction in contribution to FGCR,
yields only to two additional material parameters to be identified (γe, me, γp and mp)
as compared to general formulation (C and m, e.g. equation 2), the choice of the λ
parameter, being not independent to the set of other parameters, does not modify the
quality of the model identification. This model has been successfully applied for strain
controlled tests for ferritic stainless steel (Maurel et al. 2009), Ni based superalloys
(Heudt 2013) and Al cast alloys (Dezecot et al. 2019), for uniaxial and multiaxial loading
with either sustained plasticity or decreasing loading conditions (Trabelsi 2019; Heudt
2013; Dezecot et al. 2019).

This first model was considering only macroscopic stress and strain state at the
specimen length, i.e. strain energies were derived from either experimental evaluation of
stress-strain hysteretic curve or from simulation of a representative element of volume
using constitutive equations of the tested material, prescribing the use of shape factor to
account for specimen geometry. This point questions the ability of the model to address
structure application. Thus a simple non-local model using volume averaging, was
proposed to model FCGR from small to general scale yielding condition (Maurel et al.
2017). The associated model was:

da
dN

= λ

[(
we

γe(lc)
a
)me

+

(
wp

γp(lc)
a
)mp

]
(7)

with we =
1
Ω

n

∑
i=1

WedΩi (8)

and wp =
1
Ω

n

∑
i=1

WpdΩi , (9)

where We and Wp correspond respectively to equations (5) and (6) which are determined
locally for each of the n integration points within the volume Ω, using a volume averaging
of elastic and plastic strain energies based on finite element shape function. Others
parameters being the same as developed in the first "macroscopic" version of the model
detailed in eq. 4. The non-local approach implies to characterize the evolution of material
parameters γe(lc) and γp(lc) as a function of the non-local length lc corresponding to the
size of the box used for direct averaging of strain energy. By this way, the model becomes
independent to the mesh size, typically for element sized below the non-local length lc.
Besides, this model enables to describe local phenomenon, associated to short crack
using refined mesh (e.g. crack to pore interaction (Dezecot et al. 2017)), as well as quick
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evaluation of FCGR, using coarse meshing (Heudt 2013). However, this non-local model
was limited to notch plasticity analysis, without explicit model of crack growth and
subsequently no analysis of plastic wake and stress redistribution with the crack growth.

To conclude with this review, FCGR models could be divided into different classes:
• Paris like or ∆J models: limited by underlying assumption of non linear elasticity;
• strain or dissipated energy based model: a priori limited to cover the whole range

from small to general scale yielding condition based on a single driving force term;
• partition of strain energy based models, tested only in notch plasticity cases

without explicit crack growth.
• non-local models relevant within the scope of FEA (including ∆J assessed by G-θ);

These two last points are the aim of this paper and will be addressed herein.

3 Experimental conditions
The chosen material, specimens and experimental conditions have been fully detailed in
Maurel et al. (2017). Thus, only major aspects will be briefly given here. The material
used in this study is the high temperature Co-based superalloys Ha188 widely studied in
the scope of high temperature LCF life (see e.g. Rao et al. (1997)), which composition is
detailed in table 2.

Table 2: Chemical composition of Ha 188 superalloy used in the present study (wt %)

Element Co Cr Ni W C La Si Fe Mn

Weight % Base 22.75 21.85 14.80 0.071 0.08 0.33 2.31 0.94

SENT specimens have been machined from round bars, notch being processed
by electro-discharge machining (EDM), the width of the specimen being of 18 mm,
for a thickness of 4 mm and a notch sized to 900 µm, see Figure 3. The temperature

Figure 3: Sketch of the SENT specimen used in this study

has been set to 900 °C controlled by a K-type thermocouple welded to the specimen,
heating being obtained by a lamp furnace. All tests have been strain controlled using a
contact extensometer located at the opposite side of the notch. The tested conditions are
presented in table 3.
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The crack length was measured by potential drop technique, calibrated with in situ
optical microscope using Keyence VHX1000 system. To isolate the lens from heating and
to limit air fluxes through the window used for observation, a quartz glass is glued to
the external wall of the lamp furnace (Maurel et al. 2017).

