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HOW DO TOPOLOGICAL ENTROPY AND FACTOR COMPLEXITY BEHAVE

UNDER MONOID MORPHISMS AND FREE GROUP BASIS CHANGES ?

MARTIN LUSTIG

Abstract. For any non-erasing free monoid morphism σ : A˚ Ñ B˚, and for any subshift X Ă AZ

and its image subshift Y “ σpXq Ă BZ, the associated complexity functions pX and pY are shown
to satisfy: there exist constants c, d, C ą 0 such that

c ¨ pXpd ¨ nq ď pY pnq ď C ¨ pXpnq

holds for all sufficiently large integers n P N, provided that σ is recognizable in X. If σ is in addition
letter-to-letter, then pY belongs to ΘppXq (and conversely). Otherwise, however, there are examples
where pX is not in OppY q.

It follows that in general the value hX of the topological entropy of X is not preserved when
applying a morphism σ to X, even if σ is recognizable in X.

As a consequence, there is no meaningful way to define the topological entropy of a current
on a free group FN ; only the distinction of currents µ with topological entropy hSupppµq “ 0 and
hSupppµq ą 0 is well defined.

1. Introduction

Let A be a non-empty finite set, called an alphabet. We denote by A˚ the free monoid over A ;
its elements w “ x1 . . . xn (with all xi P A) are called words in A, and |w| “ n is the length of w.
In analogy we call an element x of the shift space AZ a biinfinite word in A and write it as

(1.1) x “ . . . xn´1xnxn`1 . . . (with xn P A for any n P Z).

A non-empty subset X Ă AZ is called a subshift (over A) if it is closed with respect to the
product topology on AZ (for the discrete topology on A), and if it is invariant under the shift
operator TA (which acts on AZ through decreasing by 1 all indices in any biinfinite word x as in
(1.1).

The set of factors x` . . . xm P A˚ of any x P X is called the language of the subshift X and is
denoted by LpXq. Conversely, for any infinite set L Ă A˚ we denote by XpLq the subshift generated
by L, which is defined as the set of all x P AZ for which every factor is also a factor of some w P L.

We denote by ΣpAq the set of all subhifts X Ă AZ, and by ΛpAq the set of infinite subsets
L Ă A˚ that are factorial (i.e. every factor of some w P L also belongs to L) and bi-extendable (i.e.
every w P L occurs also as factor in some u P L, but neither as prefix nor as suffix of u). Then the
maps X ÞÑ LpXq and L ÞÑ XpLq defines a well known canonical bijection:

ΣpAq ÐÑ ΛpAq
The issuing double-nature of the basic objects in symbolic dynamics is on one hand the deep

reason for the astonishing richness of this beautiful mathematical domain; on the other hand it
is also the source of certain basic “misunderstandings”, some of which are even up to date not
completely straightened out (see for instance section 2 of [2]).

One of these problems comes from the notion of a “morphism”, which has indeed two conflicting
natural interpretations, for any second alphabet B and any second subshift Y Ă BZ:
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(1) If we think of X P ΣpAq as topological dynamical system pX,TAq, then a morphism
pX,TAq ÞÑ pY, TBq is given by a continuous map θ : X Ñ Y which commutes with the
shift operators:

TB ˝ θ “ θ ˝ TA

(2) If, instead, we consider primarily the subshift language LpXq Ă A˚, then any non-erasing
monoid morphism σ : A˚ Ñ B˚ defines an infinite image set σpLpXqq Ă B˚ which in turns
gives rise to the image subshift

σpXq :“ XpσpLpXqq .
Recall here that any monoid morphisms σ : A˚ Ñ B˚ is determined by the choice of the finite

family of elements σpaiq P B˚ for any ai P A, and that conversely, any such choice defines a monoid
morphism. The morphism σ is non-erasing if none of the σpaiq is the empty word. The morphism
σ is said to be recognizable in X if, roughly speaking, any biinfinite word in σpXq can be lifted via
σ to a biinfinite word in X in at most one way. The precise definition is bit tedious and delayed
here until section 2 (see Definition 2.2).

Remark 1.1. There is a natural intersection of the two notions (1) and (2) above, given by
letter-to-letter morphisms σ : A˚ Ñ B˚, which are monoid morphisms subject to the condition
that |σpaiq| “ 1 for any letter ai P A. Indeed, as explained in the subsequent paragraph, any
“morphism” in the sense of (1) above can canonically be reduced to a letter-to-letter morphisms
in the meaning of (2). This is the reason why we adopt in this paper the wider interpretation (2)
above whenever the term “morphism” will be used in the sequel.

A classical argument based on the celebrated Curtis-Hedlund-Lyndon theorem shows that any
continuous map θ as in (1) above is induced by a letter-to-letter morphism σ : A˚n Ñ B˚ with
Y “ σpX 1q and X 1 “ ρ´1n,kpXq, where An “ tw P A˚ | |w| “ nu and (for any 1 ď k ď n) the map

ρn,k : A˚n Ñ A˚ , w “ x1 . . . xn ÞÑ xk is a “sliding block code” morphism, which canonically induces
a homeomorphism pX 1, TAnq ÞÑ pX,TAq for any integers n and k as above.

