Pierre Cardaliaguet 
  
REGULARITY OF THE VALUE FUNCTION AND QUANTITATIVE PROPAGATION OF CHAOS FOR MEAN FIELD CONTROL PROBLEMS

We investigate a mean field optimal control problem obtained in the limit of the optimal control of large particle systems with forcing and terminal data which are not assumed to be convex. We prove that the value function, which is known to be Lipschitz continuous but not of class C 1 , in general, without convexity, is actually smooth in an open and dense subset of the space of times and probability measures. As a consequence, we prove a new quantitative propagation of chaos-type result for the optimal solutions of the particle system starting from this open and dense set.

Introduction

The paper is about the regularity of the value function and quantitative propagation of chaos for mean field control (MFC for short) problems obtained as the limit of optimal control problems for large particle systems with forcing and terminal data which are not assumed to be convex.. The value function of MFC problems is known to be a Lipschitz continuous but, in general, not C 1 -function in the space of time and probability measures. Our first result is that there exists an open and dense subset of time and probability measures where the value function is actually smooth. The second result is a new quantitative propagation of chaos-type property for the optimal solutions of the particle system starting from this open and dense set.

The background. In order to state the results it is necessary to introduce the general set-up.

We consider the problem of controlling optimally N particles in order to minimize a criterion of the form

J N (t 0 , x 0 , α) := E 1 N ˆT t0 N i=1 L(X i t , α i t )dt + ˆT t0 F(m N Xt )dt + G(m N X T ) . (0.1)
Here T > 0 is a fixed time horizon, t 0 ∈ [0, T ] and x 0 = (x 1 0 , . . . , x N 0 ) ∈ (R d ) N are respectively the initial time and the initial position of the system at time t 0 . The minimization is over the set

A N of admissible controls α = (α k ) N k=1 in L 2 ([0, T ] × Ω; (R d ) N
) which are adapted to the filtration generated by the independent d-dimensional Brownian motions (B i ) i=1,...,N , and the trajectories X = (X 1 , . . . , X N ) satisfy, for each k ∈ {1, . . . , N },

X k t = x k 0 + ˆt t0 α k s ds + √ 2(B k t -B k t0 ) for t ∈ [t 0 , T ].
In (0.1), m N Xt is the empirical measure of the process X t given by

m N Xt := 1 N N k=1 δ X k t , (0.2) 
where δ x is the Dirac mass at x.

The maps F and G, which are defined on (suitable subsets of) the set of Borel probability measures on R d , couple all the particles X i . Finally, the cost function L = L(x, α) : R d × R d → R is, typically, convex and grows quadratically in the second variable.

The value function for this optimization problem reads

V N (t 0 , x 0 ) := inf α∈A N J N (t 0 , x 0 , α) = inf α∈A N E ˆT t0 ( 1 N N k=1 L(X k t , α k t ) + F(m N Xt ))dt + G(m N X T ) . (0.3)
In a more general framework and under slightly different conditions on the data, Lacker [START_REF] Lacker | Limit theory for controlled McKean-Vlasov dynamics[END_REF] proved that the empirical measure m N X N t associated to the optimal trajectories of (0.3) converges in a suitable sense to the (weak) optimal solution of the mean field control problem (written here in a strong sense) consisting in minimizing the quantity

J ∞ (t 0 , m 0 , α) = E ˆT t0 L(X t , α t )dt + ˆT t0 F(L(X t ))dt + G(L(X T )) , (0.4) 
where m 0 is an initial distribution of the particles at time t 0 , α ∈ A, the set of admissible controls consisting of square integrable R d -valued processes adapted to a Brownian motion B and to an initial condition X 0 , which is independent of B and of law m 0 , and the process (X t ) t∈[t0,T ] satisfies

X t = X 0 + ˆt t0 α s ds + √ 2(B t -B t0 ) for t ∈ [t 0 , T ],
and L(X t ) denotes the law of X t .

The value function U of the last optimization problem is given (heuristically at this stage) by

U(t 0 , m 0 ) : = inf α∈A J ∞ (t 0 , m 0 , α) = inf α∈A E[ ˆT t0
L(X t , α t ) + F(L(X t ) dt + G(L(X T )].

(0.5)

In addition, [START_REF] Lacker | Limit theory for controlled McKean-Vlasov dynamics[END_REF] points out that there is a propagation of chaos-type property (an easy consequence of Sznitman characterization of propagation of chaos), if the minimization problem (0.5) has a unique weak minimizer. Note, however, that such uniqueness is known only when the maps (x, α) → L(x, α), m → F(m) and m → G(m) are globally convex. The conclusions of [START_REF] Lacker | Limit theory for controlled McKean-Vlasov dynamics[END_REF] were extended to problems with common noise in Djete, Possamaï and Tan [12]. Several other results on the convergence of MFC problems without diffusion were obtained in Cavagnari, Lisini, Orrieri and Savaré [START_REF] Cavagnari | Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: Equivalence and Gamma-convergence[END_REF] and Gangbo, Mayorga and Swiech [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF]. A quantitative convergence rate for the value function V N to U was given, for problems on a finite state space, in Kolokoltsov [START_REF] Kolokoltsov | Nonlinear Markov games on a finite state space (mean-field and binary interactions)[END_REF] and Cecchin [START_REF] Cecchin | Finite state N-agent and mean field control problems[END_REF] and, for problems on the continuous state space, in Baryaktar and Chakraborty [START_REF] Baryaktar | Mean field control and finite agent approximation for regime-switching jump diffusions[END_REF] under a certain structural dependence of the data on the measure variable, in Germain, Pham and Warin [START_REF] Germain | Rate of convergence for particle approximation of PDEs in the Wasserstein space[END_REF] under the assumption that the limit value is smooth, and in Cardaliaguet, Daudin, Jackson and Souganidis [START_REF] Cardaliaguet | An algebraic convergence rate for the optimal control of McKean-Vlasov dynamics[END_REF] under a decoupling assumption on the Hamiltonian. In addition, a propagation of chaos is proved in [START_REF] Baryaktar | Mean field control and finite agent approximation for regime-switching jump diffusions[END_REF][START_REF] Cecchin | Finite state N-agent and mean field control problems[END_REF][START_REF] Germain | Rate of convergence for particle approximation of PDEs in the Wasserstein space[END_REF] assuming, however, that the limit value function is smooth.

The results. In this paper we study nonconvex MFC problems for which the limit value function is not expected to be globally smooth and show that for a large class (a dense and open set) of initial times and measures the value function U is smooth (Theorem 1.1) and the propagation of chaos holds with a rate (Theorem 1.2).

To write the results in this introduction requires considerable notation. Thus we postpone stating the precise theorems to section 2.

We explain, however, the very general idea of proof. We identify the open and dense in time and space of probabilities set O where U is smooth as the set of initial conditions (t 0 , m 0 ) from which starts a unique (in a strong sense) and stable (in a suitable linear sense) minimizer of J ∞ . This step, which is reminiscent of ideas from standard optimal control (see, for instance, the book of Cannarsa and Sinestrari [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]), is similar to what was obtained by Briani and Cardaliaguet [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] for MFC problems in a different framework, namely, the state space is the torus and the initial measures have smooth densities. Here, the state space is all of R d and the initial conditions are arbitrary probability measures. To show that U is smooth in O, we adapt ideas used in the construction of a solution to the master equation in mean field games given in Cardaliaguet, Delarue, Lasry and Lions [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] but we argue without the convexity, which translates to monotonicity for general mean field games, assumption used extensively there. Then, using the regularity of U, we derive the propagation of chaos property for the optimal solution of the particle system when starting from the set O. The key argument is the fact that the optimal trajectories of (0.5) that start in O remain there, while U is smooth and satisfies (almost) the same Hamilton-Jacobi equation as V N in O.

We finally comment about possible extensions to problems with common noise emphasizing once more that we do not assume any monotonicity/convexity. The convergence (with algebraic rate) of V N to U for MFC problems with common noise was established in [START_REF] Cardaliaguet | An algebraic convergence rate for the optimal control of McKean-Vlasov dynamics[END_REF]. However, the generalization of the results of the present paper to such a setting is far from clear. For example, one of the basic tools we use to prove that the set O is open and dense is a result of Lions-Malgrange-type, which yields the uniqueness of the mean field game system characterizing the optimal solution (see system (1.12) below), but with initial conditions both in u and m: see the proof of Lemma 2.6. At this time, we do not know if there is a counterpart of this argument for problems with a common noise, where the mean field system becomes a system of forward-backward stochastic partial differential equations (see [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF]).

Organization of the paper. We conclude the introduction with the notation we use throughout the paper. In section 1, we introduce the standing assumptions, present the main results and recall some preliminary facts that are needed for the rest of the paper. Section 2 is about establishing the smoothness of U (Theorem 1.1). Section 3 is devoted to showing the propagation of chaos property (Theorem 1.2).

Notations. We work on R d and write B R for the open ball centered at the origin with radius R and I d for the identity matrix.

We denote by P(R d ) the set of Borel probability measures on R d . Given m ∈ P(R d ) and p ≥ 1, we write M p (m) for the p th -moment of m, that is, M p (m) = ´Rd |x| p dm.

Then P p (R d ) is the set of m ∈ P(R d ) such that M p (R d ) < ∞.
We endow P p (R d ) with the Wasserstein metric d p , defined by

d p p (m, m ) := inf π∈Π(m,m ) ˆRd |x -y| p dπ(x, y),
where Π(m, m ) is the set of all π ∈ P(R d × R d ) with marginals m and m . For p = 1, we recall the duality formula

d 1 (m, m ) = sup φ ˆRd φd(m -m ),
where the supremum is taken over all 1-Lipschitz maps φ : R d → R.

For x = (x 1 , ..., x N ) ∈ (R d ) N , m N x ∈ P(R d ) is the empirical measure of x, that is, m N x = 1 N N i=1 δ x i . Given a map U : P 1 (R d ) → R,
we denote by δU/δm its flat derivative and by D m U its Lionsderivative when these derivatives exist, and we use the corresponding notations for second order derivatives. We refer to [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] and the books of Carmona and Delarue [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I-II[END_REF] for definitions and properties.

We write C k loc and C k for the sets of maps on R d with continuous and continuous and bounded derivatives up to order k. For r > 0, r / ∈ N, we denote by C r,2r the standard parabolic Hölder spaces and by C r,2r c the subset of functions of C r,2r with a compact support.

Given a topological vector space, we write by E for its dual space.

