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A direct parameter-error co-design approach of
discrete-time saturated LPV systems

C. de Souza, V. J. S. Leite Member, IEEE , S. Tarbouriech Member, IEEE , E. B. Castelan Member, IEEE ,
and L. F. P. Silva

Abstract— Considering a discrete-time linear parameter-
varying (LPV) systems with input constraints, the paper
deals with the co-design of a parameter-dependent state-
feedback controller and a new parameter-dependent event-
triggering mechanism. Two independent event-triggering
policies are introduced at the sensor node to economize
the limited network resources. They indicate whether the
current state or the current scheduling parameters should
be transmitted to the controller or not. In this sense, the
controller scheduling parameters can differ from those of
the system, yielding a certain degree of robustness con-
cerning parameter deviations. Sufficient conditions, given
in terms of linear matrix inequalities (LMIs), ensure the re-
gional asymptotic stability of the closed loop. To formulated
them, we use the Lyapunov theory along with the gener-
alized sector condition. Moreover, we formulate a convex
optimization procedure indirectly reducing the transmis-
sion activity over the network. The proposed methodology
effectiveness is attested through numerical examples and
comparisons with related works from the literature.

Index Terms— Co-design approach. Linear parameter-
varying systems. Saturation. Event-triggered control.
Parameter-deviations.

I. INTRODUCTION

Due to their advantages comprising lower costs and simple
maintenance, networked control systems (NCSs) have attracted
significant attention in the last two decades. However, in
comparison with a point-to-point connection, the networked
connection is unreliable due, for example, to the bounded com-
munication bandwidth [16]. Assuming that the plant signals
are periodically sampled, when the sampling period is small,
the number of the data transmitted through the network will
increase considerably, leading to network overload. If only
some packets need to be transmitted from the sensor to the
controller to ensure satisfactory system performance, then the
inefficient packets can be avoided to save network resources.
Hence, selecting an effective communication mechanism to
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reduce the waste of communication resources is an essential
issue for NCSs. The event-triggering approach has emerged as
an attractive tool for dealing with limited network resources.
The main idea of the event-triggering strategy is to perform
the control tasks only when a particular event (generated
by a specified event-triggering scheme) occurs [25]. Many
significant results concerning event-triggered control (ETC)
are reported in the literature [10], [15], see also [28] for ETC
application to a multi-agent system. However, most of them
are developed for linear time-invariant (LTI) and non-linear
systems. Also, the ETC in the framework of discrete-time
systems has its inherent benefits as the minimum inter-event
time could always be guaranteed (see [17], for instance).

A large amount of works on linear parameter-varying (LPV)
control can be found in literature in both continuous and
discrete-time framework (see, for instance, [2], [4]). Noting
that identification methods usually yield discrete-time LPV
models [27], our approach focuses on such a framework. In
such a context, the event-triggered control strategy has been lit-
tle explored yet. [19] proposes the event-triggered H∞ control
for discrete-time polytopic LPV systems by jointly designing
a mixed event-triggering mechanism and state feedback con-
trollers. For the same class of systems, [22] presents a syn-
thesis condition for event-triggered dynamic output feedback
control with bounds on the `2-performance. [17] addresses
the event-triggered and self-triggered H∞ output tracking
control for discrete-time LPV systems with network-induced
delays. However, in these works, it is assumed that scheduling
parameters information is available for the controller all the
time, which does not occur in practice. In contrast, [24]
proposes the co-design of an event generator and a state-
feedback controller for discrete-time LPV systems, where the
parameters are not precisely known. However, their estimated
values satisfy a known uncertainty level. The problem of
discretization and event-based digital output control design
for continuous-time LPV systems subject to a time-varying
networked-induced delay is investigated in [1], where the
event detection mechanism is based on a significant change of
the scheduling parameters. An event-triggered state-feedback
controller design method for discrete-time LPV systems is
proposed in [12], where three event-triggering mechanisms
are established for transmitting the states, the scheduling
parameters, and controller output through the communication
network. Other more involving approaches may use sampled-
data control handling the process changes between consecutive
aperiodic samplings [3], [21], but in these cases, without
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concerning network data transmission reduction.
Furthermore, practical control systems are always subject

to input saturation. Thus, it is natural to investigate the event-
triggered control for saturated plants. As the closed loop
becomes non-linear, the regional stability must be managed,
which requires the estimation of the region of attraction of
the origin for the closed-loop system [26]. In this context,
[13] presents a method to simultaneously design a static
state-feedback gain and the triggering function to stabilize
discrete-time LTI systems subject to actuator saturation. [29]
proposes a non-convex optimization problem for the co-design
of event-triggered strategy and controller parameters. The
static and dynamic feedback controllers were designed in [9]
to investigate the event-triggered control of discrete-time linear
systems subject to actuator saturation. However, the event-
triggered control of discrete-time LPV systems with saturating
actuators has not been widely explored in the literature (see
[7], [8], for example). In particular, the case where the plant
and the controller do not share the same scheduling parameters
consists of a relevant gap in the literature.

