
HAL Id: hal-03628136
https://hal.science/hal-03628136v2

Preprint submitted on 6 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Variance of a Quantum Bit
Gilbert Reinisch

To cite this version:

Gilbert Reinisch. Energy Variance of a Quantum Bit. 2022. �hal-03628136v2�

https://hal.science/hal-03628136v2
https://hal.archives-ouvertes.fr


Theory of the Energy Variance of a Quantum Bit

Gilbert Reinisch∗

Université de la Côte d’Azur - Observatoire de la Côte d’Azur
06304 Nice Cedex - France

and†

Science Institute, University of Iceland,
Dunhaga 3, IS-107 Reykjavik, Iceland

Abstract
We show that the energy of a driven two-level quantum system —or quantum bit (qubit)—

can be exactly (i.e. without the use of the rotating wave approximation) defined by the time
derivatives of its large-amplitude, high-frequency internal as well as overall phases. While the time-
dependent mean values of these latter do fit of course Rabi’s well-known harmonic (weak drive) as
well as anharmonic (strong drive) dynamics, their standard deviations may become comparable to
their mean values themselves. This remarkable property, which we check by use of the quantum
expectation value of the variance operator V(t) = [H(t) − E(t)I]2 defined by the Hamiltonian
H(t) of the system and by the energy mean value E(t) = ⟨Ψ(t)|H(t)|Ψ(t)⟩, may define in some
particular cases a large statistical time-dependent range of available values for the qubit energy
in the presence of external perturbation (I is the identity matrix). In order to both illustrate the
present theory and validate it by reference to an actual experiment, we take the example of the
recent measurement of the so-called “time-of-flight” values of a quantum jump [Z. Minev et al.
Nature, 570, 200 (2019)] and recover them by use of the present theory.
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A. Introduction

In the normalized |a, b⟩ two-state base, the Schrödinger equation:

i~
d

dt
Ψ = HΨ (1)

where the normalized spinor wavefunction and the Hamiltonian are respectively:

Ψ(t) =

(
ψa(t)
ψb(t)

)
; H(t) =

(
E(t) K
K −E(t)

)
(2)

defines by use of the two Pauli matrices σx and σz the two-level quantum system (or qubit) in
the presence of the external time-dependent energy drive E(t) and the off-diagonal constant
K. Defining operators (actually 2x2 matrices in the present case) in bold, the quantum
expectation values of the energy and the variance are respectively:

E(t) = ⟨Ψ(t)|H(t)|Ψ(t)⟩. (3)

and:
V(t) = ⟨Ψ(t)|V(t)|Ψ(t)⟩. (4)

where this latter is defined by the following Hermitian variance operator (I is the identity
matrix):

V(t) = [H(t)− E(t)I]2. (5)
The resulting standard deviation:

σ(t) =
√
V(t), (6)

of the energy with respect to its mean-value (3) provides a useful theoretical frame when
considering measurement processes of the qubit state. In particular, a quasi-continuous mea-
surement process, known to yield the quantum Zeno effect (QZE) [1] [2], can be accurately
described within such a standard deviation [3]. It yields the sharp quantum transitions
which have been observed in a recent experiment [4]. Inasmuch as the present theory does
not depend on the specific measurement process —contrary to [4] where the particular |G>,
|D> and |B> three-level quantum system is explicitely taken into account— it has a broad
audience and concerns every quasi-continuously observed qubit, whatever the way the two
states are actually measured. By first-principle heuristic arguments and without a detailed
dynamical analysis as in [3], we illustrate here this universal approach by use of the two
following “state energies” Ea,b(t) that are defined in accordance with Eqs. (2-3):

E(t) = |ψa(t)|2Ea(t) + |ψb(t)|2Eb(t). (7)

B. Hamiltonian dynamical system (HDS) description of a driven qubit

The two state wavefunction components ψa,b of the well-known spin-one-half system (1-2)
can be described by use of the following ansatz [5] [6]:

ψa(t) =

√
1 + α(t)

2
eiΘ(t) ; ψb(t) =

√
1− α(t)

2
ei[Θ(t)+δ(t)]. (8)
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The angular positions θ and ϕ on the Bloch sphere are straightforward, according to:

α = cos θ ; ϕ = Θ+
δ

2
. (9)

Then:
ψa(t) = eiϕ(t) cos

θ(t)

2
e−iδ(t)/2 ; ψb(t) = eiϕ(t) sin

θ(t)

