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Machine Learning-Enabled Competitive Grain Growth Behavior Study in Directed Energy Deposition Fabricated Ti6Al4V

Directed energy deposition (DED) of titanium alloys is a rapidly developing technology due to its flexibility in freeform fabrication and remanufacturing. However, the uncertainties of solidification microstructure during deposition process are limiting its development. This paper presents an artificial neural network (ANN) to investigate the relation between grain boundary tilt angle and three causative factors, namely thermal gradient, crystal orientation and Marangoni effect. A series of wire feedstock DED, optical microscope (OM) and electron backscatter diffraction (EBSD) experiments were carried out under Taguchi experimental design to gather the training and testing data for ANN. Compared to the conventional microstructure simulation methods, the strategy and ANN model developed in this work were demonstrated to be a valid way to describe the competitive grain growth behavior in DED fabricated Ti6Al4V. They can used to achieve a quantitatively microstructure simulation and extended to other polycrystal material solidification process.

Introduction

Titanium alloys are famous for their light weight, high strength, heat and corrosion resistant properties [START_REF] Lütjering | Titanium[END_REF]. In the past few decades, titanium and its alloys are found to be suitable for metal additive manufacturing (MAM). To date, there have been only a limited number of commercial alloys used in MAM, among which Ti6Al4V has attracted lot of research efforts. Directed energy deposition (DED) is an important branch in MAM techniques. It refers to a process that focused high energy beam melts metal materials at exactly they are being deposited and directly fabricate the designed structure. DED is now widely applied in remanufacturing industry; however, uncertainties in DED fabricated Ti6Al4V from microstructure, texture and mechanical properties are restricting its development and application [START_REF] Greitemeier | [END_REF].

It has been observed in research that dendritic column grains grow approximately along the buildup direction in DED fabricated Ti6Al4V [3][4][5][6][7][8][9][10][11]. They are able to grow through multiple layers of the fabricated part. This is an overall result of the cooling condition, nucleation and epitaxial grain growth behavior [12]. In most cases, grains with their preferentially growing directions align with thermal gradient will kill their adjacent grains and even develop into millimeter level after the competitive grain growth. This will become a serious problem and degrade the mechanical properties of the built part, because the cracks have the priority to propagate along these grain boundaries and result in anisotropic mechanical properties in as-built condition. An example is the change of ductility in different loading directions [13][14][15].

Recognizing the interplay between material deposition phenomena and resultant microstructure in MAM is crucial for quality control. Modeling approaches and numerical simulations on multiple scales are ideal tools to save time and experimental cost compared to traditional trial and error methods. These models enable mechanical property predictions from process and material parameters and serve as a guideline for further property optimization. There are currently three methods used in the area of microstructure simulation for MAM, namely Cellular Automata (CA), Phase Field (PF) and kinetic Monte Carlo (KMC). They all have their merits as well as essential defects when applied in the case of MAM. PF method is closely based on physical models and it is most accurate among the three methods; however, it requires massive computation power which makes it only feasible on supercomputers. On the other hand, parameters in PF models are not fully quantified and the rapid solidification condition in MAM makes the problem even more difficult. The CA method requires relatively low computation power and the simulation can be applied in macroscale where it has practical significances. CA models are established based on dendrite tip kinetics which typically assumes local equilibrium, but this assumption is not true for MAM where solidification usually takes place under rapid cooling conditions. As for KMC models, the subgrain microstructure such as cells and dendrites are simplified, in some cases, even the crystal orientations are neglected. Thus, the competitive grain growth behavior described by this method has a relatively weak physical background. Solidification is never an easy problem since it involves the phenomenon of the interface transfer and multiple phase transformation. The problem of the competitive grain growth behavior under transient thermal gradient at the melt pool bottom has not been completely solved.

Machine Learning (ML) has been more and more applied in the fundamental materials research [16]. Within the large group of different ML algorithms, neural networks are among the most popular approaches. Countless possibilities for structure and hyperparameter configurations allow flexibility and thus their application in many environments. The unique advantages of data-driven modeling also include its achievable efficiency. Compared to the mentioned direct simulation methods, it is a more realistic approach when the physics behind are ambiguous and parameters not fully quantified yet. This work aims to establish an artificial neural network (ANN) model to investigate the relation between grain boundary tilt angle from build-up direction in a bi-crystal system (column β grains of Ti6Al4V) and three causative effects, namely thermal gradient, crystal orientation and Marangoni effect. These factors are the inputs to ANN to investigate their influences on the grain boundary tilt angle in DED fabricated Ti6Al4V. The dendritic columnar primary β grains of DED fabricated Ti6Al4V are referred as 'grains' or 'column grains' for simplicity.