Based on the above discussion, the main contributions
of this paper are summarized as i) A new event-triggered
parameter-dependent state-feedback controller design method
is proposed for discrete-time LPV systems under saturating
actuators; ii) two ETM policies are designed to reduce the data
transmission of states and scheduling variables separately. As
a consequence, the scheduling parameters of the controller and
the event-triggering policies may be different from those of
the system, yielding a certain degree of robustness concerning
parameter deviations. The convex conditions based on linear
matrix inequalities (LMIs) allow to ensure the closed-loop
regional asymptotic stability and to provide an estimate of
the basin of attraction of the origin. To formulate them, we
use the Lyapunov theory combined with the generalized sector
condition to handle the saturation map. A convex optimization
scheme incorporating these conditions as constraints is pro-
posed to reduce data transmission over the network. Numerical
examples borrowed from the literature illustrate the efficacy of
our proposal.
Notation: R, and R+ are the sets of real numbers, and non-
negative real numbers, respectively. The matrix 0 stands for
the null matrix of appropriate dimensions and In corresponds
to the identity matrix with dimensions n × n. A block-
diagonal matrix A with blocks A1 and A2 is denoted as
A = diag{A1, A2}. The `th line of a vector or matrix A
is indicated by A(`). The set of integer numbers belonging
to the interval from a ∈ N to b ∈ N, b ≥ a, is denoted
by I[a, b]. Rm×n is the set of matrices with real entries and
dimensions m × n. The symbol ? represents the transpose
blocks in relation to the diagonal of real square and symmetric
matrices, • represents an element that has no influence on
development.

II. PROBLEM FORMULATION AND MODELING

A. Discrete-time Setup

Consider the block diagram of the event-triggered control
system shown in Figure 1, where the plant to be controlled is

Controller

u

−u

Plant

uk

sat(uk)

x̂k

xk

ϑk

ϑ̂k

ETMs

Fig. 1. Closed-loop system with event-triggering mechanisms (ETMs).

represented by the following linear parameter-varying (LPV)
system subject to saturating actuators

xk+1 = A(ϑk)xk +B(ϑk)sat(uk), (1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input, and sat(uk) is the standard saturation function defined
as sat(uk(`)) = max(−ū(`),min(ū(`), uk(`))), with ū(`) > 0,
` ∈ I[1,m], the symmetric saturation bound relative to the `th

control input. The parameter-varying matrices A(ϑk) ∈ Rn×n

and B(ϑk) ∈ Rn×m can be written as a convex combination
of N known vertices,[

A(ϑk) B(ϑk)
]

=

N∑
i=1

ϑk(i)

[
Ai Bi

]
, (2)

where ϑk(i) ∈ RN is supposed to be a parameter-varying
vector belonging to the unit simplex Φ defined by

Φ ,

{
N∑
i=1

ϑk(i) = 1, ϑk(i) ≥ 0, i ∈ I[1, N ]

}
. (3)

Observe that the same representation of LPV systems is
used, for instance, in [12], [17], [22]. To stabilize the system
(1), we adopt the following event-triggered state-feedback
controller

uk = K(ϑ̂k)x̂k, (4)

where ϑ̂k and x̂k are the most recently transmitted values of
the scheduling parameter and of the state vector, respectively.
The gain matrix K(ϑ̂k) ∈ Rm×n can also be written in a
polytopic form, i.e.

K(ϑ̂k) =

N∑
j=1

ϑ̂k(j)Kj , ϑ̂k ∈ Φ. (5)

By defining the dead-zone non-linearity Ψ(uk) = uk −
sat(uk) and the state error ex,k = x̂k − xk, the system (1)
under the control law (4) results in the following closed-loop
system

xk+1 =
(
A(ϑk) +B(ϑk)K(ϑ̂k)

)
xk +B(ϑk)K(ϑ̂k)ex,k

−B(ϑk)Ψ(uk). (6)

B. Event-triggered scheme
By considering a communication network with limited

bandwidth, two independent event generators are introduced
between the sensor and the controller to reduce the number

. 
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of data transmissions while preserving the desired system
performance, as shown in Figure 1. Periodically, they make the
decision, based on event-triggering rules, whether the current
state and the current scheduling parameter should be sent to
the controller via network or not.

