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Laser powder bed fusion (LPBF) is an additive manufacturing (AM) process widely adopted in multiple industries for various purposes. When LPBF is used for part fabrication, determining the manufacturability of a specific design is a challenge. Therefore, this study aimed to identify a printable design using a novel approach to predict the potential printing failures of a given design via the LPBF process. A voxel-based convolutional neural network (CNN) model is developed for analyzing the design aspect, and a neural network (NN) model is applied to the process aspect. The two models are then combined to predict the manufacturability of the given design in the selected LPBF process settings. The validation samples were selected randomly, and the results verified that the developed model can accurately predict the manufacturability of the specific design. However, the proposed model is restricted by the computational power and the number of training datasets and therefore requires further investigation in this regard.

Introduction

Laser powder bed fusion (LPBF) is a commonly used additive manufacturing (AM) process to develop three-dimensional (3D) objects and affords more freedom in terms of hierarchical and shape complexities than the conventional manufacturing processes [1]. In the LPBF process, a power source melts and fuses the powdered material spread on a layer based on a specific pattern. The process is repeated on each layer until the entire part is completely fabricated [START_REF] Leary | Selective laser melting (SLM) of AlSi12Mg lattice structures[END_REF][START_REF] Sun | 2 -Powder bed fusion processes: An overview[END_REF][START_REF] Redwood | Additive Manufacturing Technologies: An Overview[END_REF][START_REF] Bhavar | A review on powder bed fusion technology of metal additive manufacturing[END_REF]. Various industries, such as automotive, energy, aerospace, tooling, medical, and dental industries, widely utilize the LPBF technique to fabricate numerous components [START_REF] Wohlers | Wohlers report[END_REF]. Although the LPBF process has several advantages, certain limitations exist during its application. For instance, the LPBF process requires an extremely high threshold, and the designers must possess extensive knowledge of the entire process to ensure fabricable designs. The manufacturing process can fail even when an advanced commercial LPBF machine is used owing to the minimum features, support structures, orientation of builds, and other factors. Hence, a manufacturability assessment is critical at the early stage to evaluate the design before the actual fabrication. To identify the manufacturability of a specific design, the printability of the design in the desired shape using the selected LPBF process must be determined [START_REF] Zhang | Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing-a survey[END_REF]. Therefore, this study aimed to predict the completeness of the shape in the printing parts before examining the mechanical performances, as the investigation of mechanical properties becomes futile if the part fails to be printed completely.

The process parameters of the LPBF, material selection, and design characteristics are the three primary aspects that significantly affect manufacturability [START_REF] Zhang | Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing-a survey[END_REF]. To verify the manufacturability of the given design using the LPBF process, it is essential to identify the relationship between these three aspects and the quality of the final product. To this end, numerous studies have investigated the influence of each aspect [START_REF] Aboulkhair | Reducing porosity in AlSi10Mg parts processed by selective laser melting[END_REF][START_REF] Sufiiarov | The effect of layer thickness at selective laser melting[END_REF][START_REF] Pegues | Effect of Specimen Surface Area Size on Fatigue Strength of Additively Manufactured Ti-Al-4V Parts[END_REF][START_REF] Pegues | [END_REF][START_REF] Krauss | Investigations on manufacturability and process reliability of selective laser melting[END_REF][START_REF] Kruth | Benchmarking of different SLS/SLM processes as rapid manufacturing techniques[END_REF][START_REF] Adam | On design for additive manufacturing: evaluating geometrical limitations[END_REF][START_REF] Thomas | The development of design rules for selective laser melting[END_REF]. In terms of manufacturability analysis, the reported techniques include the design guidelines [START_REF] Adam | On design for additive manufacturing: evaluating geometrical limitations[END_REF][START_REF] Thomas | The development of design rules for selective laser melting[END_REF][START_REF] Ameta | Investigating the role of geometric dimensioning and tolerancing in additive manufacturing[END_REF][START_REF] Booth | The design for additive manufacturing worksheet[END_REF][START_REF] Mani | Design Rules for Additive Manufacturing: A Categorization[END_REF][START_REF] Meisel | An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing[END_REF], knowledge management system [START_REF] Wang | A Knowledge Management System to Support Design for Additive Manufacturing Using Bayesian Networks[END_REF], real-time monitoring [START_REF] Grasso | Process defects and in situ monitoring methods in metal powder bed fusion: a review[END_REF][START_REF] Tapia | A review on process monitoring and control in metal-based additive manufacturing[END_REF][START_REF] Li | Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[END_REF], and offline automated manufacturability checker [START_REF] Tedia | Manufacturability analysis tool for additive manufacturing using voxel-based geometric modeling[END_REF][START_REF] Lu | Towards a fully automated 3D printability checker[END_REF]. However, these approaches do not provide automatic manufacturability assessment at the early design stage. Moreover, most studies consider the influence of either the design or the process aspect individually to analyze the manufacturability. Therefore, we propose a machine learning (ML) assisted manufacturability prediction of a specific design in the LPBF process, combining the design and process aspects to fill the gaps in the literature.

