
HAL Id: hal-03628351
https://hal.science/hal-03628351

Preprint submitted on 2 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Computational Diffie-Hellman based Insider Secure
Signcryption with Non-Interactive Non-Repudiation

Augustin P. Sarr, Ngarenon Togde

To cite this version:
Augustin P. Sarr, Ngarenon Togde. A Computational Diffie-Hellman based Insider Secure Signcryption
with Non-Interactive Non-Repudiation. 2022. �hal-03628351�

https://hal.science/hal-03628351
https://hal.archives-ouvertes.fr

A Computational Diffie–Hellman based

Insider Secure Signcryption with

Non–Interactive Non–Repudiation

Ngarenon TOGDE and Augustin P. SARR

Laboratoire ACCA, UFR SAT, Université Gaston Berger, Saint-Louis, Sénégal
augustin-pathe.sarr@ugb.edu.sn ngarenon.togde@ugb.edu.sn

Abstract. An important advantage of signcryption schemes compared
to one pass key exchange protocols is non–interactive non–repudiation
(NINR). This attribute offers to the receiver of a signcrypted ciphertext
the ability to generate a non–repudiation evidence, that can be veri-
fied by a third party without executing a costly multi–round protocol.
We propose a computational Diffie–Hellman based insider secure sign-
cryption scheme with non–interactive non–repudiation. Namely, we show
that under the computational Diffie–Hellman assumption and the ran-
dom oracle model, our scheme is tightly insider secure, provided the un-
derlying encryption scheme is semantically secure. Compared to a large
majority of the previously proposed signcryption schemes with NINR,
our construction is more efficient and it does not use any specificity of
the underlying group, such as pairings. The communication overhead of
our construction, compared to Chevallier Mâmes’ signature scheme is
one group element.

Keywords: signcryption, non–interactive non–repudiation, insider secu-
rity, computational Diffie–Hellman, random oracle model.

1 Introduction

A signcryption scheme provides simultaneously the functionalities of encryption
and signature schemes [23]. A natural use of a signcryption scheme is to build an
asynchronous secure channel i. e. a confidential and authenticated asynchronous
channel. Given the similar uses of signcryption and (one pass) Key Exchange
Protocols (KEP), to build confidential and authenticated channels, it appears,
from a real world perspective, that the right security definition for signcryption
schemes is insider security [3]. Informally, insider security ensures (i) confiden-
tiality even if the sender’s static private key is revealed to the attacker, and
(ii) unforgeability even if the receiver’s static private key is disclosed.

A signcryption scheme is said to provide non–repudiation, if the receiver of
a signcrypted ciphertext has the ability to generate a non–repudiation evidence,
that can be verified by a third party (a judge, for instance); as a result, a mes-
sage sender cannot deny having signcrypted the message. The non–repudiation
attribute is said to be non–interactive, if a non–repudiation evidence can be

2

generated and verified without executing a multi–round protocol. An important
advantage of signcryption schemes, compared to one pass KEP, which often
outperforms signcryption schemes, is non–interactive non–repudiation (NINR).

A signcryption scheme with the aim to provide NINR was proposed for the
first time by Bao and Deng [5]; unfortunately their design fails in achieving
confidentiality [19]. Malone–Lee [19] proposes an efficient design with NINR he
analyses in the Random Oracle (RO) model. The scheme achieves confidentiality
under the computational Diffie–Hellman (cDH) assumption, and unforgeability
under the gap Diffie–Hellman Assumption. Unfortunately, the security model he
uses is closer to the outsider than to the insider model. Indeed, the scheme fails in
providing insider confidentiality. In [8], Bjørstad and Dent (BD) propose a design
based on Chevallier Mâmes’ (CM) signature scheme they show to tightly achieve
insider unforgeability under the cDH assumption and outsider confidentiality
under the gap DH assumption. Unfortunately, as for the ML scheme, it can be
shown that the BD scheme does not achieve insider confidentiality.

In subsequent works [2, 13, 14, 20, 22], several insider secure schemes with
NINR have been proposed. The designs offer a superior security, compared to
the ML or BD schemes. However, they are less efficient and often assume some
specificities of the underlying groups, such as the existence of a bilinear pair-
ing. In [2], Arriaga et al. propose a generic insider secure signcryption scheme,
with randomness reuse, in the standard model. They exhibit an insider secure
instantiation of their design, under the Decisional Bilinear and the q–Strong
Diffie–Hellman (DBDH and q–sDH) assumptions. Unfortunately, the unforge-
ability is achieved in the registered key model [20], wherein an attacker is re-
quired to register the keys pairs it uses in its attack. Matsuda et al. [20] propose
a generic composition of signature and tag based encryption schemes, which
yields to different shades of security depending on the security attributes of the
base schemes. They exhibit two constructions with NINR that fully achieve in-
sider confidentiality (under the cDH and the gap DH assumptions respectively)
and unforgeability (under the co–cDH assumption). Chiba et al. [13] propose
a generic construction of signcryption schemes, and exhibit two insider secure
constructions with NINR under the DBDH and the q–sDH assumptions. In [14],
Fan et al. propose a signcryption scheme with non–interactive non–repudiation
(SCNINR), based on Boneh et al.’s signature scheme [10], they show to be in-
sider secure under the DBDH assumption, without resorting the RO model. Sarr
et al. [22] propose, over the group of signed quadratic residues, a SCNINR, based
on a signature scheme of their own design, they show to be insider secure under
the RSA assumption and the RO model.

The basic design principle in the SCNINR schemes from [8,14,19,22], is (i) a
Diffie–Hellman (DH) secret derivation, using ephemeral keys from the sender and
the receiver’s static public key, followed by (ii) an encryption using some part
of the derived secret, and (iii) a signature generation, using the sender’s private
key, on the plain text and some part of the derived DH secret. One may no-
tice also that these schemes assume rather specific groups or have loose security
reductions. As tightly secure cDH based signature schemes exist [12, 15, 17], we

3

investigate whether such schemes can be leveraged as building blocks for tightly
(multi–user) insider secure cDH based SCNINR schemes. As we aim at an effi-
cient design, we use the random oracle (RO) model. We propose a new SCNINR,
termed SCedl, based on a variant of Chevallier–Mâmes’ signature scheme [12], tai-
lored to (i) be combined with Cash et al.’s twin Diffie–Hellman key exchange [11],
(ii) and to allow a use of the same randomness in the DH key exchange and in the
signature generation. And, using the trapdoor test technique [11], we show that
SCedl is tightly insider secure under the cDH assumption and the RO model, pro-
vided the underlying symmetric encryption scheme is semantically secure. Even
better, we show the insider confidentiality attribute in the secret key ignorant
multi–user model, i. e., when the sender public key is chosen by the adversary
and the challenger does not know the corresponding private key. Compared to
the ML and BD schemes, which do not require any specificity of the underly-
ing group and do not achieve insider security, SCedl offers a stronger security,
even if it is less efficient. And, compared to the schemes from [2, 13, 14, 20, 22],
SCedl offers a tight security reduction, a better efficiency, and a comparable or a
superior security.

This paper is organized as follows. In Section 2, we present some prelimi-
naries on the syntax of SCNINR schemes and the insider security definitions for
SCNINR. In Section 3, we propose the SCedl scheme. We propose a detailed se-
curity analysis in Section 4, and compare our design with previous constructions
in Section 5.

2 Preliminaries

Notations. G = 〈G〉 is a cyclic group of prime order p, G∗ denotes the set G \{1}.
We denote by Exp(G, t) the computational effort required to perform t exponen-
tiations with |p|–bits exponents in G ; Exp(G) denotes Exp(G, 1). For an integer
n, [n] denotes the set {0, · · · , n}. If S is a set, a←R S means that a is cho-
sen uniformly at random from S; we write a, b, c, · · · ←R S as a shorthand for
a←R S; b←R S, etc. We denote by sz(S) the number of bits required to represent
a ∈ S. For a probabilistic algorithm A with parameters u1, · · · , un and output
V ∈ V, we write V ←RA(u1, · · · , un). We denote by {A(u1, · · · , un)} the set
{v ∈ V : Pr(V = v) 6= 0}. If x1, x2, · · · , xk are objects belonging to different
structures (group, bit–string, etc.) (x1, x2, · · · , xk) denotes a representation as
a bit–string of the tuple such that each element can be unequivocally parsed.

The cDH Assumption. We assume the existence of an algorithm Setupgrp(·),
which on input a security parameter k outputs a system parameter Πk which
fully identifies a group G = 〈G〉 together with its order. For X ∈ G, we de-
note the smallest non–negative integer x such that Gx = X by logG X . For,
X, Y ∈ G, we denote G(logG X)(logG Y) by cDH(X, Y); if B ∈ G, we denote
(cDH(X, B), cDH(Y, B)) by 2DH(X, Y, B). The cDH assumption is said to hold
in G if for all efficient algorithms A,

AdvcDH
A (G) = Pr [X, Y ←R G; Z←RA(G, X, Y) : Z = cDH(X, Y)] is negligible in k.

4

A Symmetric Encryption scheme E = (E, D, K, M, C) is a pair of efficient
algorithms (E, D) together with a triple of sets (K, M, C), which depend on the
security parameter k, such that for all τ ∈ K and all m ∈ M, it holds that
E(τ, m) ∈ C and m = D(τ, E(τ, m)). Let A = (A1,A2) be an adversary against
E and let

Pr(Oi,i=0,1) = Pr

[

(m0, m1, st)←RA1(k); τ←R K; c←R E(τ, mi);

b̂←RA2(k, c, st)
: b̂ = 1

]

;

then Advss
A,E(k) denotes the quantity Advss

A,E(k) = |Pr(O0)− Pr(O1)| , where
m0, m1 ∈ M are distinct equal length messages. The scheme E is said to be
(t, ε(k))–semantically secure if for all adversariesA running in time t, Advss

A,E(k) 6 ε(k).