i) State-based ETM: We assume that the updating of the
current state is performed whenever ‖x̂k−1 − xk‖2Q∆(ϑ̂k)

≤
‖xk‖2Qx(ϑ̂k)

is violated, i.e.,

x̂k :=

{
xk, if ‖x̂k−1 − xk‖2Q∆(ϑ̂k)

> ‖xk‖2Qx(ϑ̂k)

x̂k−1, otherwise.
(7)

The positive definite parameter-dependent matrices
Q∆(ϑ̂k) =

∑N
i=1 ϑ̂k(i)Q∆i, Q∆i ∈ Rn×n and

Qx(ϑ̂k) =
∑N

i=1 ϑ̂k(i)Qxi, Qxi ∈ Rn×n are variables
to be designed, leading to an additional degree of freedom
in the co-design. As these matrices acts as weights on the
terms of the event-triggering condition, their computation
has a direct impact on the event-triggering policy and,
consequently, on the way of reducing the data transmissions.
Note that such an event-triggering rule is more involving than
those considered, for instance, in [7], [12], [22], due to the
parameter dependence of the weighting matrices.

Note that if xk is updated at instant k, then from (7), we
have that ek = x̂k−xk = xk−xk = 0, and if xk is not updated
at instant k, then from (7), we have that ek = x̂k − xk =
x̂k−1 − xk. Thus, the following inequality is always satisfied.

‖ek‖2Q∆(ϑ̂k)
≤ ‖xk‖2Qx(ϑ̂k)

(8)

ii) Scheduling-parameter based ETM: Additionaly, we as-
sume that whenever the difference between the last transmitted
scheduling parameter ϑ̂k and the current one, ϑk, multiplied
by a given scalar 0 ≤ g ≤ 1 reaches the lower bound 0
or the upper bound 1 − g, then the current sample of ϑk is
transmitted through the network. Therefore, the policy of the
scheduling parameter transmission is based on the violation of
the condition

0 ≤ ϑ̂k(i) − gϑk(i) ≤ 1− g, (9)

for any i ∈ I[1, N ] and a given 0 ≤ g ≤ 1. Following
[5, Lemma 2], we note that the last transmitted scheduling
parameter, ϑ̂k, can be written as

ϑ̂k(i) = gϑk(i) + (1− g)ϕk(i), (10)

for any vector ϕk ∈ RN verifying
∑N

i=1 ϕk(i) = 1 and ϕk(i) ≥
0. Therefore, once both sides of inequality (9) are satisfied,
equation (10) is ensured. Such a fact can be noted by summing
(10) up for i ∈ I[1, N ] and by considering ϑk, ϑ̂k ∈ Φ, to
obtain

N∑
i=1

ϕk(i) =

∑N
i=1 ϑ̂k(i) − g

∑N
i=1 ϑk(i)

1− g
= 1. (11)

Moreover, taking into account the positivity of ϑ̂k(i)− gϑk(i),
one has ϕk(i) ≥ 0.

Observe that the value of g has a direct influence on the
size of the error allowed between the plant and controller
parameters, and consequently, on the transmission rate. For

g close to 0, the greater the admissible parameter error, the
lower the transmission rate. On the other hand, for g close
to 1, the lower the admissible parameter error, the greater
the transmission rate. Concerning the transmission rate, the
worst case is reached with g = 1, which leads to a 100%
transmission rate. Therefore, g = 1 implies that the controller
shares the same scheduling parameter of the plant, then
recovering the assumption of parameter sharing in [7], [8],
[19], [22].

Note that the proposed ETM policy (9) differs from those
usually found in the literature, such as those in [11], [12],
[18], [24]. In our approach, the transmission policy depends
directly on the scheduling parameters. In the previous works,
the decision policy depends on the norm of the dynamic
matrices variations, an indirect parameter-based decision, or
on some prescribed (small) deviation of the parameter.

By using (9) and doing some manipulations, the closed-loop
system (6) can be rewritten as:

xk+1 =
N∑
i=1

N∑
j=1

νijϑiϑj0.5
(
(Ai +Aj)xk− (Bi +Bj)Ψ(uk)

+ g(BiKj +BjKi)(xk + ek)
)

+

N∑
q=1

N∑
i=1

N∑
j=i

νijϑiϑjϕq0.5

× (1− g)(BiKq +BjKq)(xk + ek) (12)

with νij = 1 when i = j and νij = 2 otherwise. Note that we
omitted the dependence of ϑ, ϑ̂ and ϕ on k to simplify the
expression.