In the proposed method, a voxel-based convolutional neural network (CNN) model is used for design analysis, while a neural network (NN) model is applied to the process aspect. The two models are integrated with the selected LPBF process settings to predict the manufacturability of a specific design. The analysis generates a printability map with the potential failure areas of the given design. The proposed method predicts the manufacturability of a given design for the LPBF with adequate accuracy, successfully demonstrating the potential of applying ML in analyzing the manufacturability of any given design in the AM process. The remainder of this paper is structured as follows. Section 2 reviews the existing literature and highlights the novelty of this study. Section 3 provides the details of the proposed methodology followed by the results and discussion in Section 4. The conclusions and possible future work are presented in Section 5.

Literature Review

Numerous approaches exist to model the manufacturability analysis using the LPBF process [START_REF] Zhang | Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing-a survey[END_REF]. The most common approach is to provide a design guideline or worksheet to the designers to evaluate their design independently [START_REF] Booth | The design for additive manufacturing worksheet[END_REF]. In this regard, multiple studies have determined the threshold values of various factors, such as the minimum thickness, maximum number of overhang angles without support, and the best printing orientation in the LPBF process. Although this approach provides a quick design evaluation, it is not very useful for complicated designs as this approach does not indicate how the different printing process parameters or materials affect the final quality of the printed parts. Moreover, the users need to evaluate the design manually by scanning through the checklist before the fabrication is performed.

The second approach is the knowledge management system [START_REF] Wang | A Knowledge Management System to Support Design for Additive Manufacturing Using Bayesian Networks[END_REF], wherein AM knowledge is categorized into several correlated layers. Users utilize this knowledge management system to identify the best suited AM process to fabricate their parts. Although this approach is highly descriptive and declarative, it does not consider the design complexity and the differences in the LPBF machines.

The third approach is the real-time process monitoring [START_REF] Grasso | Process defects and in situ monitoring methods in metal powder bed fusion: a review[END_REF][START_REF] Tapia | A review on process monitoring and control in metal-based additive manufacturing[END_REF][START_REF] Li | Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[END_REF]. Here, the image-based real-time data monitoring detects the potential failures and predicts the printing quality during the process, notifying the users before the fabrication is completed. Despite the development of LPBF process over the years and the availability of several commercial machines in the market, the repeatability and stability in the LPBF processes are still an issue. In such scenarios, real-time monitoring improves the printing process efficiently by identifying the failures that occur in the machines during the printing process. However, it does not aid the design stage and is therefore not applicable to the printing failures that are caused by geometric designs.

Additionally, certain automated manufacturability analysis software, which can be utilized in both industries and academics, are available. Commercialized software, such as Magics, Sculpteo, and 3DXpert determine the minor features depending on the printer resolution. They also optimize the printing orientation and the support structures for the parts. Similar to the aforementioned software programs, Saish [START_REF] Tedia | Manufacturability analysis tool for additive manufacturing using voxel-based geometric modeling[END_REF] proposed a voxel-based geometric model to analyze each manufacturing factor, such as the undersized features, support material generation, void detection, and build-time estimation. Several case studies validated his approach and the results were compared with those obtained using the commercially available software. The model exhibited partial success in predicting the manufacturability of AM. However, it verifies a limited number of factors, including the minimum feature size, best building orientation, and support material. As the effects of the process parameters are not considered, the model cannot identify whether the designs are printable.

ML techniques have been widely used in various applications, such as natural language processing, image detection, self-driven cars, and product recommendations [START_REF] Langley | Applications of machine learning and rule induction[END_REF]. The recent development in ML has widened its applicability in the design and manufacturing field, prompting multiple researchers to investigate the ML approach in AM. The most prominent application of ML is to improve real-time monitoring in the printing process to detect the defects before the fabrication is completed [START_REF] Li | Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[END_REF][START_REF] Yuan | Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting[END_REF][START_REF] Okaro | Automatic fault detection for laser powder-bed fusion using semisupervised machine learning[END_REF][START_REF] Syam | Methodology for the development of in-line optical surface measuring instruments with a case study for additive surface finishing[END_REF][START_REF] Imani | Deep learning of variant geometry in layerwise imaging profiles for additive manufacturing quality control[END_REF]. Additionally, several studies have identified certain AM metrics, such as part mass, support material mass, build time [START_REF] Williams | Design repository effectiveness for 3D convolutional neural networks: Application to additive manufacturing[END_REF], and fatigue performance [START_REF] Zhang | High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[END_REF][START_REF] Wan | Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[END_REF], to determine the manufacturability. In our study, the ML method predicts the manufacturability of the entire part to be fabricated, indicating the failures at the design stage of the LPBF process.