The number of factors x` . . . xm of length n :“ m ´ ` of any x P X as in (1.1) is denoted by
pXpnq; the issuing function

(1.2) pX : NÑ N , n ÞÑ pXpnq

is called the complexity function (or combinatorial complexity or factor complexity) of the subshift
X.

The complexity function pX has been investigated ever since symbolic dynamics has started out
with the work of Morse and Hedlund in the 1930’s. It is by now one of the most prominent tools in
the study of subshifts; too many results are known to even start listing them here. A classification
of X according to the growth type of the monotonously growing function pX has turned out to
be very fruitful, but many delicacies (for instance the potential discrepancy between lim sup pXpnq
and lim inf pXpnq) come into play and still occupy the symbolic dynamics community until the very
present.

One reason of its importance is that the complexity function is a refinement of the topological
entropy hX of a subshift X. This invariant, defined also in far more general contexts, turns out to
be related to the complexity function by the following equality:

(1.3) hX “ lim
nÑ8

log pXpnq

n
Grosso modo it seems fair to say that subshifts X with entropy hX ą 0 are “large”; for instance
they do occur naturally in the context of regular languages. It is for the “small” subshifts X, i.e.
with entropy hX “ 0, that the complexity function serves as finer measure for the seize of X. There
is also a very interesting and not so well understood “grey area” where one has hX “ 0, but other
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invariants like the rank of X or the number epXq of ergodic probability measures on X indicate
that X behaves a lot more like what one knows from the positive entropy case, rather than for
example from subshifts with linear complexity.

We are now ready to state the main result of this note:

Theorem 1.2. Let A and B be non-empty finite alphabets, and let X Ă AZ be a subshift. Let
σ : A˚ Ñ B˚ be a non-erasing morphism of free monoids, and let Y :“ σpXq be the image subshift
of X. Then the associated complexity functions pX and pY satisfy the following:

(1) There exists a constant C ą 0 such that

pY pnq ď C ¨ pXpnq

for all n P N. Indeed, we can specify the constant to C “ maxt|σpaiq| | ai P Au.
(2) If σ is recognizable in X and letter-to-letter, then there exists a constant c ą 0 such that

c ¨ pXpnq ď pY pnq

for all sufficiently large integers n P N.
(3) If σ is recognizable in X (but not necessarily letter-to-letter), then there exist constants

c ą 0 and d ą 0 such that
c ¨ pXpd ¨ nq ď pY pnq

for all sufficiently large integers n P N.
(4) There exist subshifts X Ă AZ and morphisms σ which are recognizable in X such that for

any constant c ą 0 one has
c ¨ pXpnq ą pY pnq

for infinitely many integers n P N.

Recall that classical analysis symbols due to Landau and others have given rise to the following
(here slightly modernized) terminology: for any functions f : NÑ Rą0 and g : NÑ Rą0 we write
f P Θpgq if an only if there exist constants c ą 0 and C ą 0 such that

c ¨ gpnq ď fpnq ď C ¨ gpnq

holds for all sufficiently large n P N. This is equivalent to stating 0 ă lim inf
nÑ8

fpnq
gpnq ď lim sup

nÑ8

fpnq
gpnq ă 8 .

It follows directly that the property f P Θpgq defines an equivalence relation on the set N :“ RN
ą0

of all functions from N to Rą0, where the equivalence class of any f P N is precisely the set Θpfq.
[Aside: Note that the classical equivalence relation „ (as used in calculus for real functions) is

stronger, so that each of its equivalence classes in N is contained in some Θpfq.]

We can thus summarize part of Theorem 1.2 as follows:

Corollary 1.3. Let X Ă AZ be a subshift, and let σ : A˚ Ñ B˚ be a non-erasing morphism which
is recognizable in X. Then one has:

(1) If σ is letter-to-letter, then pσpXq P ΘppXq.
(2) If σ is not letter-to-letter, then pσpXq P OppXq, but in general one has pσpXq R ΘppXq. \[

The main part of Theorem 1.2, namely statement (3), will be derived below in subsection 2.3.
The proof is based on previous work of the author on recognizable morphisms, quoted and explained
in subsection 2.2. In section 3 we observe that the inequality from statement (2) follows indeed
already from what has been done in section 2. We then proceed to give a concrete counter-example
to this stronger inequality when the “letter-to-letter” hypothesis is missing, thus proving statement
(4). The morphism used there is simply given by a decomposition of every alphabet letter ai as
product ai “ a´i a

`
i , and for X we can take the full shift AZ. For completeness and as warm-up

we give in subsection 2.1 a quick proof of part (1) of Theorem 1.2, although this is certainly folk
3



knowledge among the experts. In section 4 we discuss some consequences (for instance for the
topological entropy) and also draw the connection to algebraic laminations and currents for free
groups FN of finite rank N ě 2. More precisely, we show (for the terminology see section 4):

Proposition 1.4. Let FN be a free group of finite rank N ě 2, and let L be an algebraic lamination
in FN . Let X˘ “ XApLq Ă AZ

˘ and Y˘ “ XBpLq Ă BZ
˘ be the subshifts associated to L via choices

of bases A and B of FN respectively. Then the complexity functions pX˘ and pY˘ satisfy:

(1) There exist constants c, d, C,D ą 0 such that one has

c ¨ pX˘ptd ¨ nuq ď pY˘pnq ď C ¨ pX˘pD ¨ nq

for any sufficiently large integer n ě 0. (Here td ¨ nu denotes as usual the largest integer
m ď d ¨ n.)

