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Abstract
How do children acquire language through unsupervised or noisy super-
vision? How do their brain process language? We take this perspective to
machine learning and robotics, where part of the problem is understand-
ing how language models can perform grounded language acquisition
through noisy supervision and discussing how they can account for brain
learning dynamics. Most prior works have tracked the co-occurrence
between single words and referents to model how infants learn word-
referent mappings. This paper studies cross-situational learning (CSL)
with full sentences: we want to understand brain mechanisms that enable
children to learn mappings between words and their meanings from
full sentences in early language learning. We investigate the CSL task
on a few training examples with two sequence-based models: (i) Echo
State Networks (ESN) and (ii) Long-Short Term Memory Networks
(LSTM). Most importantly, we explore several word representations
including One-Hot, GloVe, pretrained BERT, and fine-tuned BERT rep-
resentations (last layer token representations) to perform the CSL task.
We apply our approach to three diverse datasets (two grounded lan-
guage datasets and a robotic dataset) and observe that (1) One-Hot,
GloVe, and pretrained BERT representations are less efficient when
compared to representations obtained from fine-tuned BERT. (2) ESN
online with final learning (FL) yields superior performance over ESN
online continual learning (CL), offline learning, and LSTMs, indicating
the more biological plausibility of ESNs and the cognitive process of
sentence reading. (2) LSTM with fewer hidden units showcases higher
performance for small datasets, but LSTM with more hidden units is
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2 Cross-Situational Learning

needed to perform reasonably well on larger corpora. (4) ESNs demon-
strate better generalization than LSTM models for increasingly large
vocabularies. Overall, these models are able to learn from scratch to
link complex relations between words and their corresponding meaning
concepts, handling polysemous and synonymous words. Moreover, we
argue that such models can extend to help current human-robot inter-
action studies on language grounding and better understand children’s
developmental language acquisition. We make the code publicly available∗.

Keywords: cross-situational learning, echo state networks, grounded
language, BERT, LSTM

1 Introduction
Experimental and modeling studies of language acquisition [1–4] try to
understand how infants can learn language by observing their environments,
interacting with others. Before one year of age, children are able to segment
words from speech based on statistical learning mechanisms [5]. Moreover,
children need to map some utterances like "the blue glass is on the left" to
visual concepts, while multiple words can be unknown. Children have to learn
from several presentations of the same word in various contexts: this is often
referred to as cross-situational learning (CSL) [6–8].
Traditional approaches for language grounding mainly focus on mapping natu-
ral language commands and task representations that are essentially sequences
of primitive robot actions [9–11]. In recent years, a large amount of research
has been focused on grounded language learning (often linked to how robots
can learn the grounded language) either from multimodal or natural language
data [12, 13]. Further, several studies have performed computational experi-
ments on CSL by tracking the co-occurrence between word forms and referents
(objects) to model how infants could do it. In this paradigm, initially, the word-
referent mappings appear completely random, and with repeated trials, the
correct concepts will be activated. However, existing robotic frameworks [6, 14]
do not model how children learn to understand directly from full sentences
through cross-situational learning without providing specific cues.
Recently, the Transformer based pretrained language model BERT [15] has
brought large improvements in the field of NLP on a wide variety of tasks,
including machine translation [15], sentence representation [15], and seman-
tic role labeling [16, 17]. Nevertheless, how these models perform grounded
language acquisition through CSL remains unclear. Since pretrained language
models are trained in the self-supervised setting, and these language models
exhibit slower learning of words in longer utterances in a similar way as chil-
dren acquire language [18], it poses a challenge for researchers to investigate the
use of transformer models in robotics. Inspired by their success of pretrained

∗https://www.dropbox.com/s/oxtzr3bs17mem71/csl_code.zip?dl=0
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The red cup is on the right

cup?
red?

right?

ball?
red?

right?

The red ball is on the right

The red car is on the left

car?
red?left?

The orange bowl is on the middle


bowl?

orange?
middle?

Fig. 1 Cross-Situational Learning (CSL): children are presented with multiple referents
and multiple words, they are unable to decide which word maps onto which object during
the processing of an utterance.