2.1 Insider Security for SCNINR

We recall the syntax of a SCNINR scheme and the insider security defini-
tions in the Flexible Signcryption / Flexible Unsigncryption Oracle (FSO/FUO)
model [4], also termed dynamic Multi–User model [2].

Definition 1. A signcryption scheme is a quintuple of algorithms SC = (Setup,
GenS , GenR, Sc, Usc) where:
a) Setup takes a security parameter k as input, and outputs a public domain

parameter dp.
b) GenS is the sender key pair generation algorithm. It takes dp as input and

outputs a key pair (skS , pkS), wherein skS is the signcrypting key.
c) GenR is the receiver key pair generation algorithm; it takes dp as input and

outputs a key pair (skR, pkR).
d) Sc takes as inputs dp (an implicit parameter), a sender private key skS, a

receiver public key pkR, and a message m, and outputs a signcryptext C. We
write C←R Sc(skS , pkR, m).

e) Usc is a deterministic algorithm. It takes as inputs dp, a receiver secret key
skR, a sender public key pkS, and a signcryptext C, and outputs either a
valid message m ∈M or an error symbol ⊥ 6∈M.

And, for all dp ∈ {Setup(k)}, all m ∈ M, all (skS , pkS) ∈ {GenS(dp)}, and
all (skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS , Sc(skS , pkR, m)). The scheme
is said to provide NINR if there are two algorithms N and PV, termed non–
repudiation evidence generation and pubic verification algorithms such that:

– N takes as inputs a receiver secret key skR, a sender public key pkS, and a
signcrypted text C, and outputs a non–repudiation evidence nr or a failure
symbol ⊥; we write nr← N(skR, pkS , C).

– PV takes as inputs a signcryptext C, a message m, a non–repudiation evi-
dence nr, a sender public key pkS, and a receiver public key pkR, and outputs
d ∈ {0, 1}; we write d← PV(C, m, nr, pkS , pkR).

– For all dp ∈ {Setup(k)}, all C ∈ {0, 1}∗, all (skS , pkS) ∈ {GenS(dp)}, and
all (skR, pkR) ∈ {GenR(dp)}, if ⊥ 6= m ← Usc(skR, pkS , C) and nr ←
N(skR, pkS , C) then 1 = d← PV(C, m, nr, pkS , pkR).

5

Game 1 SKI–MU Insider Confidentiality in the FSO/FUO–IND–CCA2 sense

We consider the experiments E0 and E1, described hereunder, wherein A = (A1,A2)
is a two–stage adversary against a SCNINR scheme SC;
1) The challenger generates dp←R Setup(k) and (skR, pkR)←R GenR(dp);
2) A1 is provided with dp and pkR, and is given access to: (a) an unsigncryption

oracle OUsc(·, ·), which takes as inputs a public key pk and a signcrypted text C,
and outputs m ← Usc(skR, pk, C), and (b) a non–repudiation evidence generation
oracle ON(·, ·) which takes as inputs a public key pk and a signcrypted text C and
outputs nr ← N(skR, pk, C).

3) A1 outputs (m0, m1, pkS, st)←RA
OUsc(·,·),ON(·,·)
1 (pkR) where m0, m1 ∈ M are dis-

tinct equal length messages, st is a state, and pkS is the attacked sender public key
(skS is unknown to the challenger).

4) In the experiment Eb,b=0,1, the challenger computes C
∗←R Sc(skS, pkR, mb).

5) A2 outputs b
′←RA

OUsc(·,·),ON(·,·)
2 (C∗

, st) (OUsc(·, ·) and ON(·, ·) are as in step 2).
6) For Eb,b=0,1, outb denotes the event: (i) A2 never issued OUsc(pkS, C

∗) or
ON(pkS, C

∗), and (ii) b
′ = 1.

And, Adv
cca2
A,SC(k) =| Pr(out0)−Pr(out1) | denotes A’s CCA2 insider security advantage.

Definition 2 (Secret Key Ignorant Multi-User Insider Confidentiali-
ty). A SCNINR SC is said to be (t, qUsc, qN, ε)–secure in the Secret Key Igno-
rant Multi–User (SKI–MU) insider confidentiality in the FSO/FUO IND–CCA2
sense, if for all adversaries A playing Game 1, running in time t, and issu-
ing respectively qUsc and qN queries to the unsigncryption and non–repudiation
evidence generation oracles, Advcca2

A,SC(k) 6 ε.

Game 2 MU Insider Unforgeability in the FSO/FUO–sUF–CMA sense

A is a forger, dp←R Setup(k) still denotes the public domain parameter.
1) The challenger computes (skS, pkS)←R GenS(dp).
2) A runs with inputs (dp, pkS) and is given a FSO OSc(·, ·), which takes as inputs a

valid public receiver key pk and a message m and outputs C←R Sc(skS, pk, m).

3) A outputs ((skR, pkR), C
∗)←RA

OSc(·,·)(dp, pkS). It succeeds if:
(i) ⊥ 6= m← Usc(skR, pkS, C

∗), and
(ii) it never received C

∗ from OSc(·, ·) on a query on (pkR, m).

Adv
suf
A,SC(k) = Pr(Succ

suf
A) denotes the probability that A wins the game.

Definition 3 (Multi–User Strong Insider Unforgeability). A SCNINR is
said to be (t, qSc, ε) Multi–User Insider Unforgeable in the FSO/FUO–sUF–CMA
sense if for all attackers A playing Game 2, running in time t, and issuing qSc

queries to the signcryption oracle, Advsuf
A,SC(k) 6 ε.

Confidentiality and unforgeability are natural security goals for signcryption
schemes. The soundness and unforgeability of non–repudiation evidence attributes
are specific to SCNINR schemes.

6

Game 3 Soundness of non–repudiation

1) The challenger computes dp←R Setup(k).
2) A runs with input dp and outputs (C∗

, pkS, skR, pkR, m
′
, nr)←RA(dp).

3) A wins the game if:
(i) ⊥ 6= m← Usc(skR, pkS, C

∗), and
(ii) m 6= m

′ and 1 = d← PV(C∗
, m

′
, nr, pkS, pkR).

Adv
snr
A,SC(k) denotes the probability that A wins the game.

Definition 4 (Soundness of non–repudiation). A SCNINR is said to achieve
(t, ε)–computational soundness of non–repudiation if for all attackers A playing
Game 3 and running in time t, Advsnr

A,SC(k) 6 ε.

Game 4 Unforgeability of non–repudiation evidence

A is an attacker against SC, dp←R Setup(k) is the domain parameter.
1) The challenger computes (skS, pkS)←R GenS(dp); (skR, pkR)←R GenR(dp);
2) A runs with inputs (dp, pkS, pkR), and outputs

(C∗
, m

∗
, nr

∗)←RA
OSc(·,·),OUsc(·,·),ON(·,·)(dp, pkS, pkR).

3) A wins if:
(i) C

∗ was generated through the OSc(·, ·) oracle on inputs (pkR, m) for some m,
(ii) 1 = d← PV(C∗

, m
∗
, nr

∗
, pkS, pkR), and

(iii) nr
∗ was not generated by the oracle ON(·, ·) on a query on (pkS, C

∗).

Adv
unr
A,SC(k) denotes the probability that A wins the game.

Definition 5 (Unforgeability of non–repudiation evidence). A SCNINR
is said to achieve (t, qSc, qUsc, qN, ε) unforgeability of non–repudiation evidence
if for all adversaries A playing Game 4, running in time t, and issuing respec-
tively qSc, qUsc, and qN queries to the signcryption, unsigncryption, and non–
repudiation evidence generation oracles, Advunr

A,SC(k) 6 ε.

3 The New Construction

We consider the following variant of Chevallier–Mâmes’ (CM) signature scheme [12];
H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → K, and H3 : {0, 1}∗ → [p−1] are hash functions,
aux denotes some auxiliary information.

A Variant of Chevallier–Mâmes’ signature scheme

1 SetupSign(k): the setup outputs a description of the group G, a generator G of G,

its prime order p, together with descriptions of the hash functions Hi,i=1,2,3.

2 Gen(dp): sk←R [p − 1]; pk← G
sk; return (sk, pk);

3 Sign(sk, m): x1, x2←R [p− 1]; X1 ← G
x1 ; X2 ← G

x2 ; R← H1(X1, X2); V ← R
x1 ;

4 W ← R
sk; h← H3(m, X1, X2, G, R, V, W, pk, aux); σ ← x1+h·sk; return (X2, W, σ, h);

7

5 Vrfy(pk, (X2, W, σ, h), m): X1 ← G
σ

pk
−h; R← H1(X1, X2); V ← R

σ
W

−h;
6 if h = H3(m, X1, X2, G, R, V, W, pk, aux) then return 1; else return 0;

As for CM, in the RO model, the signature generation can be efficiently simu-
lated, and the scheme can be shown to be unforgeable under cDH assumption.
An interesting property of this scheme is that when it comes to extend it to
a SCNINR, in a simulation of a signcrypted text generation, we can generate
X1, X2←R G such that for all (B, Z1, Z2) ∈ G3, using the trapdoor test tech-
nique [11], we can efficiently decide whether 2DH(X1, X2, B) = (Z1, Z2) or not.
Then, if (B1, B2) ∈ G2 is a receiver public key, and a twin Diffie–Hellman key ex-
change [11] is performed using (X1, X2) and (B1, B2), we can use a trapdoor test
at both the sender and the receiver. Then, as for the signature scheme’s unforge-
ability, we can show the signcryption scheme to tightly achieve insider security
(confidentiality and unforgeability) under the cDH assumption. The scheme is
as described hereunder; we omit the subgroup membership tests.

The SCedl Scheme

10 Setup(k): the algorithm defines a group G = 〈G〉 of prime order p, together with an

encryption scheme E = (E, D, K, M, C) and the hash functions H1 : {0, 1}∗ → G,
H2 : {0, 1}∗ → K, and H3 : {0, 1}∗ → [p − 1]. The domain parameter is dp =
(G, E , H1, H2, H3). We assume p > |K|.