(2) In general the statement (1) fails if in addition one imposes c “ d “ 1. In particular, there
are bases A and B and algebraic laminations L in FN such that

pY˘ R ΘppX˘q .

(3) There is no well defined notion of a “topological entropy” hL P R for an algebraic lamination
L in FN . However, the statements

hL “ 0 or hL ą 0

are well defined, since one has hX˘ “ 0 ðñ hY˘ “ 0.

Motivation for this paper: There are two reasons why the author addresses the topics of this paper
(which aren’t really his main expertise):

(1) The author freely admits that for quite some time he thought that “σ is recognizable in X”
ought to imply pσpXq P ΘppXq. Indeed, a detailed “proof” only failed in its last inequality, and only
then the search for a counter-example started. We suspect that we are not the only one who may
fall into this trap; one purpose of this scholarly note is to warn our colleagues and to straighten
out the whole issue.

(2) Complexity functions of subshifts belong to the very useful toolbox that has been extensively
developed over the years in symbolic dynamics, while being essentially ignored by the cousin com-
munity in geometric group theory (where in particular my fellow researchers on automorphisms of
free groups and Outer space ought to know better). I hence made a purposeful effort to make this
note accessible for anybody with only a sketchy background in symbolic dynamics, probably at the
expense of boring occasionally the experts from this field.

Acknowledgements: We would like to thank Nicolas Bédaride, Arnaud Hilion and Gilbert Levitt
for inspiring conversations in the context of the subject treated in this note. We also would like to
point the reader’s attention to forthcoming work of Hilion-Levitt [4] which is in part related to the
material of this note. In particular, a statement very close to part (1) of Proposition 1.4 above is
proved there by rather different methods.

2. The upper and the lower bound for the image complexity function

2.1. The upper bound.

Let σ : A˚ Ñ B˚ be any morphism of free monoids over finite non-empty alphabets A and B
respectively. It has become common use to denote by ||σ|| the maximum and by xσy the minimum
of the lengths |σpaiq| of the letter images σpaiq P B˚, for any ai P A. We observe directly the
following:
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Lemma 2.1. Let σ : A˚ Ñ B˚ a non-erasing morphism, and let X Ă AZ be any subshift over A,
with image subshift Y :“ σpXq Ă BZ. Then the complexity functions pX and pY satisfy

pY pnq ď pY pxσy ¨ pn´ 1q ` 1q ď ||σ|| ¨ pXpnq

for any integer n P N.

Proof. Any word w in LpY q of length |w| “ xσy ¨ pn ´ 1q ` 1 is a factor of σpuq, for some word
u “ x1 . . . xn P LpXq of length |u| “ n. Furthermore we can assume that the first letter of w occurs
in σpx1q, or else we iteratively replace u by u1 “ x2 . . . xnxn`1 any xn`1 P A.

We also note that any factor w of σpuq of a fixed given length is determined by the choice of u
and by the index of the first letter of w as factor of u. By the assumption from the last paragraph
we know that there are at most |σpx1q| ď ||σ|| such possible indices. We derive directly that there
are at most ||σ|| ¨ pXpnq possible choices for the word w with |w| “ xσy ¨ pn´ 1q ` 1.

This proves the second of the two claimed inequalities; since xσy¨pn´1q`1 “ n`pxσy´1q¨pn´1q
the first is just the well known monotony of the complexity function of any subshift. \[

2.2. Material from previous papers.

The notion of “recognizability” in symbolic dynamics has a long and fruitful history, and various
versions of it have been in use over time. We refer here to the recently proposed specification
from [3], which has already been used in several subsequent papers and seems by now to be the
established version in the field.

Before stating the formal definition, we have to be explicit about our convention how a non-
erasing monoid morphism σ : A˚ Ñ B˚ acts on an element x “ . . . xn´1xnxn`1 . . . P AZ : we first
define two infinite half-words y1y2 . . . :“ σpx1qσpx2q . . . and . . . y´1y0 :“ . . . σpx´1qσpx0q and then
paste them together to obtain σpxq :“ . . . y´1y0y1 . . ..

Definition 2.2. Let σ : A˚ Ñ B˚ be a non-erasing morphism, and let X Ă AZ be a subshift over
A. Then σ is called recognizable in X if the following conclusion is true, for any biinfinite words
x,x1 P X Ă AZ and y P BZ, with x “ . . . xn´1xnxn`1 . . . and x1 “ . . . x1n´1x

1
nx
1
n`1 . . ..

Assume that y “ T kApσpxqq and y “ T `Apσpx
1qq for some integers k, ` which satisfy 0 ď k ď

|σpx1q| ´ 1 and 0 ď ` ď |σpx11q| ´ 1. Then one has x “ x1 and k “ `.

This combinatorial definition has been translated in Proposition 6.3 of [2] into a more conceptual
property as follows:

Proposition 2.3 ([2]). Let σ : A˚ Ñ B˚ be a non-erasing morphism of free monoids, and let
X Ă AZ be any subshift over A. Then σ is recognizable in X if and only if the morphism σ is both,
shift-orbit injective and shift-period preserving in X. \[

Here “shift-orbit injective in X” means that the map induced by σ on the shift-orbits of X is
injective, and “shift-period preserving in X” means that for any periodic orbit . . . www . . . in X
the image of w satisfies σpwq “ ur for some u P B˚ and r ě 2 if and only if w “ vr for some v P A˚.
The proof of Proposition 2.3 is elementary, but to fill in all details is rather tedious. The author
recommends not to do it as “exercise”, but rather look up the version presented in [2].