The proposed model is inspired by the application of ML in biomedical engineering, wherein several well-developed ML models detect and locate brain tumors efficiently [START_REF] Çiçek | 3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Bui | 3D densely convolutional networks for volumetric segmentation[END_REF][START_REF] Zhong | 3D fully convolutional networks for co-segmentation of tumors on PET-CT images[END_REF]. Additionally, certain studies have identified CNN as a promising approach in the 3D model analysis [START_REF] Leng | 3D object understanding with 3D convolutional neural networks[END_REF][START_REF] Maturana | Voxnet: A 3d convolutional neural network for real-time object recognition[END_REF][START_REF] Milletari | V-net: Fully convolutional neural networks for volumetric medical image segmentation[END_REF]. The ML model in this study is developed specifically for the LPBF process. Although voxelization and CNN are used to treat the 3D objects in this model, the ML architecture is different compared to that of the existing models. Moreover, the model combines the input variables with the design, material, and printing process, which is a combination of 3D objects, text, and values. To the best of our knowledge, this has not been investigated thus far. Compared to the existing models, the proposed model predicts the manufacturability before the actual fabrication occurs, reducing the lead time and cost. Furthermore, once the model is trained and optimized, the prediction occurs within seconds owing to the hybrid ML approach. Irrespective of the level of AM knowledge, all users can analyze the manufacturability using the proposed model. The model accuracy is expected to increase when more training data are available.

Machine Learning-based Methodology

3.1. The Distinction of the Manufacturability definitions in the LPBF process In the literature, the definition of the manufacturability in the LPBF process is vague [START_REF] Zhang | Machine Learning Assisted Prediction of the Manufacturability of Laser-Based Powder Bed Fusion Process[END_REF]. Depending on the different applications, the required quality of the printed parts typically varies. The effects must be considered at each stage in the general LPBF workflow, including design, fabrication, and post-processing. Thus, a generic definition of manufacturability in the LPBF process is difficult. However, manufacturability can be defined at the design stage, as it considers both the engineering and manufacturability analyses [START_REF] Suri | A new perspective on manufacturing systems analysis[END_REF]. The engineering analysis determines whether the existing design and materials can satisfy the performance requirements. Conversely, manufacturability analysis ensures efficient fabrication of the part based on the selected design, materials, and manufacturing process. In other words, the manufacturability analysis determines whether the specific design can be printed in the desired shape with the selected material using a machine with fixed process parameters. Therefore, the manufacturability of the LBPF process in this research is defined as whether the given design is printed successfully in both geometry and functionality [START_REF] Zhang | Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing-a survey[END_REF]. The geometric requirements indicate the inconsistencies in shape and dimensions between the design and build models. The functional requirements indicate the manufacturing defects and the heterogeneity in properties. In this study, the manufacturing failures include visual defects, such as geometric incompleteness, cracking, and warping [START_REF] Zhang | Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing-a survey[END_REF]. This methodology can be applied to other failures with further investigations.

Proposed Framework for Manufacturability Analysis

Fig. 1 illustrates the proposed framework for the predictive modeling of manufacturability analysis. Although this model is developed for the LPBF process, other AM processes can utilize this model with slight modifications. As indicated in the figure, the three major steps in developing the predictive model are the dataset establishment, preprocessing, and ML architecture development.

Fig. 1. The framework for the proposed predictive modeling of manufacturability analysis in the laser powder bed fusion (LPBF) process

To establish the dataset, training data are collected from three sources. The first one is the experimental data collected from research labs and collaborative industry. The second source is from the literature review. Based on the existing experiments published in the articles, data is extracted in the desired input format to train the ML model. After the entire predictive system is released to the public, any user with access to the entire predictive system can provide new data to train the ML model continuously and improve its accuracy. Although the labeling of the data may vary, the printability map is acceptable owing to the objective of this study, which is to identify the potential failure areas. Moreover, this study targets visual defects that can be easily detected and verified by the users. The training dataset includes the design parameters and all the printing process information. The design parameters are obtained from the printing files, such as STL files, that contain information on the design structure, part placing orientation, and support structures.