We often need to compare continuous maps defined on different intervals of [0, T ]. For this, we simply extend the maps continuously on [0, T ] by a constant. For instance, if t 0 ∈ (0, T ], E is a topological space and f :

[t 0 , T ] → E is continuous, we set f (s) = f (t 0 ) for s ∈ [0, t 0 ].
Finally, throughout the proofs C denotes a positive constants, which, unless otherwise said, depends on the data and may change from line to line.

The assumptions, the main results and some preliminary facts

The standing assumptions. We state our standing assumptions on the maps

H : R d × R d → R, F : P 1 (R d ) → R and G : P 1 (R d ) → R,
which constitute the data of our problem. We recall that L : R d × R d → R is the Legendre transform of H with respect to the second variable:

L(x, a) = sup p∈R d -a • p -H(x, p).

We assume that

             H = H(x, p) : R d × R d → R is of class C 4
loc and strictly convex with respect to the second variable, that is, for each R > 0 there exists

c R , C R > 0 such that, for all (x, p) ∈ R d × B R , D 2 pp H(x, p) ≥ c R I d and |D 2 xx H(x, p)| + |D 2 xp H(x, p)| ≤ C R , (1.1) 
there exists a constant C > 0 such that, for all (x, p The assumptions on the Hamiltonian H are fairly standard, although a little restrictive, and are used in [START_REF] Cardaliaguet | An algebraic convergence rate for the optimal control of McKean-Vlasov dynamics[END_REF] to obtain, independent of N , Lipschitz estimates on the value function V N ; see Lemma 1.7. An example satisfying (1.5) is a Hamiltonian of the form H(x, p) = |p| 2 + V (x) • p for some smooth and globally Lipschitz continuous vector field V : R d → R d . The regularity conditions on F and G are also important to obtain the estimates of Lemma 1.7 and to prove the regularity of U.

) ∈ R d × R d , -C + C -1 |p| 2 ≤ H(x, p) ≤ C(1 + |p| 2 ) and |D x H(x, p)| ≤ C(|p| + 1), (1.2) 
F : P 1 (R d ) → R is of class C 2 with F, D m F, D 2 ym F and D 2 mm F uniformly bounded, (1.3) 
G : P 1 (R d ) → R is of class C 4
The results. Given (t 0 , x) ∈ [0, T ) × (R d ) N , V N (t 0 , x) is the value function of the optimal control of the N -particle problem given by (0.3).

We now define in a rigorous way the value function U of the MFC, which was informally introduced in (0.5). For each initial point (t 0 , m 0 ) ∈ [0, T ) × P 1 (R d ), we use the set M(t 0 , m 0 ) of controls given by

M(t 0 , m 0 ) :=        (m, α) ∈ C 0 ([t 0 , T ], P 1 (R d )) × L 0 ([t 0 , T ] × R d ; R d ) : ´T 0 ´Rd |α| 2 m < ∞ and ∂ t m -∆m + div(mα) = 0 in (t 0 , T ) × R d and m(0) = m 0 in R d        , (1.6) 
with the equation in (1.6) understood in the sense of distributions.

Then the value function U(t 0 , m 0 ) of the MFC problem is given by

U(t 0 , m 0 ) := inf (m,α)∈M(t0,m0) ˆT t0 (( ˆRd L(x, α(t, x))m(t, dx)) + F(m(t))dt + G(m(T )) . (1.7)
Our first result is about the regularity of U in the set O defined by

O := (t 0 , m 0 ) ∈ [0, T ) × P 2 (R d ) :
there exists a unique stable minimizer in the definition of U(t 0 , m 0 ) .

(1.8)

The notion of stability is defined in terms of the linearized MFG system and is introduced in section 2.

The first main result is stated next. (1.9)

In addition, for any (t 0 , m 0 ) in O, there exists ε > 0 and a constant C > 0, which depends on (t 0 , m 0 ) and is such that, for any t ∈ [0, T ], x, y ∈ R d and m 1 , m

2 ∈ P 2 (R d ) with |t -t 0 | < ε, d 2 (m 0 , m 1 ) < ε and d 2 (m 0 , m 2 ) < ε, D m U(t, m 1 , x) -D m U(t, m 2 , y) ≤ C(|x -y| + d 2 (m 1 , m 2 )). (1.10)
By a classical solution of (1.9), we mean that the derivatives of U involved in the equation exist and are continuous.

Our second main result is a quantitative propagation of chaos property about the optimal trajectories of the underlying N -particle system.

Theorem 1.2. Assume (1.5). There exists a constant γ ∈ (0, 1) depending only on the dimension d such that, for every

(t 0 , m 0 ) ∈ O with M d+5 (m 0 ) < +∞, there is C = C((t 0 , m 0 )) > 0 such that, if Z = (Z k ) k=1,.
..,N is a sequence of independent random variables with law m 0 , B . = (B k . ) k=1,...,N is a sequence of independent Brownian motions independent of Z, and Y . N = (Y N,k ) k=1,...,N is the optimal trajectory for V N (t 0 , (Z k ) k=1,...,N ), that is, for each k = 1, . . . , N and t ∈ [t 0 , T ],

Y N,k t = Z k - ˆt t0 H p (Y k s , DV N (s, Y N s ))ds + √ 2(B k t -B k t0 ), (1.11) then E sup t∈[t0,T ] d 1 (m N Y N t , m(t)) ≤ CN -γ .
Some preliminary facts. We recall here some well known facts about MFC that we use in the paper.

We begin with some regularity properties of the underlying backward-forward MFG system. Fix (t 0 , m 0 ) ∈ [0, T ] × P 2 (R d ). We recall (see, for example, [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et controle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] for the original statement or [START_REF] Daudin | Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space[END_REF], in a framework closer to our setting) that there exists at least one minimizer for U(t 0 , m 0 ) and that, if (m, α) ∈ M(t 0 , m 0 ) is a minimizer, then there exists a multiplier u : [t 0 , T ] × R d → R such that α = -H p (x, Du) and the pair (u, m) solves the MFG-system

     -∂ t u -∆u + H(x, Du) = F (x, m(t)) in (t 0 , T ) × R d , ∂ t m -∆m -div(H p (x, Du)m) = 0 in (t 0 , T ) × R d , m(t 0 ) = m 0 , u(T, x) = G(x, m(T )) in R d , (1.12) 
where

F (x, m) = δF δm (m, x) and G(x, m) = δG δm (m, x).
Note that, in view of the assumed strict convexity of H, given (m, α), the relation α = -H p (x, Du) defines uniquely Du.

Lemma 1.3. Assume (1.5) and let (u, m) be a the solution of (1.12). Then, for any δ ∈ (0, 1), there exists C > 0, which is independent of (t 0 , m 0 ), such that

u C 2+δ/2,4+δ + sup t =t d 2 (m(t), m(t )) |t -t | 1/2 ≤ C and sup t∈[t0,T ] ˆRd |x| 2 m(t, dx) ≤ C ˆRd |x| 2 m 0 (dx). (1.13)
Remark 1.4. Note that, under our standing assumptions, we do not have, in general, uniqueness of the solution to (1.12). Indeed, the problem defining U(t 0 , m 0 ) may have several minimizers and/or solutions of (1.12) may not necessarily be associated with a minimizer of U(t 0 , m 0 ).

Proof. The estimates of m and the local regularity of u are standard. Indeed, the uniform bound on Du follows as in the proof of Lemma 3.3 in [START_REF] Cardaliaguet | An algebraic convergence rate for the optimal control of McKean-Vlasov dynamics[END_REF], and then the estimate on m are immediate. Moreover, the local regularity of u is a consequence of the classical parabolic regularity theory.

The only point is to explain why this regularity holds globally in space. For this, we first note that the assumptions on F and G yield a C > 0 such that, for all x, y ∈ R d , sup

t∈[t0,T ] |F (x, m(t)) -F (y, m(t))| + |G(x, m(t)) -G(y, m(t)| ≤ C|x -y|.
It then follows from the maximum principle that u is, uniformly in (t 0 , m 0 ) and in t, Lipschitz continuous in the space variable. The same argument applied to the equation satisfied by u xi for each i = 1, . . . , d, implies that Du is also uniformly Lipschitz continuous in the space variable.

The general conclusion can be established similarly, using the maximum principle for the global estimates and the parabolic regularity for the local one.

In view of the uniform estimates in (1.13), we have the following stability for minimizers in (1.7) when they are unique.

Lemma 1.5. Assume (1.5), fix (t 0 , m 0 ) ∈ [0, T ) × P 2 (R d ),
suppose that U(t 0 , m 0 ) has a unique minimizer (m, α), and let u be the associated multiplier.

If (t n 0 , m n 0 ) converges to (t 0 , m 0 ) and if (m n , α n ) is a minimizer for U(t n 0 , m n 0 )
with associated multiplier u n , then u n , Du n and D 2 u n converge respectively to u, Du and D 2 u in C δ/2,δ . In addition, if t n 0 = t 0 for all n, the convergence of (u n ) holds in C (2+δ)/2,2+δ .

Proof. It easily follows from the regularity of u (see (1.13)) that, without loss of generality, we can assume that t n 0 = t 0 . Moreover, again in view of (1.13) and the continuity of U (see Lemma 1.7 below), the minimizer (m n , α n ) converge along subsequences in

C 0 ([t 0 , T ] × P 1 (R d )) × C 1,2
loc ([t 0 , T ] × R d ) to minimizers for U(t 0 , m 0 ). Since the latter is assumed to have a unique minimizer (m, α), the convergence holds along the whole sequence. Arguing as in Lemma 1.3, we can also check that the convergence of the u n 's holds in C (2+δ)/2,2+δ , because z n = u n -u solves a linearized equation of the form

-∂ t z n -∆z n + V n • Dz n = F (x, m n (t)) -F (x, m(t)) z n (T, x) = G(x, m n (T )) -G(x, m(T )), with V n (t, x) = ´1 0 H p ((1 -s)Du n + sDu, x
)ds, and where, in view of the regularity of F and G and the convergence of

m n to m, F (•, m n (•)) -F (•, m(•)) and G(•, m n (T )) -G(•, m(T )) converge as n → ∞ to 0.
The following second-order optimality condition is used several times in the proofs of the main results.