In [2] the following terminology has been introduced, following an earlier version from [5].

Definition 2.4. (1) For any word w P A˚ and any integer r ě 0 we define w:r (“w chop r”) to be

the factor of w obtained through deleting the prefix and the suffix of length r from w. If r ě |w|
2 ,

then w:r is the empty word.

(2) For any morphism σ : A˚ Ñ B˚ and any subshift X Ă AZ we say that an integer r ě 0
is a repetition bound for σ on X if for any two words w,w1 P LpXq with σpwq “ σpw1q one has
w:r “ w1:r.

5



Remark 2.5. Any non-erasing morphism σ : A˚ Ñ B˚ admits canonically a decomposition σ “
ασ ˝ πσ, where the subdivision morphism πσ : A˚ Ñ A˚σ is defined by first setting Aσ :“ taipkq |
ai P A , 1 ď k ď |σpaiq|u and then declaring πσpaiq :“ aip1qaip2q . . . aip|σpaiq|q. The morphism
ασ : A˚σ Ñ B˚ is letter-to-letter in that it maps any aipkq to the k-th letter yk P B of the image
word σpaiq “ y1 . . . y|σpaiq| P B˚.

In [2] the above quoted Proposition 2.3 has been used to derive (fairly directly) the following:

Proposition 2.6 ([2]). For any subshift X Ă AZ a non-erasing morphism σ : A˚ Ñ B˚ is rec-
ognizable in X if and only if there exists a repetition bound r ě 0 for the induced letter-to-letter
morphism ασ on the image subshift πσpXq. \[

2.3. The lower bound.

For an arbitrary infinite set L Ă A˚ one has in general

L Ć LpXpLqq and LpXpLqq Ć L .
For a non-erasing morphism σ : A˚ Ñ B˚ and an arbitrary subshift X Ă AZ one always has
σpLpXqq Ă LpσpXqq, but this inclusion is in general not an equality. However, since ασ is letter-
to-letter, in this special case one has indeed

(2.1) ασpLpZqq “ LpY q ,
for Z :“ πσpXq and Y :“ σpXq (which satisfy by definition ασpZq “ Y ). Hence we derive from
Proposition 2.6:

Lemma 2.7. If σ is recognizable in X, then the complexity functions for Z “ πσpXq and Y “ σpXq
satisfy

(2.2) pY pn` 2rq ě pZpnq

for any integer n ě 0 and the repetition bound r ě 0 from Proposition 2.6.

Proof. If w and w1 are words in LpY q of length n` 2r, then by (2.1) there are words u, u1 P LpZqq
with ασpuq “ w and ασpu

1q “ w1. Since ασ is letter-to-letter, both u and u1 have also length
n` 2r. From Definition 2.4 (2) and Proposition 2.6 we know that u:r ‰ u1:r implies w ‰ w1 , with
|u:r| “ |u

1:r| “ n. Hence the number of words of length n` 2r in LpY q must be bigger or equal to
the number of words in LpZq that have length n. \[

Recall now that for a finite alphabet C any word w P C˚ of length n ě 0 can be prolonged in
at most cardpCqm´n different ways to give a word of length m ě n with w as prefix or with w as
suffix. We deduce:

(2.3) pZpn` 2rq ď cardpAσq
2r ¨ pZpnq for any integer n ě 0

Lemma 2.8. For any non-erasing morphism σ : A˚ Ñ B˚ and any subshift X Ă AZ with subdivi-
sion image Z “ πσpXq the complexity functions satisfy:

(2.4) pZp||σ|| ¨ nq ě pXpnq

Proof. Recall that any word in a subshift language can be prolonged arbitrarily (in either direction)
to give another word that any also belongs to the same subshift language. It follows that for any
integer n ě 0 and any word w P LpXq Ă A˚ of length |w| “ n the image word πσpwq can be
prolonged (on the right hand side) to give a word upwq P LpZq Ă A˚σ of length ||σ||¨n . Furthermore,
the words upwq and upw1q are distinct for any words w ‰ w1 in LpXq of length n, as they have
different prefixes πσpwq and πσpw

1q respectively. This proves the claimed inequality. \[

We can now prove the statement which is the main goal of this section:
6



Proposition 2.9. Let A , B be non-empty finite sets, and let σ : A˚ Ñ B˚ be a non-erasing monoid
morphism. Let X Ă AZ be any subshift over A, and denote by Y :“ σpXq the image subshift.

If σ is recognizable in X, then there are constants c ą 0 and d ą 0 such that the complexity
functions pX and pY satisfy

pY pmq ě c ¨ pXpd ¨mq

for any sufficiently large integer m ě 0.

Proof. As explained in Remark 2.5 we decompose σ canonically into σ “ ασ ˝ πσ and we consider
the intermediate image subshift Z :“ πσpXq.