Table 3: Sent test series conditions, number of cycles to reach a crack length of 5 mm for SENT
specimen, Nmax (Maurel et al. 2017)

∆ε/2(%) Test frequency (Hz) Rε Nmax

0.0625

0.1 0

4106

0.125 510

0.25 244

0.375 168

0.45 124

The surface roughness measurements show large variation of the surface local height
with the crack growth which are strongly correlated to the local level of cumulated
plasticity and crack plastic wake, see Figure 2. Out-of-plane roughness corresponds
to flat to slant transition of the crack, that is to say crack twisting increasing with the
crack length, inducing multiaxial loading and mode mixity (Maurel et al. 2017; Maurel
et al. 2020). The crack observation, and detailed analysis of the crack tip highlights a
microcracks’ network which is consistent with the path of strain localization, Figure 1.
The micro-crack pattern observed in Figure 1 corresponds to the same specimen where
roughness has been measured in Figure 2(b). It is worth noting that the size of the area
of significant variation of surface roughness (here of about 25 to 50 µm of depression)
is consistent with the size of micro-cracks pattern. This point stresses out that large
plasticity induces damage like localization.

Because of this microcracks’ network, the measured crack length by potential drop
technique includes these cracks. Thus, it is rather difficult to determine how the
microcracks’ network impact this measurement. This is the reason why we will only
consider in the sequel the crack length of the major crack including the initial notch
length, see arrow a in Figure 1(a), measured by optical microscope. The images have
been triggered to maximum applied loading in the course of the cycling so as to measure
the crack length when the crack is fully open.

The range of applied strain level is correlated to macroscopic elastic behavior for
∆ε/2=0.0675%, to significant hysteresis for ∆ε/2≥ 0.25% and large hysteris at maximum
strain, ∆ε/2=0.45%, for which stress jumps are observed, Figure 4(a). This stress jumps
are associated to dynamic strain aging, the so-called Portevin Le Chatelier (PLC) effect,
already observed for this material (Lee et al. 1998). However, large scale yielding is
consistent with "sustained" plasticity exhibited by stress-strain macroscopic hysteresis
curves. Besides, from this measurement, corresponding to a given crack length (here
of about 2 mm), it is possible to plot the half variation of stress amplitude, ∆σ/2, as
a function of applied half strain amplitude, ∆ε/2, Figure 4(c). The associated curve
delineates a transition between small scale yielding condition, with a linear relationship
between cyclic stress to cyclic strain, and general scale yielding condition for which the
linearity is lost. The associated "life" considering the number of cycles to reach 5 mm,
corresponding to 40 % of the width of the specimen, corresponds to LCF regime in the
range 100-4000 cycles, see table 3.

4 Numerical model
The whole set of FEA has been achieved using the finite element code Zset (Zset software,
Non-linear material & structure analysis suite n.d.).
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(a) Experimental stress-strain evolution (b) Schematic evolution and associated
energies, stress and strain amplitudes.
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(c) Experimental evolution of half amplitude stress and
strain (in %)

Figure 4: Experimental results for SENT specimens tested at 900 °C, for a crack length of about 2

mm, and schematic of stress-strain evolution see table 3 for details.

4.1 Model behavior for ha188
To describe the mechanical behavior of ha188 superalloy, it has been shown that using
constant isotropic and non linear kinematic hardening associated to Norton flow was
straightforward at high temperature, ignoring the PLC effect for sake of simplicity
(Chaboche et al. 2013). Two different potentials, respectively associated to a "quick" and a
"slow" terms, are sufficient to model frequency effect, as validated in previous studies
(Chaboche et al. 2013; Maurel et al. 2017). Thus equations are briefly recalled in table 4.

4.2 Geometry, boundary conditions and element assumptions
The chosen mesh is deduced from measured specimen geometry, accounting for realistic
3D shape of the specimen, including the notch and simplifying the zone used for
gripping system considering only cylindrical shape, Figure 5.

In the initial condition, an elliptical crack has been inserted in the mesh by conform
remeshing technique using Distene tools (Meshgems software, Distene n.d.). The ellipse
dimensions and location are chosen so as to obtain a quasi linear crack with an initial
crack length of 100 µm in addition to the notch. For sake of clarity, the mesh detailed
in Figure 5(b) corresponds to a crack extension of 500 µm, geometrical parameters
corresponding to Figure 3.

All the simulations (after initial crack insertion and during the crack growth study)
are performed using quadratic tetrahedron elements. The loading to be modelled by FEA
corresponds to very high strain level, and subsequent high strain rate, in the specimen
and especially in the crack front vicinity. To avoid oscillation of stress field, the quadratic
elements are enriched by an additional degree of freedom (dof) controlling the pressure
and the volume change, namely Pn, to subsequently insure the convergence of the trace
of the stress tensor and triaxiality (e.g. see Zhang et al. (2018)). The minimal mesh size is
set to h = 50 µm near the crack front and gradually increased up to 1 mm, yielding
about 350.103 dofs including the pressure field Pn.