Transformer models (BERT, T5, and GPT-2) when applied to robotics and
reinforcement learning tasks [19, 20], we use a BERT-base model to encode
the sentences.
Our primary motivation is to challenge simple neural architectures (like ESNs
and LSTMs) on a particular CSL task that requires full-sentence process-
ing, with few learning trials (1000) and noisy supervision. We focus on three
datasets oriented toward visual scene understanding and robotics; we aim
to have models that could be easily grounded in robotic architectures while
modeling language acquisition.
The motivation to perform the CSL task is interesting because the CSL task
employ the simple neural architectures to generalize efficiently with few noisy
trials, similar to what children could be experienced with. Here, some words
may appear only a few times in the training set. Similarly to children that
do not have an oracle that gives the correct labels for each word, the models
do not have access to true teacher output but to a noisy version of it, based
on the concepts a child could extract from visual information. It means that
there are often more objects and features in a visual scene than what a given
sentence will describe.
Importantly, we do not want to focus on engineered neural architectures for
biologically plausible purposes because we are also interested in exploring how
relatively simple recurrent neural networks could generalize in such conditions
while using incremental learning. In particular, one of the models we use,
Echo State Networks (ESN) and, more generally, the Reservoir Computing
paradigm, have already been used in several neuroscience models [21, 22] and
are often referred to as a plausible computational principle for electrophysi-
ological results [23, 24]. Moreover, ESNs are more biologically plausible than
LSTM because they do not need to rely on back-propagation through time
which involves virtualizing time for several timesteps, which is not biologically
relevant. Also, ESN can learn incrementally by seeing each utterance only once
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Fig. 2 Architecture of our CSL. The sentence are passed as input to One-
Hot/GloVe/BERT/fine-tuned BERT for extracting the word embeddings. These token
embeddings are passed as input to the LSTM/ESN models for the final prediction of CSL
task outputs

(which is thus closer to what children experience), contrary to LSTMS, which
needs to process the data for several epochs.
This study also investigates how well the one-hot, GloVe, and transformer-
based representations perform on the cross-situational learning task, using
the biologically plausible ESN model [25] and non-plausible1 LSTMs [26].
Figs. 2 and 3 depict the work flow of our CSL task. The proposed framework
that combines input featurization, dynamic memory and learning modules
offers a flexible, biologically plausible architecture for investigating CSL tasks
on diverse datasets. We also showcase that fine-tuned BERT representations
improve the stimulated vision’s prediction better than pretrained BERT. Our
experiments showed that LSTM displays much better performance for sen-
tences with fewer objects while ESN showcases better performance for large
vocabulary. We try to interpret the inner working details of two models and
plot the evolution of the output activation during the processing of a sentence.

2 Related Work
Deep neural architectures such as ESN and LSTM are shown to be successful
in handling sequential tasks. Recently, ESNs have been successfully applied
to understand how infants learn the meaning of words in a fuzzy context.
ESNs need to make associations between symbols and referents [7], building
on top of previous studies using supervision to model human sentence pars-
ing [22, 27], multilingual processing [28, 29] and adapting it for human-robot
interactions [30–32]. Similarly, several authors explored the language acqui-
sition task with LSTMs [33] and GRUs [34] to perform a learning robotic
multi-modal task when sentences are given. To this extent, ESNs and LSTMS,
together with the cross-situational task, are more plausible from a human brain
learning perspective than a purely supervised task. Moreover, this type of task
is also interesting for practical applications where exact target outputs are not
always available.

1LSTMs are not biologically plausible because they use an engineered mechanism to perform
back-propagation on time-unfolded representations.
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Fig. 3 Architecture of our CSL. The sentence are passed as input to BERT encoder for
extracting the token embeddings from the last output layer in two setups: (i) no further
fine-tuning of encoder weights, (ii) fine-tuning of encoder weights. The token embeddings
are obtained from each setup are passed as input to the LSTM/ESN models for the final
prediction of CSL task outputs

3 Methodology
In this section, we propose to employ a CSL task using two sequence-based
models, including ESN (i.e. Reservoir Computing), and LSTM to build the
grounded language acquisition models. Here, we recall the definitions of Reser-
voir Computing and random features in ESN, LSTM, and introduce the model
architecture details.

3.1 Echo State Networks (ESN)
Reservoir Computing [35] is an effective paradigm as Recurrent Neural Net-
work (RNNs) receives the sequential input xt ∈ Rd and producing the output
yt, where internal weights are fixed randomly and only the output layer (called
the "read-out") is trained [25].Let N be the number of neurons in the reservoir,
the reservoir state rt is updated by using the following recurrent equation:

rt ← (1− α)rt−1 + α tanh(Wrecrt−1 + Winxt) (1)
where Wrec ∈ RNXN and Win ∈ RNXd are respectively the reservoir and
input weight matrices, and the parameter α denotes the leak rate.

3.2 ESN Offline Learning
To refine the control of the reservoir dynamics, we add a constant bias to the
reservoir state st ∈ RN and then multiply this reservoir state st by the output
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matrix Wout to get the output vector yt as described in the Equation 2. The
output predicted by the network yt closer to the teacher vector is obtained by
optimizing the output weight matrix Wout after a final layer.

st =

(
1
rt

)
yt = Woutst (2)

Since only the output weights Wout are trained, the optimization problem
boils down to simple linear regression, called an offline learning method.