We now pick the constant d to satisfy 0 ă d ă 1
||σ|| and observe that for m ě 1

1
||σ||

´d
we have

d ¨m ď 1
||σ|| ¨ pm´ ||σ||q, so that the monotony of the complexity function pX implies pXpd ¨mq ď

pXp
1
||σ|| ¨ pm´kqq for any integer k P r1, ||σ||s. The right choice of k assures that m1 :“ 1

||σ|| ¨ pm´kqq

is an integer, so that the monotony of pZ and inequality (2.4) implies pZpmq ě pZpm ´ kq “
pZp||σ|| ¨m

1q ě pXpm
1q ě pXpd ¨mq for all sufficiently large integers m.

We now set r ě 0 to be the repetition bound on Z for the morphism ασ obtained from Proposition
2.6, and set the constant c ą 0 to be equal to c “ 1

cardpAσq2r , in order to obtain from (2.3) and

from the last paragraph the inequalities pZpm ´ 2rq ě c ¨ pZpmq ě c ¨ pXpd ¨mq for all sufficiently
large integers m. We then apply Lemma 2.7 to derive pY pmq ě pZpm´ 2rq ě c ¨ pXpd ¨mq for any
sufficiently large integer m ě 0. \[

3. The counter-example

We first observe from the previous section that in the special case where the given morphism
σ : A˚ Ñ B˚ is letter-to-letter, the associated subdivision morphism πσ is a monoid-isomorphism,
so that we can identify σ with the canonically associated letter-to-letter morphism ασ. We can
hence use the same argument as in the last paragraph of the proof of Proposition 2.9 (with X
replacing Z and σ replacing ασ) to deduce:

Proposition 3.1. Let A , B be non-empty finite sets, and let σ : A˚ Ñ B˚ be a monoid morphism
which is letter-to-letter. Let X Ă AZ be any subshift over A, and denote by Y :“ σpXq the image
subshift.

If σ is recognizable in X , then for the constant c “ 1
cardpAq2r the complexity functions pX and pY

satisfy

(3.1) pY pmq ě c ¨ pXpmq

for any sufficiently large integer m ě 0. Here r ě 0 is the repetition bound for σ in X which is
given by Proposition 2.6. \[

It follows from this proposition, together with the inequalities from Lemma 2.1, that the com-
plexity functions of X and σpXq, in case of a letter-to-letter morphism σ which is recognizable
in X, must belong to the same Θ-equivalence class. This proves statement (2) of Theorem 1.2.
However, the original goal of the author, namely to show that the same statement is true without
the assumption “letter-to-letter”, turns out to be impossible to achieve; we will now present a
counter-example.

Let A be any finite alphabet with at least two letters. Let AII be the “double” of A which
consists of letters a´i and a`i for any ai P A. Let σII : A˚ Ñ A˚II be the subdivision morphism
defined by

σIIpaiq “ a´i a
`
i

for all ai P A. We observe:
7



Lemma 3.2. (1) The morphism σII is recognizable in the full shift AZ (and hence in any subshift
X Ă AZ).

(2) For any subshift X Ă AZ with image subshift Y :“ σIIpXq the complexity functions satisfy

pY p2n´ 1q “ 2pXpnq and pY p2nq “ pXpnq ` pXpn` 1q

for any integer n ě 1.

Proof. (1) The morphism σII is a subdivision morphism, and it is well known that any subdivision
morphism is recognizable in the full shift. This can be either seen directly from Definition 2.2 via
“desubstitution” of σIIpAZq, or else from the fact that any subdivision morphism is induced by a
subdivision of the graph RA (a “rose”) which canonically realizes A˚ geometrically, and such a
subdivision is a homeomorphism and hence induces a bijection between the sets of biinfinite paths
that realize the elements of AZ and those of σIIpAZq.

(2) Any word w P LpY q Ă A˚II of odd length |w| “ 2n ´ 1 must either be the prefix or the suffix
of the image σIIpuq for some word u P LpXq with |u| “ n. This proves the first of the two claimed
equalities.

Similarly, any word w P LpY q Ă A˚II of even length |w| “ 2n must either be equal to the image
σIIpuq for some word u P LpXq with |u| “ n, or else it is equal to σIIpuq:1 for some word u P LpXq
with |u| “ n` 1. This proves the second of the two equalities. \[

It now suffices to consider any subshift X with sufficiently fast growing complexity function pX .
For instance, assume pXpnq “ eCn for some constant C ą 1, as is true for any subshift X of finite
type (an “SFT”). We compute:

pXp2n´ 1q

pY p2n´ 1q
“
pXp2n´ 1q

2pXpnq
“
eCp2n´1q

2eCn
“

1

2
eCpn´1q

Hence “pX is not OppY q”, as an analyst would say, and in particular they belong to distinct Θ-
growth-equivalence-classes. This proves statement (4) of Theorem 1.2.

We finish this section by placing the proof scheme used above into a slightly more general
context, so that it can be readily used in the next section. Recall the definition of ||σ|| and xσy
from subsection 2.1.