In order to mimic the grip system, the boundary conditions are based on prescribed
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Table 4: Mechanical behavior set of equation used for Ha188

Strain partitioning ε∼
tot = ε∼

e + ε∼
p

Yield function f =
√

3
2 (s∼− X∼ ) : (s∼− X∼ )− R − σy

Kinematic Hardening
α̇∼ = ε̇∼

p − γα∼ ṗ

Ẋ∼ = 2
3 Cα̇∼

Isotropic Hardening R = constant

Flow Function
"quick" term ṗq =

〈 f
Kq

N

〉Nq

"slow" term ṗs =
〈 f

Ks
N

〉Ns

Total cumulated plasticity ṗ = ṗq + ṗs

crack front

crack surface

quarter spheres for 
energy averaging at free 
surface and mid plane

(a)

(b)

(c) (d)

Figure 5: Sketch of geometry, crack and boundary conditions used for FEA: (a) perspective view
where sets of nodes used for prescribed displacement are contoured in red, (b) cropped top-view
revealing the crack inserted crack, (c) side-view exhibiting both notch and crack and (d) quarter
sphere set of elements used for strain energy averaging in red; in all views thick red arrows ended
by yellow points correspond to nodes used for controlled displacement to mimic extensometer.

homogeneous displacement on nodes corresponding to screwed part of the specimen on
top surface in the y-direction, and zero displacement on the bottom surface, see red
contours in Figure 5(a). The magnitude of the applied displacement is prescribed to
respect the displacements of the nodes corresponding to the points of contact with the
extensometer in order to represent the real strain prescribed experimentally, see red
arrows ending with yellow points in figure 5(a) and (c). A closed loop monitors the
displacement of the top part of the specimen, so as to respect the targeted displacement
between this pair of nodes, the displacement being derived from experimental strain
accounting for the initial distance between these nodes. The implicit convergence is
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controlled by a Newton-Raphson algorithm.
The contact between the crack lips is managed through a node to face penalisation

based contact algorithm, that neglects any friction between each side of the crack surface.

4.3 Crack growth, remeshing and internal variables
The proposed method to describe an explicit fatigue crack growth in Z-set code is based
successively for each crack increment on:

(i) fatigue fea: fatigue loading cycling that takes into account crack closure effect and
contact;

(ii) post-processing: applying some post-processing computation on the FEA solution
of the balanced domain, to obtain useful dissipation parameters involved in the
studied crack growth model;

(iii) propagation law: generating a crack front extension built on increment cor-
responding to the crack front speed at control points chosen along the crack
front;

(iv) remeshing: the remeshing of a given set of elements with conform remeshing of
the new generated crack front location accordingly to control point increments;

(v) field transfer: the projection of the fields of displacement and internal variables
from the previous mesh to the new mesh (which includes the crack growth),
evaluated at the end of the current computed cycle, allowing to continue the
calculation at the next iteration starting from such initial state.

This algorithm is illustrated in Figure 6.

Fatigue FEA

Post-processing

Propagation law

Remeshing

Field transfer

Cracked mesh with initial plastic strain

Dissipative quantities of interest

Crack growth increment

Updated mesh with plastic strain 

Updated cracked mesh

Balanced displacement and internal 
variables

Figure 6: Crack propagation algorithm in condition of large scale yielding.

For the initial crack, a few loading cycles can be applied to generate a more realistic
and stabilised plastic strain field. However, the intent is to analyze crack propagation,
which is also an effective way to account for stress re-equilibrum after each crack
increment. Moreover, the chosen crack propagation procedure preserves internal
variables state, and consequently will progressively generate a realistic stabilised plastic
fatigue crack closure effect field after some propagation increments. Thus, only one cycle
has been computed at each crack increment.

The evaluation of the crack increment is based on a G-θ analysis and Paris-like
law described in the sequel, which corresponds to the common practice for small scale
yielding condition and has been already integrated in the Zset code as a standard
routine. By this way, the maximum crack increment ∆amax will correspond to the location
where a maximum value of ∆J, ∆Jmax, is reached. An explicit linear approximation of
the associated number of cycles ∆N = ∆amax/(da/dN)max is used with da/dNmax =
C(∆Jmax)m. The crack increment for this prescribed ∆N number of cycles is thus
computed for any other control points along the crack front.

12
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During the transfer process, the projection of the internal variables state is based on
the nearest Gauss point from old mesh to the new mesh, while the collocation of the new
mesh nodes to old ones is used to get the values of the displacement field, using the old
mesh base functions to get nodal values at the new mesh vertices coordinates. The mesh
size being set to h=50 µm, a maximum crack increment is set to ∆amax =25 µm. This
yields a satisfactory compromise between the mesh quality and the quality of fields of
internal variables within the element after field projection, much more lower than the
process zone associated to cyclic plastic radius. To compute a crack growth of 5 mm at
the mid-plane of the specimen, 200 propagation steps have to be calculated.