Lemma 1.6. Assume (1.5), fix (t 0 , m 0 ) ∈ [0, T )×P 2 (R d ) and let (m, α) be a minimizer for U(t 0 , m 0 ). Fix β ∈ C 0 ([t 0 , T ] × R d ; R d ) or β ∈ L ∞ ([t 0 , T ] × R d ; R d ) with β = 0 in a neighborhood of t 0 and let ρ ∈ C 0 ([t 0 , T ], (C 2+δ (R d ))
) be the solution in the sense of distributions to

∂ t ρ -∆ρ + div(ρα) + div(mβ) = 0 in (t 0 , T ) × R d , ρ(t 0 ) = 0 in R d .
(1.14)

Then ˆT t0 ˆRd L α,α (x, α(t, x))β(t, x) • β(t, x)m(t, dx) + δF δm (•, m(t), •), ρ(t) ⊗ ρ(t) dt + δG δm (•, m(T ), •), ρ(T, •) ⊗ ρ(T, •) ≥ 0. (1.15)
This statement is an adaptation of an analogous result in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF]. The existence of the solution to (1.14) and the proof of (1.15) are given in the Appendix.

It is well-known that the map V N defined in (0.3) solves the uniformly parabolic Hamilton-Jacobi-Bellman (HJB for short) equation

     -∂ t V N (t, x) - N j=1 ∆ x j V N (t, x) + 1 N N j=1 H(x j , N D x j V N (t, x)) = F(m N x ) in (0, T ) × (R d ) N V N (T, x) = G(m N x ) in (R d ) N
, and, therefore V N is smooth for any N . This is in contrast with the limit U, which might not be C 1 . The following result, proved in [START_REF] Cardaliaguet | An algebraic convergence rate for the optimal control of McKean-Vlasov dynamics[END_REF], states however that both maps are uniformly Lipschitz continuous.

Lemma 1.7 (Regularity of V N and of U). Assume (1.5). There exists constant C depending on the data such that

V N ∞ + N sup j=1,...,N D x j V N ∞ ≤ C,
and, for all

(t, m), (t , m ) ∈ [0, T ] × P 1 (R d ), |U(t, m) -U(t , m )| ≤ C(|t -t | + d 1 (m, m )).
The following convergence rate is the main result of [START_REF] Cardaliaguet | An algebraic convergence rate for the optimal control of McKean-Vlasov dynamics[END_REF].

Proposition 1.8 (Quantified convergence of V N to U). Assume (1.5). There exists γ ∈ (0, 1) depending on dimension only and C > 0 depending on the smoothness of the data such that, for any

(t, x) ∈ [0, T ] × (R d ) N , V N (t, x) -U(t, m N x ) ≤ C 1 N γ 1 + M 2 (m N x ) .

The regularity of U

We prove here Theorem 1.1. A crucial step is the analysis of a linearized system, which is reminiscent of a linearized system studied in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] and [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] for MFG problems. The main and important difference from [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] is that here we do not assume that F and G are convex, while [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] deals with problems on the torus. We go around the lack of monotonicity by using the notions of stability and strong stability of a solution, which are introduced next using the linearized system. Finally, stability is also used to define and analyze the open, dense set O on which the map U will eventually be smooth.

The linearized system. We fix t 0 ∈ [0, T ), a constant C 0 , and, for

m 0 ∈ P 2 (R d ) and V : [t 0 , T ] × R d → R d with V C 1,3 ≤ C 0 , let m be the solution to ∂ t m -∆m -div(V m) = 0 in (t 0 , T ) × R d m(t 0 ) = m 0 in R d . (2.1)
We analyze the inhomogeneous linearized system

           -∂ t z -∆z + V (t, x) • Dz = δF δm (x, m(t))(ρ(t)) + R 1 (t, x) in (t 0 , T ) × R d , ∂ t ρ -∆ρ -div(V ρ) -σdiv(mΓDz) = σdiv(R 2 ) in (t 0 , T ) × R d , ρ(t 0 ) = σξ and z(T, x) = δG δm (x, m(T ))(ρ(T )) + R 3 in R d , (2.2) 
where σ ∈ [0, 1] and δ ∈ (0, 1),

Γ ∈ C 0 ([0, T ] × R d ; R d×d ) with Γ ∞ ≤ C 0 , R 1 ∈ C δ/2,δ , R 2 ∈ L ∞ ([t 0 , T ], (W 1,∞ ) (R d , R d )), R 3 ∈ C 2+δ and ξ ∈ (W 1,∞ ) . (2.3) 
The pair (z, ρ)

∈ C 0,1 ([t 0 , T ] × R d ) × C 0 ([0, T ], (C 2+δ
) ) is a solution to (2.2) if z and ρ satisfy respectively the first and second equation in the sense of distributions.

Note that, because of the regularity of ρ and the assumptions on F and G, the maps (t, x) → δF δm (x, m(t))(ρ(t)) and x → δG δm (x, m(T ))(ρ(T )) are continuous and bounded. We will often use system (2.2) in which V (t, x) = H p (x, Du(t, x)) and Γ(t, x) = H pp (x, Du(t, x)), where (u, m) is a classical solution to (1.12). In this case, V , Γ and m satisfy the conditions above.

Next we introduce the notion of strong stability for the homogeneous version of (2.2), that is the system

     -∂ t z -∆z + V (t, x) • Dz = δF δm (x, m(t))(ρ(t)) in (t 0 , T ) × R d , ∂ t ρ -∆ρ -div(V ρ) -σdiv(mΓDz) = 0 in (t 0 , T ) × R d , ρ(t 0 ) = 0 and z(T, x) = δG δm (x, m(T ))(ρ(T )) in R d .
(2.4)

We say that the system (2.4) is strongly stable if, for any σ ∈ [0, 1], its unique solution is (z, ρ) = (0, 0). (2.5)

The main result of the subsection is a uniqueness and regularity result for the solution to (2.2).

Lemma 2.1. Assume (1.5) and (2.5). There exist a neighborhood V of (V, Γ) in the topology of locally uniform convergence, and η, C > 0 such that, for any (V , t 0 , m 0 , Γ , R 1, , R 2, , R 3, , ξ , σ ) with

(V , Γ ) ∈ V, |t 0 -t 0 | + d 2 (m 0 , m 0 ) ≤ η, V C 1,3 + Γ ∞ ≤ 2C 0 , σ ∈ [0, 1], R 1, ∈ C δ/2,δ , R 2, ∈ L ∞ ([t 0 , T ], (W 1,∞ ) (R d , R d )), R 3, ∈ C 2+δ , ξ ∈ (W 1,∞ ) , (2.6) 
any solution (z , ρ ) to (2.2) associated with these data on [t 0 , T ] and m the solution to (2.1) with drift V and initial condition m 0 at time t 0 satisfies

z C (2+δ)/2,2+δ + sup t∈[t 0 ,T ] ρ (t, •) (C 2+δ ) + sup t =t ρ (t , •) -ρ (t, •) (C 2+δ ) |t -t| 1/2 ≤ CM , (2.7) 
where

M := ξ (W 1,∞ ) + R 1, C δ/2,δ + R 3, C 2+δ + sup t∈[t 0 ,T ] R 2, (t) (W 1,∞ ) . (2.8)
An immediate consequence is the following corollary.

Corollary 2.2. Assume (1.5) and (2.5). Then, for any (V , m 0 , Γ ) satisfying (2.6), the corresponding homogeneous linearized system is strongly stable.

The proof of Lemma 2.1 follows some of the ideas of [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], where a similar system is studied. The main differences are that, here, we use the stability condition instead of the monotonicity assumption of [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] and work in an unbounded space.

In what follows, we need a preliminary result which we state and prove next. The difference between the estimate below and the one of Lemma 2.1 is the right hand side of the former which depends on the solution itself.

Lemma 2.3. Assume (1.5) and let (z, ρ) be a solution to (2.2). There is a constant C, depending only on the regularity of F, G and on

V C 1,3 + Γ ∞ , such that z C (2+δ)/2,2+δ + sup t∈[t0,T ] sup t =t ρ(t , •) -ρ(t, •) (C 2+δ ) |t -t| δ/2 ≤ C M + sup t∈[t0,T ] ρ(t) (C 2+δ )
where

M := ξ (W 1,∞ ) + R 1 C δ/2,δ + sup t∈[t0,T ] R 2 (t) (W 1,∞ ) + R 3 C 2+δ .
Proof. Throughout the proof, C denotes a constant that depends only on the data and may change from line to line.

Set R = sup t∈[t0,T ] ρ(t) (C 2+δ ) < ∞. It follows that the maps (t, x) → δF δm (x, m(t))(ρ(t)) and x → δG δm (x, m(T ))(ρ(T )) are bounded by CR, the latter in C 2+δ . Then, standard parabolic regularity gives that z is bounded in C (1+δ)/2,1+δ by CR.

The main step of the proof is to show that sup

t∈[t0,T ] sup t =t ρ(t ) -ρ(t) (C 2+δ ) |t -t| δ/2 ≤ C(M + R).
Arguing by duality, we fix t 0 ≤ t 1 < t 2 ≤ T and, with ψ ∈ C 2+δ , we consider the solution

ψ i for i = 1, 2 to -∂ t ψ i -∆ψ i + V (t, x) • Dψ i = 0 on (t 0 , t i ) × R d , ψ(t i ) = ψ in R d , (2.9) 
which, in view of the assumption on V and parabolic regularity, satisfies, for i = 1, 2, the bound

ψ i C (2+δ)/2,2+δ ≤ C ψ C 2+δ . It is immediate that, for i = 1, 2, ρ(t i ), ψ = ξ, ψ i (t 0 ) -σ ˆti t0 ˆRd ΓDz • Dψ i mdxdt -σ ˆti t0 R 2 (t), Dψ i (t) dt. Thus ρ(t 2 ) -ρ(t 1 ), ψ = ξ, ψ 2 (t 0 ) -ψ 1 (t 0 ) -σ ˆt1 t0 ˆRd ΓDz • (Dψ 2 -Dψ 1 )m -σ ˆt2 t1 ˆRd ΓDz • Dψ 2 m -σ ˆt1 t0 R 2 (t), (Dψ 2 -Dψ 1 )(t) dt -σ ˆt2 t1 R 2 (t), Dψ 2 (t) dt.
(2.10) Note that ψ 2 -ψ 1 solves (2.9) on (t 0 , t 1 ) with a terminal condition at t 1 given by (

ψ 2 -ψ 2 )(t 1 , •) = ψ 2 (t 1 , •)-ψ 2 (t 2 , •), which, in view of the regularity of ψ 2 , is bounded in W 2,∞ by C(t 2 -t 1 ) δ/2 ψ C 2+δ .
It then follows follows from the maximum principle that (ψ 2 -ψ 1 )(t, •) is bounded in W 2,∞ by C(t 2 -t 1 ) δ/2 ψ C 2+δ for any t, and, hence,