3.3 ESN with FORCE/Online Learning
To update the output weights Wout for each learning example, the online
FORCE learning algorithm [36] that is a more biologically plausible model
to train the network than usual ESN offline learning. This method does not
unfold time while training the network like back-propagation through time.
The matrix P “acts as a set of learning rates for the RLS (Recursive Least
Squares) algorithm” [36]. Let et be the error between the prediction of the
network and the ground truth at time t, and the output weights are updated
as follows:

Wout(t) = Wout(t− 1)− etP(t)rt (3)

P(0) =
I

∈
(4)

P(t) = P(t− 1)− P(t− 1)rtr
T
t P(t− 1)

1 + rTt P(t− 1)rt
(5)

where I is an identity matrix and ϵ is a regularisation term.
ESN with Final Learning (ESN FL) For the final learning method, the
FORCE algorithm is applied to the reservoir state after the last word of the
sentence.
ESN with Continual Learning (ESN CL) Unlike ESN FL, the reservoir
states are updated after each word of a sentence using the FORCE learning
method; an equivalent method with offline learning was used in [22].

3.4 LSTM
An LSTM [26] network with sequential time steps that computes an output yt
as a function of the input vector xt, and weights of hidden state obtained using
three gates (forget gate, input gate, output gate). The weights of LSTMs are
learned using the error back-propagation through time, BPTT, an algorithm to
maximize the log-likelihood of the training data given the parameters. In order
to compare the performance of ESNs with LSTMs, we employ unidirectional
LSTMs in our CSL tasks.

3.5 RandLSTM
In RandLSTM model, the LSTM weight matrices and their corresponding
biases are initialized uniformly at random and kept frozen (i.e both Input
and LSTM layers are untrained). Hence, the output layer parameters are
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The red cup is on the right This a hammer with a pink handle

Move the yellow block on top of the
red block and place it on top of the
red tower in the back corner

(a) Juven's
 (b) GoLD
 (c) Robot Data


Fig. 4 Example sentences with concepts from three datasets: Juven’s, GoLD, and Robot
data

↓Dataset #Objects #Colors #Positions #Objects Described #Actions #Relations
Juven’s 50 3 2 2 NA NA
GoLD 47 7 6 2 NA NA
Robot 11 8 9 5 4 3

Table 1 Dataset Statistics

only trainable and the remaining parameters are non-trainable in RandLSTM
model.

3.6 Datasets
Here, we describe the three diverse datasets: Juven’s (simple sentences), GoLD
(consists of simple to very complex sentences), and Robot Data (sentences
which desrcibe the robot actions). Fig. 4 showcase the example of sentences
corresponding to each dataset, and we present the detailed statistics of each
dataset in Table 1.
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Fig. 5 CSL Task Noisy Supervision Output: The target is a noisy supervision vector that
contains additional concepts (<orange_obj>, <red_col>) that are not present in the input
sentence.

Fig. 6 The template for an example command in the Robot dataset. The missing predicates
and slots have to be filled with empty tokens (EEE). Relation predicates always start with
the word is. Image from [38].

Juven’s CSL: Juven’s CSL dataset [7] is composed of approximately 70,000
sentences, of which we randomly sampled 1000 training sentences, 1000 test-
ing sentences, where each sentence describes one or two objects. The sampled
dataset has 700 sentences with two objects and 300 sentences with one object
in training and testing. We validated our models on the Juven’s dataset by
varying the number of object classes from 4 to 50, three actions, and four col-
ors. These objects were chosen to reflect and provide data for three different
domains: home, kitchen, and tools in which the model learns to ground a com-
plex sentence, describing a scene involving different objects, into a perceptual
representation space.
GoLD: Grounded language dataset (GoLD) [37] is a collection of visual,
speech, and language data in five different domains: food, home, medical, office,
and tools. There are 8250 textual descriptions consisting of 47 object classes
spread across five different groups, seven actions, and eight colors.
Robot Grounding Dataset: Robot dataset [38] is a collection of visual,
speech, and language data, focuses on contextual semantic parsing of robotic
spatial commands. There are 2500 textual descriptions consisting of 11 object
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classes, three actions, eight colors, nine directions, and nine positions. Unlike
Juven’s data, both GoLD and Robot datasets consist of simple to very complex
sentences.

3.7 CSL Task: Input and Output
For each sequence-based model, we give the input and output as follows: (i)
The input is a sequence of words (i.e. a sentence) with one-hot, GloVe or word
representation from pretrained/fine-tuned BERT. (ii) The target output is a
constant vector corresponding to concepts units (i.e. objects, colors, positions).
(iii) Since the CSL task is defined in noisy supervision, the target may include
additional concepts outputs that are not in the input sentence. Fig. 5 display
the target vectors corresponding to input sentences for Juven’s and GoLD
dataset. The semnatic output structure for Robot dataset is shown in Fig. 6.

