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A. Introduction

In the normalized |a, b⟩ two-state base, the Schrödinger equation:

i d dt Ψ = HΨ (1) 
where the normalized spinor wavefunction and the Hamiltonian are respectively:

Ψ(t) = ( ψ a (t) ψ b (t) ) ; H(t) = ( E(t) K K -E(t) ) (2) 
defines by use of the two Pauli matrices σ x and σ z the two-level quantum system (or qubit) in the presence of the external time-dependent energy drive E(t) and the off-diagonal constant K. Defining operators (actually 2x2 matrices in the present case) in bold, the quantum expectation values of the energy and the variance are respectively:

E(t) = ⟨Ψ(t)|H(t)|Ψ(t)⟩. ( 3 
)
and:

V(t) = ⟨Ψ(t)|V(t)|Ψ(t)⟩. ( 4 
)
where this latter is defined by the following Hermitian variance operator (I is the identity matrix):

V(t) = [H(t) -E(t)I] 2 . ( 5 
)
The resulting standard deviation:

σ(t) = √ V(t), (6) 
of the energy with respect to its mean-value (3) provides a useful theoretical frame when considering measurement processes of the qubit state. In particular, a quasi-continuous measurement process, known to yield the quantum Zeno effect (QZE) [1] [2], can be accurately described within such a standard deviation [3]. It yields the sharp quantum transitions which have been observed in a recent experiment [4]. Inasmuch as the present theory does not depend on the specific measurement process -contrary to [4] where the particular |G>, |D> and |B> three-level quantum system is explicitely taken into account-it has a broad audience and concerns every quasi-continuously observed qubit, whatever the way the two states are actually measured. By first-principle heuristic arguments and without a detailed dynamical analysis as in [3], we illustrate here this universal approach by use of the two following "state energies" E a,b (t) that are defined in accordance with Eqs. (2-3):

E(t) = |ψ a (t)| 2 E a (t) + |ψ b (t)| 2 E b (t). (7) 

B. Hamiltonian dynamical system (HDS) description of a driven qubit

The two state wavefunction components ψ a,b of the well-known spin-one-half system (1-2) can be described by use of the following ansatz [5] [6]:

ψ a (t) = √ 1 + α(t) 2 e iΘ(t) ; ψ b (t) = √ 1 -α(t) 2 e i[Θ(t)+δ(t)] . ( 8 
)
The angular positions θ and ϕ on the Bloch sphere are straightforward, according to:

α = cos θ ; ϕ = Θ + δ 2 . ( 9 
)
Then:

ψ a (t) = e iϕ(t) cos θ(t) 2 e -iδ(t)/2 ; ψ b (t) = e iϕ(t) sin θ(t) 2 e +iδ(t)/2 . ( 10 
)
It has been shown in [5] [6] that δ and α are the conjugate canonical coordinates in the following Hamiltonian formulation of classical-like mechanics:

α = - ∂H ∂δ = √ 1 -α 2 sin δ ; δ = ∂H ∂α = - α √ 1 -α 2 cos δ + E(τ ), (11) 
where the Hamiltonian is:

H = √ 1 -α 2 cos δ + αE(τ ). (12) 
In the above Hamiltonian dynamical system (HDS), the dot means the derivation with respect to the dimensionless time τ = Ωt defined by Ω = 2K/ (e.g. it is the Larmor frequency of a two-level spin one-half system). Hence we assume in the present work:

K = 1 ; = 2 ; Ω = 1. (13) 
Note that the time-dependent overall phase Θ(τ ) in ( 8) is not a 3rd independent variable: it is slaved to the solution of HDS [START_REF] Reinisch | [END_REF](12) by:

Θ = - 1 2 [ √ 1 -α 1 + α cos δ + E(τ ) ] . ( 14 
)
Contrary to intuitive opinions, the dynamics of the overall phase of a quantum state can indeed yield an observable physical effect (e.g. it causes the famous 4π-symmetry of spinor wave functions that have been directly verified in both division-of-amplitude [7][8] and division-of-wave-front [9] neutron interferometry experiments). When α ≡ 0 (which is Feynman's basic assumption [START_REF] Feynman | The Feynman Lectures on Physics[END_REF] for the description of the stationary Josephson effect), Eqs. [START_REF] Reinisch | [END_REF] yield the two Josephson equations (E is then the applied voltage).