Model Development

This model believes a grain boundary angle, under an absolute coordinate system, tilts from the buildup direction because of three causative effects: thermal gradient direction, crystal orientation and Marangoni convection. These three effects on a two-dimensional cross-section will be converted and presented as angles which indicate their effects on the resultant grain boundary tilt angle. The advantage to do so is because angle is a non-dimensional number which can be directly multiplied by its influence coefficient and added with each other without considering the scale. Several assumptions are made in this model to make the data gathering and ML process more practical.

(1) The material deposition in DED process is assumed to be totally epitaxial grain growth without any nucleation. In the network experimentation, data is only gathered between the bicrystals that are not influenced by nucleation effect. (2) The melt pool tail bottom geometry is under double ellipsoid consumption and it is stable during the material deposition process [17]. This offers a mathematical expression of the melt pool geometry which makes the data gathering process and calculation more efficient. (3) Subgrain structures, for example the secondary and higher order dendrites, are ignored because the solid phase transformation eliminates the original solidification microstructure of DED fabricated Ti6Al4V. Also, it cannot be fully reconstructed with electron backscatter diffraction (EBSD) technique. (4) The solidification front is assumed to be strictly attached to the isothermal surface of solidus temperature [18]. The reason of this assumption is that the high thermal gradient achieved by the DED process compresses the mushy zone into an extremely thin film where its thickness can be ignored. (5) The competitive grain growth behavior under an ideal slow solidification rate is assumed to follow the Geometrical Limit (GL) criterion. A detailed derivation can be found in [19]. (6) The grain boundary migration caused by reheating is ignored. To achieve this, the deposition experiment in this study did not exceed a layer number of three.

Following the methodology illustrated in the flow chart (Fig. 1), experiments are launched to extract data and used to train the ANN model for the machine learning process. After optimizing the network's hyperparameters and determining the training configurations leading to the smallest testing error, the ANN model can be used as an engine for the prediction of grain boundary tilt angle with experimental or hypothetical data as an input. Experiments including EBSD, melt pool cross-section observation and grain boundary tilt angle measurement are carried out, then fit in the assumptions and simplifications made. The three causative effects demonstrated in Fig. 2b are vectors representing the benchmark of each effect. The angles between the build-up direction and these vectors mean the limitation of each effect on the resultant grain boundary tilt angle. The coordinate systems for thermal gradient direction measurement and EBSD characterization are exactly under the same Cartesian coordinate system: X axis refers to the scanning direction of melt pool, Y axis to be the normal direction of the X axis on the horizontal plane, and the Z axis is the build-up direction of the DED process. This guarantees the appropriate vector correlation between the three causative effects. The EBSD experiment and data process strategies will be explained in detail in the experimentation section. <001> direction tilt angle of left-hand side and right-hand side grains in a bi-crystal system will be extracted and processed through GL criterion. This criterion believes a continuous interface at the solidification front and the dendrite tip of all preferred grain growth directions ([001] of β grains) grow under the same dendrite tip kinetics. The grain boundary tilt angle calculated based on this criterion limits the grain boundary development by considering the crystal orientation effect alone.

Melt pool geometry is vital for the solidification microstructure developed in DED process and the melt pool bottom geometry is a direct reflection of the solidification condition. In order to accurately measure the thermal gradient direction from experimental specimens, key factors including melt pool width (W), depth (D-d) and geometric tangent direction at the melt pool boundary are measured from fusion lines in y-z cross-section of the samples to reproduce the 2D melt pool bottom geometry. The tilt angle of the melt pool from build-up direction is also measured when there is an overlap between adjacent welds. The thermal gradient direction measurement only takes place at the region where the actual melt pool bottom boundary (fusion line) perfectly matches with the ellipsoid analytical equation. Following the "double ellipsoid approximation", the segment of an ellipsoid can be mathematically defined by:

(

Where L is the length of melt pool tail, with W being half the maximum width, D being the maximum depth of the melt-pool, and d is the displacement in the buildup direction. On the y-z cross-section, where x=0, Eq. (