Material and printing process information include the critical settings and other necessary details of the printer, and the parameters associated with the printing materials. Finally, the data collected are transferred to the preprocessing step.

In the preprocessing, the design file is converted into a voxelized model. Therefore, the input variables of the ML model comprises two parts: a three-dimensional matrix and text or values representing the design and the material and printing process information, respectively. The material and printing process information in the text format is subjected to one-hot encoding. Subsequently, the training data are converted into the required input variables to be trained for the ML model. Additionally, the ground truths of the targets to be predicted are labeled in the required format in this step. The examples of the processed data are presented in Section 3.4.

The input variables are directed into the ML model to develop the predictive model of the manufacturability. The architecture of the ML model involves identifying the learning algorithms and all the hyperparameters associated with the selected algorithms. The loss functions are optimized to tune the model to identify the ideal parameters and hyperparameters based on the selected algorithm. Finally, the models are compared with different learning algorithms and parameters, and the best model is selected as the predictive model for the manufacturability analysis.

Proposed Machine Learning

Algorithm and Architecture Fig. 2 depicts the flowchart of the developed system to predict the manufacturability of the given design using the LPBF process. The developed system has two potential outputs. The first output is a single metric generated from Model 1, which is a simple yes or no answer. It indicates whether the entire design can be printed completely using the selected LPBF machine. If the part is not printable, it is redirected to Model 2, wherein the potential failure areas are predicted. The two groups of input variables for the ML model are the design parameters and material and printing process information. The design parameters are represented in a 3-dimensional matrix that indicates the occupancy of each voxel. The material and printing process information, which includes machine settings and details of the materials for the printing process, are represented as text or values. Section 3.4 explains the data generation in detail. Output 1 is a single-dimension yes or no result, whereas Output 2 is the printability map with the dimension identical to that of the input data. As the manufacturability analysis system is separated into two ML models, Model 2 analyzes only the non-printable designs, increasing the efficiency of the analysis process. Fig. 2. Flowchart of the developed system Fig. 3 presents the ML architecture of Model 1, wherein the initial prediction of whether the entire part is printable occurs. In the material and printing process, each neuron in one layer is fully connected to the neurons in another layer through the activation function based on the principle of classic NN; these are referred to as dense layers. The frequently used convolution and pooling in the general CNN are applied to the design representations. The final convolutional layer of the design is multi-dimensional, which is flattened and concatenated to the one-dimensional model of the material and printing process information to generate the joint model of the design and process. Subsequently, several dense layers are applied to the joint model, and each neuron in the final layer is fully connected to predict the value of Output 1. The initial steps in predicting Output 2 are similar to those of Model 1. However, the combination of the NN layers of the design and processing information generates a reshaped multi-dimensional layer. Therefore, a transpose convolutional layer is added to the reshaped layer for upsampling the inputs. Subsequently, the transpose convolutional layers are concatenated with the previous convolutional layers, guiding the learning process. Finally, the model is transferred to other convolutional layers to predict Output 2. The number of transpose convolutional layers equals that of the previous convolutional layers. Moreover, the number of layers in each ML operation constitutes the hyperparameters, which can be tuned to achieve the best performance in the ML method. The proposed architectures are inspired by the commonly used models, such as U-Net and VGG16 [START_REF] Çiçek | 3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. However, unlike the architectures in these models, a modified architecture integrating the CNN for 3D objects and the classic NN for text and numerical parameters is developed. Fig. 4. The ML architecture of Model 2 performing the printability map analysis

Loss Function and Evaluation Metrics

The developed ML models are implemented using Python on the NVIDIA GeForce RTX 2080 Ti. The TensorFlow, Keras, and Scikit-learn libraries are used in the implementation. The loss function in the first ML model uses a binary cross-entropy, calculated using equation (1).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 = -(𝐸𝐸 • log(𝐸𝐸) + (1 -𝐸𝐸) • log(1 -𝐸𝐸)) (1) 
where p and 𝐸𝐸̂ represent the ground truth in the training sample and the prediction, respectively. The evaluation metric is based on the accuracy of the prediction.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸 = - 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 ( 2 
)
where TP is the true positive, wherein both the prediction and actual output are YES; TN is the true negative, wherein both the prediction and actual output are NO; FP is the false positive, wherein the prediction is YES, but the actual output is NO; and FN is the false negative, wherein the prediction is NO, but the actual output is YES. The second ML model uses the weighted dice coefficient loss function. The general dice coefficient loss can be calculated using equation (3) [START_REF] Tustison | Introducing Dice, Jaccard, and other label overlap measures to ITK[END_REF].

𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷 𝐴𝐴𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 = - 2𝑇𝑇𝑇𝑇 2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇 = - 2𝑝𝑝•𝑝𝑝 � 𝑝𝑝+𝑝𝑝 � (3) 
Typically, the dice coefficient loss is the sum of each class involved in the task. In this study, it is the sum of three classes, namely the empty voxels, printable voxels, and non-printable voxels. However, the empty and the printable voxels in the dataset are more in number than the nonprintable voxels. In this scenario, class imbalance occurs, which can be solved using equation [START_REF] Redwood | Additive Manufacturing Technologies: An Overview[END_REF].

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 = α𝐷𝐷𝐶𝐶 1 + 𝛽𝛽𝐷𝐷𝐶𝐶 2 + (1 -𝛼𝛼 -𝛽𝛽)𝐷𝐷𝐶𝐶 3 (4) 
where 𝛼𝛼 and 𝛽𝛽 are the weight coefficients and DCi indicates the dice coefficient of each class. In this study, 𝛼𝛼 and 𝛽𝛽 are set to be 0.1 to ask the loss function to pay more attention to the nonprintable voxels. The printable voxels and the empty voxels are considered to be equally weighted. No significant variations were observed in the model performance until the sum of 𝛼𝛼 and 𝛽𝛽 attained a value larger than 0.3. Beyond this, the performance decreased sharply, particularly in the non-printable voxels. The 𝛼𝛼 and 𝛽𝛽 cannot be 0; otherwise, the model ceases the learning process. The Intersection over Union (IoU), which describes the similarity between any two validation samples, is used as the evaluation metric in the second model. The IoU is calculated using equation ( 5) [START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF]:

𝐼𝐼𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇 (5) 
To present the results clearly, the IoU of each class is calculated along with the mean IoU. All the ML model weights are updated by minimizing the loss function, and the iteration is completed when the convergence of loss function occurs.

Hyperparameters

Hyperparameters in ML must be manually set before activating the model. Based on the recommendations from other similar models developed and the results obtained from the experiments in the literature, the hyperparameters are set to attain the minimum loss and the maximum model performance. The general structure is reconstructed based on the frequently used VGG16 and 3D U-Net models that analyze 2D or 3D images [START_REF] Çiçek | 3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. Initially, the hyperparameters are set considering the general guidelines and then tuned to identify the best performance based on the loss function and evaluation metrics. The details of the hyperparameters and how they are determined can be briefly summarized as follows.

• Activation functions: Rectified linear units (ReLU), the frequently used activation function that can achieve the best model performance, is adopted in the proposed ML model [START_REF] Dahl | Improving deep neural networks for LVCSR using rectified linear units and dropout[END_REF][START_REF] Agarap | Deep learning using rectified linear units (relu)[END_REF]. The output layer uses the Sigmoid function to predict whether the entire part is printable, whereas the printability map is predicted using the Softmax function. • Learning rate: The learning rates in both models are set to 1e-5 to balance the learning speed and model performance. Lower learning rates may slow down the learning process, and higher learning rates may prevent convergence of the functions. • Kernel size: Typically, the values of kernel size vary from 1×1×1, 3×3×3, 5×5×5, to 7×7×7.

As the input dimension of the proposed design model is 128×128×128, 3×3×3 kernel size is selected for each layer. • Number of filters: The number of filters is always recommended starting from the range of [START_REF] Zhang | High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[END_REF]64,128] and can be increased in the deeper layers. However, the proposed model begins with 16 filters owing to the large input dimension, and the number can vary at each layer. • Stride size: All convolutional layers maintain a stride of 1.

• Padding: Padding is set to be the same in convolutional layers.

• Number of layers: For every ML operation such as convlution and dense layer, the number of layers varies from 1 to 6. Although deeper layers may slightly enhance the model performance, the learning speed and computational capability are significantly affected. • Number of neurons in the dense layer: The number of neurons varies between 64 and 512.

• Dropout rate: The dropout rate is set to 0.5 to reduce overfitting and improve the generalization error.

Appendices A and B present the detailed model architectures. After the initial values are set, the hyperparameters are manually tuned to attain the best model performance based on the existing dataset and computational power.

Data Generation and Preprocessing

The training data in this study are obtained from the existing experiments. It includes lattice structures, test bars, benchmarks, and certain specific designs printed using different LPBF machines with different materials. All the designs are voxelized using binvox, a well-developed voxelizer [START_REF] Min | Binvox 3D mesh voxelizer[END_REF] of the size 128×128×128. Considering the resolution of the LPBF process and the general building chamber size, 512×512×512 is the ideal voxelization size of the geometric design to analyze the manufacturability. However, to maintain a balance in the computational cost, time consumption, and geometric resolution, the selected voxelizer is of the size 128×128×128. Moreover, the objective of the predictive model is to determine the printability of the part and the potential failure areas. Therefore, it is essential to consider high-resolution data. The results verify that the existing resolution of the data used in the proposed model is sufficient to provide accurate results for manufacturability analysis. 196 samples are chosen in the training data, wherein 49 samples constituted the validation set. The output values of 1 and 0 imply that the voxel is occupied and empty, respectively. Fig. 5 illustrates certain examples of the voxelized geometric 3D model.