4.4 ∆J from G-θ
To evaluate the driving force associated to contour integral, J is evaluated through the
so-called G-θ method. This method is based on a domain integral as originally proposed
by Destuynder et al. (1981) and further developed in Suo et al. (1992). To limit contour
dependency in the presence of plasticity and FEA simulation, a domain integral is
achieved in the volume Ω. For large and general-scale yielding conditions, the classical J
integral is known to become path dependent. Thus, as proposed by Simha et al. (2008),
an extended J∗ integral is defined as follows for incremental plasticity:

J∗ =
∫

Ω

1
2
(
σ∼ : ε∼e

)
tr(∇θ)− tr(σ∼∇u∇θ)− σ∼ : ∇ε∼ae · θ dΩ , (10)

where tr is the first invariant of the considered tensor, ε∼e corresponds to the elastic strain
tensor, ε∼ae corresponds to the anelastic strain tensor, ∇ε∼ae its gradient, σ∼ corresponds to
the stress tensor, ∇u is the gradient of displacement field u and ∇θ is the gradient of
virtual increment of displacement of the crack front θ. Here ε∼ae = ε∼tot − ε∼e − ε∼th, where
ε∼th corresponds to the thermal strain tensor.

Including the term σ∼ : ∇ε∼ae · θ, this formulation yields independence of J∗ assessment
to the domain chosen for integral when at least the first two elements are included in
the domain using a FEA solution. The chosen domain was thus set to contain at least
three layers of elements attached to the crack front. For cyclic loading, those J∗ values
are simply computed at both lower and upper values of the applied fatigue loading
conditions, the resulting amplitude ∆J∗ corresponds to:

∆J∗ = max
cycle

J∗− < min
cycle

J∗ > , (11)

where the Macaulay brackets <.> corresponds to the positive part of the minimum value
of J∗ computed over the cycle.

4.5 The partition of strain energy
We propose to use here the partition of strain energy described above to infer driving
forces for fatigue crack growth, corresponding to local elastic strain energy, We equation
(5), and local plastic strain energy, Wp equation (6). Because we use here a behavior
model combining plasticity and viscosity, we use for sake of simplicity ε∼vp that includes
both inelastic strain terms. Using explicit crack growth by conform remeshing technique,
it is possible to evaluate the non-local strain energy, defined in eqs. (8) and (9), in a
volume located at the crack tip. This was achieved by a direct evaluation of the averaged
strain energy within a half sphere, as depicted in figure 5(d). The center of the sphere
corresponds to the considered point along the crack front, the half-sphere being defined
by the direction of crack propagation. When considering sides of the mesh, the half
sphere corresponds to a quarter sphere as highlighted in Figure 5(d). This volume of
integration is automatically located at the crack tip.

The non-local averaging is achieved with two half-sphere radii set to 250 and 400 µm
respectively. These values were chosen consistently with results obtained on notch
plasticity (Maurel et al. 2017) and will be discussed in the sequel.
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5 Results
5.1 FEA of strain and stress fields with crack growth
The developed fatigue crack growth methodology combines multiple ingredients to
insure a good quality of FEA with the crack propagation. For sake of simplicity, we
propose to analyze only one of the potential used to describe plasticity (the "quick" term),
so-called plastic strain in the sequel and described by the cumulated variable evrcum, see
equations in table 4. This term has been observed to be much higher than the "slow"
term for all tested conditions.

Perspective views of cumulated plastic strain has been plot in Figure 7(a). This figure
corresponds to a crack extension of 600 µm on the free side of the specimen and of
1.6 mm on the mid-plane of the specimen for ∆ε/2=0.375%. First, cumulated plasticity
evidences that the whole gage length bears significant plasticity, Figure 7(a).

Detailed views are used to highlight notable features resulting from this FEA, of the
free surface for the same crack location are presented below. A large plastic area is
observed, and despite a rapid transition from minimum mesh size, of 50 µm, to larger
mesh size, local variation of plasticity are mostly continuous at few thousands of microns
from the crack tip, Figure 7(b).

(a) (b)

Figure 7: Cumulated plasticity for ∆ε/2=0.375% and Rε=0: (a) perspective view and (b) detailed
view of the free surface.