ξ, ψ 2 (t 0 , •) -ψ 1 (t 0 , •) ≤ ξ (W 1,∞ ) ψ 2 (t 0 , •) -ψ 1 (t 0 , •) W 1,∞ ≤ C(t 2 -t 1 ) δ/2 ψ C 2+δ ξ (W 1,∞ ) ≤ C(t 2 -t 1 ) δ/2 ψ C 2+δ M, ˆt1 t0 ˆRd ΓDz • (Dψ 2 -Dψ 1 )mdxdt ≤ C Dz ∞ (t 2 -t 1 ) δ/2 ψ C 2+δ ≤ C(t 2 -t 1 ) δ/2 ψ C 2+δ R and ˆt1 t0 R 2 (t), (Dψ 2 -Dψ 1 )(t) dt ≤ sup t R 2 (t) (W 1,∞ ) sup t Dψ 2 (t) -Dψ 1 (t) W 1,∞ ≤ C(t 2 -t 1 ) δ/2 ψ C 2+δ M.
Note that the regularity of ψ 2 yields

σ ˆt2 t1 ˆRd ΓDz • Dψ 2 mdxdt ≤ C(t 2 -t 1 ) Dz ∞ Dψ 2 ∞ ≤ C(t 2 -t 1 ) 1/2 ψ C 2+δ R and ˆt2 t1 R 2 (t), Dψ 2 (t) dt ≤ (t 2 -t 1 ) sup t R 2 (t) (W 1,∞ ) sup t Dψ 2 (t) W 1,∞ ≤ C(t 2 -t 1 ) ψ C 2+δ M.
Since ψ is arbitrary, it follows from (2.10) that

ρ(t 2 ) -ρ(t 1 ) (C 2+δ ) ≤ C(t 2 -t 1 ) δ/2 (M + R).
This regularity of ρ implies that the maps (t, x) → δF δm (x, m(t))(ρ(t)) and x → δG δm (x, m(T ))(ρ(T )) are bounded in C δ/2,δ and C 2+δ respectively by C(M + R). Thus z is also bounded in C (2+δ)/2,2+δ by C(M + R).

Proof of Lemma 2.1. The first (and main) part of the proof consists in showing the existence of V, η > 0 and C > 0 such that, for any (V , t 0 , m 0 , Γ , R 1, , R 2, , R 3, , ξ , σ ) as in (2.6), any solution (z , ρ ) to (2.2) associated with these data on [t 0 , T ] satisfies, with M is defined by (2.8), sup

t∈[t 0 ,T ] ρ (t) (C 2+δ ) ≤ CM .
We prove this claim by contradiction, assuming the existence of sequences (

V n ) n∈N , (t n 0 , m n 0 ) n∈N , (m n ) n∈N , (Γ n ) n∈N , (R i,n ) n∈N , (ξ n ) n∈N , and (σ n ) n∈N such that (V n , Γ n ) converges locally uniformly to (V, Γ), |t n 0 -t 0 | + d 2 (m n 0 , m 0 ) ≤ 1/n, V n C 1,3 + Γ n ∞ ≤ 2C 0 , σ n ∈ [0, 1], and ξ n (W 1,∞ ) + R 3,n C 2+δ + R 1,n C δ/2,δ + sup t∈[t0,T ] R 2,n (t) (W 1,∞ ) ≤ 1,
and, for each n, a solution (z n , ρ n ) to (2.2) associated with the data above, such that

λ n = sup t∈[t n 0 ,T ] ρ n (t) (C 2+δ ) ≥ n. It follows that ( z n , ρ n ) = 1 λ n (z n , ρ n ) solves the system              -∂ t z n -∆ z n + V n (t, x) • D z n = δF δm (x, m n (t))( ρ n (t)) + 1 λ n R n 1 (t, x), ∂ t ρ n -∆ ρ n -div(V n ρ n ) -σ n div(mΓ n D z n ) = 1 λ n σ n div(R n 2 ), ρ n (t n 0 ) = 1 λ n σ n ξ n and z n (T, x) = δG δm (x, m n (T ))( ρ n (T )) + 1 λ n R n 3 .
(2.11)

Since, by definition, sup t ρ n (t) (C 2+δ ) = 1, Lemma 2.3 implies that the ( z n )'s and ρ n (t, •)'s are bounded in C (2+δ)/2,2+δ and C δ/2 ([0, T ], (C 2+δ ) ) respectively.

Hence, we may assume that, up to a subsequence, the sequences (

σ n ) n∈N , ( z n ) n∈N , ( ρ n ) n∈N and (V n ) n∈N converge respectively to some σ ∈ [0, 1], z ∈ C 1,2 loc , ρ ∈ C 0 ([t 0 , T ], (C 2+δ c
) ), where (C 2+δ c ) is endowed with the weak- * topology, and V ∈ C 0 ([t 0 , T ], C 2+δ loc ). The goal is to show that ( z, ρ) is a nonzero solution to the homogenous equation (2.4), which will contradict the strong stability of the system.

There are two difficulties that need to be addressed both caused by the above claimed weak convergence of the ρ n 's to ρ.

The first is to prove that, as n → ∞,

δF δm (x, m n (t))( ρ n (t)) → δF δm (x, m(t))( ρ(t)) and δG δm (x, m n (T ))( ρ n (T )) → δG δm (x, m(T ))( ρ(T ),
and the second is to show that, since sup t ρ n (t) (C 2+δ ) = 1, we must have ( z, ρ) is nonzero.

To overcome these two issues it is necessary to upgrade the convergence of the ρ n 's to ρ in C 0 ([t 0 , T ], (C 2+δ ) ) from weak to strong.

We first note that ρ n = ρ n,1 + ρ n,2 with ρ n,1 and ρ n,2 solving respectively

∂ t ρ n,1 -∆ ρ n,1 -div(V n ρ n,1 ) = 1 λ n σ n div(R n 2 ) and ρ n,1 (t 0 ) = 1 λ n σ n ξ n , and ∂ t ρ n,2 -∆ ρ n,2 -div(V n ρ n,2 ) -σ n div(Γ n D z n m n ) = 0 and ρ n,2 (t 0 ) = 0. (2.12)
We show next that sup t ρ n,1 (t) (C 2+δ ) → 0. Indeed, for fixed t ∈ (t n 0 , T ] and ψ ∈ C 2+δ , let ψ n be the solution to the dual problem

-∂ t ψ n -∆ψ n + V n (t, x) • Dψ n = 0 in (t n 0 , t) × R d , ψ n (t) = ψ in R d .
(2.13)

It follows from the standard parabolic regularity that ψ n is bounded in C (2+δ)/2,2+δ by C ψ C 2+δ with C is independent of n and t, and since, in view of the duality, we have

ρ n,1 (t), ψ = 1 λ n σ n ξ n , ψ n (t n 0 ) -σ n ˆt t n 0 R 2,n , Dψ n dt , we obtain sup t∈[t n 0 ,T ] ρ n,1 (t) (C 2+δ ) ≤ C λ n ξ n (W 1,∞ ) + sup t∈[t n 0 ,T ] R 2,n (t) (W 1,∞ ) . Hence, sup t∈[t n 0 ,T ] ρ n,1 (t) (C 2+δ ) → 0 as 1 λ n ( ξ n (W 1,∞ ) + sup t∈[t n 0 ,T ] R 2,n (t) (W 1,∞ ) ) → 0.
It follows from (2.12) that, for any t n ∈ [t n 0 , T ] and

ψ n ∈ C 2+δ , if ψ n is the solution to (2.13) on [t n 0 , t n ] with terminal condition ψ n (t n ) = ψ n , then ρ n,2 (t n ), ψ n = -σ n ˆtn t n 0 ˆRd Γ n D z n • Dψ n m n . (2.14)
In order to prove the uniform convergence of the ρ n,2 's in (C 2+δ ) , we assume that the ψ n C 2+δ 's are bounded and, without loss of generality, that the t n 's and ψ n 's converge respectively to t ∈ [t 0 , T ] and ψ ∈ C 2+δ , the last convergence being in C 2+δ1 loc for any δ 1 ∈ (0, δ). We need to prove that the ( ρ n,2 (t n ), ψ n )'s converge to ρ 2 (t), ψ , where ρ 2 is the solution to

∂ t ρ 2 -∆ ρ 2 -div(V ρ 2 ) -σdiv(ΓD zm) = 0 and ρ 2 (t 0 ) = 0.
Note that

ρ 2 (t), ψ = -σ ˆt t0 ˆRd ΓD z • Dψm,
where ψ is the solution to

-∂ t ψ -∆ψ + V (t, x) • Dψ = 0 in (t 0 , t) × R d and ψ(t) = ψ in R d ,
and recall that the Γ n 's and D z n 's are bounded and converge locally uniformly to Γ and to D z respectively.

Similarly, due to the parabolic regularity, the ψ n 's are bounded in C (2+δ)/2,2+δ and the Dψ n 's converge locally uniformly to Dψ.

Moreover, since m n is the solution to

∂ t m n -∆m n + div(V n m n ) = 0 in (t n 0 , T ] and m n (t n 0 , •) = m n 0 in R d , with V n
uniformly bounded, we know that the m n 's converge uniformly to m in P 1 (R d ), and we have the second-order moment estimate sup t,n ˆRd

|x| 2 m n (t, dx) ≤ C sup n ˆRd |x| 2 m n 0 (dx) ≤ C.
In addition, using that ΓD z • Dψ is globally Lipschitz, for any R ≥ 1 we find

ρ n,2 (t n ), ψ n -ρ 2 (t), ψ ≤ C(|σ n -σ| + |t n -t| + |t n 0 -t 0 |) + σ ˆt∧t n t0∨t n 0 ˆRd (ΓD z • Dψm -Γ n D z n • Dψ n m n ) ≤ C(|σ n -σ| + |t n -t| + |t n 0 -t 0 | + sup t d 1 (m n (t), m(t)) + R -2 ) + σ ˆt∧t n t0∨t n 0 ˆBR (ΓD z • Dψ -Γ n D z n • Dψ n )m n .
Letting n → ∞ and then R → ∞ proves the convergence of the ρ n,2 (t n ), ψ n 's to ρ 2 (t), ψ . It follows that the sequence ( ρ n ) n∈N converges to ρ = ρ 2 strongly in C 0 ([t 0 , T ], (C 2+δ ) ).

To summarize the above, we know that the sequences (σ n ) n∈N , (

z n ) n∈N , ( ρ n ) n∈N and (V n ) n∈N converge respectively to σ ∈ [0, 1], z in C 1,2 loc , ρ in C 0 ([0, T ], (C 2+δ ) ) and V in C 0 ([t 0 , T ], C 2+δ 
loc ). Passing to the limit in (2.11) we infer that ( z, ρ) is a solution to the homogenous equation (2.4).