11 GenS(dp): a←R [p− 1]; (skS, pkS)← (a, G
a); return (skS , pkS);

12 GenR(dp): b1, b2←R [p− 1]; (skR, pkR)←
(

(b1, b2), (Gb1 , G
b2)

)

; return (skR, pkR);

13 Sc(skS, pkR, m): Parse pkR as (B1, B2); x1, x2←R [p− 1]; X1 ← G
x1 ; X2 ← G

x2 ;

14 R← H1(X1, X2); V ← R
x1 ; W ← R

skS ;
15 Z1 ← B

x1

1 ; Z2 ← B
x1

2 ; Z3 ← B
x2

1 ; Z4 ← B
x2

2 ;
16 τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
17 c← E(τ2, m); h← H3(m, τ1, c, X1, X2, G, R, V, W, pkS, pkR);
18 σ ← x1 + h · skS mod p; return (X2, W, σ, h, c);

19 Usc(skR, pkS, C): Parse skR as (b1, b2) ∈ [p − 1]2;

20 Parse C as (X2, W, σ, h, c) ∈ G2 × [p− 1]2 ×C.
21 X1 ← G

σ
pk

−h
S ; Z1 ← X

b1

1 ; Z2 ← X
b2

1 ; Z3 ← X
b1

2 ; Z4 ← X
b2

2 ;
22 τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
23 m← D(τ2, c); R← H1(X1, X2); V ← R

σ
W

−h;
24 if h = H3(m, τ1, c, X1, X2, G, R, V, W, pkS, pkR) then return m; else return ⊥;

25 N(skR, pkS, C): Parse skR as (b1, b2); Parse C as (X2, W, σ, h, c).

26 X1 ← G
σ

pk
−h
S ; Z1 ← X

b1

1 ; Z2 ← X
b2

1 ; Z3 ← X
b1

2 ; Z4 ← X
b2

2 ;
27 τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
28 m← D(τ2, c); R← H1(X1, X2); V ← R

σ
W

−h;
29 if h = H3(m, τ1, c, X1, X2, G, R, V, W, pkS, pkR) then return (τ1, τ2); else return ⊥;

30 PV(C, m, nr, pkS, pkR): Parse C as (X2, W, σ, h, c) and nr as (τ1, τ2);

31 m
′ ← D(τ2, c);

32 if m
′ 6= m then return 0;

33 X1 ← G
σ

pk
−h
S ; R← H1(X1, X2); V ← R

σ
W

−h;
34 if h = H3(m, τ1, c, X1, X2, G, R, V, W, pkS, pkR) then return 1; else return 0;

8

For the consistency of SCedl, one can observe that, as σ = x1 + h · skS , Gσpk−h
S

yields X1; similarly RσW −h yields V . Then, if C←R Sc(skS , pkR, m) the same
Zi’s are computed in the signcryption and unsigncryption algorithms. And, the
same values of τ1 and τ2 are derived both in Sc(skS , pkR, m) and Usc(skR, pkS , C).
The remaining part in the definition of Sc (resp. Usc) is essentially a proof (resp.
verification) of equality of discrete logarithms (edl) modified to include m, τ1

and c. Doing so, for all dp ∈ {Setup(k)}, all m ∈M, all (skS , pkS) ∈ {GenS(dp)},
and all (skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS , Sc(skS , pkR, m)). More-
over, if nr← N(skR, pkS , Sc(skS , pkR, m)) then 1 = d← PV(C, m, nr, pkS , pkR).

4 Security Arguments of the SCedl Scheme

4.1 Confidentiality of the SCedl Signcryption Scheme

Theorem 1. We assume the RO model. If qX , with X ∈ {H2, Usc, N}, is an
upper bound on the number of times A issues the OX oracle in Game 1, the cDH

problem is (t(k), εcDH(k))–hard in G, and the encryption scheme E is (t(k), εss(k))–
semantically secure, then SCedl is (t(k), qUsc, qN, ε(k))–secure in the SKI–MU in-
sider confidentiality in the FSO/FUO–IND–CCA2 sense, where

ε(k) 6 εcDH(k) + εss(k) + 4(qH2
+ 2qUsc + 2qN + 1)/p + 2qH3

/|K|. (1)

Proof. We call the steps (1) and (2), (3) and (4), and (5) and (6) of Game 1
pre–challenge, challenge, and post–challenge stages respectively. The simulator
answers A’s queries in all phases as described. The Initialization procedure is
executed once at the beginning of the game. When abort is set to 1, the whole
simulation fails. If the simulation does not fail, the Finalization procedure is exe-
cuted once, at the end of the game. For a list L, Apd(L, X) adds X to L. We
omit the subgroup membership tests.

Simulation for the experiments Ei,i=0,1 in the SKI–MU insider confidentiality game

Input: dp = (G, E , H1, H2, H3)←R Setup(k) where E = (E, D, K, M, C); X0, Y0←R G.
100 Initialization: r0, s0←R [p− 1]; Y

′

0 ← G
s0Y

−r0

0 ; pkR ← (Y0, Y
′

0); SH1
← (); Sk ← ();

SH2
← (); SH3

← (); abort← 0;

Pre–Challenge Phase

101 OH1
(d):

102 if ∃ R : (d, R) ∈ SH1
then return R; else R←R G; Apd(SH1

, (d, R)); return R;

103 OH2
(d):

104 if ∃ τ : (d, τ) ∈ SH2
then return τ ;

105 else

106 if d has format (X1, X2, Z1, Z2, Z3, Z4, pk, pk
′ = pkR) ∈ G7 × G2

then

107 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then

108 if Z
r0

1 Z2 = X
s0

1 and Z
r0

3 Z4 = X
s0

2 then Apd(SH2
, (d, τ)); return τ ;

109 τ←R K; Apd(SH2
, (d, τ)); return τ ;

9

110 OH3
(d):

111 if ∃ h : (d, h) ∈ SH3
then return h;

112 else h←R [p− 1]; Apd(SH3
, (d, h)); return h;

113 OUsc(pk, C): ON(pk, C) :

114 Parse C as (X2, W, σ, h, c) ∈ G2 × [p− 1]2 ×C; ◮ Return ⊥ if the parsing fails

115 X1 ← G
σ

pk
−h;

116 if ∃Z1, Z2, Z3, Z4 ∈ G and τ ∈ K : ((X1, X2, Z1, Z2, Z3, Z4, pk, pkR), τ) ∈ SH2
and

Z
r0

1 Z2 = X
s0

1 and Z
r0

3 Z4 = X
s0

2 then

117 τ1 ← τ ; ◮ H2(X1, X2, Z1, Z2, Z3, Z4, pk, pkR) was issued where

2DH(Y0, Y
′

0
, X1) = (Z1, Z2) and 2DH(Y0, Y

′

0
, X2) = (Z3, Z4)

118 else if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then

119 τ1 ← τ ; ◮ Usc(pk, C
′) or N(pk, C

′) such that the ephemeral keys used in the generation

of C
′ are (X1, X2) was issued.

120 else τ1←R K; Apd(Sk, ((X1, X2, pk, pkR), τ1));

121 if ∃Z1, Z2, Z3, Z4 ∈ G, τ ∈ K : ((X2, X1, Z3, Z4, Z1, Z2, pk, pkR), τ) ∈ SH2
and

Z
r0

1 Z2 = X
s0

1 and Z
r0

3 Z4 = X
s0

2 then

122 τ2 ← τ ; ◮ Same treatment as for τ1

123 else if ∃ τ : ((X2, X1, pk, pkR), τ) ∈ Sk then

124 τ2 ← τ ;
125 else τ2←R K; Apd(Sk, ((X2, X1, pk, pkR), τ2));

126 R← OH1
(X1, X2); V = R

σ
W

−h;
127 m← D(τ2, c); h

′ ← OH3
(m, τ1, c, X1, X2, G, R, V, W, pkS, pkR);

128 if h = h
′

then return m;
OUsc

return (τ1, τ2);

ON

else return ⊥;

Challenge Phase

129 (m0, m1, pkS, st)←RA
OUsc,N,H1,H2,H3

1 (pkR); ◮ |m0| = |m1|

130 β̂, σ̂, ĥ, û0 ← [p − 1]; X̂1 ← G
σ̂

pk
−ĥ
S ; X̂2 ← X0G

û0 ;
131 if ∃R′ :

(

(X̂1, X̂2), R
′
)

∈ SH1
then abort← 1;

132 R̂← G
β̂; Apd(SH1

, ((X̂1, X̂2), R̂)); Ŵ ← pk
β̂

S; V̂ ← R̂
σ̂
Ŵ

−ĥ; ◮ logG pkS = log
R̂

Ŵ

(= skS which is unknown)

133 τ̂1←R K; τ̂2←R K;

134 ĉ← E(τ̂2, m0);

E0, Eint

ĉ← E(τ̂2, m1);

E1

135 if ∃ h
′
, m

′
, τ

′

1, R
′
, V

′
, W

′
, pk

′

S : ((m′
, τ

′

1, X̂1, X̂2, G, R
′
, V

′
, W

′
, pk

′

S, pkR), h
′) ∈ SH3

then abort← 1; ◮ (X̂1, X̂2) were already used as ephemeral keys

136 Apd(Sk, ((X̂1, X̂2, pkS, pkR), τ̂1)); Apd(Sk, ((X̂2, X̂1, pkS, pkR), τ̂2));

137 Apd(SH3
, ((m0, τ̂1, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS , pkR), ĥ));

E0,

Apd(SH3
, ((m1, τ̂1, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS , pkR), ĥ));

E1, Eint

138 C
∗ ← (X̂2, Ŵ , σ̂, ĥ, ĉ);

Post–Challenge Phase

A2 runs with inputs (C∗
, st). It has access to the oracles OUsc(·, ·), ON(·, ·), OH1

(·),
OH2

(·) and OH3
(·).