Assuming the two ETM schemes (7) and (9), we intend to
solve the following problem:

Problem 1: Consider the LPV system under saturating ac-
tuators (1). Given a scalar 0 ≤ g ≤ 1, co-design the
parameter-dependent state-feedback controller (4) and the
two independent ETMs (7) and (9) that ensure the regional
asymptotic stability of the closed-loop system while reducing
data transmissions of states and scheduling variables on the
network.
Let us emphasize that the presence of input saturation needs
to characterize the region of attraction of the origin for the
closed loop [26]. Due to the fact that we do not assume any
stability hypothesis for the open loop, we are interested by
the regional asymptotic stability of the closed-loop system and
therefore the region of attraction will not be the whole state
space [20], [13], [7]. As the exact characterization of such
a region is extremely challenging, a workaround consists in
characterizing an estimate of the domain of attraction of the
origin for the closed-loop system (6). This is definitively an
implicit objective in solving Problem 1, which we will address
by building level sets from the Lyapunov function considered.

III. MAIN RESULTS

In this section, we present a solution to Problem 1. The
theoretical conditions appearing in Theorem below are based
on the Lyapunov theory and, more specifically, on the use
of the following candidate Lyapunov function V (xk, ϑ̂k) =
x>k P (ϑ̂k)xk, where P (ϑ̂k) =

∑N
i=1 ϑ̂kPi, ϑ̂k ∈ Φ with
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0 < Pi = P>i ∈ Rn×n. Their feasibility ensures that the
level set LV associated with V (xk, ϑ̂k), i.e. LV = {xk ∈
Rn, ϑ̂k ∈ Φ : V (xk, ϑ̂k) ≤ 1}, is a contractive set with respect
to the trajectories of the closed-loop system (6), and, there-
fore, constitutes an estimate of the domain of attraction for
the system. Furthermore, we use the well-known generalized
sector condition approach [26, Lemma 1.6, p.43] to handle the
non-linearity Ψ(·). A direct adaptation to the current setting
leads to the following lemma.

Lemma 1: Consider uk given by (5), ū ∈ Rm
+ , and a matrix

G(ϑ̂k) =
∑N

i=1 ϑ̂k(i)Gi with Gi ∈ Rm×n, i ∈ I[1, N ] and
ϑ̂k ∈ Φ, and define the following set

S(ū) , {xk ∈ Rn : |G(ϑ̂k)xk| ≤ ū}. (13)

If xk ∈ S(ū), then for any diagonal positive definite matrix
T (ϑ̂k) =

∑N
i=1 ϑ̂k(i)Ti with Ti ∈ Rm×m, i ∈ I[1, N ] and

ϑ̂k ∈ Φ, the following inequality is verified.

Ψ(uk)>T (ϑ̂k)
(
Ψ(uk)−(K(ϑ̂k)−G(ϑ̂k))xk−K(ϑ̂k)ex,k

)
≤ 0.
(14)

Theorem 1: Given a scalar 0 ≤ g ≤ 1, suppose there exist
symmetric positive definite matrices Wi ∈ Rn×n, Q̄∆i ∈
Rn×n, and Q̄xi ∈ Rn×n, matrices Zi ∈ Rm×n, Yi ∈ Rm×n,
and U ∈ Rn×n, and positive definite diagonal matrices Si ∈
Rm×m, with i ∈ I[1, N ], such that the LMIs in (15) (given
at the top of the next page) and the following ones gWi + (1− g)Wq − U − U> ?

gZi(`) + (1− g)Zq(`) −ū(`)
2

 < 0,

q, i ∈ I[1, N ], ` ∈ I[1,m].
,

(16)

are feasible. Then, the saturated LPV system (1) in closed loop
with the state-feedback controller (5) computed as

Ki = YiU
−1 (17)

subject to the ETMs (7) and (9) with matrices Q∆i =
U−>Q̄∆iU

−1 and Qxi = U−>Q̄xiU
−1, is asymptotically sta-

ble and has a reduced number of data transmissions. Moreover,
the level set LV , computed as1

LV =
⋂
∀ϑ̂k∈Φ

E(P (ϑ̂k)) =
⋂

∀i∈I[1,N ]

E(Pi), (18)

with E(P, 1) = {xk ∈ Rn : x>k Pixk ≤ 1} for i ∈ I[1, N ], is
a region of asymptotic stability for the closed-loop system.

Proof: We split the proof into two steps. In the first
one, we show that any trajectory initialized in LV belongs
to the polyhedral set S(ū), which guarantees the validity of
the generalized sector condition (14), i.e., Lemma 1 applies. In
the second, we prove the regional asymptotic stability of the
closed-loop system. In other words, the asymptotic stability of
the closed-loop system is guaranteed for any initial condition
belonging to LV .