Lemma 3.3. Let σ : A˚ Ñ B˚ a non-erasing morphism, and let X Ă AZ be any subshift over A,
with image subshift Y :“ σpXq Ă BZ. If X has exponential complexity function pXpnq “ eCn for
some constant C ą 1, then one has:

pXpxσy ¨ nq

pY pxσy ¨ nq
ě

1

||σ||
eCpxσy´1q¨n´pxσy`C´2q

In particular, if all letters ai P A have images of length |σpaiq| ě 2, then one has:

(3.2) pX R OppY q

Proof. If pXpnq “ eCn, then one deduces directly from Lemma 2.1:

pXpxσy ¨ pn´ 1q ` 1q

pY pxσy ¨ pn´ 1q ` 1q
ě
pXpxσy ¨ pn´ 1q ` 1q

||σ|| ¨ pXpnq
“
eCxσy¨pn´1q`1

||σ|| ¨ eCn
“

1

||σ||
eCpxσy´1q¨n´pxσy`C´2q

\[

Remark 3.4. From the last proof we deduce that statement (3.2) holds also for subshifts X
with complexity function pX that grows slower than exponential: it suffices for instance that
pXpnq P Θpngpnqq for any unbounded function g : NÑ N, as long as one has xσy ě 2.
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4. Entropy and free group laminations

Recall from (1.3) that the topological entropy of any subshiftX Ă AZ satisfies hX “ lim logppXpnqq
n .

We now deduce from Theorem 1.2:

Corollary 4.1. Let A and B be non-empty finite alphabets, and let X Ă AZ be any subshift. Let
σ : A˚ Ñ B˚ be a non-erasing morphism of free monoids, and let Y :“ σpXq be the image subshift
of X. Then the topological entropies hX and hY satisfy the following:

(1) Without any further hypotheses one has:

hY ď hX

(2) If σ recognizable in X and letter-to-letter, then one has:

hY “ hX

(3) There exist subshifts X Ă AZ and morphisms σ which are recognizable in X (but not letter-
to-letter) such that one has:

hY ă hX

Proof. Statements (1) and (2) are immediate consequences of the statements (1) and (2) of Theorem
1.2. For statement (3) we pick any alphabet A with cardpAq ě 2 and consider the full shift X “ AZ,
which satisfies pXpnq “ cardpAqn. We set σ “ σII and note that in Lemma 3.2 (1) it has been shown

that σII is recognizable in X. We then deduce from Lemma 3.2 (2) that hX “ lim logpcardpAqnq
n “

logpcardpAqq while hY “ lim logppY p2n´1qq
2n´1 “ lim logp2 cardpAqnq

2n´1 “ 1
2 logpcardpAqq . \[

We now turn our attention to the free group F pAq over the alphabet A as basis, which contains
the free monoid A˚, and the canonical inclusion A˚ Ñ F pAq is a multiplicative morphism. This
set-up, however, is rather treacherous, as the free group FN of finite rank N :“ cardpAq ě 2 has
infinitely many distinct bases, and (contrary to what one is used to from free monoids) none of
them is preferred over the others, so that in any “symbolic dynamics approach” to free groups one
has to seriously take basis changes into account.

This has led to the basis-free notions of algebraic laminations and currents for any free group
FN (see sections 3 and 10 of [1] and the references given there). Any choice of a basis A of FN
associates canonically to any algebraic lamination L a subshift XApLq and to any current µ on Fn
an invariant measure pµ on the subshift XApSupppµqq, so that the choice of A defines canonically
a bijection (or rather “a homeomorphism”) between the set of subshifts over the letters of A (and
their inverses !) and the set of algebraic laminations in F pAq. Similarly, the choice of A establishes
a bijection between invariant measures on such subshifts and currents on F pAq.

It is hence natural to attempt carrying over to algebraic laminations the tools developed for
subshifts, where the basic obstruction, the existence of inverses in F pAq, is overcome by doubling
the alphabet A through passing to A˘ “ AYA´1, for A´1 “ tαi | α´1i P Au. One then represents
every element of F pAq by the well defined corresponding reduced word in A˘ , and an algebraic
lamination L is given by any subshift X˘ “ XApLq that consists of reduced biinfinite words in
AYA´1 . Here “reduced” means that the subshift X˘ must be contained in the SFT in AZ

˘ defined
by forbidding any aiαi or αiai as factor.

Remark 4.2. Any subshift X Ă AZ determines canonically an algebraic lamination L which
in turn defines the subshift X˘ :“ XApLq Ă AZ

˘. In this special case X˘ is the “double” of
X in that it consists precisely of any x “ . . . xn´1xnxn`1 . . . P X together with its “inverse”
x “ . . . x´1n`1x

´1
n x´1n´1 P pA´1qZ. In particular this implies

pX˘pnq “ 2 pXpnq
9



for all n P N.

For any change of the basis A to another basis B of FN there is a well known (“Cooper’s”)
cancellation bound CpB,Aq ě 0 such that for any algebraic lamination L we have

(4.1) w P LpXApLqq ùñ ϕB,Apwq:CpB,Aq P LpXBpLqq ,

where ϕB,Apwq is the reduced word in B˘ that represents the same element of FN as the reduced
word w in A˘. One also has

(4.2)
1

||ϕA,B||
¨ |w| ď |ϕB,Apwq| ď ||ϕB,A|| ¨ |w|

for any reduced word w in A˘, with

||ϕB,A|| :“ maxt|ϕB,Apaiq|q | ai P Au .
We can now start the last yet missing proof from the Introduction:

Proof of Proposition 1.4. (1) Before starting the formal logics of the proof of statement (1), we first
need to state the following general observation:

For any integer K ě 0 and any reduced word u P A˚˘ the reduced word ϕB,Apu:Kq P B˚˘, which
represents the same element of FN as the chopped word u:K , must contain the chopped word
ϕB,Apuq:K¨||ϕB,A|| as factor. It follows that for any integer K 1 ě 0 the word ϕB,Apuq:K¨||ϕB,A||`K1 is

a factor ys`1ys`2 . . . yt of ϕB,Apu:Kq:K1 “: y1y2 . . . yr.
We also note that |ϕB,Apu:Kq| ď |ϕB,Apuq| ` 2K ¨ ||ϕB,A|| , so that for sufficiently large |u| we

have:
|ϕB,Apu:Kq:K1 | ´ |ϕB,Apuq:K¨||ϕB,A||`K1 |

ď |ϕB,Apuq| ` 2K ¨ ||ϕB,A|| ´ 2K 1 ´ p|ϕB,Apuq| ´ 2K ¨ ||ϕB,A|| ´ 2K 1q

“ 4K ¨ ||ϕB,A||

It follows for the factor ys`1ys`2 . . . yt “ ϕB,Apuq:2K¨||ϕB,A||`K1 of y1y2 . . . yr “ ϕB,Apu:Kq:K1 that

(4.3) 0 ď s ď 4K ¨ ||ϕB,A||

so that there are at most 4K ¨ ||ϕB,A|| ` 1 such factors.

In order to prove now statement (1) we first observe from the implication (4.1) that for any (long)
reduced word w P LpY˘q and its correspondent u :“ ϕA,Bpwq the chopped word u1 :“ u:CpA,Bq
belongs to LpX˘q. By the same argument, the word ϕB,Apu

1q:CpB,Aq belongs to LpY˘q.
We now apply the above “general observation” with K “ CpA,Bq and K 1 “ CpB,Aq to deduce

that the word ϕB,Apuq:CpA,Bq¨||ϕB,A||`CpB,Aq is a factor of ϕB,Apu:CpA,Bqq:CpB,Aq P LpY˘q. But since

u “ ϕA,Bpwq, we have ϕB,Apuq “ w, so that we have now shown:

(4.4) for any w P LpY˘q the word w:CpA,Bq¨||ϕB,A||`CpB,Aq is a factor of ϕB,Apu
1q:CpB,Aq ,

where u1 P LpX˘q with u1 “ ϕA,Bpwq:CpA,Bq .

We now set h :“ CpA,Bq ¨ ||ϕB,A|| ` CpB,Aq and observe |ϕB,Apu
1q:CpB,Aq| ď ||ϕB,A|| ¨ |u

1| ď

||ϕB,A|| ¨ ||ϕA,B|| ¨ |w| “: m. We can hence apply inequality (4.3) to deduce from (4.4):

(4.5) for any w P LpY˘q the word w1 :“ w:h is a factor of ϕB,Apu
2q for some u2 P LpX˘q ,

where the word u2 has length |u2| “ m, and the factor w1 is “particular” in that it occurs in a
prefix of ϕB,Apu

2q:CpB,Aq of length at most s :“ |w| ` 4CpA,Bq ¨ ||ϕB,A|| , so that there are at most
4CpA,Bq ¨ ||ϕB,A|| ` 1 such particular factors.

We now notice that for any integer n ě 1 and any word w1 P LpY˘q of length |w1| “ n there is a
prolongation w P LpY˘q of length |w| “ n` 2h such that w1 “ w:h. From (4.5) we know that there
exists a word u2 P LpX˘q of length |u2| “ m such that w1 is one of 4CpA,Bq ¨ ||ϕB,A||`1 particular
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factors of ϕB,Apu
2q. It follows that for any choice of u2 there are at most 4CpA,Bq ¨ ||ϕB,A|| ` 1

distinct possible words w1 P LpY˘q of length |w1| “ n. This proves

pY˘pnq ď p4CpA,Bq ||ϕB,A|| ` 1q ¨ pX˘pmq

for m “ ||ϕB,A|| ¨ ||ϕA,B|| ¨ pn ` 2hq “ ||ϕB,A|| ¨ ||ϕA,B|| ¨ n ` 2CpA,Bq ¨ ||ϕB,A||
2 ¨ ||ϕA,B|| `

2CpB,Aqq ||ϕB,A|| ¨ ||ϕA,B||.
This shows that for sufficiently large n P N the right inequality of statement (1) holds for

C “ 4CpA,Bq ||ϕB,A|| ` 1 and D “ ||ϕB,A|| ¨ ||ϕA,B|| ` 1. The left inequality follows directly from
the right one, by the symmetry between the two bases A and B of FN and by the monotony of the
complexity function pX˘ .

(2) In order to prove statement (2) we can not quite use the counter-example from section 3, since
the morphism σII used there is not invertible. But a small modification of the same proof idea will
do: it suffices to consider any morphism σ : A˚ Ñ B˚ which is invertible and where |σpaiq| ě 2 holds
for all ai P A. This is the case for instance for the square (or any higher power) of the celebrated
Fibonacci substitution σFib (given by a1 ÞÑ a2 ÞÑ a2 a1). The invertibility of σ assures that B is
a second base for the free group F pAq, so that, using the notation from Remark 4.2, the equality
σpXq “ Y implies X˘ “ XApLq and Y˘ “ XBpLq for the algebraic lamination L determined by X.