Taking the differential of Eq. ( 2), we obtain

The boundary shape of melt pool is closely related to the Marangoni effects, which are triggered by the variable surface tension due to temperature and/or solute concentration gradients. The molten metal tends to flow from low surface tension areas to high surface tension areas. If free convection is not significant, a shallow but wide melt pool can be seen when the surface tension-temperature coefficient is negative, while a deep but narrow shape is present with a positive relationship. For relationships such as concave or convex surface tension-temperature profiles, more complex melt-pool profiles are expected. In the case of DED fabricated Ti6Al4V, the surface tension-temperature coefficient is negative and hence the molten metal from the laser exposure area with higher temperature tends to flow towards the boundary of melt-pool and result in a shallow but wide melt pool geometry, as shown in Fig. 2a. The liquid flow is proven in previous work to have influence on the solidification microstructure [20] and grain growth direction [21]. This can be attributed to the influence of liquid flow on the solute concentration at the liquid and solid interface, which leads to constitutional supercooling and affects the tilt angle of the grain boundaries. As the one of the inputs into the ANN model, both tangential direction ( ) and its opposite directions at the melt pool bottom are considered to limit this effect. Another reason the melt pool bottom geometry is vital to the resultant microstructure in DED is because it is a direct reflection of the thermal gradient direction. The normal direction of the liquid and solid interface, which indicates the maximum thermal gradient direction, provides the greatest driven force for grain growth and the grain boundaries naturally tend to follow the thermal gradient direction. In this work, the negative reciprocal value of is the tangent value of the thermal gradient direction on the y-z plane. The principle is the same on the x-y and x-z plane and the thermal gradient direction are shown as red filament in Fig. 2a with their length representing the local curvature.
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Fig 2: Schematic representation of (a) 3D melt pool geometry with the normal direction ( ) and tangential direction ( ) at the melt pool bottom (b) Grain boundary development under the three causative effects 3 Experimentation

The samples were fabricated with a 1 kW YAG solid fiber laser automated welding system using Ti6Al4V ELI wire feedstock under Argon gas protection environment. Taguchi experimental design is used, and the orthogonal arrays are shown in Table 1. The process parameter in terms of laser power, scanning speed and feeding rate are separated into three intensity levels. Due to the intellectual property concern, the detailed deposition process parameters are not disclosed in this paper. To achieve the different cooling condition for the melt pools, the DED experiments are carried out from substrate (specimens 1-9 in Fig. 3) and existing layer (specimens 10-18). Corresponding author. E-mail addresses: yaoyao.zhao@mcgill.ca (Y.F. Zhao) For microstructural observation, the as-fabricated samples were cut along y-z cross-sections and polished. Then, the cross-sections were etched in an etchant (5% HF, 5% H 2 O 2 and 90% H 2 O) for 15s.

After that, an OM (Keyence digital microscope) was used to achieve a metallographic structure observation in several millimeter level. As shown in Fig. 4, the columnar β grains in DED fabricated Ti6Al4V are generally parallel with the build-up direction. The column grains are able to go through the weld bead boundaries (epitaxial grain growth) and achieve a width of 500 µm, even several millimeters in length. Under as-build condition, the solid phase in the column grains are fully martensite with the orthogonal patterns indicating the column grains with different crystal orientations.

The grain boundary angles were measures from OM images with an image segmentation software (Dragonfly). The measurement used a 200 µm line as benchmark length at the melt pool bottom and ignore the grain boundary fluctuation in the melt pool center.

Fig 4: Optical microscope image of columnar β grains on the y-z plane

The EBSD experiment was carried out using a Hitachi SU-3500 scanning electron-microscope equipped with an Oxford EBSD module, and the analysis was under Channel 5 software. In order to measure the exact crystal orientations of the prior β grains, EBSD was carried out near the bottom of the deposited portion, as shown in Fig. 5. However, the solid phase transformation hides the crystal orientation information of prior β grains. Thus, the reconstruction following the Burgers orientation relation (BOR) was carried out using Arpge software [22]. In the right-hand side of Fig. 5, two β grains are reconstructed from the three Euler angle map. The projection of the preferred grain growth direction <001> on a 2D plane is operated under a self-developed MATLAB code based on the rotation The structure of the built feed-forward neural network with two hidden layers is visualized in Fig. 6a. The network's input consists of three different angles: the thermal gradient, the crystal orientation and the Marangoni effect. The input layer is followed by two hidden layers with five and ten neurons, respectively. The last layer of the fully connected network consists of a single neuron that outputs the value for the grain-boundary tilt angle. For this relatively simple ML task, the described structure was found to lead to reasonable results yet not making the model unnecessarily complex. The goal of the learning process is to determine weight and bias terms for each neuron in the network so that the MSE loss at the output layer is as small as possible. The algorithm achieves that via a technique called backpropagation. During training, information is fed in forward-mode through the network. The effect of weight and bias terms of every neuron on the output and thus the error metric is then computed backwards, using the derivative of the error function. The model is trained in epochs, where one epoch denotes that all training instances are fed into the network and backpropagated once. Corresponding author. E-mail addresses: yaoyao.zhao@mcgill.ca (Y.F. Zhao) linear unit function (ReLU) was taken as non-linear activation function and the model was trained for 1,000 epochs.