Step 1: By supposing the feasibility of (16), multiply its
left-hand side by ϑk(i) and ϕk(q), sum it up to i, q ∈ I[1, N ]
and replace Zi by GiU . Then, according to (10), replace

1Details on this computation can be found in Lemma 1 in [6].

(1 − g)
∑N

q=1 ϕk(q) by
∑N

q=1 ϑ̂k(q) − g
∑N

q=1 ϑk(q). Note
that, in this step, the matrices W and G become functions
only of the most recent transmitted scheduling parameter
ϑ̂k. So, assume that W (ϑ̂k) = P−1(ϑ̂k) and use the fact

that
[
P−1(ϑ̂k)− U

]>
P (ϑ̂k)

[
P−1(ϑ̂k)− U

]
≥ 0 to replace

P−1(ϑ̂k)−U −U> by −U>
∑N

i=1 ϑ̂k(i)PiU . Next, with the
regularity of U , pre- and post-multiply the resulting inequality
by diag{U−>, 1} and its transpose, respectively, to get −P (ϑ̂k) ?

G(`)(ϑ̂k) −ū(`)
2

 < 0. (19)

Finally, apply Schur complement, pre- and post-multiply the
resulting inequality by x>k and xk, respectively, we have that

x>k
G(ϑ̂k)>(`)G(ϑ̂k)(`)

ū2
(`)

xk < x>k P (ϑ̂k)xk

, which yields for xk ∈ LV :

x>k G(ϑ̂k)>(`)G(ϑ̂k)(`)xk < x>k P (ϑ̂k)xkū
2
(`) ≤ ū

2
(`).

That allows us to conclude that |G(ϑ̂k)(`)xk|2 ≤ ū2
(`) for xk ∈

LV , ensuring the inclusion LV ⊆ S(ū) and, therefore, Lemma
1 applies. Therefore, any trajectory of the closed-loop system
starting inside LV remains in S(ū).

Step 2: It remains to demonstrate the regional asymptotic
stability of closed-loop system. By supposing the feasibil-
ity of (15), multiply its left-hand side by ϑk+1(r), ϑk(i),
ϑk(j), ϕk+1(s) and ϕk(q), sum it up to r, s, q, i ∈ I[1, N ]
and j ∈ I[i,N ], and replace Ki by YiU

−1, Zi by GiU ,
Q̄∆i by U>Q∆iU , and Q̄xi by U>QxiU . Then, make some
algebraic manipulations to simplify the expressions, as in
[5]. Next, according to (10), replace (1 − g)

∑N
q=1 ϕk(q)

by
∑N

q=1 ϑ̂k(q) − g
∑N

q=1 ϑk(q). Note that, in this step, the
matrices W , Qx, Q∆, G, S, and K become functions only
of the most recent transmitted scheduling parameter ϑ̂k. So,
assume that W (ϑ̂k) = P−1(ϑ̂k) and use again the fact
that −U>P (ϑ̂k)U ≤ P−1(ϑ̂k) − U − U>. Then, with the
regularity of U , pre- and post-multiply the resulting inequality
by diag{U−>, U−>, S−1(ϑ̂k), In} and its transpose, respec-
tively. After that, apply Schur complement to obtain M < 0
with M given by (20) (depicted at the top of the next
page). Then, pre- and post-multiply (20) by the augmented
vector ξ>k =

[
x>k e>x,k Ψ(uk)>

]
and ξk, respectively.

Next, according to (6), replace
(
A(ϑk) +B(ϑk)K(ϑ̂k)

)
xk +

B(ϑk)K(ϑ̂k))ex,k − B(ϑk)Ψ(uk) by xk+1. Also, observe
that x>k+1P (ϑ̂k+1)xk+1 − x>k P (ϑ̂k)xk = V (xk+1, ϑ̂k+1) −
V (xk, ϑ̂k) = ∆V (xk, ϑ̂k). Finally, denote S−1(ϑ̂k) = T (ϑ̂k)
and take into account (7) and (8), to conclude that ξ>kMξk =
∆V (xk, ϑ̂k)−2Ψ(uk)>T (ϑ̂k)

(
Ψ(uk)−(K(ϑ̂k)−G(ϑ̂k))xk−

K(ϑ̂k)ex,k
)
−e>x,kQ∆(ϑ̂k)ex,k+x>k Qx(ϑ̂k)xk < 0. Therefore,

the feasibility of (15) ensures the positivity of V (xk, ϑ̂k) and
the negativity of ∆V (xk, ϑ̂k) for any xk ∈ LV . Then, LV is
an invariant and contractive set with respect to the closed-loop
system, and therefore, constitutes an estimate of the domain
of attraction for the system, concluding the proof.
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