Fig. 5. Examples of voxelized geometric 3D model

Table 1 presents the different materials and printing processes used for training the data. Scale is a parameter associated only with the design aspect and not the manufacturing process; it refers to the size of the part. The scale is considered as a reference because the ML model fails to recognize the overall size of the given object owing to the identical voxelized geometries that maintain uniformity in the input dimension. As the samples in the existing dataset are printed using the default settings of the LPBF printers based on the material selection, the process parameters, such as laser power, printing speed, and hatching space are not considered in this study. However, when the dataset is expanded in the future, certain data samples may be printed using customized settings, wherein all the critical process parameters must be considered. This will not affect the developed ML architecture, as more input variables from the process parameters can be included to improve the model performance. Output 1 determines the manufacturability of the entire part. The data used for training and validation are labeled 1 and 0, representing the samples that are printable and not printable, respectively. Output 2 provides an indication of the failure areas shown in red in Fig. 6. Each voxel in the design representation is labeled, wherein 1, 0, and 2 imply that the voxel is printable, empty, and not printable, respectively. Fig. 6 illustrates an example of data labeling. 

Results of Output 1 Predicting the Printability of the Entire Part

The entire dataset was randomly split into training and validation datasets in the ratio 4:1 to calculate Output 1. To decrease the variations among samples, five-fold cross-validations were performed, and the results are listed in Table 2. The average accuracy is approximately 0.8408. We consider this result to be satisfactory at the current state due to the following reasons. First, there is no standardized dataset to measure the accuracy of different ML models. Thus, in the reported literature such has [START_REF] Qi | Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives[END_REF][START_REF] Scime | Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: A machine-agnostic algorithm for real-time pixel-wise semantic segmentation[END_REF][START_REF] Guo | Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process[END_REF] the accuracy of the ML model is discussed in drastically different ways. Second, looking into the accuracy in Table 8 reported in [START_REF] Scime | Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: A machine-agnostic algorithm for real-time pixel-wise semantic segmentation[END_REF], the testing accuracy reported for 2 different scenarios was 84% and 38%, respectively. Thus, the result from this research is considered satisfactory. Additionally, the result for each iteration does not show major fluctuation verifying the stability and repeatability of the developed ML model. When the training dataset was applied to a model that considers only the design aspect, the average accuracy in predicting the manufacturability of the part decreased to 0.7805. This implies that the effects of excluding the material and printing process model are not significant as the training dataset is not sufficiently large. Moreover, the ratios of the failure samples, which are primarily caused by the material and printing process, are low. However, the impact can be significant with a larger dataset, reducing the accuracy further.

The effects of voxelization size on the computing cost and performance are also investigated in this model. As mentioned in Section 3.4., the maximum size tested in this study is 128×128×128 owing to the restrictions in computational capability and time. The maximum memory is attained when the model is trained at 128×128×128 resolution. Table 3 summarizes the comparison between different voxel sizes tested using the same ML architecture, hyperparameters, and computational hardware. The results show that despite the longer running time, the accuracy is high at a higher voxelization resolution. At a lower resolution, the performance of the ML model is affected owing to the loss of certain features in the voxelization process. Therefore, higher voxelization resolution to execute the model learning is highly encouraged, which will lead to our further work. 2. This demonstrates a potential statement that with more and more data, the prediction accuracy will be better. The training datasets in most of the existing ML applications in AM are less than 100 [START_REF] Qi | Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives[END_REF], and their results prove that small datasets can make reasonable predictions. With more data input in the future, the coefficient of the proposed hybrid ML model can be updated to obtain enhanced results.