3.8 Evaluation Methodology
We use cross-entropy as the loss between prediction and ground truth during
model training. To evaluate the performance of two models on prediction of
test sentences, we use the two error metrics: Valid and Exact [7] for Juven’s
and GoLD, as shown in Fig. 7. In case of Robot dataset, we use only the
exact error because the model predictions for a sentence are classified correctly
(actions, relations, objects, and its attributes), the output is considered as
correct. Partly incorrect outputs are considered as incorrect, making it a strict
metric [38]. Since the visual representation can contain more information about
the scene than what is described in the sentence in a cross-situational learning
task, we cannot simply quantify the performances of a model with the distance
to the desired teacher vector. The percentage of sentences from the testing
set considered as not valid or not exact is then used as quantitative error
measurement. The error metrics are defined as follows:

Valid Error = 1− #Valid Representations
#Instances

(6)

Exact Error = 1− #Exact Representations
#Instances

(7)

where #Instances denote the number of test instances, Valid Representation=1
if every concept mentioned in the sentence is present, else 0. Similarly, Exact
Representation=1 if the representation contains all the sentence information
and nothing more, else 0.

To enable a fair comparison between the two models (ESN and LSTM), we
set the threshold is fixed to 1.3/Kc throughout the paper. Here, Kc denotes the
choice of this value can be seen as if it was part of the task specification. For
instance, each concept c has Kc possible concept values (e.g. “right”, “middle”,
and “left” for the position concept). The influence of the threshold factor (1.3)
affects the model performances as follows: (i) The higher the threshold factor,
the lesser the exact error but, the higher the valid error. (ii) With a threshold
of 1.35, the minimal error is obtained for both LSTM and ESN. So by choosing
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“the cup is on the right”

Imagined vision is valid ? is exact ?

(a)

(b)

(c)
Fig. 7 Evaluations of different imagined scenes. (a) It is not valid or exact because the cup
is not on the right. (b) It is not exact because the sentence does not mention the cup color.
(c) It is both valid and exact because the imagined scene is same as a textual description.

the threshold factor equals to 1.3, we are not giving an advantage for one
model over the other.

3.9 Cross-Validation
The performance of each model is evaluated by taking the average with five dif-
ferent instances of ESN-Offline, ESN-Online FL, ESN-Online CL, RandLSTM,
and LSTM using four word-vector representations. We randomly sampled the
training sentences in each training instance, and the average of five instances
results (Valid and Exact error) are reported. In our model training, we use a
small data set (1000 sentences) to see what the model can learn with few-shot
learning; some words may appear only a few times in the training set.

4 Experimental Setup
We evaluated our cross-situational learning task on three datasets in five dif-
ferent settings: (i) ESN-Offline, (ii) ESN-Online FL, (iii) ESN-Online CL, (iv)
RandLSTM, and (v) LSTM.

4.1 Feature Representations
We use the feature representations such as one-hot encoding, GloVe, pretrained
BERT, and fine-tuned BERT as input for the models ESN and LSTM.
One-Hot Encoding: In one-hot encoding, each word is represented as a
binary vector that is all zero values except the index of the word from the
unique vocabulary, which is marked with a 1.
GloVe: We use the existing pretrained word embeddings, GloVe based word
vectors (each word is a 300-dimension vector) [39] to perform the CSL task.
Pretrained BERT: BERT model [15] provides word contextual information
by looking at previous and next words, which is one of the main limitations in
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Fig. 8 Juven’s data Cross-entropy loss: Hyper-parameter search dependence plot for CSL
task.

earlier language models. For every sentence, BERT yields 1 × #tokens × 768
dimensions, where #tokens denote the number of tokens (i.e. each token will
be represented as 768 vectors).
Fine-tuned BERT: Here, we use the BERT-base-cased model and fine-tuned
on the last layer of BERT model for each dataset. Like BERT, we obtained 1
× #tokens × 768 dimensions for every sentence from fine-tuned BERT.
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Fig. 9 Juven’s data Valid Error: Hyper-parameter search dependence plot for CSL task.

4.2 Model Training
ESN Training: We use the ReservoirPy library [40]2 to build the ESN model,
where the model is trained on 1000 sentences and tested on 1000 sentences.
We chose four hyper-parameters to explore: spectral radius (SR), leak rate
(LR), sparsity, and ridge regularization parameter. We also chose to fix at least
one of the more important hyper-parameter, to reduce the complexity of the

2https://github.com/reservoirpy/reservoirpy
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Fig. 10 Juven’s data Exact Error: Hyper-parameter search dependence plot for CSL task.