The stress component are known to be very sensitive to the quality of the mesh and
FEA, and both detailed view of Von Mises equivalent stress and trace of stress tensor
exhibit continuous field, Figures 8(a) and (b) respectively. If additional dof for pressure
convergence was not used, and even using a quadratic mesh, higher stress triaxiality
levels together with oscillations from element to element of both stress triaxiality and
stress component would have been obtained. Besides, local maximum of the trace of
the stress tensor is observed at approximately 2 mm from the crack tip, which is fully
consistent with observed micro-crack pattern in front of the major crack tip, see Figure
1. Strain and stress fields confirm that the chosen methodology for field transfer is
straightforward in the context of general scale yielding.

A quantitative evaluation of the previous fields has been plot as a function of the
distance from the crack tip r for two levels of loading, for both free surface (s) and
mid-plane locations using respectively continuous and dashed lines, Figure 9. Von Mises
equivalent stress σVM - Fig. 9(a), stress component in the loading direction σ22 − Fig.9(c)
and cumulated plasticity evrcum - Fig. 9(d), are monotonically decreasing from the crack
tip. While, low stress triaxiality level σH - Fig. 9(b), defined here as σH = trσ∼ /σVM,
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(a) (b)

Figure 8: (a) Von Mises equivalent stress and (b) Trace of stress tensor tr(σ) for ∆ε/2=0.375% and
Rε=0

is observed on free surface, close to 0.5, and decreases and then increases to reach
asymptotic values for distances from the crack tip higher than 1.5 mm. The location of
minimum stress triaxiality is function of applied strain level, and is of about 250 µm for
∆ε/2=0.125% and 500 µm for ∆ε/2=0.375%. At the mid-plane, σH reaches its highest
values, and decreases monotonically from the crack tip. All these plots correspond to the
time of maximum loading, and for all observed quantities, asymptotic values are reached
after 1-2 mm distance from the crack tip. It is worth noting that stress quantities are
continuous function of the abscissa. Oscillations are more pronounced for cumulated
plasticity which appears to be more sensitive to the chosen projection methodology
with crack growth and associated remeshing technique. Last but not least, plasticity
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Figure 9: Evolutions of (a) Von Mises equivalent stress (σVM), (b) stress triaxiality (σH), (c) stress
component in the loading direction (σ22), (d) cumulated plastic strain (evrcum), (e) plastic strain
energy (Wp) and (f) elastic strain energy (We) for ∆ε/2=0.125% and 0.375% for Rε=0: at free
surface (s) using continuous line and at mid-plane using dashed line

and higher compressive residual stress level on free surface impacts crack propagation
yielding the crack front curvature (Fessler et al. 2017a): the higher the applied strain
level, the higher the curvature is assessed. Subsequently, an offset distance is observed
between crack tip-location from the surface to the mid-plane of 370 µm for ∆ε/2=0.125%
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and of 690 µm for ∆ε/2=0.375% for the same crack extension on the mid-plane of the
specimen (here of 1.25 mm).

5.2 Paris’ law from G-θ
From G-θ evaluation, it is possible to determine FCGR using Paris’ law based on ∆J∗

evaluation, following:

da
dN

= C(∆J∗)m , (12)

where m and C are the Paris’ law parameter adapted for ∆J∗ analysis. The model
parameters C and m have been identified on the applied strain loading corresponding to
∆ε/2=0.125%. The associated parameters are precised in table 5.

Using this Paris’ law yields excellent evaluation of FCGR for the two lowest applied
strain values. This is obvious for the evolution of measured FCGR as a function of ∆J∗,
Figure 10(b). But modeled FGCR is one order of magnitude higher than the measured
FCGR values for ∆ε/2≥ 0.025%. This result is a direct consequence of the limitation
of the ∆J∗ analysis as a driving force for crack when plasticity impacts drastically the
evaluation of ∆J∗, i.e. at the transition between large to general scale yielding condition.
It is worth noting that a convergence is observed for the two highest loading conditions,
that could have been used to identify the Paris’ law parameters, using a much lower
value of the C parameter and keeping the same exponent m.

However, such an identification would have led to a large underestimation of modelled
FCGR in small scale yielding condition, and subsequently a loss of conservatism of the
associated approach.
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Figure 10: ∆J and Paris-model assessments

Thus, a Paris’ law associated to a standard practice to assess ∆J∗ does not fit to FCGR
in a large range of loading.