Since sup t∈[t n 0 ,T ] ρ n (t) (C 2+δ ) = 1 for any n, it follows that sup t∈[t0,T ] ρ(t) (C 2+δ ) = 1. Thus ( z, ρ) is a nonzero solution to the homogenous equation (2.4) which contradicts the strong stability assumption (2.5).

The second part of the proof consists in upscaling the regularity obtained in the first part. For this, we let (V , t 0 , m 0 , Γ , R 1, , R 2, , R 3, , ξ , σ ) be such that (2.6) holds and (z , ρ ) be a solution to (2.2) associated with these data, where m is the solution to (2.1) with drift V and initial condition m 0 at time t 0 .

We have already established that, for the M in (2.8), sup

t∈[t 0 ,T ] ρ (t) (C 2+δ ) ≤ CM .
It then follows from Lemma 2.3 that

z C (2+δ)/2,2+δ + sup t =t ρ (t , •) -ρ (t, •) C 2+δ |t -t| δ/2 ≤ C(M + sup t∈[t 0 ,T ] ρ (t) (C 2+δ ) ) ≤ CM .
The stability property. We discuss here the notion of stabllity of a solution (u, m) of the MFGsystem arising in MFC.

Let (t 0 , m 0 ) ∈ [0, T ] × P 2 (R d ) and (m, α) be a minimizer for U(t 0 , m 0 ) with associated multiplier u, that is, the pair (u, m) solves (1.12) and α(t, x) = -H p (x, Du(t, x)).

Definition 2.4. The solution (u, m) is strongly stable (resp. stable), if for all σ ∈ [0, 1] (resp. σ = 1) the only solution (z, µ)

∈ C (1+δ)/2,1+δ × C 0 ([t 0 , T ]; (C 2+δ (R d )) ) to the linearized system            -∂ t z -∆z + H p (x, Du) • Dz = δF δm (x, m(t))(µ(t)) in (t 0 , T ) × R d , ∂ t µ -∆µ -div(H p (x, Du)µ) -σdiv(H pp (x, Du)Dzm) = 0 in (t 0 , T ) × R d , µ(t 0 ) = 0 and z(T, x) = δG δm (x, m(T ))(µ(T )) in R d , (2.15) 
is the pair (z, µ) = (0, 0).

Since, given a minimizer (m, α), the relation α = -H p (x, Du) defines Du uniquely, the stability condition depends on (m, α) only. We say that the minimizer (m, α) is strongly stable (resp. stable) if (u, m) is strongly stable (resp. stable).

The above makes also clear the definition of the regularity set O in (1.8). We remark that at this point we do not know whether O is a nonempty set. This will follow from Lemma 2.7 below.

We also note that (2.15) is the linearized system studied in the previous subsection for the particular choice of vector field V (t, x) = H p (x, Du(t, x)) and matrix Γ(t, x) = H pp (x, Du(t, x)). To emphasize that we are working with this particular system and also be consistent with other references, heretofore we use the notation (z, µ) instead of (z, ρ).

The following lemma asserts that the minimizers starting from an initial condition in O are actually strongly stable.

Lemma 2.5. Assume (1.5), fix (t 0 , m 0 ) ∈ O and let (m, α) be the unique stable minimizer associated to U(t 0 , m 0 ). Then (m, α) is strongly stable.

Proof. Since, if σ = 1, the claim is just the assumed stability of (m, α), in what follows we assume that σ ∈ [0, 1).

It follows from Lemma 2.1 that z ∈ C (2+δ)/2,2+δ , while using the duality, we have, for any t ∈ [t 0 , T ], Since H pp > 0 and σ -σ 2 > 0, the last inequality yields Dz m = 0, from which we easily conclude, going back to the equations satisfied by µ and by z, that (z, µ) = (0, 0).

z
We turn next to O. The next lemma establishes an important property together with the fact O is not empty. A similar statement is proved in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] when the state space is the torus. The adaptation to the whole space is given here for the sake of completeness.

Lemma 2.6. Assume (1.5). Fix (t 0 , m 0 ) ∈ [0, T ) × P 2 (R d ) and let (m, α) be a minimizer for U(t 0 , m 0 ). Then (t, m(t)) belongs to O for any t ∈ (t 0 , T ).

Proof. Fix (t 0 , m 0 ) ∈ [0, T )×P 2 (R d ), and let (m, α) be a minimizer for U(t 0 , m 0 ) and u its associated multiplier.

For t 1 ∈ (t 0 , T ), set m 1 = m(t 1 ) and let ( m, α) be an optimal solution for U(t 1 , m 1 ) with associated multiplier u. Since, in view of the dynamic programming principle,

( m, α) = (m, α) on [t 0 , t 1 ) × R d , ( m, α) on [t 1 , T ] × R d ,
is optimal for U(t 0 , m 0 ), we know from Lemma 1. where

3 that α ∈ C (1+δ)/2,1+δ . It follows that α(t 1 , •) = α(t 1 , •) and thus that Du(t 1 , •) = D u(t 1 , •). Thus, the pair ((z k ) k=1,...,d , µ) = ((∂ x k (u-u)) k=1,...,d , m- m) solves the system -∂z k -∆z k + g k (t, x) = 0 in (t 1 , T ) × R d , ∂µ -∆µ + div(h) = 0 in (t 1 , T ) × R d , µ(t 1 ) = 0 z k (t 1 , •) = 0 in R d , (2.17 
g k (t, x) = H x k (x, Du) -H x k (x, D u) + H p (x, Du) • D(∂ x k u) -H p (x, D u) • D(∂ x k u) -F x k (x, m(t)) + F x k (x, m 1 (t)), h = H p (Du)m -H p (D u) m.
In order to estimate g k and h, we note that, since

t 1 > t 0 , m, m ∈ C 1,2 ([t 1 , T ] × R d ) and m(t, •) and m(t, •) are bounded in L 2 . It follows that d k=1 |g k (t, x)| 2 ≤ C(|z(t, x)| 2 + |Dz(t, x)| 2 + µ(t) 2 L 2 ), |h(t, x)| 2 ≤ C(|z(t, x)| 2 + |µ(t, x)| 2 ), (2.18) |div(h(t, x))| 2 ≤ C(|z(t, x)| 2 + |Dz(t, x)| 2 + |µ(t, x)| 2 + |Dµ(t, x)| 2 ).
Then a Lions-Malgrange-type argument shows that z k = µ = 0, and, hence, the solution starting from (t 1 , m 1 ) is unique. We refer to Lions and Malgrange [START_REF] Lions | Sur l'unicité rétrograde dans les problèmes mixtes paraboliques[END_REF] for the original argument and Cannarsa and Tessitore [START_REF] Cannarsa | Optimality conditions for boundary control problems of parabolic type[END_REF] and [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] for its adaptation to forward-backward equations.

Next we check that this solution is stable. Let (z, µ) be a solution to (2.15) 

β ∈ L ∞ ([t 0 , T ] × R d ; R d ) vanishing near t = t 0 , if ρ is the solution in the sense of distributions to (1.14) in [t 0 , T ] × R d , then J(β) = ˆT t0 ˆRd L α,α (x, α(t, x))β(t, x) • β(t, x)m(t, dx) + δF δm (•, m(t), •), ρ(t) ⊗ ρ(t) dt + δG δm (•, m(T ), •), ρ(T, •) ⊗ ρ(T, •) ≥ 0.
The solution ρ to (1.14) associated to the map β defined by β = 0 on [t 0 , t 1 ) and β = -H pp (x, Du)Dz on [t 1 , T ] is given by ρ(t) = 0 on [t 0 , t 1 ) × R d and ρ(t

) = µ(t) on [t 1 , T ] × R d .
It then follows from (2.19) that J(β) = 0, and, hence, β is a minimizer for J, a fact that, by standard arguments (see, for example, [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF])), implies that β is a continuous map. Thus Dz(t 1 , •) = 0.

We differentiate with respect to space variable the first equation in (2.15) and obtain that ((∂ x k z) k=1,...,d , µ) solves a system of the form (2.17) with zero initial condition and data g and h satisfying (2.18). This implies, as before, that ((∂ x k z) k=1,...,d , µ) = (0, 0). Coming back to (2.15), we obtain z = µ = 0. Therefore the solution is stable.

The next theorem establishes the key properties of O. Proof. Lemma 2.6 implies that the set O is a nonempty, dense subset of [0, T ) × P 2 (R d ).

Next we show that O is open arguing by contradiction. For this, we fix (t 0 , m 0 ) ∈ O and assume that there are initial positions (t n , m n 0 ) / ∈ O which converge to (t 0 , m 0 ) (in P 2 (R d ) for (m n 0 ) n∈N ). Let (m, α) be the unique and stable minimizer for (t 0 , m 0 ) and u be the associated multiplier, that is, α = -H p (x, Du) and the pair (u, m) solves (1.12). Since (t n , m n 0 ) / ∈ O, there are two cases (up to subsequences): either, for all n, there exist several minimizers for U(t n , m n 0 ) or, for all n, there exists a unique minimizer which is not stable. This latter case is ruled out by Lemma 2.1 and the strong stability of (m, α).

It remains to consider the first case and we argue as follows. Let (m n,1 , α n,1 ) and (m n,2 , α n,2 ) be two distinct minimizers starting from (t n , m n 0 ) with associated multipliers u n,1 and u n,2 respectively.

Since the problem with initial condition (t 0 , m 0 ) has a unique minimizer, it follows from Lemma 1.5 that, for i = 1, 2, the (m n,i , α n,i )'s converge to (m, α) in C 0 ([0, T ]; P 1 (R d )) × C δ/2δ while the u n,i 's, Du n,i 's and D 2 u n,i 's converge to u, Du and D 2 u respectively in C δ/2,δ .