search: input scaling (IS) will be kept constant and equal to 1 during this first
step. In our random search, we performed 100 evaluations is sufficient enough
to have a best hyper-parameters. Figs. 8, 9 and 10 display the cross-entropy
loss along with both exact and valid error performance with exploration of
four hyper-parameters. Similarly, we report the hyperopt plots for GoLD and
Robotic datasets in the supplementary (please refer the Figs. B2, B3, B4 B5
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and B6). We obtain the following parameters by performing the random hyper-
parameter using hyperopt3 for each dataset as follows: For Juven’s dataset:
{Spectral Radius = 0.025, Leak Rate = 0.0097, Sparsity (on Reservoir Weight
Matrix - Wrec) = 0.5, Regularization coefficient = 1.3e−10, Input Scaling =
1.0}. For Robot dataset: {Spectral Radius = 0.839, Leak Rate = 0.0735,
Sparsity (on Reservoir Weight Matrix - Wrec) = 0.5, Regularization coefficient
= 3.91e−5, Input Scaling = 1.0}. For GoLD dataset: {Spectral Radius =
2.29, Leak Rate = 0.003, Sparsity (on Reservoir Weight Matrix - Wrec) = 0.2,
Regularization coefficient = 0.01, Input Scaling = 1.0}
LSTM Training: We experimented with one layer of LSTM to capture the
meaning of the concepts. The model is implemented in Keras with Tensor-
Flow backend [41] with cross-entropy as loss, Adam optimizer [42], the number
epochs set to 70, the batch size is of 8, and tried LSTM with different hidden
units (20, 40, 80). Since the number of trainable parameters in 20-unit LSTM
is equivalent to the ESN model with 1000 reservoir units, we use these two
settings for baseline comparison. We used the early-stopping method to stop
model training when the loss started to plateau with patience of 5.

5 Results

5.1 CSL task performance of Sequence-based models
In this section, we report our two sequence-based model results on the CSL
task using three datasets viz. Juven’s, GoLD, and Robot. We used the four
different word representations such as one-hot encoding, GloVe, BERT (bert-
base-case)4, and fine-tuned BERT to extract the features for every sentence,
and the error metrics are computed from the two sequence-based models. To
compare the effectiveness of the models with an approximately equal number
of parameters (ESN with 1000 units, RandLSTM with 1000 units and a 20-
unit LSTM) using different token representations as input feature vectors, we
report the Valid and Exact errors for the Juven’s and GoLD, and Exact error
for Robot datasets, respectively, described in Tables 2 and 3.
Reduced-size Corpora Results: In Table 2, we evaluate the performances
on a smaller number of objects datasets, we chose 4-objects for Juven’s and
10 objects for GoLD data. From Table 2, we found that both models are able
to learn the CSL task with low error successfully and outperform the one-hot,
GloVe, and pretrained BERT results; we make the following observations. (i)
We observe that the LSTM outperforms the ESN on both Valid and Exact
errors on Juven’s and GoLD datasets. (ii) On the other hand, ESN displays
better performance than RandLSTM while considering the same number of
neurons in both models; these results demonstrate the biological plausibility
in learning the reservoir states of ESN than RandLSTM. (iii) ESN-online FL
performed significantly better than ESN-online CL and offline methods.

3http://hyperopt.github.io/hyperopt/
4https://huggingface.co/bert-base-cased
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Juven’s CSL Data GoLD Data

Model Valid Error Exact Error Valid Error Exact Error
ESN-offline + One-Hot 33.10 43.90 17.46 25.39
ESN-offline + GloVe 16.70 25.00 25.88 30.19
ESN-offline + fine-tuned BERT 2.20 10.90 21.43 25.51
ESN-offline + BERT 2.30 12.20 24.47 43.45
ESN-online FL + One-Hot 0.28 05.64 12.29 20.89
ESN-online FL + GloVe 0.10 12.20 12.69 25.15
ESN-online FL + fine-tuned BERT 0.00 06.28 12.11 22.22
ESN-online FL + BERT 0.20 07.72 20.62 42.22
ESN-online CL + One-Hot 2.32 12.10 14.82 26.58
ESN-online CL + GloVe 7.80 25.50 15.38 28.93
ESN-online CL + fine-tuned BERT 2.41 13.70 13.83 27.79
ESN-online CL + BERT 2.78 14.60 20.13 38.08
RandLSTM + One-Hot 7.30 10.00 21.91 24.64
RandLSTM + GloVe 23.80 48.70 49.93 51.66
RandLSTM + fine-tuned BERT 4.30 7.40 17.19 18.33
RandLSTM + BERT 8.00 35.00 20.23 23.37
LSTM + One-Hot 0.10 03.50 16.40 22.85
LSTM + GloVe 2.90 17.50 41.11 48.88
LSTM + fine-tuned BERT 0.20 01.30 10.35 14.66
LSTM + BERT 0.00 04.56 12.33 21.72
///

Table 2 Results for reduced-size corpora datasets (Pretrained BERT with other
representations, One-Hot/GloVe/fine-tuned BERT) using the five model settings:
ESN-offline / ESN-online FL / ESN-online CL / 1000-unit RandLSTM / 20-unit LSTM).
Object vocabulary sizes: 4 for Juven’s; 10 for GoLD.