5.3 Partition of strain energy in a presence of a crack
Strain energy density As a first result, it is of interest to detail strain energy density
field, Figure 11. For sake of figure clarity, the proposed fields correspond to a non-local
averaging using a characteristic length of 250 µm. The plastic strain energy density,
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Wp, is consistent with plastic strain localization pattern, compare Figures 11(a) to 7(a).
The extension of the area of high level of strain energy density is limited, even though
considering free surface of the specimen. On the other hand, the elastic strain energy
density, We, is consistent with the trace of stress tensor pattern, compare Figures 11(b) to
7(b), with global maximum reached at the crack tip and local maximum reached at few
millimetres beyond the crack tip.

Figure 11: Strain energy density at maximum applied loading using direct non-local field where
characteristic length is set to 250 µm: (a) Wp and (b) We (inserts correspond to detailed views
close to the crack tip)

The evolutions of Wp and We have been plot as a function of the distance to the crack
tip r in Figure 9(e) and (f) respectively. These plots correspond to the same applied levels
as described previously in Figure 9(a) to (d).

The plastic strain energy decreases over a distance larger than 1.5 mm for both
applied strain levels before reaching asymptotic values. The distance to the crack tip to
reach asymptotic values depends of applied strain level and of the considered location
(free surface or mid-plane), Figure 9(e). The evolution of plastic strain energy appears to
be strongly correlated to the cumulated plastic strain, compare Figure 9(e) to (d).

On the other hand, elastic strain energy decreases over a long range distance at
the mid-plane location, but it decreases drastically over a similar distance for both
applied strain levels on the free surface, limited in the range 200-300 µm, Figure 9(f). The
evolution of elastic strain energy appears to be strongly correlated to stress component
σ22, compare Figure 9(f) to (c).

In the sequel, we choose to test distances for averaging process limiting the impact of
such a severe gradient for we assessment.

Non-local strain energy as a function of the crack length The chosen quantities
of interest, assumed to be driving forces for fatigue crack growth, correspond to the
non-local values of strain energy density obtained by averaging in quarter spheres located
at the crack tip. Focusing on observable free surface, this quarter sphere is evidenced by
the red set of elements in Figure 5(d). The associated strain energy density fields have
been highlighted in Figure 11 using inserted views. To ascertain the role of non-local
length associated to averaging, two radii have been tested: 250 and 400 µm respectively.
These size are consistent with the minimum mesh size set to 50 µm. Accordingly to
previous study, oversizing the mesh size for averaging method enables to avoid further
mesh dependency (Maurel et al. 2017).
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On the one hand, plastic strain energy, wp, increases with both the crack length and
the applied strain level, Figure 12(a). The range of wp values is here of about 3 orders of
magnitude, see Figure 12(a) using logarithmic scale. On the other hand, elastic strain
energy, we, range is narrower than the one observed for wp, see Figure 12(b) using linear
scale, exhibiting a sort of saturation effect for highest applied strain values, consistently
with saturation of stress level, Figure 4.

For ∆ε/2≥ 0.125%, wp is one order of magnitude higher than we, Figure 12(a) and
(b). It is worth noting that the evolution of wp and we with the crack length and applied
strain level, are similar for both lc=250 µm and lc=400 µm. Consistently with observed
gradients and maxima reached at the crack tip, the lower the critical length, the higher
the assessed strain energy. Finally, the non-local length used for energy averaging
mainly impacts local oscillations for elastic term we. The proposed method of averaging
prescribes quarter sphere location, with a precision of ± one finite element2, for which
the gradient is the highest, yielding a maximum sensitivity when using lc=250 µm.
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Figure 12: Evolutions of wp (left) and we (right) with crack length and applied loading. Continuous
and dashed lines correspond respectively to non local length set to 400 and 250 µm. Stars
correspond to large crack extension as detailed in section 6.1.

5.4 FCGR model based on partition of strain energy
The FCGR model derived for static analysis based on notch plasticity, as proposed in
Maurel et al. (2017) see eq. 4, implies the use of the virtual crack length a which is not
consistent with a structure analysis where driving forces should be assessed in 3D so as
to infer a local crack increment for any crack location in the structure. Thus, we propose
here to take advantage of the implicit dependency of strain energy with crack growth to
suppress the virtual crack length a from the previous expression. This yields to a new
model for FCGR as follows:

1
λ

da
dN

=

(
we

w∗
e

)me

+

(
wp

w∗
p

)mp

, (13)

where me, mp, w∗
e and w∗

p are the material parameters. λ should be seen as a rationalizing
parameter to keep consistent value of w∗

e and w∗
p with obtained energies. For sake of

2 Due to local curvature of the crack tip, the half-sphere being localized by the only abscissa of its center,
some elements are not considered, see Figure 5
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clarity in the comparison of the two critical length, lc, we chose a priori to set λ to the
minimum sphere radius used for averaging, i.e. 250 µm. This model is now independent
of the mesh size, by chosen non-local averaging method, and independent a priori of the
structure geometry, by a direct evaluation of driving forces for fatigue crack growth
thanks to energy terms.
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Figure 13: Identification of FCGR as a function of ∆We (filled symbols and continuous line, eq.
14), and as a function of ∆W p (empty symbols and dashed line, eq. 15)