2
e+iδ(t)/2. (10)

It has been shown in [5] [6] that δ and α are the conjugate canonical coordinates in the
following Hamiltonian formulation of classical-like mechanics:

α̇ = −∂H
∂δ

=
√
1− α2 sin δ ; δ̇ =

∂H
∂α

= − α√
1− α2

cos δ + E(τ), (11)

where the Hamiltonian is:
H =

√
1− α2 cos δ + αE(τ). (12)

In the above Hamiltonian dynamical system (HDS), the dot means the derivation with
respect to the dimensionless time τ = Ωt defined by Ω = 2K/~ (e.g. it is the Larmor
frequency of a two-level spin one-half system). Hence we assume in the present work:

K = 1 ; ~ = 2 ; Ω = 1. (13)

Note that the time-dependent overall phase Θ(τ) in (8) is not a 3rd independent variable:
it is slaved to the solution of HDS (11-12) by:

Θ̇ = −1

2

[√1− α

1 + α
cos δ + E(τ)

]
. (14)

Contrary to intuitive opinions, the dynamics of the overall phase of a quantum state can
indeed yield an observable physical effect (e.g. it causes the famous 4π-symmetry of spinor
wave functions that have been directly verified in both division-of-amplitude [7][8] and
division-of-wave-front [9] neutron interferometry experiments). When α ≡ 0 (which is Feyn-
man’s basic assumption [10] for the description of the stationary Josephson effect), Eqs.
(11) yield the two Josephson equations (E is then the applied voltage).

In the simplest conservative case E ≡ 0, the classical-like HDS orbits defined by Hamilton
equations (11) do all have the same reduced frequency +1 (actually +Ω) for H > 0 (resp.
-1, or −Ω, for H < 0). They define the corresponding quantum superposition states of
the system in agreement with Eqs. (8) and (14) [5]. Such a binary structure of the orbit
frequency, namely ±Ω in actual units, is the translation in terms of the HDS equations of
motion (11-12) and action [3], of the eigenvalues ±1 in the two-level energy spectrum of
the undriven qubit. In the driven, however still conservative case E ≡ constant ̸= 0, all
the orbits do still keep the same angular frequency ±

√
1 + E2 (actually the corresponding

eigenvalues), depending on the sign of H. Moreover it has been shown in [5] that the above-
mentioned 4π symmetry of the overall qubit phase Θ becomes an immediate consequence of
the HDS solution (14).

We have in accordance with Eqs. (2), (3), (8) and (12) the following fundamental link
between the mean qubit energy E and the HDS energy H in the dimensionless units (13):

E(τ) = H(τ). (15)
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C. Time-dependent state energies Ea,b(τ) and variance σ2
a,b(τ)

Equations (7-8) and (15) yield the following HDS definition of the two qubit’s time-
dependent state energies in the dimensionless units (13):

Ea =
H + E
1 + α

; Eb =
H− E
1− α

. (16)

They are the derivatives of the two internal as well as overall phases δ(τ) and Θ(τ):

Ea = −~
dΘ

dt
= −2Θ̇ ; Eb = −~

d(Θ + δ)

dt
= −2(Θ̇ + δ̇), (17)

by use of Eqs. (11) and (14). They provide an explicit fine-structure mapping of the
dynamical properties of the classical-like HDS trajectories (11-12) to the mean quantum
energy (7) and to the variance:

σ2
a,b(τ) = |ψa,b(τ)|2[Ea,b(τ)−H(τ)]2, (18)

in terms of the standard deviations ±σa,b(τ). The necessary link with the quantum variance
(4-5) is performed as follows. Using (15), we have:

V =

(
(H− E)2 +K2 −2KH

−2KH (H + E)2 +K2

)
, (19)

and therefore, by use of Eqs. (4) and (8):

V = (1− 2K)H2 + 2(K − 1)αEH + E2 +K2. (20)

Since we assume K = 1 in accordance with (13), Eq. (21) becomes:

V = E2 −H2 + 1 ∼ 1−H2, (21)

if the qubit is weakly Rabi-driven as envisaged in the next section.