Juven’s CSL Data GoLD Data Robot Data

Model Valid Error Exact Error Valid Error Exact Error Exact Error
ESN-ffline + One-Hot 46.60 63.30 29.49 30.38 42.30
ESN-offline + GloVe 44.40 61.00 48.93 53.90 57.42
ESN-offline + fine-tuned BERT 20.70 40.20 44.57 47.48 43.00
ESN-offline + BERT 24.50 43.60 52.20 54.78 45.50
ESN-online FL + One-Hot 02.90 29.40 19.23 26.92 37.12
ESN-online FL + GloVe 06.00 40.20 20.27 32.56 38.09
ESN-online FL + fine-tuned BERT 02.52 26.00 17.45 28.89 34.20
ESN-online FL + BERT 02.72 28.50 27.24 54.40 35.34
ESN-online CL + One-Hot 18.64 39.52 21.69 32.48 57.10
ESN-online CL + GloVe 42.60 72.90 22.14 36.42 59.96
ESN-online CL + fine-tuned BERT 27.28 54.00 18.37 34.04 58.86
ESN-online CL + BERT 32.86 60.88 22.30 52.49 60.17
RandLSTM + One-Hot 100.0 100.0 71.11 75.34 79.53
RandLSTM + GloVe 100.0 100.0 84.48 84.83 88.88
RandLSTM + fine-tuned BERT 100.0 100.0 72.02 72.02 87.34
RandLSTM + BERT 100.0 100.0 76.31 80.17 87.91
LSTM + One-Hot 99.64 99.82 42.89 48.14 75.67
LSTM + GloVe 99.20 99.99 65.18 70.89 86.57
LSTM + fine-tuned BERT 97.84 98.90 44.18 47.26 72.47
LSTM + BERT 98.10 99.99 48.28 52.40 78.60

Table 3 Results for complex corpora datasets (fine-tuned BERT with other
representations, One-Hot/GloVe/BERT) using the five model settings: ESN-offline /
ESN-online FL / ESN-online CL / 1000-unit RandLSTM / 20-unit LSTM. Object
vocabulary sizes: 50 for Juven’s; 47 for GoLD, 11 for Robot Data.

Complex Corpora Results: To evaluate the performances of two models on
complex datasets, we chose the larger number of objects from three datasets: 50
for Juven’s, 47 for GoLD, and 11 for Robot, as shown in Table 3. Considering
complementary results to Table 3 : (i) For three datasets with more objects,
ESN showcases a better Valid and Exact error performance than LSTM. Thus,
in the general case, the ESN outperforms the LSTM.
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Latency (sec.), One-hot/GloVe/BERT
Model Juven’s (114K) GoLD (124K) Robotic (591K)
ESN Online FL 423/480/578 25/235/69 1448/1133/1178
ESN Online CL 1924/2181/2216 431/1895/357 6900/6128/5683
RandLSTM 3025/ /1541 19602/11324 /18304 12261/11974/16092

Table 4 Models, latency, and their Training Parameters

5.2 ESN: Effects of Offline vs Online Learning:
To explore the biological plausibility of learning the reservoir states of ESN,
we compare the CSL task performance on three datasets between offline and
online (FL and CL) learning methods. Tables. 2 and 3 report the CSL task
performance of ESNs where the online learning method using FL yields better
performance than online CL and offline learning, indicating the more biologi-
cal plausibility of ESNs during online FL and the cognitive process of sentence
comprehension. To investigate the internal states of ESN during online learn-
ing, we report the absolute variation of the activation of reservoir neurons
during the processing of the sentence in Fig 17. Since we do not use any feed-
back in our reservoir, the states of the reservoir are fully determined by its
initial random weights and the inputs received. In fact, the learning process
happens by combining the useful activities given the random projections of
the inputs done in the reservoir.

5.3 ESN Online Learning vs Random LSTM:
In order to explore how RandLSTM learns to perform the CSL task, we com-
pare the performance of RandLSTM with ESN Online models. Tables. 2 and 3
report the CSL task performance of RandLSTM where both input and LSTM
layers are kept frozen, and training happens at the output layer similar to
ESN models. From Tables. 2 and 3, we observe that the ESN online learning
methods display supremacy over RandLSTM indicating that the more bio-
logical plausibility of ESNs compared to RandLSTMs. Further, we compare
the computational complexity of ESNs with RandLSTM on complex corpora
across three datasets. We observed the following insights from Table 4: (i)
From a computational efficiency perspective, one of the major limitations of
the RandLSTM model is that training time is computationally expensive, (ii)
In contrast, ESN models are more efficient and require lower training time.

5.4 Model size, Latency and Error Trade-off:
Our main goal is to build models that are efficient for human-robot interac-
tions; thus, exploring the model size, latency, and error trade-off are essential.
For a complex corpora datasets (Juven with 50 objects on valid error, GoLD
with 47 objects on valid error, and Robot data with 25 objects on exact error),
we analyze the model size, latency, and error score trade-off in Figs. 11, 12
and 13 across two models ESNs (offline, online + FL, online + CL) and LSTMs
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Fig. 12 GoLD (Large Data): Parameters vs Valid Error vs Latency.