Set

θ n = Du n,1 -Du n,2 C δ/2,δ + sup t∈[t0,T ] d 1 (m n,1 (t), m n,2 (t))
and note that, since (m n,1 , α n,1 ) and (m n,2 , α n,2 ) are distinct, θ n > 0 and, in view of the previous discussion, θ n → 0, and, finally,

θ n ≤ C Du n,1 -Du n,2 C δ/2,δ . (2.20)
This last estimate follows from the fact that again the uniform parabolicity implies that the D 2 u n,i 's are uniformly bounded. Applying Gronwall's inequality to the stochastic differential equations associated with the Kolmogorov equations satisfied by m n,1 and m n,2 , we find the distance sup

[tn,T ] d 1 (m n,1 (t), m n,2 (t)) is controlled by C Du n,1 -Du n,2 ∞ and thus by C Du n,1 -Du n,2 C δ/2,δ . Next we introduce the differences z n = (u n,1 -u n,2 )/θ n , µ n = (m n,1 -m n,2 )/θ n and observe that          -∂ t z n -∆z n + H p (x, Du n,1 ) • Dz n = δF δm (x, m n,1 (t))(µ n (t)) + R n,1 , ∂ t µ n -∆µ n -div(H p (x, Du n,1 )µ n ) -div(H pp (x, Du n,1 )Dz n m n,1 ) = div(R 2,n ), µ n (t 0 ) = 0, z n (T, x) = δG δm (x, m n,1 (T ))(µ n (T )) + R 3,n with R n,1 =(θ n ) -1 H(x, Du n,2 ) -H(x, Du n,1 ) -H p (x, Du n,1 ) • (Du n,2 -Du n,1 ) -F (x, m n,2 (t)) -F (x, m n,1 (t)) - δF δm (x, m n,1 (t))(m n,2 (t) -m n,1 (t)) , R n,2 = -(θ n ) -1 H p (x, Du n,2 )m n,2 -H p (x, Du n,1 )m n,1 -H p (x, Du n,1 )(m n,2 -m n,1 )
-H pp (x, Du n,1 )(Du n,2 -Du n,1 )m n,1 ) , and

R n,3 = -(θ n ) -1 G(x, m n,2 (T )) -G(x, m n,1 (T )) - δG δm (x, m n,1 (T ))(m n,2 (T ) -m n,1 (T )) .
It follows from the regularity of F , G and H and the definition of

θ n that R n,1 C δ/2,δ + R n,3 C 2+δ + sup t∈[t0,T ] R n,2 (t) (W 1,∞ ) ≤ Cθ n . (2.21) 
However, Lemma 2.1 yields that the sequence (z n ) n∈N tends to 0 in C (1+δ)/2,1+δ , which contradicts (2.20).

The smoothness of U in O. We prove here Theorem 1.1.

Before we present the arguments, we state below as lemma a preliminary fact that is needed to establish the regularity of U. It is about a stability property in the appropriate norms for the multipliers associated with minimizers starting in O. In turn, this will allow us to compute the derivative of U with respect to m. Its proof is presented at the end of this subsection.

Lemma 2.8. Assume (1.5) and fix (t 0 , m 0 ) ∈ O. There exists δ, C > 0 such that, for any t 0 , m 1 0 , m 2 0

satisfying (t 0 , m i 0 ) ∈ O, |t 0 -t 0 | < δ, d 2 (m 0 , m i 0 ) < δ, if (m i , α i
) is the unique minimizer starting from (t 0 , m i 0 ) with associated multiplier u i for i = 1 and i = 2, then

u 1 -u 2 C (2+δ)/2,2+δ + sup t∈[t 0 ,T ] d 2 (m 1 (t), m 2 (t)) ≤ Cd 2 (m 1 0 , m 2 0 ).
We continue with the proof of Theorem 1.1 which consists of three parts. In the first, we establish the regularity of U in O. In the second, we show that the infinite dimensional Hamilton-Jacobi equation (1.9) is satisfied in O. Finally, the third part is about (1.10).

Proof of Theorem 1.1. Part 1: The regularity of U. Lemma 1.7 yields the Lipschitz continuity of U.

We establish that U is differentiable at any (t 0 , m 0 ) ∈ O. We fix such a (t 0 , m 0 ). Let (m, α) be the unique stable minimizer for U(t 0 , m 0 ) and u its associated multiplier. We check that D m U(t 0 , m 0 , •) exists and is given by Du(t 0 , •).

Let δ > 0 and δ ∈ (0, δ) be such that the δ-neighborhood of the [0, T ]

× P 2 (R d )-compact set {(t, m(t)) : t ∈ [t 0 , T ]} is contained in O, and, for any m 1 0 ∈ B(m 0 , δ ), sup t∈[t0,T ] d 1 (m(t), m 1 (t)) < δ, where (m 1 , α 1 ) is the minimizer for U(t 0 , m 1 0 ). Fix m 1 0 ∈ B(m 0 , δ ). Let (m 1 , α 1
) be the minimizer for U(t 0 , m 1 0 ), u 1 its associated multiplier, (z, µ) the solution of the linearized system (2.15) with initial condition µ(0

) = m 1 0 -m 0 , set (w, ρ) = (u 1 -u -z, m 1 -m -µ)
and note that (w, ρ) satisfies the linearized system (2.2) with ξ = 0,

R 1 = -(H(x, Du 1 )-H(x, Du)-H p (x, Du)•(Du 1 -Du))+F (x, m 1 )-F (x, m)- δF δm (x, m(t))(m 1 (t)-m(t)), R 2 =H p (x, Du 1 )m 1 -H p (x, Du)m -H p (x, Du)(m 1 -m) -H pp (x, Du) • (Du 1 -Du)m,
and

R 3 = G(x, m 1 ) -G(x, m) - δG δm (x, m(t))(m 1 (t) -m(t)).
Then, using Lemma 2.8, we get

R 1 C δ/2,δ + R 3 C 2+δ + sup t∈[t0,T ] R 2 (t) (W 1,∞ ) ≤ Cd 2 1 (m 1 0 , m 0 )
and, in view of Lemma 2.1,

u 1 -u -w C (2+δ)/2,2+δ + sup t∈[t0,T ] m 1 (t) -m(t) -µ(t) (C 2+δ ) ≤ Cd 2 1 (m 1 0 , m 0 ).
Recall that α 1 = -H p (x, Du 1 ). Thus

α 1 = α -H pp (x, Du).Dw + o(d 1 (m 1 0 , m 0 )). where o(•) is small in uniform norm. It follows that U(t 0 , m 1 0 ) = ˆT t0 ˆRd L(x, α 1 )m 1 + F(m 1 ) dt + G(m 1 (T )) = U(t 0 , m 0 ) + ˆT t0 ˆRd D α L(x, α) • (-H pp (x, Du)Dwm + L(x, α)µ(t, x) + F (x, m(t))µ(t, x) dxdt + ˆRd G(x, m(T ))µ(T, x)dx + o(d 1 (m 1 0 , m 0 )).
On the other hand, recalling the equations satisfied by u and µ and using duality we find

ˆRd G(x, m(T ))µ(T, x)dx - ˆRd u(t 0 , x)(m 1 0 -m 0 )(dx) = ˆT t0 ˆRd (H(x, Du) -F (x, m(t)) -H p (x, Du) • Du)µ -H pp (x, Du)Du • Dwm .
Thus,

U(t 0 , m 1 0 ) = U(t 0 , m 0 ) + ˆRd u(t 0 , x)(m 1 0 -m 0 )(dx) + ˆT t0 ˆRd (H(x, Du) -H p (x, Du) • Du + L(x, α))µ -(H pp (x, Du)Du • Dw + D α L(x, α) • (H pp (x, Du)Dw))m dxdt + o(d 1 (m 1 0 , m 0 ))
In view of the relationship (convex duality) between H and L and the fact that α = -H p (x, Du), we have D α L(x, α) = -Du and, therefore,

H(x, Du) -H p (x, Du) • Du + L(x, α) = 0 and H pp (x, Du)Du • Dw + D α L(x, α) • (H pp (x, Du)Dw) = 0.
Thus,

U(t 0 , m 1 0 ) = U(t 0 , m 0 ) + ˆRd u(t 0 , x)(m 1 0 -m 0 )(dx) + o(d 1 (m 1 0 , m 0 )).
It follows that U(t 0 , •) has a linear derivative at m 0 given by u(t 0 , •) and, hence,

D m U (t 0 , m 0 , x) = Du(t 0 , x).
Recalling the stability of the map m 0 → (u, m) proved in Lemma 1.5, we actually have that

(t 0 , m 0 ) → D m U (t 0 , m 0 , •) is continuous in O with the respect to the d 2 -distance for the measure variable into C 2 .
Part 2: The Hamilton-Jacobi equation. Next we show that U is a classical solution to (1.9).

Using the notation of Part 1 and the dynamic programming principle with h > 0 small, we find It follows that ∂ t U(t 0 , m 0 ) exists and is given by

U(t 0 , m 0 ) = ˆt0+h t0 ˆRd L(x,
∂ t U(t 0 , m 0 ) = - ˆRd L(x, α(t 0 , x))m 0 (dx) -F(m 0 ) - ˆRd TrD 2 ym U(t 0 , m 0 , y) + D m U(t 0 , m 0 , y) • H p (t 0 , Du(t 0 , y)) m 0 (dy).
Since Du(t 0 , x) = D m U(t 0 , m 0 , x) and α(t 0 , x) = -H p (x, Du(t 0 , x)), (1.9) is then satisfied.

Part 3: The regularity of D m U. We prove that (1.10) holds.

Let δ, C > 0 be given by Lemma 2.8. For any t ∈ (t 0 -δ, t 0 + δ) and m 2 0 , m 2 0 ∈ P 2 (R d ) with d 2 (m 0 , m 1 0 ) < δ, d 2 (m 0 , m 2 0 ) < δ, (t, m 1 0 ) ∈ O and (t, m 2 0 ) ∈ O, and for any x 1 , x 2 ∈ R d , let u 1 (respectively u 2 ) be the multiplier associated with the unique minimizer (m 1 , α 1 ) for U(t, m 1 0 ) (respectively with the unique minimizer (m 2 , α 2 ) for U(t, m 2 0 )).

Since, as already established, D m U(t, m 1 0 , x 1 ) = Du 1 (t, x 1 ) and D m U(t, m 2 0 , x 2 ) = Du 2 (t, x 2 ), we find, using Lemma 1.3 and Lemma 2.8, that

D m U(t, m 1 0 , x 1 ) -D m U(t, m 2 0 , x 2 ) ≤ Du 1 (t, x 2 ) -Du 2 (t, x 2 ) + D 2 u 1 ∞ |x 1 -x 2 | ≤ C(d 2 (m 1 0 , m 2 0 ) + |x 1 -x 2 |).
We conclude with the remaining proof.

Proof of Lemma 2.8. Let (m, α) be the unique stable minimizer starting from (t 0 , m 0 ) with multiplier u. It follows from Lemma 2.5 that the associated linear system (2.15) is strongly stable.