Due to the small amount of data available for training and testing, the ANN experiences a high variance in its output despite a long training procedure with many epochs. Depending on the choice of training set and testing set, the MSE varies too much to report the result of a single run. Therefore, the ANN was run twenty times with randomly changing training and test sets in order to determine the mean MSE and the corresponding variance. As a result, the neural network scored a mean MSE-loss on training data of 3.45 and 6.42 on testing data. Taking the square root of the error made by the ANN, the average distance between prediction of grain-boundary angle and their experimental results is only 1.83° when training and 2.43° when testing, with a standard deviation of 0.32° and 0.73°, respectively. The worst prediction of the twenty runtimes resulted in an average difference of 3.94° between the model's guess and the true angle. The ANN was compared to a simple linear regression model with stochastic gradient descent that was implemented using the Scikit Learn platform and attempts to find the plane that describes the training data the best. With an average prediction discrepancy of 3.91° after taking the square root this approach performed worse and justifies the usage of a neural network. However, the corresponding standard deviation of 0.21° is slightly better than the one of the ANN.

Compared to earlier attempts with the ANN, adding the Marangoni angle to the model's input helps to improve the performance. This is because the thermal gradient has a greater influence on the grainboundary angle than the crystal orientation and the Marangoni angle is linearly dependent on the thermal gradient (either + or -90°), thus emphasizing this part of the input more.

Conclusions

The research has demonstrated that ANN can be employed to investigate the competitive grain growth behavior in DED fabricated Ti6Al4V efficiently by attributing the grain boundary tilt angle to three causative effects: thermal gradient, crystal orientation and Marangoni effect. Despite the limited amount of experimental data, the strategy and ANN model developed in this work can be employed within a tolerance range of about +/-4°. An average prediction error of 2.43° shows that a feed-forward neural network is an appropriate tool for the task described in this paper. However, for future investigations more experimental data will be generated to improve the model's performance regarding accuracy and stability. The authors of this paper would suggest that a dataset of a few hundred instances obtained from experiments will be able to achieve stable results and a prediction performance within the resolution of experimental instruments. With sufficient dataset input, this ANN can be used as an engine to support the microstructure simulation of DED fabricated Ti6Al4V and further extend to other topics in term of microstructure development in polycrystal material solidification process.
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 1 Fig 1: Flow chart of the methodology of the ANN model establishment

Fig 3 :

 3 Fig 3: Specimens fabricated via wire DED process under the Taguchi experiment design

  Corresponding author. E-mail addresses: yaoyao.zhao@mcgill.ca (Y.F. Zhao) matrix operations of the Euler angles. The crystal orientations which are represented by 2D vectors are transformed into angles between these vectors and the thermal gradient directions then calculated follow the GL criterion. The grain boundary angle result from the criterion is used as the input for ANN model representing the crystal orientation effect. In total 50 groups of data are gathered from experiment and used for the ANN model evaluation in the next section.

Fig 5 :

 5 Fig 5: SEM image and EBSD on the additive portion in y-z plane, and the EBSD result reconstruction from three Euler angles 4 Artificial Neural Network and ResultsThe structure of the built feed-forward neural network with two hidden layers is visualized in Fig.6a. The network's input consists of three different angles: the thermal gradient, the crystal orientation and the Marangoni effect. The input layer is followed by two hidden layers with five and ten neurons, respectively. The last layer of the fully connected network consists of a single neuron that outputs the value for the grain-boundary tilt angle. For this relatively simple ML task, the described structure was found to lead to reasonable results yet not making the model unnecessarily complex. For the implementation of the algorithm, the open source machine learning platform PyTorch was used.

  For the implementation of the algorithm, the open source machine learning platform PyTorch was used. 50 samples from experiments were combined to obtain a dataset and used to train the network after dividing them randomly into training (80%) and test set (20%). The mean squared error (MSE) was chosen as training and evaluation metric. It calculates the squared difference between target value and the output of the model. Thus, far off predictions are penalized exponentially stronger than predictions close to the target value.

Fig 6 :

 6 Fig 6: (a) Structure of the neural network (b) Comparison between experimental data and ANN model.Besides structure and loss-function, the following settings and hyperparameters were identified to perform the best: Adam, an adaptive optimization algorithm capable of adaptively scaling the learning rate depending on the training progress, was chosen with an initial learning rate of 0.001. Rectified

Fig. 6b displays

  Fig. 6b displays the result of the training process visualizing the networks guess for the grain-boundary angle with thermal gradient and crystal orientation as input, neglecting the Marangoni to allow a graphical representation. The red dots represent the 50 training instances obtained from experiments.

Table 1 :

 1 Taguchi experimental design orthogonal arrays

	Deposition on substrate		Deposition on existing layer	
			Parameters				Parameters	
	Specimen Number	Laser Power	Scanning Speed	Wire Feeding Rate	Specimen Number	Laser Power	Scanning Speed	Wire Feeding Rate
	1	1	1	1	10	1	1	1
	2	1	2	2	11	1	2	2
	3	1	3	3	12	1	3	3
	4	2	1	2	13	2	1	2
	5	2	2	3	14	2	2	3
	6	2	3	1	15	2	3	1
	7	3	1	1	16	3	1	1
	8	3	2	1	17	3	2	1
	9	3	3	2	18	3	3	2
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