139 b
′←RA

OUsc,N,H1,H2,H3

2 (C∗
, st);

10

140 Finalization:

141 if ∃ Ẑ1, Ẑ2, Ẑ3, Ẑ4 ∈ G :
(

((X̂1, X̂2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, pkS, pkR), τ̂1) ∈ SH2
or

142 ((X̂2, X̂1, Ẑ3, Ẑ4, Ẑ1, Ẑ2, pkS, pkR), τ̂2) ∈ SH2

)

and Ẑ
r0

1 Ẑ2 = X̂
s0

1 and Ẑ
r0

3 Ẑ4 = X̂
s0

2

then return Ẑ3Y
−û0

0 ; else return ⊥;

In the Initialization procedure, the simulator stores r0, s0←R [p− 1], and com-
putes Y ′

0 (see at line 100). Doing so, the receiver public key (Y0, Y ′
0), is such

that given (X1, X2, Z1, Z2, Z3, Z4) ∈ G6, we can decide, using the trapdoor test,
whether (Z1, Z2) = 2DH(Y0, Y ′

0 , X1) and (Z3, Z4) = 2DH(Y0, Y ′
0 , X2) or not. We

describe at lines 113–128 both the OUsc(·, ·) and ON(·, ·) oracles. In the exe-
cution of OUsc(·, ·) (resp. ON(·, ·)), the instruction return (τ1, τ2) (resp. return m)
at line 128 is omitted. In the challenge phase, depending on whether the sim-
ulation is for E0 or for E1, the corresponding boxed code is executed (see at
lines 134 and 137).

We simulate digest queries using associative lists. The main technical subtlety
is that the OH2

(·) digest values for strings with format (X1, X2, Z1, Z2, Z3, Z4,
pk, pkR) ∈ G7 ×G2 are not only assigned by the OH2

(·) oracle, but also through
the executions of OUsc(·, ·) and ON(·, ·). In these latter cases, the values of
Zi,i=1,2,3,4 are unknown to the simulator. To keep the simulation consistent, be-
sides SH2

, we use a list Sk to store the values ofOH2
(X1, X2, Z1, Z2, Z3, Z4, pk, pkR),

together with (X1, X2, pk, pkR), which was assigned while the Zi,i=1,2,3,4 are un-
known (see at lines 120 and 125). As a consequence, using the trapdoor test
Theorem [11], all the OH2

(·) queries can be consistently answered, with all but
negligible probability. In the challenge phase, we essentially simulate an encryp-
tion and a signature generation in our CM variant, wherein, X̂2 is set to X0Gû0 ,
and some savings are performed for consistency in digests.

We assume, without loss of generality, that for all τ ∈ K, whenever A issues
H3(m0, τ, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS , pkR) it issues also H3(m1, τ, ĉ, X̂1, X̂2, G, R̂,
V̂ , Ŵ , pkS , pkR) and vice versa. Let bad1 be the event: “the simulator aborts”
(see at lines 131 and 135), then, assuming t 6

√
p,

Pr(bad1) 6 (qH1
+ qUsc + qN)/p2 + (qH3

+ qUsc + qN)/p2
6 1/p.

Let bad2 be the event: “in at least one of the executions of OH2
(·), OUsc(·), or

ON(·) the Zi,i=1,2,3,4’s are such that
a) Zr0

1 Z2 = Xs0

1 and Zr0

3 Z4 = Xs0

2 , while
b) 2DH(Y0, Y ′

0 , X1) 6= (Z1, Z2) or 2DH(Y0, Y ′
0 , X2) 6= (Z3, Z4)” (see at lines 108,

116, and 121), then from the trapdoor test Theorem [11]

Pr(bad2) 6 2(qH2
+ 2qUsc + 2qN)/p.

And, if bad = bad1 ∨ bad2, then

Pr(bad) 6 (2qH2
+ 4qUsc + 4qN + 1)/p. (2)

Let outsim
0 denote the event: “the conditions 6i and 6ii of Game 1 are satisfied

in the simulated environment for E0”. Then, under the RO model, if ¬bad, A’s

11

views in the real and simulated environments are the same. So, Pr(out0∧¬bad) =
Pr(outsim

0 ∧ ¬bad), and then

|Pr(out0)− Pr(outsim
0)| 6 Pr(bad) (3)

We consider the intermediate simulated experiment Eint, wherein the line 134
is the same as in the simulation E0, and the line 137 is as in E1. In short,
compared to the simulation E0, in the computation of ĥ in the challenge phase,
the challenger commits to m1 instead of m0. Let bad′ be the event “A issues
OH3

(m1, τ̂1, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS , pkR)”, or equivalently “A issues OH3
(m0,

τ̂1, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS , pkR)”. Under the RO model, assuming that a di-
gest query requires one time unit, as τ̂1 is chosen uniformly at random from K,
Pr(bad′) 6 2qH3

/|K|.
If outsim

int denotes the event: “the conditions 6i and 6ii of Game 1 are satisfied
in the simulated environment for Eint.” As if ¬bad′ occurs, A’s views in the
simulations for E0 and Eint are the same, it holds that Pr(outsim

0 ∧ ¬bad′) =
Pr(outsim

int ∧ ¬bad′), and then

|Pr(outsim
0)− Pr(outsim

int)| 6 Pr(bad′) (4)

We now consider the simulated environment for the experiment E1. Notice that
to obtain it from the simulation Eint, only the line 134 has to be changed, with
ĉ computed as E(τ̂2, m1) instead of E(τ̂2, m0). If outsim

1 denotes the event: “the
conditions 6i and 6ii of Game 1 are satisfied in the simulated environment for
E1” then, using the same arguments as for E0, it holds that

|Pr(out1)− Pr(outsim
1)| ≤ Pr(bad). (5)

Let E denote the event “Finalization outputs Ẑ3Y −û0

0 6= ⊥”. This means thatA is-

suesOH2
(X̂1, X̂2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, pkS , pkR) orOH2

(X̂2, X̂1, Ẑ3, Ẑ4, Ẑ1, Ẑ2, pkS , pkR)
such that Ẑr0

1 Ẑ2 = X̂s0

1 and Ẑr0

3 Ẑ4 = X̂s0

2 . And, if E occurs, let bad′′ be the

event: “in the run of the Finalization procedure, the Ẑi,i=1,2,3,4’s are such that

a) Ẑr0

1 Ẑ2 = X̂s0

1 and Ẑr0

3 Ẑ4 = X̂s0

2 while
b) 2DH(Y0, Y ′

0 , X1) 6= (Z1, Z2) or 2DH(Y0, Y ′
0 , X2) 6= (Z3, Z4)”, then

Pr(bad′′) 6 2/p. (6)

As if ¬bad′′ ∧ E occurs, the simulator outputs cDH(X0, Y0), it holds that

Pr(outsim
1 ∧ ¬bad′′ ∧ E) 6 AdvcDH

B1
(G).

Similar arguments show that

Pr(outsim
int ∧ ¬bad′′ ∧ E) 6 AdvcDH

B1
(G).

where B1 is a cDH adversary obtained from A and the simulator.
Now, if outsim

1 ∧ ¬bad′′ ∧ ¬E occurs, then the adversary never obtains τ̂2 from
the OH2

oracle. The difference between the probability of the events outsim
int ∧

¬bad′′ ∧ ¬E and outsim
1 ∧ ¬bad′′ ∧ ¬E induced by this change is essentially a

12

semantic security advantage. Using A and the simulator we obtain an adversary
B2 against E such that

| Pr(outsim
int ∧ ¬bad′′ ∧ ¬E)− Pr(outsim

1 ∧ ¬bad′′ ∧ ¬E) | 6 Advss
B2,E(k), (7)

and then

|Pr(outsim
int)− Pr(outsim

1)| 6 εss(k) + εcDH(k) + Pr(bad′′); (8)

As

|Pr(out0)− Pr(out1)| 6 |Pr(out0)− Pr(outsim
0)|+ |Pr(outsim

0)− Pr(outsim
int)|

+|Pr(outsim
int)− Pr(outsim

1)|+ |Pr(outsim
1)− Pr(out1)|,

(9)
The result follows from the inequalities (2) to (9).

4.2 Unforgeability of the SCedl Signcryption Scheme

Theorem 2. Let qX , where X ∈ {H1, H2, H3, Sc}, be an upper bound on the
number of times A issues the OX oracle in Game 2. Under the RO model, if the
cDH problem is (t(k), εcDH(k))–hard in G, then SCedl is (t(k), qSc(k), ε(k))–MU
insider unforgeable in the FSO/FUO–sUF–CMA sense, where

ε 6 εcDH + ((qSc + qH3
)2 + q2

Sc)/2p + (qH3
+ 2qH2

+ 1)/p.

Proof. We consider the following simulation to answer A’s queries.

Simulation for the MU Insider Unforgeability in the FSO/FUO–sUF–CMA sense

Input: dp = (G, E , H1, H2, H3)←R Setup(k) where E = (E, D, K, M, C); X0, Y0←R G;
200 Initialization: pkS ← Y0; SH1

← (); Sk&r ← (); SH2
← (); SH3

← (); abort ← 0;
SSc ← ();

201 OH1
(s):

202 if ∃ R, d : (s, R, “1”, d) ∈ SH1
or (s, R, “2”,⊥) ∈ SH1

then return R; ◮ We use

the indicators “1” and “2” to differentiate the H1 digest values assigned through the OH1
(·)

oracle from the ones assigned through the OSc(·) oracle.