D. Weakly resonant Rabi-driven case

When the weak resonant field:

E(τ) = A sin τ ; A≪ 1, (22)

is applied to the system, we obtain in accordance with Eq. (12) the well-known quasi-
harmonic Rabi oscillation between the two eigenvalues ±1 of the mean energy:

H ∼ cos
Aτ

2
+ ∆H ; ∆H = αE(τ) = Aα sin τ ≪ 1. (23)

One obtains a regime of HDS quasiperiodic orbits slowly spiraling out of one H = ±1
eigenvalue og in to the next H = ∓1 one [6]. The corresponding “dressing” of the quasi-
harmonic mean energy value (23) by the standard deviations defined by variance (18) is
quite spectacular [3]. In Fig. 1, H(τ) is displayed by the thick black plot while the quantum
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FIG. 1: Validation of the state-energy description (16-18) by use of the variance Hermitian operator
(4-5) for A = 810−3. The qubit’s colored available energy region is defined by the standard
deviation dressing (18) of Rabi’s quasi-harmonic HDS Hamiltonian —or mean energy— (23) during
one Rabi period 4π/A = 1571 in reduced units (13) (thick black plot). Dotted black plot: the
quantum standard deviations about H as defined by quantum variance (21).

standard deviations about it, defined by Eq. (6) and by quantum variance (21), are shown
by the dotted black plots. The quite dense colored patterns are built from the very-high-
frequency oscillarory standard deviations (18) with extremely small HDS orbit period ∼
2π ≪ 1571 at the scale of the Rabi period 4π/A = 1571. The energy standard deviations
+σa(τ) (continuous purple) and −σa(τ) (continuous green) due to state energy Ea(τ) defined
in (16) are phase-shifted by ∼ π with respect to the standard deviations +σb(τ) (dotted
purple) and −σb(τ) (dotted green) due to state energy Eb(τ). All these very-high-frequency
standard deviations display the rather important dispersion of the qubit acceptable energy
values about its mean value H except at the two eigenvalues ±1 where, as expected, this
dispersion vanishes. We note with interest that these standard deviation patterns are quite
accurately bounded by the quantum standard deviations defined by quantum variance (21).
Therefore this remarkable property establishes the necessary statistical link between the
variance Hermitian operator (4-5) and the state-energy description (16-18). It validates this
latter.

E. Quantum Zeno jump

The measured “’time-of-flight” values obtained by a continuous measurement process in
experiment [4] have been recovered in the frame of the above theory by considering the
quantization of the HDS action [3]. Here we wish to show that these values are actually
an immediate first-principle consequence of Fig. 1 and —contrary to the quantum trajec-
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FIG. 2: A = 810−3: the qubit’s available energy region defined by Fig. 1 together with its quasi-
harmonic HDS Hamiltonian H (in continuous blue) and its quantum standard deviations (21)
about H (red dotted plots). The general principle of a step-like quantum jump due to repetitive
eigenstate measurements is illustrated by arrows. The thick arrows display the Rabi-stimulated
energy jump occuring at τ = 1183 (actually at H = 0) from the ground state E = −1 to the
excited level E = +1. The thiner path displays the de-excitation reverse process.

tory explanation given in [4]— they do not depend on the specific continuous measurement
process (provided this latter is long-lasting enough). Indeed any such process yields QZE
“freezing” of the corresponding quantum states in their initial configuration [1] [2] and this
latter remains possible as long as the resulting trajectory lies inside of the qubit’s available
energy region defined by Fig. 1.

Let us be specific and consider Fig. 2. Assume that the system, while still resonantly
Rabi-driven, is initially in, say, its ground state −1 (i.e. at half the Rabi period τ = 785) and
introduce a repetitive measurement process in accordance with [2] or, equivalently, with [4]
(the following applies as well if we choose the excited state: see Fig. 2 at τ = 0). Then, due
to QZE which acts as a strong perturbation, the system is forced to remain “frozen” in this
lowest energy value instead of entering Rabi’s standard unperturbed harmonic excitation
dynamics (23) displayed by the blue line. Consequently, its energy keeps its value −1 along
the horizontal segment as τ increases for 785 < τ < 1183 (lowest horizontal arrow path),
i.e. as long as the energy of the system stays within the statistically accessible energy region
defined by Eq. (18) or equivalently by Eq. (21) (dotted red line). When reaching this
boundary at τ = 1183, it jumps to the excited level +1 in accordance with the vertical
arrow path in order to continue the QZE state freezing process from τ = 1183 to τ = 1571 if
the repetitive measurement is lasting over a time interval greater than this half Rabi period.
This QZE jump —which we call “quantum Zeno jump” (QZJ)— actually absorbs at once all
the energy input due to the external Rabi drive that has been accumulated by the system
during its forced QZE freezing stage.
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FIG. 3: The quasi-stochastic energy input ∆H defined by Eq. (23) over half a Rabi period 2π/A

when the origin of time is now taken at τ = 785 in Figs. 1-2. Its seemingly two-dimensional dense
pattern results from its extremely fast oscillations at the scale of the Rabi period. Therefore it
will be regarded as the uncertainty in the energy input at a given time τ . The star indicates the
maximum at τ = 393 or H = 0 that scales this uncertainty in (24).