In the simplest conservative case E ≡ 0, the classical-like HDS orbits defined by Hamilton equations [START_REF] Reinisch | [END_REF] do all have the same reduced frequency +1 (actually +Ω) for H > 0 (resp. -1, or -Ω, for H < 0). They define the corresponding quantum superposition states of the system in agreement with Eqs. ( 8) and ( 14) [5]. Such a binary structure of the orbit frequency, namely ±Ω in actual units, is the translation in terms of the HDS equations of motion [START_REF] Reinisch | [END_REF](12) and action [3], of the eigenvalues ±1 in the two-level energy spectrum of the undriven qubit. In the driven, however still conservative case E ≡ constant ̸ = 0, all the orbits do still keep the same angular frequency ± √ 1 + E 2 (actually the corresponding eigenvalues), depending on the sign of H. Moreover it has been shown in [5] that the abovementioned 4π symmetry of the overall qubit phase Θ becomes an immediate consequence of the HDS solution (14).

We have in accordance with Eqs. ( 2), ( 3), ( 8) and (12) the following fundamental link between the mean qubit energy E and the HDS energy H in the dimensionless units (13):

E(τ ) = H(τ ). (15) 
C. Time-dependent state energies E a,b (τ ) and variance σ 2 a,b (τ )

Equations (7-8) and ( 15) yield the following HDS definition of the two qubit's timedependent state energies in the dimensionless units (13):

E a = H + E 1 + α ; E b = H -E 1 -α . ( 16 
)
They are the derivatives of the two internal as well as overall phases δ(τ ) and Θ(τ ):

E a = - dΘ dt = -2 Θ ; E b = - d(Θ + δ) dt = -2( Θ + δ), (17) 
by use of Eqs. ( 11) and ( 14). They provide an explicit fine-structure mapping of the dynamical properties of the classical-like HDS trajectories [START_REF] Reinisch | [END_REF](12) to the mean quantum energy (7) and to the variance:

σ 2 a,b (τ ) = |ψ a,b (τ )| 2 [E a,b (τ ) -H(τ )] 2 , ( 18 
)
in terms of the standard deviations ±σ a,b (τ ). The necessary link with the quantum variance (4-5) is performed as follows. Using (15), we have:

V = ( (H -E) 2 + K 2 -2KH -2KH (H + E) 2 + K 2 ) , (19) 
and therefore, by use of Eqs. ( 4) and ( 8):

V = (1 -2K)H 2 + 2(K -1)αEH + E 2 + K 2 . ( 20 
)
Since we assume K = 1 in accordance with (13), Eq. ( 21) becomes:

V = E 2 -H 2 + 1 ∼ 1 -H 2 , ( 21 
)
if the qubit is weakly Rabi-driven as envisaged in the next section.

D. Weakly resonant Rabi-driven case

When the weak resonant field:

E(τ ) = A sin τ ; A ≪ 1, (22) 
is applied to the system, we obtain in accordance with Eq. ( 12) the well-known quasiharmonic Rabi oscillation between the two eigenvalues ±1 of the mean energy:

H ∼ cos Aτ 2 + ∆H ; ∆H = αE(τ ) = Aα sin τ ≪ 1. (23) 
One obtains a regime of HDS quasiperiodic orbits slowly spiraling out of one H = ±1 eigenvalue og in to the next H = ∓1 one [6]. The corresponding "dressing" of the quasiharmonic mean energy value (23) by the standard deviations defined by variance (18) is quite spectacular [3]. In Fig. 1,H(τ ) is displayed by the thick black plot while the quantum standard deviations about it, defined by Eq. ( 6) and by quantum variance (21), are shown by the dotted black plots. The quite dense colored patterns are built from the very-highfrequency oscillarory standard deviations (18) with extremely small HDS orbit period ∼ 2π ≪ 1571 at the scale of the Rabi period 4π/A = 1571. The energy standard deviations +σ a (τ ) (continuous purple) and -σ a (τ ) (continuous green) due to state energy E a (τ ) defined in ( 16) are phase-shifted by ∼ π with respect to the standard deviations +σ b (τ ) (dotted purple) and -σ b (τ ) (dotted green) due to state energy E b (τ ). All these very-high-frequency standard deviations display the rather important dispersion of the qubit acceptable energy values about its mean value H except at the two eigenvalues ±1 where, as expected, this dispersion vanishes. We note with interest that these standard deviation patterns are quite accurately bounded by the quantum standard deviations defined by quantum variance (21). Therefore this remarkable property establishes the necessary statistical link between the variance Hermitian operator (4-5) and the state-energy description (16-18). It validates this latter.