203 else d←R [p− 1]; R← X0G
d; Apd(SH1

, (s, R, “1”, d)); return R;

204 OH2
(s):

205 if ∃ τ : (s, τ) ∈ SH2
then return τ ;

206 else if s has format (X1, X2, Z1, Z2, Z3, Z4, pkS, pk) ∈ G7 × G2
then

207 Parse pk as (B1, B2) ∈ G2;
208 if ∃ r, s, τ1, τ2 : ((X1, X2, pkS, pk), (r, s, τ1, τ2)) ∈ Sk&r then

209 if Z
r
1 Z3 = B

s
1 and Z

r
2 Z4 = B

s
2 then return τ1; ◮ 2DH(X1, X2, B1) = (Z1, Z3)

and 2DH(X1, X2, B2) = (Z2, Z4) with all but negligible probability.

210 else if ∃ r, s, τ1, τ2 : ((X2, X1, pkS, pk), (r, s, τ1, τ2)) ∈ Sk&r then

211 if Z
r
3 Z1 = B

s
1 and Z

r
4 Z2 = B

s
2 then return τ2;

212 else τ←R K; Apd(SH2
, (s, τ)); return τ ;

213 else τ←R K; Apd(SH2
, (s, τ)); return τ ;

13

214 OH3
(d):

215 if ∃ h : (d, h) ∈ SH3
then return h; else h←R [p − 1]; Apd(SH3

, (d, h)); return h;

216 OSc(pk, m):

217 β, σ, h, s, r←R [p− 1]; X1 ← G
σ

pk
−h
S ; X2 ← G

s
X

−r
1 ;

218 if ∃R
′
, i, j :

(

(X1, X2), R
′
, i, j

)

∈ SH1
then abort← 1; ◮ A digest on (X1, X2) was

issued or (X1, X2) were previously used as outgoing ephemeral keys

219 R← G
β; W ← pk

β

S; V ← R
σ
W

−h; ◮ logG pkS = logR W (= skS , which is unknown)

220 Apd (SH1
, ((X1, X2), R, “2”,⊥)); ◮ We define OH1

(X1, X2) to be R

221 if ∃h
′
, m

′
, c

′
, τ

′

1, R
′
, V

′
, W

′
, pk

′ : ((m′
, τ

′

1, c
′
, X1, X2, G, R

′
, V

′
, W

′
, pkS, pk

′), h
′) ∈

SH3
then abort← 1; ◮ (X1, X2) were already used as ephemeral keys

222 τ1←R K; τ2←R K; c← E(τ2, m); Apd (Sk&r, ((X1, X2, pkS, pk), (r, s, τ1, τ2)));
223 Apd(SH3

, ((m, τ1, c, X1, X2, G, R, V, W, pkS, pk), h)); C ← (X2, W, σ, h, c);
224 Apd(SSc, ((m, τ1, X1, X2, G, R, V, W, pkS, pk), C));
225 return C;

226 Finalization:

227 if A outputs (skR, pkR, C
∗) such that

(i) ⊥ 6= m̂← Usc(skR, pkS, C
∗) and

(ii) and A never received C
∗ from OSign(·, ·) on a query on (pkR, m̂)

then

228 Parse C
∗ as (X̂2, Ŵ , σ̂, ĥ, ĉ);

229 X̂1 ← G
σ̂

pk
−ĥ
S ; R̂← OH1

(X̂1, X̂2);
230 if ∃d̂ : ((X̂1, X̂2), R̂, “1”, d̂) ∈ SH1

, for some d̂ then ◮ the value of OH1
(X̂1, X̂2)

was assigned through the OH1
oracle

231 Z0 ← Ŵ pk
−d̂
S ; return Z0;

232 else

233 if ∃(X ′

1, X
′

2) 6= (X̂1, X̂2) : (X ′

1, X
′

2, R̂, “2”,⊥) ∈ SH1
then abort← 1;

234 else ◮ We have necessarily (X̂1, X̂2, R̂, “2”, ⊥) ∈ SH1

235 Lookup ((m′
, τ

′

1, X̂1, X̂2, G, R̂, V
′
, W

′
, pkS, pk

′), C
′) ∈ SSc such that (C′

, pk
′
, m

′) 6=
(C∗

, pkR, m̂); ◮ Such an element of SSc can be found, as A never received C
∗ on

OSc(pkR, m̂) query;

236 Parse C
′ as (X̂2, W

′
, σ

′
, h

′
, c

′);
237 if ĥ = h

′
then abort← 1;

238 else ◮ ĥ 6= h
′ and X̂1 = G

σ̂
pk

−ĥ

S
= G

σ′

pk
−h′

S

239 y0 ← (σ̂ − σ
′)(ĥ− h

′)−1 mod p; Z0 ← X
y0

0 ; return Z0;

240 return ⊥;

The main trick in this simulation remains the use of the trapdoor test tech-
nique [11] for consistency in the digest values.
Let bad1a denote the event: “the simulator aborts before the execution of the
Finalization procedure” (see at lines 218 and 221), then

Pr(bad1a) 6 (qSc + qH1
)2/2p2 + (qSc + qH3

)2/2p2
6 1/p.

If bad1b is the event: “in an execution of theOH2
(·) procedure, a tuple (X1, X2, Z1,

Z2, Z3, Z4, r, s) is such that
A) a) Zr

1 Z3 = Bs
1 and Zr

2Z4 = Bs
2 , while

b) 2DH(X1, X2, B1) 6= (Z1, Z3) or 2DH(X1, X2, B2) 6= (Z2, Z4),

14

or
B) a’) Zr

3 Z1 = Bs
1 and Zr

4Z2 = Bs
2 , while

b’) 2DH(X2, X1, B1) 6= (Z3, Z1) or 2DH(X2, X1, B2) 6= (Z4, Z2).”
Then, still using the trapdoor test Theorem [11], we have Pr(bad1b) 6 2qH2

/p.
Let E be the event: “the conditions (i) and (ii) in the Finalization procedure

are satisfied” and bad1 = bad1a ∨ bad1b. Then, under the RO model,

Advsuf
A,SC(k) = Pr(Succsuf

A ∧ ¬bad1) + Pr(Succsuf
A ∧ bad1)

6 Pr(E) + (2qH2
+ 1)/p. (10)

Let E1 be the event: “E ∧ ∃d̂ : ((X̂1, X̂2), R̂, “1”, d̂) ∈ SH1
” (see at line 230), and

E2 be the event: “E∧∄d̂ : ((X̂1, X̂2), R̂, “1”, d̂) ∈ SH1
.” Notice that as E = E1∨E2

and the union is disjoint, Pr(E) = Pr(E1) + Pr(E2). Now, if E1 occurs, let bad2

be the event: “Ŵ 6= R̂skS ”. If E1 ∧ bad2 occurs, let x̂1 = logG X̂1, x′
1 = logR̂ V̂ ,

and sk′ = logR̂ Ŵ . As ⊥ 6= m̂← Usc(skR, pkS , C∗), it holds that

x̂1 = σ̂ − ĥ · skS and x′
1 = σ̂ − ĥ · sk′.

As Ŵ 6= R̂skS , we have skS 6= sk′. It follows that

ĥ = (x̂1 − x′
1)(sk′ − skS)−1 mod p.

Hence, under the RO model, Pr(E1 ∧ bad2) 6 qH3
/p. Then, if E1, except with

probability 6 qH3
/p, it holds that Ŵ = R̂skS = (X0Gd̂)skS ; and Ŵpk−d̂

S = ŴY −d̂
0

yields cDH(X0, Y0).
If E2 occurs, then OH1

(X̂1, X̂2) was assigned through the OSc(·, ·) oracle.
Hence, we necessarily have (X̂1, X̂2, R̂, “2”,⊥) ∈ SH1

. Let bad3 be the event
“∃(X1, X2) 6= (X̂1, X̂2) : (X1, X2, R̂, “2”,⊥) ∈ SH1

” (a collision occurred among
the OH1

values assigned through the OSc oracle, see at line 233), then

Pr(E2 ∧ bad3) 6 q2
Sc/2p,

and then
Pr(E2) 6 Pr(E2 ∧ ¬bad3) + q2

Sc/2p. (11)

Now, if E2 ∧ ¬bad3, as OH1
(X̂1, X̂2) was assigned through OSc(·, ·) there exists

((m′, τ ′
1, X ′

1 = X̂1, X ′
2 = X̂2, G, R̂, V ′, W ′, pkS , pk′), C′) ∈ SSc such that

– C′ = (X̂2, W ′, σ′, h′, c′) is a valid signcrypted text with regard to pkS and
pk′ ∈ G2 (a receiver public key), and

– (C′, pk′, m′) 6= (C∗, pkR, m̂) (otherwise, the condition (ii) in the Finalization

procedure is not satisfied – A received C∗ from OSc(·, ·) on query (pkR, m̂)).

Let bad4 be the event: “h′ = ĥ”. It is clear that if bad4 and pk′ 6= pkR, then a
OH3

collision occurred. And, if bad4 and pk′ = pkR then:
(a) if Ŵ = RskS = W ′ then as R̂ = R′, we necessarily have σ̂ = σ′. Now,

as (C′, pk′, m′) 6= (C∗, pkR, m̂), we have (m′, c′) 6= (m̂, ĉ), and then a OH3

collision occurred.
(b) And, if Ŵ 6= W ′ a OH3

collision occurred also.

15

Then
Pr(E2 ∧ ¬bad3 ∧ bad4) 6 (qSc + qH3

)2/2p, (12)

and then

Pr(E2) 6 Pr(E2 ∧ ¬bad3 ∧ ¬bad4) + ((qSc + qH3
)2 + q2

Sc)/2p. (13)

If E2 ∧ ¬bad3 ∧ ¬bad4, then as both C∗ and C′ are valid signcrypted texts with
sender public key pkS ,

x̂1 = σ̂ − ĥ · skS and x̂1 = σ′ − h′ · skS , wherein x̂1 = logG X̂1.