We set V = -H p (x, Du) and Γ = -H pp (x, Du), consider the neighborhood V (in the local uniform convergence) of (V, Γ) given in Lemma 2.1, and choose δ > 0 so that, for any m 1 0 such that d 2 (m 0 , m 1 0 ) < δ, we have that

(V 1 , Γ 1 ) ∈ V, with V 1 = -H p (x, Du 1
) and Γ 1 = H pp (x, Du 1 ), u 1 being the multiplier associated with the optimal solution (m 1 , α 1 ) for U(t 0 , m 1 0 ). The above is possible since, if δ is small, then, in view of Lemma 1.5, u 1 is close to u in C δ/2,δ . Furthermore, choosing, if necessary, δ even smaller, we have that, for some η > 0 to be chosen below, and, for any t 0 , m i 0 , (m i , α i ) and u i as above such that |t 0 -t 0 | < δ and d 2 (m 0 , m i 0 ) < δ for i = 1 and i = 2,

u 1 -u 2 C (2+δ)/2,2+δ + sup t∈[t 0 ,T ] d 2 (m 1 (t), m 2 (t)) ≤ η. (2.22) 
Classical estimates on the Kolmogorov equation (see, for instance, [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF]) yield that, for t 0 , m i 0 , (m i , α i ) and u i as above, we have sup

t∈[t 0 ,T ] d 2 (m 1 (t), m 2 (t)) ≤ C(d 2 (m 1 0 , m 2 0 ) + Du 1 -Du 2 ∞ ), (2.23) 
for a constant C depending on T , H and D 2 u i ∞ , which is uniformly bounded by Lemma 2.3. Then the pair (z, µ) = (u 1 -u 2 , m 1 -m 2 ) satisfies the linearized system (2.2) with

V (t, x) = -H p (x, Du 2 ), Γ = -H pp (x, Du 2 ), ξ = m 1 0 -m 2 0 , R 1 = -(H(x, Du 1 ) -H(x, Du 2 ) -H p (x, Du 2 ) • (Du 1 -Du 2 )) + F (x, m 1 (t)) -F (x, m 2 (t)) - δF δm (x, m 2 (t))(m 1 (t) -m 2 (t)), R 2 = H p (x, Du 1 )m 1 -H p (x, Du 2 )m 2 -H p (x, Du 2 )(m 1 -m 2 ) -H pp (x, Du 2 ) • (Du 1 -Du 2 )m 2 = (H p (x, Du 1 ) -H p (x, Du 2 ))(m 1 -m 2 ) + (H p (x, Du 1 ) -H p (x, Du 2 ) -H pp (x, Du 2 ) • (Du 1 -Du 2 ))m 2 ,
and

R 3 = G(x, m 1 ) -G(x, m 2 ) - δG δm (x, m 2 (t))(m 1 (t) -m 2 (t)).
Note that

R 2 =(H p (x, Du 1 ) -H p (x, Du 2 ))(m 1 -m 2 ) + (H p (x, Du 1 ) -H p (x, Du 2 ) -H pp (x, Du 2 ) • (Du 1 -Du 2 ))m 2 . Thus M = ξ (W 1,∞ ) + R 1 C δ/2,δ + R 3 C 2+δ + sup t∈[t 0 ,T ] R 2 (t) (W 1,∞ ) ≤ d 1 (m 1 0 , m 2 0 ) + C{ Du 1 -Du 2 2 C δ/2,δ + sup t d 2 2 (m 1 (t), m 2 (t))}.
It follows from Lemma 2.1 that

u 1 -u 2 C (2+δ)/2,2+δ ≤ C{d 1 (m 1 0 , m 2 0 ) + Du 1 -Du 2 2 C δ/2,δ + sup t d 2 2 (m 1 (t), m 2 (t))}.
Hence, choosing η > 0 small enough in (2.22), we find Going back to the previous inequality on u 2 -u 2 C (2+δ)/2,2+δ completes the proof.

u 1 -u 2 C (2+δ)/2,2+δ ≤ C{d 1 (m 1 0 , m 2 

The propagation of chaos

We present the proof of Theorem 1.2, which consists of several steps each of which is stated below as separate lemma.

In preparation, we fix (t 0 , m 0 ) ∈ O with M d+5 (m 0 ) < +∞ and let (m, α) be the unique minimizer for U(t 0 , m 0 ).

It follows from Theorem 1.1 and the compactness of the curve {(t, m(t)) : t ∈ [t 0 , T ]} that there exists δ, C > 0 such that, for any t 1 ∈ [t 0 , T ], t ∈ (t 1 -δ, t 1 + δ) and m 1 0 , m 2 0 ∈ P 2 (R d ) with d 2 (m(t 1 ), m 1 0 ) < δ, d 2 (m(t 1 ), m 2 0 ) < δ, (t 1 , m 1 0 ) ∈ O and (t 1 , m 2 0 ) ∈ O, and

x 1 , x 2 ∈ R d , |D m U(t 1 , m 1 0 , x 1 ) -D m U(t 1 , m 2 0 , x 2 )| ≤ C(|x 1 -x 2 | + d 2 (m 1 0 , m 2 0 )). (3.1) 
For σ ∈ (0, δ), set

V σ = {(t, m ) ∈ [t 0 , T ] × P 2 (R d ) : d 2 (m , m(t)) < σ} and V N σ = {(t, x) ∈ [0, T ] × (R d ) N : (t, m N x ) ∈ V σ }. We consider the solution (X N t ) t∈[t0,T ] = (X N,1 t , . . . , X N,N t ) t∈[t0,T ] to dX N,j t = Z j - ˆt t0 H p (X N,j s , D m U(s, m N X N s , X N,j s ))ds + √ 2(B j s -B j t0 ), (3.2) 
on the time interval [t 0 , τ N ], where the stopping time τ N is defined by

τ N = inf t ∈ [t 0 , T ], (t, X N t ) / ∈ V N δ/2
or τ N = T , if there is no such a t.

Note that, in view of (3.1), X N is uniquely defined.

Set

τ N = inf{t ∈ [t 0 , τ N ], (t, Y N t ) / ∈ V N δ } or τ N = τ N is there is no such a t. (3.3) 
Lemma 3.1. Assume (1.5). There is a constant C > 0 depending on (t 0 , m 0 ) such that

E sup t∈[t0,τ N ] d 1 (m N X N t , m(t)) ≤ CN -1/(d+8) (3.4) and P τ N < T ≤ CN -1/(d+8) .
Proof. The proof is standard and relies on propagation of chaos estimates; see, for instance, the proof of Theorem 5.6 in [START_REF] Delarue | From the master equation to mean field game limit theory: Large deviations and concentration of measure[END_REF].

Let X N,i be the i.i.d. solutions to

d X N,i t = -H p ( X N,j t , D m U(t, m(t), X N,i t ))dt + √ 2dB j t X N,i t0 = Z i , which exist on [t 0 , T ], in view of the global Lipschitz property of D m U(t, m(t), •).
Then (3.4) is an easy consequence of the inequality

E sup t∈[0,T ] d 2 2 (m N X N t , m(t)) ≤ CN -2/(d+8) ,
which follows from Theorem 3.1 in Horowitz and Karandikar [START_REF] Horowitz | Mean rates of convergence of empirical measures in the Wasserstein metric[END_REF], for some C depending only on (t 0 , m 0 ) through the regularity of D m U in V δ .

Then

P τ N < T ≤ P sup t∈[t0,τ N ] d 1 (m N X N t , m(t)) ≥ δ/2 ≤ Cδ -1 N -1/(d+8) .
Next, for (t, x) ∈ V N δ , we set

U N (t, x) = U(t, m N x ). It is immediate that U N is C 1,1 on V N
δ and (see, for example, [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF])

D x j U N (t, x) = 1 N D m U(t, m N x , x j ) and |D 2 x j x j U N (t, x) - 1 N D 2 ym U(t, m N x , x j )| ≤ C N 2 . Finally, U N satisfies      -∂ t U N (t, x) - N j=1 ∆ x j U N (t, x) + O N (t, x) + 1 N N j=1 H(x j , N D x j U N (t, x)) = F(m N x ) in V N δ , U N (T, x) = G(m N x ) on (R d ) N , (3.5) 
where

|O N (t, x)| ≤ CN -1
a.e.. 

E ˆ τ N t0 N -1 j |H p (Y N,j t , N D x j U N ) -H p (Y N,j t , N D x j V N )| 2 dt ≤ C(N -1 + R N ),
where R N = U N -V N ∞ and U N , V N and their derivatives are evaluated at (t, Y N t ).

Proof. For t ∈ [t 0 , τ N ] and, in view of (3.6), we have

dU N (t, Y N t ) = (∂ t U N + j ∆ x j U N - j H p (Y N,j t , N D x j V N ) • D x j U N )dt + √ 2 j D x j U N • dB j t = ( 1 N j H(Y N,j , N D x j U N (t, Y N t )) - j H p (Y N,j t , N D x j V N ) • D x j U N + O N -F(m N Y N t ))dt + √ 2 j D x j U N • dB j t ≥ ( 1 N j (-L(Y N,j , -H p (Y N,j t , N D x j V N )) + C -1 |H p (Y N,j t , N D x j U N ) -H p (Y N,j t , N D x j V N )| 2 ) -CN -1 -F(m N Y N t ))dt + √ 2 j D x j U N • dB j t ,
the inequality following from the uniform convexity of H in bounded sets.

We take expectations and integrate between t 0 and τ N above to get

E U N ( τ N , Y N τ N ) -E U N (t 0 , Z N ) ≥ E ˆ τ N t0 ( 1 N j -L(Y N,j , -H p (Y N,j t , N D x j V N )) + C -1 |H p (Y N,j t , N D x j U N ) -H p (Y N,j t , N D x j V N )| 2 -CN -1 -F(m N Y N t ))dt .
Rearranging, using the definition of R N , the dynamic programming principle and the optimality of

Y N for V N (t 0 , Z N ) we find E U N (t 0 , Z N ) + E ˆ τ N t0 1 CN j |H p (Y N,j t , N D x j U N ) -H p (Y N,j t , N D x j V N )| 2 dt ≤ E ˆ τ N t0 ( 1 N j L(Y N,j , -H p (Y N,j t , N D x j V N )) + CN -1 + F(m N Y N t ))dt + V N ( τ N , Y N τ N ) + R N ≤ E V N (t 0 , Z N ) + CN -1 + R N ,
and, using once more the definition of R N , we get

E ˆ τ N t0 1 CN j |H p (Y N,j t , N D x j U N ) -H p (Y N,j t , N D x j V N )| 2 dt ≤ CN -1 + 2R N .
Lemma 3.3 (Convergence of optimal trajectories). For X N = (X N,i ) and Y N = (Y N,i ) defined by (3.2) and (1.11) respectively, we have

E   sup s∈[t0, τ N ] N -1 j |X N,j s -Y N,j s |   ≤ C(N -1 + R N ) 1/2 and P τ N < T ≤ C(N -1/(d+8) + (R N ) 1/2 ).
Proof. Lemma 3.2, the regularity of U N in (3.1) and an application of Gronwall's inequality give the first inequality since, for any t ∈ [t 0 , T ],

E   sup s∈[t0,t∧ τ N ] N -1 j |X N,j s -Y N,j s |   ≤ E ˆt∧ τ N t0 N -1 j |H p (Y N,j t , N D x j U N (t, Y N t )) -H p (Y N,j t , N D x j V N (t, Y N t ))|dt + E ˆt∧ τ N t0 N -1 j |H p (Y N,j t , N D x j U N (t, Y N t )) -H p (X N,j t , N D x j U N (t, X N t ))|dt ≤ C(N -1 + R N ) 1/2 + CN -1 j E ˆt∧ τ N t0 |X N,j s -Y N,j s |ds .
Then,

P τ N < T ≤ P τ N < T + P   sup s∈[t0, τ N ] N -1 j |X N,j s -Y N,j s | > δ/2   ≤ CN -1/(d+8) + Cδ -1 (N -1 + R N ) 1/2 .
We can proceed now with the proof of the propagation of chaos property.