E. Quantum Zeno jump

The measured "'time-of-flight" values obtained by a continuous measurement process in experiment [4] have been recovered in the frame of the above theory by considering the quantization of the HDS action [3]. Here we wish to show that these values are actually an immediate first-principle consequence of Fig. 1 and -contrary to the quantum trajec- tory explanation given in [4]-they do not depend on the specific continuous measurement process (provided this latter is long-lasting enough). Indeed any such process yields QZE "freezing" of the corresponding quantum states in their initial configuration [1] [2] and this latter remains possible as long as the resulting trajectory lies inside of the qubit's available energy region defined by Fig. 1.

Let us be specific and consider Fig. 2. Assume that the system, while still resonantly Rabi-driven, is initially in, say, its ground state -1 (i.e. at half the Rabi period τ = 785) and introduce a repetitive measurement process in accordance with [2] or, equivalently, with [4] (the following applies as well if we choose the excited state: see Fig. 2 at τ = 0). Then, due to QZE which acts as a strong perturbation, the system is forced to remain "frozen" in this lowest energy value instead of entering Rabi's standard unperturbed harmonic excitation dynamics (23) displayed by the blue line. Consequently, its energy keeps its value -1 along the horizontal segment as τ increases for 785 < τ < 1183 (lowest horizontal arrow path), i.e. as long as the energy of the system stays within the statistically accessible energy region defined by Eq. (18) or equivalently by Eq. (21) (dotted red line). When reaching this boundary at τ = 1183, it jumps to the excited level +1 in accordance with the vertical arrow path in order to continue the QZE state freezing process from τ = 1183 to τ = 1571 if the repetitive measurement is lasting over a time interval greater than this half Rabi period. This QZE jump -which we call "quantum Zeno jump" (QZJ)-actually absorbs at once all the energy input due to the external Rabi drive that has been accumulated by the system during its forced QZE freezing stage. FIG. 3: The quasi-stochastic energy input ∆H defined by Eq. ( 23) over half a Rabi period 2π/A when the origin of time is now taken at τ = 785 in Figs. 12. Its seemingly two-dimensional dense pattern results from its extremely fast oscillations at the scale of the Rabi period. Therefore it will be regarded as the uncertainty in the energy input at a given time τ . The star indicates the maximum at τ = 393 or H = 0 that scales this uncertainty in (24).

The above QZJ scheme is oversimplified. Indeed the standard deviation boundary at τ = 1183 is only statistical: it has not a precise definite value. Therefore the QZJ may occur at any time in the interval ∆τ about τ = 1183. When trying to evaluate it, one should regard the Hamiltonian driving term ∆H in (23) as a quasi-stochastic energy input, as shown by Fig. 3. Indeed, ∆H oscillates extremely rapidly at the scale of the Rabi period 4π/A. It actually looks like a mere two-dimensional uniformly dense drive term pattern and thus yields the corresponding time interval ∆τ