Results of Output 2 Predicting the Printability Map

For Output 2, the cross-validations are conducted as well. As mentioned in Section 3.3.1, the prediction was evaluated based on the IoU calculations (Table 4). The mean IoU calculated was a reasonable value of 0.7951. As indicated in Table 4, the model performs excellently in the empty voxels, whereas the performance in the non-printable voxels is slightly weaker. However, it is important to note that the goal of this research is to provide early indicators on potential manufacturability issues for designers or AM process engineers prior to fabrication. The benefit of such early indicator is that the designer or AM process engineer could modify some design geometries or process parameters to guarantee a successful fabrication. There is little research in the literature to provide a printability map through an ML model as a way to indicate potential printing issues. The result demonstrates the feasibility of such printability map can be successfully generated via the joint ML model with decent accuracy. Continuous research is being conducted by the authors to improve the accuracy which will be reported in the near future. 7 illustrates three examples depicting the results of the printability map. The top row depicts the ground truth of the samples, labeled based on the experiments. The second row indicates the prediction of the ML model, and the last row is the prediction obtained from the commercial software. Fig. 7(a) depicts a diamond lattice structure made from AlSi10Mg using an EOS machine. Fig. 7(b) illustrates a benchmark wherein the needles on the plate are extremely small, and the printer fails to print the precise shapes. Fig. 7(c) is an AlSi10Mg tensile bar printed using Renishaw; it suffers severe warping on the sides. The green and orange regions in Fig. 7 indicate the printable area and the area with a potential risk of failures, respectively. The prediction obtained from the proposed ML model exhibits competitive results compared to that of the commercial software.

Although certain differences exist between the ground truth of the printability map and the prediction of the proposed ML model, the results exhibit the trend of the potential failure areas. Therefore, they can be considered acceptable in predicting the part manufacturability. This layer is not labeled in the ground truth data because when the final printed part is obtained, the initial layers may be ignored and eliminated from the building plate. However, these layers are predicted by the proposed ML as the initial layers can be printed successfully, and the subsequent layers may fail owing to the overhang constraints in the LPBF process.

Fig. 8. Comparison of the predictions obtained using two different materials with varying strut thicknesses

The ML architecture used to predict the printability map is inspired by the 3D U-Net, which is frequently used in medical image detection. A similar approach is adapted here with a modified ML architecture, wherein the process and design models are combined. Moreover, the loss function is specifically developed for the manufacturability analysis in the LPBF process. The ML method requires multiple hyperparameters that must be determined before training the model. Owing to the limitations of the dataset, the hyperparameters used in this study are not the ideal values for the prediction in the manufacturability analysis. However, the values were selected considering the existing dataset under the current computational power as describled in Section 3.3.2. As more data are collected in the future, the values of the hyperparameters will be continuously tuned and improved in an iterative manner in the future.

Precise labeling of the dataset is essential in manufacturability analysis. Presently, all the datasets are labeled manually based on the printed part. However, precise labeling of every voxel cannot be achieved as the ground truths of the samples can be subjective owing to the manual detection.

Although the printed part can be scanned using computed tomography to obtain a more accurate labeling result, it can be time-consuming and is not cost-effective. Therefore, even for industrial purposes, the parts are not scanned to obtain the dimensional accuracy unless their printability is determined. Despite the subjectiveness of manual labeling, it facilitates an initial verification for the designers. Thus, the evaluating criteria in this study are to verify whether the part can be printed completely. In this regard, manual labeling is acceptable, and the results obtained from the prediction notify the designers on the potential design failures. The part is determined as printable if it is suitable for the subsequent stages, such as dimensional accuracy evaluation or mechanical performance test.

Fig. 9 depicts the ML prediction of a long-overhang bridge, which is never shown in the dataset. It is a bridge with an 80 mm overhang, and it is printed without any support. The ML Model 1 predicts the bridge as not printable, and the ML Model 2 provides a predicted failiure area (Fig. 9). The blue and red regions indicate the printable and failure areas, respectively. Several existing studies have proven that the long overhang bridge cannot be completely printed without support structures [START_REF] Gaynor | Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design[END_REF][START_REF] Fox | Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing[END_REF][START_REF] Gaynor | Topology optimization for additive manufacturing: considering maximum overhang constraint[END_REF]. Although the prediction may not be identical to the experimental results, it depicts the trends of the potential failure. Moreover, when the bridge is laid down, it passes the ML Model 1 to be treated as printable.

Fig. 9. Prediction of a long overhang bridge

Conclusions and Future Work

This paper presented a novel approach to evaluate the manufacturability of the given design to be fabricated via the LPBF process. It helps the designers to filtrate the potential failure at the early design stage. The proposed hybrid ML model considers both the process and design aspects to predict the printability of the part. If the part is deemed not printable, the model indicates the potential failure areas. The predictive model provides reasonable results in evaluating the manufacturability of the given design. In order to improve the performance of the proposed ML model, more data is expected to expand the training dataset. Presently, the computational cost of the proposed model is high owing to the hybrid ML architecture and the voxelization size of the design. Moreover, to attain the ideal resolution in the LPBF process, a higher voxelization resolution is required in the future, which can lead to an even higher computational cost. Therefore, a more efficient, cost-effective, and accurate model must be developed to maintain a balance in the model performance and computational cost. Apart from voxelization, different shape representations for the design model can be investigated in future studies. Furthermore, other deep learning methods, such as recurrent neural networks, can be considered for the manufacturability analysis based on the proposed ML model.