Proof of Theorem 1.2. It is immediate that

E sup s∈[t0, τ N ] d 1 (m N Y N s , m(s)) ≤ E sup s∈[t0, τ N ] d 1 (m N Y N s , m N X N s ) + E sup s∈[t0, τ N ] d 1 (m N X N s , m(s)) ≤ E   sup s∈[t0, τ N ] N -1 j |X N,j s -Y N,j s |   + E sup s∈[t0, τ N ] d 1 (m N X N
s , m(s)) .

(3.7) Lemma 3.3 gives that the first term in the right-hand side of (3.7) is not larger than C(N -1 +R N ) 1/2 , where R N can be estimated by Proposition 1.8, while Lemma 3.1 implies that the second term in the right-hand side of (3.7) is not larger than CN -1/(d+8) .

Thus, for some γ depending on d only and C depending on the initial condition (t 0 , m 0 ),

E sup s∈[t0, τ N ] d 1 (m N Y N s , m(s)) ≤ CN -γ .
Finally, we have Proof. A fact similar to Lemma 1.6 was given in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] for the torus and for smooth initial data. Here, we extend the argument for the whole space and general initial conditions and slightly simplify it.

We begin with the existence of a solution to (1.14), the uniqueness being obvious in view of the regularity of α.

Fix β ∈ C ∞ c ((t 0 , T ] × R d ; R d ) and note that the product mβ is smooth, because the only singularity of m is at time t 0 . Thus, there exists a unique classical solution to (1.14).

In order to prove its regularity, fix t 0 < t 1 < t 2 , ξ ∈ C 2+δ (R d ), let w be the solution to

-∂ t w -∆w -α(t, x) • Dw = 0 in (t 0 , T ) × R d w(t 2 ) = ξ in R d ,
and note that, for a constant C depending only on the data of the problem, since the regularity of α depends only on the data of the problem, The quantity J(m , α ) is defined, for instance, for m ∈ C 0 ([t 0 , T ], P 1 (R d )) and α ∈ C 0 ([t 0 , T ] × R d ; R d ). Let β ∈ C ∞ c ((t 0 , T ] × R d ) and ρ be the classical solution to (1.14), and, for h > 0 small, let m h ∈ C 0 ([t 0 , T ], P 1 (R d )) be the solution to ∂ t m h -∆m h + div(m h (α + hβ)) = 0 in (t 0 , T ) × R d and m h (t 0 ) = m 0 in R d .

w ∞ + Dw ∞ ≤ C ξ W
Then m h = m + hρ + h 2 ξ h , where ξ h solves in the sense of distribution ∂ t ξ h -∆ξ h + div(ξ h (α + hβ)) + div(βρ) = 0 in (t 0 , T ) × R d and ξ h (t 0 ) = 0 in R d .

The regularity of α, β and ρ imply that ξ h ∞ ≤ C, with C depending on β, and, as h → 0, the (ξ h )s converges weakly in L ∞ -weak- * to the solution ξ of the same equation with h = 0.

Then The first-order necessary optimality condition implies that the factor of h above vanishes and, therefore, the limit as h vanishes of the term in h 2 is nonnegative. Inserting the last equality in the previous inequality yields the second-order optimality condition when β is smooth. The general case is obtained by approximation using the estimates in the first part of the proof.

J

  with all derivatives up to order 4 uniformly bounded.(1.4) For simplicity, in what follows we put together all the assumptions above in assume that (1.1), (1.2), (1.3) and (1.4) hold.(1.5)

Theorem 1 . 1 .

 11 Assume (1.5). The value function U is globally Lipschitz continuous on [0, T ] × P 1 (R d ) and of class C 1 in the set O, which is open and dense in [0, T ] × P 2 (R d ). Moreover, U is a classical solution in O of the master Hamilton-Jacobi equation -∂ t U(t, m) -ˆRd div(D m U(t, m, y))m(dy) + ˆRd H(y, D m U(t, m, y))m(dy) = F(m).

  )

Theorem 2 . 7 .

 27 Assume (1.5). The set O is open and dense in [0, T ) × P 2 (R d ).

(3. 6 ) 3 . 2 .

 632 Lemma Let Y N = (Y N,i ) i=1,...,N and τ N be defined by(1.11) and (3.3) respectively. Then,

2 ≤

 2 CN -γ + C(N -1/(d+8) + (R N ) 1/2 ) 1/2 , the last inequality coming from Lemma 3.3 and the facts that, since, in view of Lemma 1.3, m(s) has a uniformly bounded second-order moment and, by Lemma 1.7, the drift of the process Y N is also uniformly bounded, (s)) ≤ C Using once more Proposition 1.8, we get that, for a new constant γ ∈ (0, 1) depending on d only and a new constant C depending on the initial condition (t 0 , m 0 ),E sup s∈[t0,T ] d 1 (m N Y N s , m(s)) ≤ C N -γ .Appendix A. The proof ofLemma 1.6 

  ) ξ W 1,∞ .The last estimates proves the existence of a solution ρ forβ ∈ C 0 ([t 0 , T ] × R d ; R d ) or for β ∈ L ∞ vanishing near t = t 0 by approximation. Next, let J(m , α ) = ˆT t0 ( ˆRd L(x, α (t, x))m (t, dx) + F(m (t)))dt + G(m (T )).

  T ))(ξ h (T )) + δ 2 G δm 2 (m(T ))(ρ(T ), ρ(T )) + o(h 2 ).

  in [t 1 , T ] × R d with σ = 1,which by the standard parabolic regularity is actually classical.

						An elementary calculation
	yields				
	ˆT t1 ˆRd	H pp (x, Du(t, x))Dz • Dz mdx +	δF δm	(•, m(t)), µ(t), µ(t) dt	(2.19)
		+	δG δm	(•, m(t))(µ(t)), µ(t) = 0.
	Using Lemma 1.6, we know that, for any	

  1,∞ and wC δ/2,δ + Dw C δ/2,δ ≤ C ξ C 2+δ . W 1,∞ ≤ C(t 2 -t 1 ) δ/2 ξ C 2+δ using (A.2) we find ˆRd (ρ(t 2 , x) -ρ(t 1 , x))ξ(x)dx = ˆRd (w(t 1 , x) -w(t 2 , x))ρ(t 1 , x)dx -Dw(t, x)m(t, dx)dx ≤ w(t 1 , •) -w(t 2 , •) W 1,∞ ρ(t 1 , •) (W 1,∞ ) + C(t 2 -t 1 ) 1/2 β L 2 m ([0,T ]×R d ) Dw ∞ ≤ C(t 2 -t 1 ) δ/2 β(t, •) L 1 m ([0,T ]×R d ) ξ C 2+δ + C(t 2 -t 1 ) 1/2 β L 2 m ([0,T ]×R d

				(A.1)
	Then,		
	ˆRd	ˆRd	ˆt2
	ρ(t 2 , x)ξ(x)dx =	w(t 1 , x)ρ(t 1 , x)dx -	
		ˆt2 t1 ˆRd	β(t, x) •

t1 ˆRd β(t, x) • Dw(t, x)m(t, dx)dx, and, choosing t 1 = t 0 and t 2 arbitrary in [t 0 , T ], we get

sup t∈[t0,T ] ρ(t) (W 1,∞ ) ≤ β(t, •) L 1 m ([0,T ]×R d ) . (A.2)

In addition, since, thanks to (A.1), w(t 1 , •) -w(t 2 , •)

  (m h , α + hβ) = ˆT t0 ˆRd L(x, α + hβ)m h (t, dx) + F(m h (t)) dt + G(m h (T )) = J(m, α) + h ˆT t0 ˆRd D α L(x, α) • β(t, x)m(t, dx) +

					ˆRd
					L(x, α)ρ(t, x)dx
	+	+ 2 ˆT t0 ˆRd δF δm h 2	(m(t))(ρ(t)) dt + D	δG δm	(m(T ))(ρ(T ))

αα L(x, α)β(t, x) • β(t, x)m(t, dx) + 2 ˆRd D α L(x, α) • β(t, x)ρ(t, x)dx + ˆRd 2L(x, α)ξ h (t, x)dx + 2 δF δm (m(t))(ξ h (t)) + δ 2 F 2 δm (m(t))(ρ(t), ρ(t)) dt

  Using the equation satisfied by the multiplier u and the equation satisfied by ξ we find

	+	ˆRd	2L(x, α)ξ(t, x)dx + 2	δF δm	(m(t))(ξ(t)) +	δ 2 F 2 δm	(m(t))(ρ(t), ρ(t)) dt
	+ 2 (L(x, α)ξ(t, x)dx + δG δm (m(T ))(ξ(T )) + δF δm (m(t))(ξ(t)))dt + δ 2 G δm ˆT t0 ˆRd = ((-H(x, Du) -α • Du)ξ(t, x)dx + δm δG δF (m(T ))(ξ(T )) δm (m(t))(ξ(t)))dt + ˆT t0 ˆRd = -ˆT t0 ˆRd Du(t, x) • β(t, x)ρ(t, x)dxdt = -ˆT t0 ˆRd D α L(x, α) • β(t, x)ρ(t, x)dxdt. δG δm (m(T ))(ξ(T ))

Thus

ˆT t0 ˆRd

D αα L(x, α)β(t, x) • β(t, x)m(t, dx) + 2 ˆRd D α L(x, α) • β(t, x)ρ(t, x)dx 2 (m(T ))(ρ(T ), ρ(T )) ≥ 0.
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