0.5g(Wi +Wj + Q̄xi + Q̄xj) ? ? ?
+(1− g)(Wq + Q̄xq)− U − U>

0
−0.5g(Q̄∆i + Q̄∆j) ? ?
−(1− g)Q̄∆q

0.5g(Yi + Yj − Zi − Zj) 0.5g(Yi + Yj) −g(Si + Sj) ?
+(1− g)(Yq − Zq) +(1− g)Yq −2(1− g)Sq

0.5(Ai +Aj)U + 0.5g(BiYj +BjYi) 0.5g(BiYj +BjYi) −0.5g(BiSj +BjSi) −gWr

+0.5(1− g)(Bi +Bj)Yq +0.5(1− g)(Bi +Bj)Yq −0.5(1− g)(Bi +Bj)Sq −(1− g)Ws



< 0.

r, s, q, i ∈ I[1, N ], j ∈ I[i,N ]. (15)

M =


−P (ϑ̂k) +Qx(ϑ̂k) ? ?

0 −Q∆(ϑ̂k) ?

S−1(ϑ̂k)(K(ϑ̂k)−G(ϑ̂k)) S−1(ϑ̂k)K(ϑ̂k) −2S−1(ϑ̂k)

+

(A(ϑk) +B(ϑk)K(ϑ̂k))
>

(B(ϑk)K(ϑ̂k))
>

−B(ϑk)
>

P (ϑ̂k+1)

×
[
(A(ϑk) +B(ϑk)K(ϑ̂k)) B(ϑk)K(ϑ̂k) −B(ϑk)

]
. (20)

Observe that g parameter may affect the feasibility of the
LMIs condition in Theorem 1 and a search on this parameter
over the interval 0 ≤ g ≤ 1 can be used to improve the ETM
performance. In general, the feasibility of conditions (15) and
(16) is easier to verify for g = 1, since this case corresponds
to consider a full transmission rate and no parameter error.
Examples presented later illustrate such a possibility.

A. Optimization procedure

This section aims to propose an optimization procedure
that indirectly reduces the number of state signal updates. By
looking at the event-triggering condition (7), we can see that it
is a relative measure of the deviation between the last sampled
state and the current state with Q∆i and Qxi acting as weights
on this measure. Thus, we have that the “smaller” Q∆i and
the “larger” Qxi are, the more the current state is allowed to
deviate from the last sampled one and the fewer transmissions
events are expected. However, the matrices Q∆i and Qxi do
not appear explicitly as decision variables in the conditions
of Theorem 1, due to the congruence transformation required
to formulate them in terms of LMIs. To overcome such an
issue, we propose to consider the following constraints with
the aim to get lower bound on Qxi and upper-bound on Q∆i

to recover representative optimization scheme: gQ̄xi + (1− g)Q̄xq ?

U gQ̂xi + (1− g)Q̂xq

 > 0, (21)


gQ̂∆i + (1− g)Q̂xq ?

In
U + U> − gQ̄∆i

−(1− g)Q̄∆q

 > 0. (22)

i, q ∈ I[1, N ]; j ∈ I[i,N ].

The first one enforces the lower bound Qxi > Q̂−1
xi through

the direct application of the Schur’s complement. The second
enforces the upper bound Q∆i < Q̂∆i through the direct
application of Lemma 1 in [23]. In this case, the fact of
minimizing the variables (Q̂∆i, Q̂xi) effectively minimizes the
variables (Q∆i, Qxi). Therefore, we consider the following
optimization procedure:

O :

 min
∑N

i=1 tr(Q̂∆i + Q̂xi),

subject to (15), (16), (21), and (22).
(23)

Let us recall that the scalar g plays a relevant role on the
transmission activity of the scheduling parameter, making its
choice very important. As discussed earlier, the closer g is to
zero, the smaller the transmission activity. Such a fact will be
highlighted in Section IV.

IV. SIMULATIONS RESULTS

This Section illustrates the effectiveness of our results
through numerical examples borrowed from the literature
[14], [18], [19].

. 
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Fig. 2. Average update rate of the scheduling parameter and the state.

Example 1. Consider saturated LPV system (1) with ma-
trices

A=

0.25 1 0
0 0.1 0
0 0 0.6 + ρk

, B=

1− 0.8ρk
0

1− ρk

, (24)

where the time-varying parameter ρk ∈ I[0, 0.5] and the
symmetric saturation limit is ū = 0.5. In this case, we can
take ϑk(1) = 1 − 2ρk and ϑk(2) = 2ρk with A1 = A(0),
B1 = B(0), A2 = A(0.5) and B2 = B(0.5).