Then if E2, except with probability 6 ((qSc + qH3
)2 + q2

Sc)/2p, the value (σ̂ −
σ′)(ĥ − h′)−1 mod p yields skS = y0 = logG Y0 and then Xy0

0 = cDH(X0, Y0).
Then it follows from the inequalities (10) to (13) that

Advsuf
A,SC(k) 6 AdvcDH

B (G) + ((qSc + qH3
)2 + q2

Sc)/2p + (qH3
+ 2qH2

+ 1)/p,

where B is a cDH solver obtained from A and the simulator. ⊓⊔

4.3 Soundness of Non–Repudiation

Theorem 3. Under the RO model, the SCedl scheme achieves (t, ε)–compu-
tational soundness of non–repudiation, where ε 6 q2

H3
/2p wherein qH3

, is an
upper bound on the number of times A issues queries to the OH3

oracle.

Proof. We simulate the digest queries as hereunder.

Simulation for Soundness of non–repudiation

Input: dp = (G, E , H1, H2, H3) where E = (E, D, K, M, C);
300 Initialization: SH1

← (); Sk&r ← (); SH2
← (); SH3

← (); abort← 0; SSc ← ();

301 OH1
(d): is defined as described at lines 101–102.

302 OH2
(d):

303 if ∃ R : (d, R) ∈ SH2
then return R; else R←R G; Apd(SH2

, (d, R)); return R;

304 OH3
(d): is defined as described at lines 110–112.

305 The attacker A outputs (C∗
, pkS, skR, pkR, m

′
, nr)←RA

OH1
(·),OH2

(·),OH3
(·)(dp);

306 Finalization:

307 if A outputs (C∗
, pkS, skR, pkR, m

′
, nr) such that (i) ⊥ 6= m← Usc(skR, pkS, C

∗),
and (ii) m 6= m

′ and 1 = d← PV(C∗
, m

′
, nr, pkS, pkR), then

308 Parse C
∗ as (X̂2, Ŵ , σ̂, ĥ, ĉ) and nr as (τ1, τ2);

309 X̂1 ← G
σ̂

pk
−ĥ
S ; R̂← OH1

(X̂1, X̂2); V̂ ← R̂
σ̂
Ŵ

−ĥ;
310 n̂r ← N(skR, pkS, C); parse n̂r as (τ̂1, τ̂2);
311 s1 ← (m, τ̂1, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS, pkR); s2 ← (m′

, τ̂1, ĉ, X̂1, X̂2, G, R̂, V̂ , Ŵ , pkS, pkR);
312 return (s1, s2);
313 else return ⊥;

If A outputs (skR, pkR, C∗, m′, nr) is such that m′ 6= m ← Usc(skR, pkS , C∗)
and 1 = d ← PV(C∗, m′, nr, pkS , pkR). As m 6= m′, the Finalization procedure
outputs (s1, s2) such that s1 6= s1 and OH3

(s1) = OH3
(s2). Hence,

Pr(Succsnr
A ∧ ¬bad) 6 q2

H3
/2p. (14)

16

4.4 Unforgeability of Non–Repudiation Evidence

Theorem 4. Under the RO model, if the cDH problem is (t(k), εcDH(k)) hard,
then SCedl achieves (t, qSc, qUsc, qN, ε) unforgeability of non–repudiation evidence
wherein ε 6 εcDH + 1/|K|+ 3/(2p).

Proof. We define the simulator as indicated hereunder.

Simulation for Unforgeability of non–repudiation evidence

Input: dp = (G, E , H1, H2, H3)←R Setup(k) wherein E = (E, D, K, M, C); X0, Y0←R G;
400 Initialization: a ← [p − 1]; (skS, pkS) ← (a, G

a); r0, s0←R [p − 1]; Y
′

0 ← G
s0 Y

−r0

0 ;
pkR ← (Y0, Y

′

0); SH1
← (); Sk ← (); Sk&r ← (); SH2

← (); SH3
← (); abort← 0;

401 OH1
(s): is defined as at lines 101–102.

402 OH2
(s):

403 if ∃ τ : (s, τ) ∈ SH2
then return τ ;

404 else if s has format (X1, X2, Z1, Z2, Z3, Z4, pk, pk
′ = pkR) ∈ G7 ×G

2
then

405 if pk = pkS and ∃τ, x : ((X1, X2, Z1, Z2, ǫ, ǫ, pkS, pkR), τ, x)) ∈ Sk&r and Z
r0

3 Z4 = X
s0

2

then Apd(SH2
, (s, τ)); return τ ; ◮ ǫ denotes the empty string.

406 if pk = pkS and ∃τ, x : ((X1, X2, ǫ, ǫ, Z3, Z4, pkS, pkR), τ, x)) ∈ Sk&r and Z
r0

1 Z2 = X
s0

1

then Apd(SH2
, (s, τ)); return τ ;

407 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk and Z
r0

1 Z2 = X
s0

1 and Z
r0

3 Z4 = X
s0

2 then

Apd(SH2
, (s, τ)); return τ ;

408 else τ←R K; Apd(SH2
, (s, τ)); return τ ;

409 else τ←R K; Apd(SH2
, (s, τ)); return τ ;

410 OH3
(d): is defined as at lines 110–112.

411 OSc(pk, m):

412 Parse pk as (B1, B2); x1, x2←R [p− 1]; X1 ← G
x1 ; Z1 = B

x1

1 ; Z2 = B
x1

2 ;
413 if pk 6= pkR then

414 X2 ← G
x2 ; Z3 = B

x2

1 ; Z4 = B
x2

2 ;
415 if ∃R : ((X1, X2), R) ∈ SH1

then abort← 1; ◮ (X1, X2) were already used as

ephemeral keys.

416 τ1 ← OH2
(X1, X2, Z1, Z2, Z3, Z4, pkS, pk); τ2 ← OH2

(X2, X1, Z3, Z4, Z1, Z2, pkS, pk);
417 else ◮ pk = pkR;

418 X2 ← X0G
x2 ; ◮ The simulator takes X0, Y0 as inputs; we “embed” X0 in X2.

419 if ∃R : ((X1, X2), R) ∈ SH1
then abort← 1; ◮ (X1, X2) were already used as

ephemeral keys.

420 τ1←R K; τ2←R K;
421 Apd(Sk&r, ((X1, X2, Z1, Z2, ǫ, ǫ, pkS, pkR), τ1, x2));
422 Apd(Sk&r, ((X2, X1, ǫ, ǫ, Z1, Z2, pkS, pkR), τ2, x2));

423 R← OH1
(X1, X2); V ← R

x1 ; W ← R
skS ;

424 c← E(τ2, m); h← OH3
(m, τ1, c, X1, X2, G, R, V, W, pkS, pk);

425 σ ← x1 + h · skS ; return (X2, W, σ, h, c);

426 OUsc(pk, C): ON(pk, C) :

427 Parse C as (X2, W, σ, h, c) ∈ G2 × [p− 1]2 ×C;
428 X1 ← G

σ
pk

−h;
429 if ∃Z1, Z2, Z3, Z4 ∈ G, τ ∈ K : ((X1, X2, Z1, Z2, Z3, Z4, pk, pkR), τ) ∈ SH2

and
Z

r0

1 Z2 = X
s0

1 and Z
r0

3 Z4 = X
s0

2 then

17

430 τ1 ← τ ; ◮ H2(X1, X2, Z1, Z2, Z3, Z4, pk, pkR) was issued

431 else if pk = pkS and ∃τ, x, Z3, Z4 : ((X1, X2, ǫ, ǫ, Z3, Z4, pkS, pkR), τ, x)) ∈ Sk&r

then τ1 ← τ ;
432 else if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then

433 τ1 ← τ ; ◮ Usc(pk, C
′

) or N(pk, C
′

) such that C
′

parses as (X2, W
′

, σ, h, c
′

) was issued.

434 else τ1←R K; Apd(Sk, ((X1, X2, pk, pkR), τ1));

435 if ∃Z1, Z2, Z3, Z4 ∈ G, τ ∈ K : ((X2, X1, Z3, Z4, Z1, Z2, pk, pkR), τ) ∈ SH2
and

Z
r0

1 Z2 = X
s0

1 and Z
r0

3 Z4 = X
s0

2 then τ2 ← τ ; ◮ The same treatment as for τ1

436 else if pk = pkS and ∃τ, x, Z3, Z4 : ((X2, X1, Z3, Z4, ǫ, ǫ, pkS, pkR), τ, x)) ∈ Sk&r

then τ2 ← τ ;
437 else if ∃ τ : ((X2, X1, pk, pkR), τ) ∈ Sk then τ2 ← τ ;
438 else τ2←R K; Apd(Sk, ((X2, X1, pk, pkR), τ2));

439 m← D(τ2, c); R← OH2
(X1, X2); V ← R

σ
W

−h;
440 h

′ ← OH3
(m, τ1, c, X1, X2, G, R, V, W, pkS, pk);

441 if h = h
′

then return m;
OUsc

return (τ1, τ2);

ON

else return ⊥;

442 Finalization:

443 ifA outputs (C∗
, m

∗
, nr

∗) such that: (i) C
∗ was generated through OSc(·, ·), (ii) 1 =

d ← PV(C∗
, m

∗
, nr

∗
, pkS, pkR), and (iii) nr

∗ was not generated by ON(·, ·) on a
query on (pkS, C

∗) then

444 Parse C
∗ as (X̂2, Ŵ , σ̂, ĥ, ĉ) and nr

∗ as (τ̂1, τ̂2);

445 X̂1 ← G
σ̂

pk
−ĥ
S ;

446 Recover ((X̂1, X̂2, Ẑ1, Ẑ2, ǫ, ǫ, pkS, pkR), τ̂ , x2) from Sk&r ◮ C
∗ was genera-

ted through OSc(pkR, m), for some m, so there are some Ẑ1, Ẑ2, τ̂ , x2 : ((X̂1, X̂2, Ẑ1, Ẑ2, ǫ, ǫ,

pkS , pkR), τ̂ , x2)) ∈ Sk&r (see at line 421)