(20, 40, and 80 hidden units). Typically ESN models have fewer parameters,
and the number of parameters depends on the target vector dimension.
Juven’s Data: From Fig. 11, we observe that the ESN-online FL model show-
case lower valid error using 114K parameters with a model training latency of
500 sec. compared to Offline, ESN-online CL, and LSTM with 20 and 40 hid-
den units (higher latency time for model training). It is clearly observed that
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Fig. 13 Robot (Complex Corpora): Parameters vs Predicate Error vs Latency.

the ESN models have better computational complexity in terms of latency and
model size and reports better performance.
GoLD Data: From Fig. 12, we observe that the ESN-online FL model show-
case lower valid error using 124K parameters with a model training latency of
64 sec. compared to Offline, ESN-online CL, and LSTM with 20 and 40 hid-
den units (higher latency time for model training). It is clearly observed that
the ESN model have better computational complexity in terms of latency and
model size.
Robot Data: Fig 13 shows the model size, latency and error trade-off on
Robot dataset. From the Fig. 13, we observe that LSTM with 80 hidden units
(115K parameters for one-hot and 319K parameters for GoLD) model show-
case lower exact error compared to ESN with 591K parameters. Although
the parameters of ESNs are much higher than LSTMs, the training of ESNs
displays lower latency than LSTMs (higher latency time for model training).
Since Robot data have a higher target dimension (591 binary vector), the ESN
model parameters are much higher than LSTM. However, it does not affect
much the relative latency or error performance of ESNs compared to LSTMs.
Insights: Hence, it is clearly observed from the Figs. 11, 12 and 13 that ESNs
display better generalizations than LSTMs for increasing the larger vocabu-
laries. Although we compare the number of trained parameters for ESNs and
LSTMS, they are not directly comparable given that they do not use the same
theoretical computing principles (ESNs rely on the VC-dimension [43] like in
Support Vector Machines).
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BEGIN the orange is orange and on the middle there is the green cup END

Fig. 14 Juven’s Data: Output activation of the ESN Offline + fine-tuned BERT. The
activation are here shown after being transformed by the Sigmoid function.

5.5 Qualitative Analysis
The challenge in applying simple neural network models to human-robot inter-
action research lies in the black-box nature of the process, where it is hard
to decipher what the network learns while processing full sentences. Here,
we discuss the inner working details of all the models and report the output
activations of each model.
Qualitative analysis of output units activation: In order to under-
stand the inner working details of both models, we plot the evolution of the
output activation during the processing of a sentence across all the models
(ESN Offline, ESN Online FL, ESN Online CL, and LSTM), as shown in
Figs. 14, 15, 16, and 17. Observations from Figs. 14, 15, 16, and 17 that the
intermediate output activations are much more meaningful and interpretable
with the ESN-online CL and LSTM. However, for the ESN-online FL, the
intermediate output activation cannot be interpreted with the default Final
Learning (FL). As we can see in Fig 15, the fluctuations seem unpredictable
until the last word “END” is seen. For a correctly predicted output, the activa-
tion often “jumps” to the correct value when the last item “END” is inputted.
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Fig. 15 Juven’s Data: Output activation of the ESN FL + fine-tuned BERT. The activation
are here shown after being transformed by the Sigmoid function.

This is due to the fact that we only apply the learning procedure at the final
state, so there is no constraint on intermediate outputs. Similarly, the obser-
vations from Fig 14 that the intermediate activations of the ESN-offline model
cannot be interpreted due to its constant activation from the word “BEGIN”
until the last word “END” is seen. Interestingly, when training the network
ESN-online CL with both usual (whole sentence) and single-word sentences,
the network outputs provide consistent predictions during the whole presen-
tation of sentences, as shown in Fig 16. This is because the final answer from
the network can be predicted before the sentence is over, given its ongoing
activations, i.e the output activity of a concept is activated once a word is
pronounced.

Similar to ESN-online CL, during the training procedure of LSTM, the
target outputs are given as a "whole" during all the timesteps (no particular
label is given at a precise time corresponding to a precise word). However,
we can observe a spike in the activity of the concept as the model sees the
corresponding keyword, as depicted in Fig 17. For instance, we can observe a
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Fig. 16 Juven’s Data: Output activation of the ESN CL + fine-tuned BERT. After each
word the model tries to predict the correct output. That’s why we can see a jump in the
correct characteristic after the related keyword is seen.

spike in the activity of the concept <Orange_obj> (i.e. the concept activated
when the object 1 is Orange), and the spike is quickly inhibited when the
following word “cup” is received <Cup_obj> (i.e. the concept activated when
the object 2 is Cup) is seen. This phenomenon gives us a first hint on how
both models are able to deal with polysemous meaning. Further, observations
from Fig. 17 that the word “END” does not seem to affect the output of the
network significantly.