A simple methodology for the identification of the models parameters is based on
the distinction between small and general scale yielding conditions. Assuming that the
lowest applied loading, corresponding to ∆ε/2=0.0625%, is mostly driven by the elastic
term, namely:

1
λ

da
dN

=

(
we

w∗
e

)me

+

(
wp

w∗
p

)mp

≃
(

we

w∗
e

)me

, (14)

and that one of the highest applied loading condition, corresponding to ∆ε/2=0.375%, is
mostly driven by the plastic term, namely:

1
λ

da
dN

=

(
we

w∗
e

)me

+

(
wp

w∗
p

)mp

≃
(

wp

w∗
p

)mp

. (15)

This yields to an identification by lowering FCGR for each terms as observed experimen-
tally, Figure 13, so as to insure a good assessment of FCGR by summation of the two
terms, Figure 14. The obtained model’s parameters are detailed in table 5.

The elastic strain energy appears to bring an essential contribution to the quality of
the proposed model, this point will be further detailed in the discussion. Whereas, the
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Figure 14: FCGR as a function of crack length a using complete model, eq. 13, experimental
fatigue crack growth (symbols) and identified model (lines).

Table 5: FCGR model parameters identified with the set of tested conditions described in table 3,
here λ=250 µm

Partition of energy model, eq. 13 lc (µm) w∗
e (kJ.m−3) me w∗

p (MJ.m−3) mp

250. 748. 3 234. 2.5
400. 792. 2.5 265. 2

Elastic strain energy model, eq. 18 250. 647. 3.
400. 684. 2.5

Paris’s model, eq. 12 C m
9.98.10−7

1.8

plastic term is observed to converge to a linear evolution in the log-log plot only for
maximum applied loadings. It is worth noting that the plastic contribution could have
been identified by fitting the minimum applied loading. However, this would have led to
loss of consistency with higher applied strain loading.

Using strain energy partition method, and summation of both elastic and plastic
contribution to FCGR, eq. 13, yields to a pretty good assessment of FCGR for the whole
range of applied loading condition, irrespectively of the chosen lc, Figure 14(a) and (b).
This result is a direct consequence of the saturation of elastic strain energy term, we, with
increasing applied strain loading and the consistency of plastic strain energy term, wp
with observed increase of FCGR with increase in applied strain level ∆ε.

6 Discussion
6.1 Crack propagation and plastic wake impact on driving forces
The chosen methodology for fatigue crack propagation implies the projection step in
order to consider history during crack growth: plastic wake and associated residual
stress field are thus accounted for. To question the optimal computation time, this should
be analyzed through relevant strategy of FEA for long crack. Should all crack increments
been calculated? or could we introduce a priori any crack length, and through slight
crack increment be confident with crack driving forces? This point is of particular
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interest for complex structure analysis, where lengthy time cost could be prohibitive.
As an example, we use the case ∆ε/2=0.25% described above, corresponding to the

transition to general scale yielding, but for which the rather limited level of plasticity
yielded converged results in a reasonable CPU time. A crack increment of 600 µm is
considered derived from above computation. That is to say that for this crack increment,
we only used the corresponding mesh, ignoring any prior history, starting computation
of crack growth from a natural stress state from this point.

The evolution of ∆J∗ from this point starts from a clear maximum, strongly over-
evaluating the ∆J∗ assessed by continuous crack increment analyzed above, see Figure
15(a). After 5 to 6 new crack increments from this point, the ∆J∗ assessment is similar for
both crack analysis from new crack location and from initial starting crack. One could
consider that, this point highlights the relevancy of the proposed scheme of crack growth
analysis.

On the other hand, the strain energy terms converge much more sooner to the
continuous crack growth analysis, see Figure 15(b) and (c). This is obvious for both
plastic and elastic terms, despite local oscillations associated to scatter already described
with elastic term. These results correspond to lc=250 µm, this being the most critical case.

This sensitivity analysis to the starting point of crack reveals two major points: the
plastic wake influence on J-integral could be analyzed after 5 to 6 crack increments,
whereas, a single crack increment is sufficient to get excellent assessment of strain energy
density for both elastic and plastic terms. Thus any error in the size of a crack used for
structure analysis should be of a lower impact considering the strain energy model
proposed in this study as compared to classical J-integral model. This point could
be related to the chosen strategy for location/orientation of the half-sphere used for
energy averaging: the associated volume is not directly impacted by the contact behavior,
because the crack lips are not included in the considered volume for integration. Thus,
the considered values of strain energies are mainly associated to the so-called process
zone associated to the elaboration of damage at the crack tip in fatigue.