In particular we know from from Remark 4.2 that pX˘ “ 2pX and pY˘ “ 2pY . We can hence
apply Lemma 3.3 to obtain particular subshifts X and Y “ σpXq with pY˘ R OppX˘q and thus
pY˘ R ΘppX˘q.

(3) In order to prove statement (3) we use the same subshifts X˘ and Y˘ as in the above proof
of (2) (which arose from “doubling” the subshifts X and Y given by Lemma 3.3). We readily

compute hX˘ “ lim
logppX˘ pnqq

n “ lim logp2pXpnqq
n “ lim logp2eCnq

n “ C and (using Lemma 2.1) hY˘ “

lim
logppY˘ pnqq

n “ lim logp2pY pnqq
n “ lim logp2pY pxσy¨pn´1q`1qq

xσy¨pn´1q`1 ď lim logp2¨||σ||¨pXpnqq
xσy¨pn´1q`1 “ lim logp2¨||σ||¨eCnq

xσy¨pn´1q`1 “

C
xσy . We now use again the above mentioned Fibonacci substitution σFib and specify σ :“ σ2Fib to

ensure xσy ě 2, so that we have hY˘ ă hX˘ .
Hence there is no way to meaningfully use either the basis A nor the basis B of F2 to define

the topological entropy, for instance of the algebraic lamination L represented by the “oriented
full shift” X˘ “ AZ Y pA´1qZ, which is much smaller than (and should not be confused with) the
“algebraic full shift” of all reduced biinfinite words in AZ

˘; the latter would indeed be invariant
under basis change.

It remains to show that hX˘ “ 0 implies hY˘ “ 0 : we use statement (1) to compute hY˘ “

lim
logppY˘ pnqq

n ď lim
logpC¨pX˘ pD¨nqq

n “ D lim
logC`log pX˘ pD¨nqq

D¨n “ D ¨ hX˘ “ 0.

This completes the proof of all 3 claimed statements. \[

At the occasion of the Dyadisc4 conference in Amiens in July 2021, the author proposed the
notion of “intrinsic properties” of subshifts (see [6]). The precise definition was at the time purposely
left open, but in the mean time the following has stabilized to a version of this concept that seems
well applicable in practice:

Definition 4.3. (1) Two subshifts X Ă AZ and Y Ă BZ are intrinsically equivalent if there exists
a third subshift Z Ă CZ as well as non-erasing monoid morphisms σ : C˚ Ñ A˚ and σ1 : C˚ Ñ B˚
which are recognizable in Z and satisfy X “ σpZq and Y “ σ1pZq.

(2) A property P of subshifts is an intrinsic property if for any subshift X which has the property
P it follows that any subshift Y intrinsically equivalent to X must also have P.

It can be shown that the relation stated in Definition 4.3 (1) is indeed transitive and hence
defines an equivalence relation on the set of all subshifts over finite alphabets. In this prospective,
we can restate some of the results derived in this note as follows:
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Remark 4.4. The value of the topological entropy hX and also the Θ-equivalence class of the
complexity function pX are in general not intrinsic properties of a given subshift X.

However, the property hX “ 0 (or hX ą 0) is intrinsic, as is also the weaker equivalence class of
pX defined by inequalities as in statement (1) of Proposition 1.4.

It seems however possible that for some special zero-entropy classes of subshifts X, with partic-
ular, very slow growing complexity function, the class ΘppXq is after all an intrinsic property of X.
We’d like to point to [4] for certain observations that indicate such a possibility.

The annoyingly obtrusive combinatorics encountered in the above proof of statement (1) of
Proposition 1.4, together with the comparative “gouleyance” of the proof of the analogous inequal-
ities in Lemma 2.1 and Proposition 2.9, inspired the author to the following optimistic quest:

Conjecture 4.5. Let A and B be two bases of a free group FN of finite rank n ě 2, and let L
be an algebraic lamination in FN . Then the two subshifts X˘ :“ XApLq and Y˘ :“ XBpLq are
intrinsically equivalent.

One could actually go a step further, since for any non-erasing free monoid morphism σ : A˚ Ñ B˚
the induced endomorphism ϕσ : F pAq Ñ F pBq is in general not injective, even if σ is injective, or
even if (a strictly stronger assumption !) σ is recognizable in the full shift AZ.

Conjecture 4.6. Let A and B non-empty finite alphabets, and let ϕ : F pAq Ñ F pBq be a (not
necessarily injective) homomorphism. Let L be an algebraic lamination in F pAq, and assume that
ϕ is recognizable in L (in the sense of Proposition 2.3), so that there is a well defined algebraic
image lamination ϕpLq in F pBq. Then the two subshifts X˘ :“ XApLq and Y˘ :“ XBpϕpLqq are
intrinsically equivalent.

Here the subshift Y˘ Ă BZ
˘ can be directly derived from the subshift X˘ Ă AZ

˘ via the equality
Y˘ “ LpϕB,ApLpX˘qq, where for any reduced word w P A˚˘ we denote by ϕB,Apwq P B˚˘ the well
defined reduced word in B˘ which represents the ϕ-image in F pBq of the element in F pAq that is
represented by w.
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