For example, consider the sentence "BEGIN this orange is orange and on
the middle there is the green cup END", activations are shown for the two
models in the Fig. 17. Interestingly, the position is not mentioned for the first
object <Orange_obj> in the sentence, and the position for the first object
does not have any reference to the second object. Here, we can see that when
the word "orange" appears twice in the first part of the sentence, the model
has not yet the information that the word will be used as an adjective or noun.
So, when this happens, for the LSTM, we can see a rise (i.e. a spike) in the acti-
vation of the <orange_object1> concept (i.e. the output neuron that should
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Fig. 17 Juven’s Data: Output activation of the LSTM + fine-tuned BERT. Even if the
learning procedure is only applied at the end, because of its learning algorithm, intermediate
states are also optimized. This is why we can also interpret these transitional steps: they
behave similarly to the ESN online trained with CL.

be activated when the first object is an orange). It is also clear that "orange"
was an adjective and not a noun when it appeared a second time in the sen-
tence. This gives a qualitative insight that fine-tuned BERT representations
establish the references between the objects when no full context is provided.

6 Discussion
In this study, we compare the ability of ESNs and LSTMs to learn to parse
sentences via noisy supervision (CSL) and compare different word representa-
tions (one-hot, GloVe, pretrained, and fine-tuned BERT). These experiments
yield the following insights: (1) fine-tuned BERT representation is the best
representation among most models; (2) In general, ESNs display better pre-
diction than LSTMs when the vocabulary size increases; (3a) e.g. for Juven’s
data, this better ESN generalization trend continues regardless of the sizes of
LSTMs; (3b) The size of LSTMs needs to be increased to beat the 1000-unit
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ESN that we took as reference. With 20 units showcase higher performance for
small datasets, but LSTM with hidden units needs to perform reasonably well
on larger corpora. (4) ESNs are making better predictions during the online
processing of a sentence. e.g. We showcase the output activation of both ESNs
and LSTMs during the processing of a sentence in the qualitative analysis. (5)
ESNs have a better trade-off on all three datasets with better prediction error
along with low latency.
The performances on the GoLD and Robot data set could seem low compared
to Juven’s; however one should keep in mind that these datasets include very
complex sentences that could include unseen words. For instance, the GoLD
dataset includes sentences with many unseen words while describing a few
concepts: e.g. “A single small red skinned potato is laying on its side with
the pointier end pointing left and two dimpled eye facing me.”, the associated
concepts are: red, potato, small, left for the 1st object, and eye for the 2nd
object). Similarly, the Robot dataset contains complex robotic commands with
more actions and relations are described for few concepts: e.g. “pick up the
gray block located on top of the blue tower near the left edge and place it on top
of the red and green tower that is nearest to you”, the associated concepts are:
pick, gray, top, blue, block, tower, near, left edge, place, red, green, nearest.

In the future, we are interested in training robots through multi-modal
grounded language datasets while modeling infants language acquisition.

Supplementary information.

Appendix A Ethical Statement
We reused publicly available datasets for this work: Juven, GoLD and Robot.
We did not collect any new dataset.

Juven’s dataset can be downloaded from https://github.com/aJuvenn/
JuvenHinaut2020_IJCNN. Please read their terms of use5 for more details.

GoLD dataset can be downloaded from https://github.com/iral-lab/gold.
Please read their terms of use6 for more details.

Robot dataset can be dowloaded from https://www.inf.uni-hamburg.de/
en/inst/ab/wtm/people/twiefel.html. Please read their terms of use7 for more
details.

We do not foresee any harmful uses of this technology.

A.1 Word Seen during Model Training
Fig. A1 displays the average number of times a word is seen during model
training on three datasets. From Fig. A1, we can see that GoLD data contains
more vocabulary (2417) words for 47-objects data), and the number of times
a word is seen in model training is low compared to Juven’s dataset. If an
unseen word appears the corresponding concept outputs will be at 0, because

5https://github.com/aJuvenn/JuvenHinaut2020_IJCNN
6https://github.com/iral-lab/gold
7https://www.inf.uni-hamburg.de/en/inst/ab/wtm/people/twiefel.html

https://github.com/aJuvenn/JuvenHinaut2020_IJCNN
https://github.com/aJuvenn/JuvenHinaut2020_IJCNN
https://github.com/iral-lab/gold
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/people/twiefel.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/people/twiefel.html
https://github.com/aJuvenn/JuvenHinaut2020_IJCNN
https://github.com/iral-lab/gold
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/people/twiefel.html
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Fig. A1 Corpus statistics for Juven’s, GoLD and Robot datasets, including the average
number of times a word is seen (Avg. seen word) during model training and testing.

corresponding weights would never be trained, i.e. all corresponding weights
will be at 0. This makes the CSL task more difficult for big vocabularies.

Appendix B Hyper-parameters Plots
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Fig. B2 GoLD dataset Cross-entropy loss: Hyper-parameter search dependence plot for
CSL task.
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