We applied this method to assess ∆J∗, wp and we for the two maximum applied
strain values, ∆ε/2=0.375 and 0.45% respectively, for the maximum crack length tested.
These points are highlighted by star-markers in Figures 12 and 15(a).

6.2 Role of elastic and plastic strain energy in FCGR
For the new FCGR model proposed above, equation 13, the relative weight of elastic and
plastic strain energies in FCGR has to be investigated. If one considers that the total
FCGR, v equation 13, is driven by the summation of the elastic term:

ve = λ

(
we

w∗
e

)me

, (16)

and of the plastic term:

vp = λ

(
wp

w∗
p

)mp

, (17)

the ratio ve/(ve + vp) = ve/v corresponds to the relative weight of ve to the total FCGR
v. The averaged value of this ratio has been plot as a function of the applied strain level,
Figure 16. It is obvious that for the lowest applied strain level, ∆ε/2=0.0625%, ve/v is
close to unity, denoting a major influence of elastic strain energy onto FCGR. This is fully
consistent with both identification method and with the fact that elastic strain energy is
proportional to the square of stress amplitude, namely we ≃ 1/2σ2/E, making ve similar
in its formulation to a classical Paris’ law.

On the other hand, for higher applied strain values, and general scale yielding
condition, the elastic contribution on FCGR, ve term, decreases down to 65% of the total
FCGR for lc=250 µm, but only to 75% of the total FCGR for lc=400 µm.
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Figure 15: Evolutions of (a) ∆J∗, (b) Wp and (c) We as a function of the crack length, from initial
crack and from a crack increment of 600 µm for ∆ε/2=0.25% (lc=250 µm)

Despite the chosen methodology of identification, using ∆ε/2=0.375% to obtain a
first evaluation of vp parameters - namely w∗

p and mp, the elastic term, ve, contributes to
a large extent in the quality of FCGR model.

Thus we propose to assess FCGR using only the elastic term, namely:

1
λ

da
dN

=

(
we

w∗
e

)me

. (18)

The obtained identifications of this simplified model are plot for both lc=250 µm and
lc=400 µm, Figure 17. It is obvious that despite some local oscillations, this model yields
a very good assessment of experimental FCGR in comparison with standard ∆J and
Paris’ law.

Besides, the partition of strain energy into elastic and plastic terms has enabled a
clear identification of driving forces: the elastic term is the dominant driving force for
fatigue crack growth, the plastic term being mostly dissipated into heat and diffuse
damage. In addition to what, this is worth noting that this conclusion is consistent with
most of the work accounting for plasticity in fatigue crack propagation: the crack evolves
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Figure 16: Evolution of the ratio between FCGR related to elastic term, ve, and FCGR complete
model using partition of energy, v.

in a residual stress field induced by plasticity. This means that the quality of stress field
assessment, using additional dof to control the pressure field Pn, is a key point of the
chosen methodology.

On the other hand, the poor correlation of ∆J to the FCGR could be related to the
contribution of plastic work in its evaluation. It is still complex to extract from the term
grad u in eq. 10, the elastic and plastic contributions for a general mechanical behavior
model. Whereas, this operation is clarified by the partition of strain energy developped
above.

7 Conclusions
This paper has proposed a global methodology to assess fatigue crack growth rate from
small scale yielding to general scale yielding conditions. It was supported by a complete
numerical scheme using remeshing techniques and projection of internal variable fields,
including additional degree of freedom to reach convergence of the pressure field. This
step was seen to be successful considering the quality of stress and strain fields obtained
after crack growth.

Based on this numerical assessment of stress and strain fields, both energy release
rate and strain energy quantities have been analyzed. Then, a Paris’ like model, using
only ∆J∗ values derived from G-θ-method, yields large overestimation of FCGR for large
and general scale yielding conditions. The proposed original FCGR model based on
strain energy partitioning, was adapted from a previous analysis initially developed
without crack modeling. Together with a non-local averaging of strain energies, this
new FCGR model yields a significant improve of FCGR assessment for a large range of
applied strain loading levels. Last but not least, considering only the elastic contribution
derived from energy partitioning has led to a simplified and promising model for FCGR.

Complementary works are underway to take into consideration the role of modal
mixity on FCGR considering large scale yielding condition.
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