First, we are interested in investigating the influence of pa-
rameter g (see (9)) in the update rate of the scheduling param-
eter and the state. With this purpose, for g = 0.1, 0.2, . . . , 1,
we use the optimization procedure O given in (23) to design
the control gains and the event-triggering parameters. For each
case, we simulate the closed-loop response for 1000 initial
conditions belonging to LV and ϑk chosen randomly. The
average update rate (%) of the scheduling parameter, marked
with ×, and the state, marked with �, as a function of g are
illustrated in Figure 2. We can see that as g approaches to 1,
the update rate increases until it reaches 100% for g = 1, i.e.
ϑ̂k = ϑk. In such a case, we also have the smallest update
rate of the states, which is expected as the controller is better
adjusted to the conditions of the plant.

For g = 0.8, we plot for a specific initial condition
x0 =

[
−0.035 −0.025 −0.589

]>
, the closed-loop

temporal response and the inter-event interval of the event
generators, as seen in figures 3 and 4, respectively. In
the first one, we can observe that the states converge to
origin despite the saturation of the actuator in the first
two instants of simulation. In the second figure, we have
(on the bottom) the inter-event interval of the scheduling
parameter, marked with ×, and the state, marked with �.
Note that both mechanisms are independent, although one
can affect the other indirectly, as discussed previously.
Moreover, we have (on the top) the difference between
ϑ̂k and ϑk, which is marked with • (×) when its value
is inside (outside) the region of validity imposed by (9),
traced with black lines. With g close to 1, the smaller the
error allowed between ϑ̂k and ϑk, and therefore, the higher
the update rate. The control gain and the event-triggering
parameters used for this simulation were K =

[
K1 K2

]
=[

−0.054 −0.084 −0.148 −0.088 −0.222 −1.046
]

and

Q∆ =
[
Q∆1 Q∆2

]
= 0.033 0.053 0.106 0.013 0.032 0.149

0.053 0.089 0.212 0.032 0.080 0.377
0.106 0.212 0.727 0.149 0.374 1.752

,

Fig. 3. The closed-loop temporal response for x0 =[
−0.035 −0.025 −0.589

]>.

Fig. 4. Inter-event interval of the event generators.

Qx =
[
Qx1 Qx2

]
= 0.847 −0.034 0.040 0.836 −0.057 0.086

−0.034 2.113 0.036 −0.057 2.048 0.105
0.040 0.036 1.269 0.086 0.105 0.670

.
To complete the illustration of the results, let us make some

consideration on the estimate of the region of attraction LV .
In Figure 3, we plot the estimate of the region of attraction
LV (light gray lines) with some state trajectories starting
from the border of LV (colored lines). As we can see, the
state trajectories converge to the origin. For initial conditions
outside of LV , our method does not ensure convergence. The
initial condition, x0 =

[
−0.1750 −0.1250 −2.9450

]>
, for

instance, results in a divergent trajectory.

Example 2. By assuming that the LPV system (24) is not
subject to any restriction on the input signal, we compare
our approach with [11], [12]. The authors in [11] consider
the co-design of an event-triggering condition and a state-
feedback controller for LPV systems. The proposed ETM
sends information on states and scheduling variables simulta-
neously to the controller when needed. On the other hand, the
authors in [12] propose an event-triggered reference tracking
control design method for the LPV system, in which are
designed a state-feedback controller and three separate ETMs
for transmitting the state, the scheduling variables, and the
controller output over the network.
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Fig. 5. The estimate of the region of attraction of the origin for Example
1.

By solving Theorem 1 in [11], we got the control gain K =[
−0.095 −0.373 −0.368 −0.179 −0.728 −1.205

]
and the triggering parameter σ = σ−1

x = 0.048. Also,
by disregarding the reference tracking setup, we solve
Theorem 2 in [12] with the scheduling parameter error
threshold δ0 = 0.05 obtaining the control gain K =[
−0.032 −0.111 −0.322 −0.030 −0.1388 −1.071

]
and the triggering parameters σΨ = 0.0226 and σu = 0.0250.
We use the data of both approaches to simulate the system’s
closed-loop response for x0 =

[
1 −1 −0.5

]>
and 1000

values of ϑk generated randomly.
We performed the same procedure using our approach for

some values of 0 ≤ g ≤ 1. Table I shows the respective
results. One can see that the average update rates of the states
and the scheduling parameter obtained by [11] and [12] are
higher than ours in almost all cases. Unlike this approach,
[12] considers a third ETM between controller and actuator.
However, such a mechanism had a high transmission rate,
almost matching our case where all control signals are sent
to the plant, reason why the last line in Table I is marked with
”–” for Theorem 1 and [11]. For g = 0.2, for instance, our
transmission activity are about 88% and 90% smaller than of
[11] and [12] w.r.t. the scheduling parameter, respectively, and
about 26% and 51% smaller than [11] and [12] with respect
to the state, respectively.