447 if ∃ Ẑ3, Ẑ4 ∈ G : ((X̂1, X̂2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, pkS, pkR), τ̂1) ∈ SH2
and Z

r0

3 Z4 = X̂
s0

2

then

448 U0 ← Z3Y0
−x2 ; return U0;

449 return ⊥;

We reuse the trapdoor test technique. Let bad1 be the event: “the simulator
aborts” (see at lines 415 and 419), then under the RO model

Pr(bad1) 6 q2
Sc/(2p2) 6 1/(2p). (15)

Let bad2 be the event “the Finalization procedure outputs ⊥.”. If Succunr
A ∧¬bad1∧

bad2 occurs, A never queried the OH3
oracle on (X̂1, X̂2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, pkS , pkR)

such that Zr0

3 Z4 = Xs0

2 ; then A successfully guessed the value of OH2
(X̂1, X̂2,

2DH(Y0, Y ′
0 , X1), 2DH(Y0, Y ′

0 , X2), pkS , pkR). Hence, under the RO model,

Pr(Succunr
A ∧ ¬bad1 ∧ bad2) 6 1/|K|. (16)

If the event Succunr
A ∧ ¬bad1 ∧ ¬bad2 occurs, as Zr0

3 Z4 = X̂s0

2 it holds that

Z3 = cDH(X̂2, Y0), except with probability 1/p. And, as X̂2 = X0Gx2 (see
at line 418) U0 = cDH(X0, Y0) = Z3Y −x2

0 . Using A and the simulator, we ob-
tain a machine which takes (X0, Y0) as inputs and outputs cDH(X0, Y0) with
probability Pr(Succunr

A ∧ ¬bad1 ∧ ¬bad2)− 1/p. As

Pr(Succunr
A) 6 Pr(Succunr

A ∧ ¬bad1 ∧ ¬bad2) + Pr(bad1) + Pr(bad2),

18

the result follows from (15) and (16). ⊓⊔

4.5 On the Concrete Choice of the Set of Domain Parameters

Recall that a concrete instance of a cryptographic problem is said to have k–bits
of security if any adversary A running in time t and trying to solve the problem
succeeds with probability ε 6 t/2k. A cryptographic scheme is said to have k–
bits of security with respect to some security attribute, if any attacker playing
the security game that defines the attribute and running in time t, succeeds with
probability 6 t/2k.

In SCedl, if the underlying group G and the encryption scheme E are chosen
such that the cDH problem in G has (k+1)–bits of security and E has (k+3)–bits
of security then, from (1), it follows that SCedl is (t, qSc, qUsc, qN, ε)–secure in the
SKI–MU insider confidentiality in the FSO/FUO–IND–CCA2 sense, where

ε 6 t/2k+1 + t/2k+3 + 4(qH2
+ 2qUsc + 2qN + 1)/p + 2t/|K|.

As anO(
√

p) algorithm is known for the discrete logarithm problem, α
√

p > 2k+1

for some “moderate” constant α. As qH2
+ 2qUsc + 2qN + 1 6 2t and |K| > 2k+3,

we obtain ε 6 t/2k. Hence, SCedl has k–bits of security in the SKI–MU insider
confidentiality in the FSO/FUO–IND–CCA2 sense. A similar analysis shows that
under the same assumptions, SCedl has k–bits of security with regard to (i) the
MU insider strong unforgeability in the FSO/FUO–sUF–CMA sense, (ii) the
soundness of non–repudiation, and (iii) the unforgeability of non–repudiation
evidence.

5 Comparison with other schemes

The design of SCedl integrates the randomness reuse idea suggested in [2,20]. A
SCedl sender (resp. receiver) key pair generation requires one (resp. two) expo-
nentiations. An execution of the Sc algorithm requires Exp(G, 8). Four of the 8
exponentiations can be performed offline, before the receiver public key and the
plain text are provided. If the receiver public key is provided before the plain
text (this may occur in email systems where the recipient is often typed before
email text) all the 8 exponentiations can performed before the plain text is pro-
vided. The Usc and N algorithms require Exp(G, 4) (two pairs of exponentiations
with the same exponent) and two multi–exponentiations. The public verifica-
tion algorithm requires two multi–exponentiations. If the encryption scheme E
is such that a clear text and a corresponding ciphertext have the same length,
the communication overhead of SCedl, compared to the CM signature scheme
is one group element. Notice that we neglected the group membership tests, as
they have a negligible cost in Z∗

q and elliptic curve groups.
In [19], Malone–Lee (ML) proposes a very efficient design with NINR. Un-

fortunately, the design, which is analysed in the RO model under de cDH as-
sumption, does not achieve insider security. Also the reduction uses the Forking

19

Lemma [6,21]. Assuming qH = 232, for a security target of 128–bits, the under-
lying group G′ must be chosen to offer 160–bits of security. In the case G′ is
a (sub)group of the rational points of an elliptic curve G′ = E(Fq′), q′ has to
be chosen such that |q′| ≈ 320. An execution of the ML Sc or Usc algorithm
requires two exponentiations. As a modular multiplication (performed with the
Karatsuba–Ofman algorithm) in Fq′ has complexity ≈ |q′|1.585. Given the tight-
ness of our reduction, in ECC, we need |q| = 256 to have 128 bits of security.
As Mult(Fq′) ≈ 1.42 ·Mult(Fq), assuming that a group operation in G′ requires
14 ·Mult(Fq′) (see1 [16, p. 96]), Exp(G′) ≈ 6720 ·Mult(Fq′) ≈ 9570 ·Mult(Fq) ≈
1.78 ·Exp(G). The ML design is about (a) 2.25 times faster for signcryption, and
(b) 1.25 times faster for unsigncryption than ours.

Bjørstad and Dent’s (BD) design [8] tightly achieves, in the RO model, insider
unforgeability under the cDH assumption and outsider confidentiality under the
gap DH assumption. The scheme does not achieve insider confidentiality. The Sc

algorithm requires Exp(G, 3) operations, the Usc algorithm requires two multi–
exponentiations. The BD construction is about 2.5 times faster then SCedl for
signcrypted text generation and about 3 times faster for unsigncryption.

Some of the designs we consider hereunder assume the existence of groups
G1,G2,GT together with a bilinear pairing e : G1 × G2 → GT . Recall that for
a choice of the groups G,G1,G2, and GT (where G is a classical ECC group),
with a target of 128–bits of security, the cost of a pairing evaluation is about
≈ Exp(G, 8), Exp(G1) ≈ Exp(G, 3), and Exp(G2) ≈ Exp(G, 6) [7, p. 126].

Arriaga et al.’s generic construction with NINR [2] is insider secure in the
standard model. They propose an instantiation of their design which assumes
the Decisional Bilinear and the q–Strong DH assumptions. Unfortunately, the
unforgeability is achieved in the registered key model [20], wherein an attacker
needs to register to the challenger the keys pairs it uses in its attack. The design
assumes the existence of groups G,G1,G2,GT such that (i) G1,G2,GT are of
order q, (ii) there is a bilinear pairing e : G1 × G2 → GT and (iii) a one to
one and efficiently invertible mapping from G to Zq. An evaluation of the Sc

algorithm requires Exp(G, 2) + Exp(G1) and one multi–exponentiation in G. The
Usc algorithm requires two multi–exponentiations, one in G and one in G2, and
a pairing evaluation. For a target of 128 bits of security, we expect SCedl to be
1.5 times faster for signcryption and 2.8 times faster for unsigncryption.

Matsuda et al. [20]’s two generic constructions with NINR are insider secure
in the FSO/FUO model. The security reduction is provided in the RO model.
The most efficient among the instanciations that achieve insider security in the
FSO/FUO model, uses as base schemes, the DHIES encryption scheme [1] and
the BLS signature scheme [9]. The construction assumes the existence of groups
G1,G2,GT together with a bilinear pairing e : G1 × G2 → GT . A Sc oper-
ation requires Exp(G1, 3), an Usc operation requires Exp(G2) and two pairing

1 If |G| = 2λ, the cost of Exp(G) using the classical square–and–multiply algorithm is
≈ 1.5·λ operations in G. And if G is such that the multiplication of two of its elements
requires 14 multiplications in Fq then the computational cost of an exponentiation
is 14 · 1.5 · λ multiplications in Fq.

20

evaluations. Compared to SCedl, for a target of 128 bits of security (given that
Exp(G1) ≈ Exp(G, 3), Exp(G2) ≈ Exp(G, 6) and the cost of a pairing evaluation
≈ Exp(G, 8)) we expect our design to be 1.12 times faster for signcryption, and
about 3.6 times faster for unsigncryption.

For a comparison with Chiba et al.’s generic contruction with NINR [13], we
consider the most efficient among the instantiations they propose. It achieves
insider security in the FSO/FUO model, under the Decisional Bilinear and the
q–strong DH assumptions. Although the insider security is shown in the standard
model, the unforgeability is achieved in the registered key model. Besides, the
scheme assumes the existence of a pairing e : G1 × G2 → GT , with G1 = G2.
The Sc algorithm requires Exp(G1, 3) together with a multi–exponentiation. The
Usc operation requires one exponentiation, one multi–exponentiation, and one
pairing evaluation. We expect SCedl to be about 1.5 times faster for signcryption,
and about 2.3 times faster for unsigncryption.

Fan et al.’s design [14] assumes the existence of a bilinear map e : G× G→
GT , where G and GT are multiplicative cyclic groups. The Sc algorithm requires
one pairing, Exp(G, 4) + Exp(GT), and (n + 1)/2 group operations in G, where n
is the bit–length output of some collision resistant hash function H : G→ {0, 1}n

used in the design. The unsigncryption algorithm requires 3 pairings, Exp(G, 2),
and (n/2+1) group operations in G. A signcrypted text is an element of GT×G3.
For a choice of the groups G, G, and GT , with target 128–bits of security, we
expect our design to be about (a) 2.5 times faster for signcryption, and (b) 7.5
times faster for unsigncryption than Fan et al.’s construction, in addition to
having shorter signcrypted texts.