Fig. 3 .

 3 Fig. 3. The ML architecture of model 1 performing the initial analysis Fig. 4 depicts the ML architecture of Model 2, wherein the potential failure areas are predicted.The initial steps in predicting Output 2 are similar to those of Model 1. However, the combination of the NN layers of the design and processing information generates a reshaped multi-dimensional layer. Therefore, a transpose convolutional layer is added to the reshaped layer for upsampling the inputs. Subsequently, the transpose convolutional layers are concatenated with the previous convolutional layers, guiding the learning process. Finally, the model is transferred to other convolutional layers to predict Output 2. The number of transpose convolutional layers equals that of the previous convolutional layers. Moreover, the number of layers in each ML operation constitutes the hyperparameters, which can be tuned to achieve the best performance in the ML method. The proposed architectures are inspired by the commonly used models, such as U-Net and VGG16[START_REF] Çiçek | 3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. However, unlike the architectures in these models, a modified architecture integrating the CNN for 3D objects and the classic NN for text and numerical parameters is developed.

Fig. 6 . 4 .

 64 Fig. 6. Examples of data labeling

Fig. 7 .

 7 Fig. 7. Test cases of the validation set. (a) A diamond lattice structure made from AlSi10Mg using an EOS machine, (b) a benchmark with tiny needles, and (c) an AlSi10Mg tensile bar printed using Renishaw.

Fig. 8

 8 Fig.8compares the predictions obtained using two different materials with varying strut thicknesses. The green and orange regions indicate the printable and failure areas, respectively. They are printed using the default machine settings for the selected material. The best process parameters are identified to print the selected material tested by the printer maker. As indicated in the figure, the proposed model provides outstanding results owing to the significant number of lattice structures used in the dataset. It demonstrates that with more data included in the database, the model performance can be enhanced. Moreover, Figs.8(b) and 8(c) indicate a green layer at the bottom of the lattice structures. This layer is not labeled in the ground truth data because when the final printed part is obtained, the initial layers may be ignored and eliminated from the building plate. However, these layers are predicted by the proposed ML as the initial layers can be printed

  

  

  

  

  

  

  

  

Table 1 .

 1 Examples of the material and printing process used for data training

	No. Sample	Material	Material	Material	Machine	Machine	Scale
		name	type	brand	density in	brand	type	
					loose form			
					(g/cc)			
	1	v_Inco	Inconel 625 EOS	8.4	EOS	M270	33.46
	2	c_Inco	Inconel 625 EOS	8.4	EOS	M270	29.20
	3	x_Steel	Maraging	EOS	8	EOS	M270	31.33
			steel					
	4	bm_001	AlSi10Mg	EOS	2.67	EOS	M270	52.5
	5	channels_01 AlSi10Mg	Renishaw 2.68	Renishaw AM 400 15
	6	Tensile_01 AlSi10Mg	Renishaw 2.68	Renishaw AM 400 74.12
	7	201904_12 SS 316L	Renishaw 7.99	Renishaw AM 250 106.35

Table 2 .

 2 Cross-validation results of the prediction in the initial analysis

	Iteration	Accuracy
	1	0.8367
	2	0.8367
	3	0.8776
	4	0.8367
	5	0.8163
	Average	0.8408

Table 3 .

 3 The effects of voxelization resolution on the computing cost and performance Furthermore, the model is also run with a smaller dataset comprising fewer training samples than the original test. Only 190 samples were selected in the smaller-dataset training rather than the original 245 datasets. The samples were split into training and validation datasets in the ratio 4:1, identical to the original test. The average accuracy obtained was 0.7436, which is lower than the result presented in Table

	Voxel size	Accuracy	Training time (s)
	128×128×128	0.8408	8480
	64×64×64	0.7503	1000
	32×32×32	0.6341	240

Table 4 .

 4 Cross-validation results of the printability map prediction

	Iteration	IoU_mean IoU_empty IoU_print IoU_non_print
	1	0.7866	0.9854	0.8006	0.5737
	2	0.7821	0.9899	0.7777	0.5787
	3	0.8092	0.9869	0.8355	0.6052
	4	0.7918	0.9873	0.7465	0.6416
	5	0.8056	0.9860	0.8353	0.5954
	Average	0.7951	0.9871	0.7991	0.5989
	Fig.				
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