TABLE I
PERCENTAGE OF TRANSMISSION RATE ACHIEVED BY THE PROPOSED

METHOD AND THOSE FROM [11], [12].

[12] [11]
Theorem 1

g
0.2 0.4 0.6 0.8 1.0

ϑk(%) 78.33 66.66 8.02 14.42 38.22 57.56 100
xk(%) 100 66.66 49.05 49.05 55.41 47.50 42.68
uk(%) 98.4 – – – – – –

Example 3. By assuming that the LPV system (24)
is not subject to any restriction on the input signal, and

has a fixed matrix of control i.e. B1 = B2 = B(0), we
compare our approach with [24]. The authors in [24] propose
the co-design of an ETM and a state-feedback controller
for LPV systems where the parameters are not exactly
known, but estimated parameters satisfying certain level
are known. The robustness of the proposed event-triggered
control system concerning the uncertainty of the parameter
is indicated by the scalar δ0 for the method in [24],
according to the inequality ‖∆A(ϑk, ϑ̂k)xk‖2 ≤ δ2

0‖xk‖2,
with ∆A(ϑk, ϑ̂k) = A(ϑk) − A(ϑ̂k). Thus, we solve
Theorem 1 in [24], with δ0 = 0.1 and the triggering
parameter η = 0.99, obtaining the control gain K =[
−0.095 −0.354 −0.414 −0.091 −0.335 −0.768

]
.

By using the ETM and the controller designed, we simulated
the closed-loop response for x0 =

[
1 −1 −0.5

]>
and

1000 values of ∆A(ϑk, ϑ̂k), generated randomly within the
allowed range, obtaining a percentage average update rate of
xk equal to 84.11%, as indicated in Table II. Note that, from
the values of ∆A(ϑk, ϑ̂k) and ϑ̂k, we can determine ϑk. We
used these values of ϑk to establish a fair comparison with
[24].

To compare our approach with that proposed by [24], we
measured, for some values of 0 ≤ g ≤ 1, the robustness
of our event-triggered control system and computed the av-
erage update rate of both xk and ϑk. The robustness of our
method was determined by computing the following scalar δ :

δ = max
k

{√
‖∆A(ϑk, ϑ̂k)xk‖2/‖xk‖2

}
among the instants

of simulation. The results are shown in Table II. As we can
see, for values of g smaller than 0.8, our approach is more
robust to the variation of parameters than [24], almost 4 times
for g = 0.2. In addition, we found an average update rate of
xk smaller than [24] in all cases. For g = 0.8, for instance, we
obtained a rate 36% smaller, approximately. As [24] does not
consider an ETM to sent the information about the scheduling
parameter over the network, these data are not comparable.

TABLE II
RELATIVE ROBUSTNESS (δ/δ0) ACHIEVED BY THE PROPOSED METHOD

AND THAT FROM [24] AND THE PERCENTAGE OF TRANSMISSION RATE.

[24]
Theorem 1

g
0.2 0.4 0.6 0.8 1.0

δ/δ0 1 3.86 2.87 1.95 0.96 0
ϑk(%) - 4.80 10.90 44.40 74.75 100
xk(%) 84.11 55.63 55.61 55.59 53.86 40.21

V. CONCLUSION

This paper examines the state-feedback event-triggered con-
trol design problem for a discrete-time LPV system subject
to saturating actuators. We proposed two separate ETMs for
transmitting the states and the scheduling variables through
a communication network. In this sense, it is assumed that
the scheduling parameters of the controller and the event-
triggering mechanism may differ from those of the plant. The
convex conditions based on linear matrix inequalities (LMIs)
ensure the regional asymptotic stability of the closed-loop
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system for every initial condition belonging to the estimated
attraction region. An optimization procedure is derived, al-
lowing the minimization of the data transmission over the
network. Future work could be dedicated to expanding the
results to polynomial scheduling parameters, which can lead
to lower update rates for the scheduling parameters and states
and larger estimates of the region of attraction. Furthermore,
it could be interesting to address the case where the states
are not fully available for building the ETM, adopting, for
example, an observer-based strategy or the use of only local
information.
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