The above QZJ scheme is oversimplified. Indeed the standard deviation boundary at
τ = 1183 is only statistical: it has not a precise definite value. Therefore the QZJ may
occur at any time in the interval ∆τ about τ = 1183. When trying to evaluate it, one
should regard the Hamiltonian driving term ∆H in (23) as a quasi-stochastic energy input,
as shown by Fig. 3. Indeed, ∆H oscillates extremely rapidly at the scale of the Rabi period
4π/A. It actually looks like a mere two-dimensional uniformly dense drive term pattern and
thus yields the corresponding time interval ∆τ

∆H∆τ ≥ ~
2
= 1, (24)

in which any step-like QZJ illustrated by Fig. 2 can statistically occur (cf. our choice (13)
of the reduced units). Since the QZJ formely appears at half the gap defined by H = 0 (cf.
Fig. 2), we take ∆H = ∆Hmax = 410−3 in (24) —see the star in Fig. 3— and therefore
∆τmin ∼ 1/∆Hmax ∼ 250. This time interval is pictured by the two vertical bars in Fig.
4 where the experimental data given in Fig. 3b of Ref. [4] are reproduced by use of red
circles, using for the normalization of our τ -axis the experimental Rabi period TRabi = 50µs
given in [4] (their ∼ 13% deviation from the excited eigenvalue +1 is due, the authors
say, to imperfections, mostly excitations to higher levels). We see that ∆τmin ∼ 250 fairly
agrees with the so-called “time-of-flight” value ∼ 2∆mid defined in Fig. 3b of [4]. Moreover,
∆τmin is also in good agreement with HDS action quantization when the system crosses the
separatrix of the system at H = 0 [3]. Note that the l.h.s. of inequality (24) has indeed the
dimension of an action.
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FIG. 4: Second (r.h.s.) part of Figs. 1-2 illustrating the competitive QZE-vs-Rabi excitation
process (quantum Zeno jump, or QZJ). Blue plot: Rabi’s mean energy defined by Eq. (23).
Circles: the path in the Hilbert space followed by the jump evolutions given in Fig. 3b of Ref. [4],
using its TRabi = 50µs Rabi period for the normalization of the τ -axis. The 13% deviation from
the excited eigenvalue +1 is due to imperfections, mostly excitations to higher levels [4]. The two
vertical bars display the minimum duration ∆τmin of the transition obtained as the consequence of
the uncertainty principle (24) when the perturbation ∆H illustrated by Figs 3 is maximum (star).
They fit quite well with the duration of the so-called “time-of-flight” value ∼ 2∆mid given in [4]
and therefore experimentally validate the present generic theory.

F. Conclusion

One important point in the above QZJ statistical description (24) and illustrated by Figs.
2-4 is that we recover the undeterministic dynamical scheme of a quantum jump à-la-Bohr.
Contrary to [4], the present theory does not claim to deterministically describe the reality of
the quantum jump. It only tells the observer that, due to the repetitive measurement process
and to the general qubit energy variance properties displayed by Fig. 1, the system may
statistically undergo a sudden transition about half gap at any time within that interval
∆τmin which is defined by the uncertainty principle. As such, it is generic and does not
depend on the particular continuous qubit measurement process —by contrast with [4]
where the specific |G>, |D> and |B> three-level quantum system is explicitely taken into
account. Therefore it provides a physical frame in which all particular qubit measurement
processes –provided they are repetitive and long-lasting enough— must fit.

A second important consequence concerns strong Rabi qubit driving. While the HDS
definition of the energies Ea,b still remains valid, their statistical variance and/or standard
deviation statistical properties become useless because their spectrum may appear either
chaotic or discrete. In this latter case, it is defined by the existence of phase-locked cycles
in the solution of the HDS differential system. Then the state energies Ea,b provide an
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interesting tool for the description of the corresponding qubit frequency comb in such stronly
perturbed cases [11].
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