In the scheme from [22], defined over the (RSA based) group of signed
quadratic residues J+

N , the Sc algorithm requires Exp(J+
N , 6) and the Usc al-

gorithm requires Exp(ZN , 3) (we ignore the exponentiation with the RSA pub-
lic exponent, which is often small and sparse). Unfortunately, the security re-
duction uses the Forking Lemma, which implies a 1/qH security degradation,
where qH is the number of digest queries the attacker issues. For qH = 232, if
the target security is 128–bits, the RSA modulus needs to have a bitlength
|N | ≈ 7864 [18]2. Then, considering a square–and–multiply based exponen-
tiation, Exp(J+

N) ≈ 11796 · Mult(ZN), where Mult(ZN) denotes the cost of a
multiplication in ZN . In contrast SCedl can be instantiated over an elliptic
curve (sub)group G = E(Fq) such that |q| ≈ 256 and G has 128–bits of se-
curity. Assuming that a group operation in G requires 14 ·Mult(Fq) [16, p. 96],
Exp(G) ≈ 5376 ·Mult(Fq). As Mult(ZN) > 30 ·Mult(Fq), for a 128–bits security
target, we expect SCedl over G to be at least 13 times faster (for key generation,
signcryption, unsigncryption, etc.) than the design from [22].

Compared to the ML and BD schemes, which do not require any specificity of
the underlying group and do not achieve insider security, SCedl offers a stronger
security, even if it is less efficient. And, compared to the schemes from [2,13,14,20,
22], SCedl offers a tight security reduction, a better efficiency and a comparable
or a superior security. We summarize in Table 1 some elements of comparisons.

2 see also www.keylength.com

www.keylength.com

21

The column Assumptions indicates the computational assumptions used in the
security reductions; FL and IS stand respectively for Forking Lemma and Insider

Security (in the FSO/FUO model). The letters ‘y’ and ‘n’ stand for “yes” and
“no”, respectively; ‘p’ stands for “partial” (BD achieves insider unforgeability,
but outsider confidentiality). In the column Computations [a, b, c][a′, b′, c′] means
that a Sc (resp. Usc) operation requires a (resp. a′) exponentiations, b (resp.
b′) multi–exponentiations, and c (resp. c′) pairing evaluations. We recall that
the number of exponentiations has to be considered in conjunction with the
underlying mathematical structure. For instance, as previously said, if a scheme
requires a bilinear pairing e : G1×G2 → GT , for a target of 128 bits of security,
it holds Exp(G1) ≈ Exp(G, 3) and Exp(G2) ≈ Exp(G, 6). The column Overhead

indicates the signcrypted ciphertext overhead compared to the cleartext.

Table 1. Comparison of the proposed signcryption schemes with some SCNINR
schemes from the litterature.

Scheme Assumptions FL IS Computations Overhead

ML [19] RO, cDH y n [2, 0, 0] [2, 0, 0] 2 · sz(Zp)
BD [8] RO, cDH n p [2, 0, 0] [0, 2, 0] sz(G) + sz(Zp)
ABF [2] DBDH, q-sDH n y [3, 1, 0] [0, 2, 1] sz(G) + sz(G1)
MMS [20] RO, GDH, co–cDH n y [3, 0, 0] [1, 0, 2] sz(G1) + sz(G2)
CMSM [13] DBDH, q-sDH n y [3, 1, 0] [1, 1, 2] sz(Zp) + 4 · sz(G1)
FZT [14] DBDH, DL n y [5, 0, 1] [2, 0, 3] sz(Zp) + 2 · sz(G1)
SSN [22] RO, RSA y y [6, 0, 0] [3, 0, 0] sz(Zp) + 2 · sz(ZN)
Ours: SCedl RO, cDH n y [8, 0, 0] [4, 2, 0] 2 · sz(Zp) + 2 · sz(G)

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

2. Arriaga A., Barbosa M., Farshim P.: On the Joint Security of Signature and En-
cryption Schemes under Randomness Reuse: Efficiency and Security Amplification.
In: Bao F., Samarati P., Zhou J. (eds) Applied Cryptography and Network Secu-
rity. ACNS 2012. LNCS, vol 7341. Springer, Berlin, Heidelberg (2012)

3. Badertscher C., Banfi F., Maurer U.: A Constructive Perspective on Signcryp-
tion Security. In: Catalano D., De Prisco R. (eds) Security and Cryptography for
Networks. SCN 2018. LNCS, vol 11035. Springer, Cham (2018)

4. Baek J., Steinfeld R., Zheng Y.: Formal Proofs for the Security of Signcryption.
Journal of Cryptology, 20(2):203–235 (2007)

5. Bao F., Deng R.H.: A signcryption scheme with signature directly verifiable by
public key. In: Imai H., Zheng Y. (eds) Public Key Cryptography. PKC 1998.
LNCS, vol 1431. Springer, Berlin, Heidelberg (1998)

6. Bellare M., Neven G.: Multi–signatures in the plain public–key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399. ACM (2006)

22

7. Benhamouda F., Couteau G., Pointcheval D., Wee H.: Implicit Zero-Knowledge
Arguments and Applications to the Malicious Setting. In: Gennaro R., Robshaw M.
(eds) Advances in Cryptology – CRYPTO 2015. CRYPTO 2015. LNCS, vol 9216.
Springer, Berlin, Heidelberg (2015)

8. Bjørstad T.E., Dent A.W.: Building Better Signcryption Schemes with Tag-KEMs.
In: Yung M., Dodis Y., Kiayias A., Malkin T. (eds) Public Key Cryptography -
PKC 2006. PKC 2006. LNCS, vol 3958. Springer, Berlin, Heidelberg (2006)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptology 17(4), 297–319 (2004)

10. Boneh D., Shen E., Waters B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie–Hellman. In: Yung M., Dodis Y., Kiayias A., Malkin T. (eds)
Public Key Cryptography — PKC 2006. PKC 2006. LNCS, vol 3958. Springer,
Berlin, Heidelberg (2006)

11. Cash D., Kiltz E., Shoup V.: The twin Diffie–Hellman problem and applications.
Journal of Cryptology, 22(4), 470–504 (2009)

12. Chevallier–Mames B.: An Efficient CDH–Based Signature Scheme with a Tight
Security Reduction. In: Shoup V. (eds) Advances in Cryptology — CRYPTO 2005.
CRYPTO 2005. LNCS, vol 3621. Springer, Berlin, Heidelberg (2005)

13. Chiba D., Matsuda T., Schuldt J.C.N., Matsuura K.: Efficient Generic Construc-
tions of Signcryption with Insider Security in the Multi-user Setting. In: Lopez J.,
Tsudik G. (eds) Applied Cryptography and Network Security. ACNS 2011. LNCS,
vol 6715. Springer, Berlin, Heidelberg (2011)

14. Fan J., Zheng Y., Tang X.: Signcryption with non–interactive non–repudiation
without random oracles. In: Transactions on computational science X, pp. 202–
230. Springer, Berlin, Heidelberg (2010)

15. Goh EJ., Jarecki S.: A Signature Scheme as Secure as the Diffie–Hellman Problem.
In: Biham E. (eds) Advances in Cryptology — EUROCRYPT’ 03. EUROCRYPT
2003. LNCS, vol 2656. Springer, Berlin, Heidelberg (2003)

16. Hankerson D., Menezes A. J., Vanstone S.: Guide to elliptic curve cryptography.
Springer (2004)

17. Katz J., Wang N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In Proceedings of the 10th ACM conference on Computer and
communications security, pp. 155–164. ACM, (2003)

18. Lenstra A. K.: Key lengths. Handbook of Information Security, vol. 2, pp. 617–635.
Wiley (2005)

19. Malone–Lee J.: Signcryption with non–interactive non–repudiation. Designs, Codes
and Cryptography, vol. 37, no 1, pp. 81–109. Springer (2005)

20. Matsuda T., Matsuura K., Schuldt J.C.N.: Efficient Constructions of Signcryption
Schemes and Signcryption Composability. In: Roy B., Sendrier N. (eds) Progress in
Cryptology - INDOCRYPT 2009. INDOCRYPT 2009. LNCS, vol 5922. Springer,
Berlin, Heidelberg (2009)

21. Pointcheval D., Stern J.: Security Proofs for Signature Schemes. In: Maurer U.
(eds) Advances in Cryptology — EUROCRYPT’96. EUROCRYPT 1996. LNCS,
vol 1070. Springer, Berlin, Heidelberg (1996)

22. Sarr A.P., Seye P.B., Ngarenon T.: A Practical and Insider Secure Signcryption
with Non-interactive Non-repudiation. In: Carlet C., Guilley S., Nitaj A., Souidi E.
(eds) Codes, Cryptology and Information Security. C2SI 2019. LNCS, vol 11445.
Springer, Cham (2019)

23. Zheng Y.: Digital signcryption or how to achieve cost(signature & encryption)
≪ cost(signature) + cost(encryption). In: Kaliski B.S. (eds) Advances in Crypto-

23

logy — CRYPTO ’97. CRYPTO 1997. LNCS, vol. 1294. Springer, Berlin, Heidel-
berg (1997)

	A Computational Diffie–Hellman based Insider Secure Signcryption with Non–Interactive Non–Repudiation
	Introduction
	Preliminaries
	Insider Security for SCNINR

	The New Construction
	Security Arguments of the SCedl Scheme
	Confidentiality of the SCedl Signcryption Scheme
	Unforgeability of the SCedl Signcryption Scheme
	Soundness of Non–Repudiation
	Unforgeability of Non–Repudiation Evidence
	On the Concrete Choice of the Set of Domain Parameters

	Comparison with other schemes