∆H∆τ ≥ 2 = 1, (24) 
in which any step-like QZJ illustrated by Fig. 2 can statistically occur (cf. our choice (13) of the reduced units). Since the QZJ formely appears at half the gap defined by H = 0 (cf. Fig. 2), we take ∆H = ∆H max = 4 10 -3 in (24) -see the star in Fig. 3-and therefore ∆τ min ∼ 1/∆H max ∼ 250. This time interval is pictured by the two vertical bars in Fig. 4 where the experimental data given in Fig. 3b of Ref. [4] are reproduced by use of red circles, using for the normalization of our τ -axis the experimental Rabi period T Rabi = 50 µs given in [4] (their ∼ 13% deviation from the excited eigenvalue +1 is due, the authors say, to imperfections, mostly excitations to higher levels). We see that ∆τ min ∼ 250 fairly agrees with the so-called "time-of-flight" value ∼ 2∆ mid defined in Fig. 3b of [4]. Moreover, ∆τ min is also in good agreement with HDS action quantization when the system crosses the separatrix of the system at H = 0 [3]. Note that the l.h.s. of inequality (24) has indeed the dimension of an action. Circles: the path in the Hilbert space followed by the jump evolutions given in Fig. 3b of Ref. [4], using its T Rabi = 50 µs Rabi period for the normalization of the τ -axis. The 13% deviation from the excited eigenvalue +1 is due to imperfections, mostly excitations to higher levels [4]. The two vertical bars display the minimum duration ∆τ min of the transition obtained as the consequence of the uncertainty principle (24) when the perturbation ∆H illustrated by Figs 3 is maximum (star). They fit quite well with the duration of the so-called "time-of-flight" value ∼ 2∆ mid given in [4] and therefore experimentally validate the present generic theory.

F. Conclusion

One important point in the above QZJ statistical description (24) and illustrated by Figs. 234is that we recover the undeterministic dynamical scheme of a quantum jump à-la-Bohr. Contrary to [4], the present theory does not claim to deterministically describe the reality of the quantum jump. It only tells the observer that, due to the repetitive measurement process and to the general qubit energy variance properties displayed by Fig. 1, the system may statistically undergo a sudden transition about half gap at any time within that interval ∆τ min which is defined by the uncertainty principle. As such, it is generic and does not depend on the particular continuous qubit measurement process -by contrast with [4] where the specific |G>, |D> and |B> three-level quantum system is explicitely taken into account. Therefore it provides a physical frame in which all particular qubit measurement processes -provided they are repetitive and long-lasting enough-must fit.

A second important consequence concerns strong Rabi qubit driving. While the HDS definition of the energies E a,b still remains valid, their statistical variance and/or standard deviation statistical properties become useless because their spectrum may appear either chaotic or discrete. In this latter case, it is defined by the existence of phase-locked cycles in the solution of the HDS differential system. Then the state energies E a,b provide an
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 1 FIG.1: Validation of the state-energy description (16-18) by use of the variance Hermitian operator (4-5) for A = 8 10 -3 . The qubit's colored available energy region is defined by the standard deviation dressing (18) of Rabi's quasi-harmonic HDS Hamiltonian -or mean energy-(23) during one Rabi period 4π/A = 1571 in reduced units (13) (thick black plot). Dotted black plot: the quantum standard deviations about H as defined by quantum variance (21).
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 2 FIG.2: A = 8 10 -3 : the qubit's available energy region defined by Fig.1together with its quasiharmonic HDS Hamiltonian H (in continuous blue) and its quantum standard deviations (21) about H (red dotted plots). The general principle of a step-like quantum jump due to repetitive eigenstate measurements is illustrated by arrows. The thick arrows display the Rabi-stimulated energy jump occuring at τ = 1183 (actually at H = 0) from the ground state E = -1 to the excited level E = +1. The thiner path displays the de-excitation reverse process.
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 4 FIG.4: Second (r.h.s.) part of Figs. 1-2 illustrating the competitive QZE-vs-Rabi excitation process (quantum Zeno jump, or QZJ). Blue plot: Rabi's mean energy defined by Eq. (23). Circles: the path in the Hilbert space followed by the jump evolutions given in Fig.3bof Ref.[4], using its T Rabi = 50 µs Rabi period for the normalization of the τ -axis. The 13% deviation from the excited eigenvalue +1 is due to imperfections, mostly excitations to higher levels[4]. The two vertical bars display the minimum duration ∆τ min of the transition obtained as the consequence of the uncertainty principle (24) when the perturbation ∆H illustrated by Figs 3 is maximum (star). They fit quite well with the duration of the so-called "time-of-flight" value ∼ 2∆ mid given in[4] and therefore experimentally validate the present generic theory.

interesting tool for the description of the corresponding qubit frequency comb in such stronly perturbed cases [11].
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