C De Souza 
  
Member, IEEE, S. Tarbouriech Member, IEEE V J S Leite 
  
Member, IEEE E B Castelan 
email: eugenio.castelan@ufsc.br
  
L F P Silva 
  
S Tarbouriech 
email: sophie.tarbouriech@laas.fr
  
A direct parameter-error co-design approach of discrete-time saturated LPV systems

Keywords: Linear parametervarying systems, Saturation, Event-triggered control, Parameter-deviations

Considering a discrete-time linear parametervarying (LPV) systems with input constraints, the paper deals with the co-design of a parameter-dependent statefeedback controller and a new parameter-dependent eventtriggering mechanism. Two independent event-triggering policies are introduced at the sensor node to economize the limited network resources. They indicate whether the current state or the current scheduling parameters should be transmitted to the controller or not. In this sense, the controller scheduling parameters can differ from those of the system, yielding a certain degree of robustness concerning parameter deviations. Sufficient conditions, given in terms of linear matrix inequalities (LMIs), ensure the regional asymptotic stability of the closed loop. To formulated them, we use the Lyapunov theory along with the generalized sector condition. Moreover, we formulate a convex optimization procedure indirectly reducing the transmission activity over the network. The proposed methodology effectiveness is attested through numerical examples and comparisons with related works from the literature. Index Terms-Co-design approach

I. INTRODUCTION

Due to their advantages comprising lower costs and simple maintenance, networked control systems (NCSs) have attracted significant attention in the last two decades. However, in comparison with a point-to-point connection, the networked connection is unreliable due, for example, to the bounded communication bandwidth [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. Assuming that the plant signals are periodically sampled, when the sampling period is small, the number of the data transmitted through the network will increase considerably, leading to network overload. If only some packets need to be transmitted from the sensor to the controller to ensure satisfactory system performance, then the inefficient packets can be avoided to save network resources. Hence, selecting an effective communication mechanism to reduce the waste of communication resources is an essential issue for NCSs. The event-triggering approach has emerged as an attractive tool for dealing with limited network resources. The main idea of the event-triggering strategy is to perform the control tasks only when a particular event (generated by a specified event-triggering scheme) occurs [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. Many significant results concerning event-triggered control (ETC) are reported in the literature [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Heemels | Periodic eventtriggered control for linear systems[END_REF], see also [START_REF] Wang | Cluster event-triggered tracking cooperative and formation control for multivehicle systems: an extended magnification region condition[END_REF] for ETC application to a multi-agent system. However, most of them are developed for linear time-invariant (LTI) and non-linear systems. Also, the ETC in the framework of discrete-time systems has its inherent benefits as the minimum inter-event time could always be guaranteed (see [START_REF] Huang | Event-triggered and self-triggered H∞ output tracking control for discrete-time linear parameter-varying systems with network-induced delays[END_REF], for instance).

A large amount of works on linear parameter-varying (LPV) control can be found in literature in both continuous and discrete-time framework (see, for instance, [START_REF] Briat | Stability analysis and control of a class of LPV systems with piecewise constant parameters[END_REF], [START_REF] De Caigny | Gain-scheduled dynamic output feedback control for discrete-time LPV systems[END_REF]). Noting that identification methods usually yield discrete-time LPV models [START_REF] Verdult | Nonlinear system identification: State-space approach[END_REF], our approach focuses on such a framework. In such a context, the event-triggered control strategy has been little explored yet. [START_REF] Li | Co-design of event-triggered H∞ control for discrete-time linear parameter-varying systems with network-induced delays[END_REF] proposes the event-triggered H ∞ control for discrete-time polytopic LPV systems by jointly designing a mixed event-triggering mechanism and state feedback controllers. For the same class of systems, [START_REF] Saadabadi | Event-triggered dynamic output feedback control for discrete-time polytopic linear parameter-varying systems[END_REF] presents a synthesis condition for event-triggered dynamic output feedback control with bounds on the 2 -performance. [START_REF] Huang | Event-triggered and self-triggered H∞ output tracking control for discrete-time linear parameter-varying systems with network-induced delays[END_REF] addresses the event-triggered and self-triggered H ∞ output tracking control for discrete-time LPV systems with network-induced delays. However, in these works, it is assumed that scheduling parameters information is available for the controller all the time, which does not occur in practice. In contrast, [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF] proposes the co-design of an event generator and a statefeedback controller for discrete-time LPV systems, where the parameters are not precisely known. However, their estimated values satisfy a known uncertainty level. The problem of discretization and event-based digital output control design for continuous-time LPV systems subject to a time-varying networked-induced delay is investigated in [START_REF] Braga | Discretization and event triggered digital output feedback control of LPV systems[END_REF], where the event detection mechanism is based on a significant change of the scheduling parameters. An event-triggered state-feedback controller design method for discrete-time LPV systems is proposed in [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF], where three event-triggering mechanisms are established for transmitting the states, the scheduling parameters, and controller output through the communication network. Other more involving approaches may use sampleddata control handling the process changes between consecutive aperiodic samplings [START_REF] Briat | Stability analysis and stabilization of LPV systems with jumps and (piecewise) differentiable parameters using continuous and sampleddata controllers[END_REF], [START_REF] Palmeira | Aperiodic sampled-data mpc strategy for LPV systems[END_REF], but in these cases, without concerning network data transmission reduction.

Furthermore, practical control systems are always subject to input saturation. Thus, it is natural to investigate the eventtriggered control for saturated plants. As the closed loop becomes non-linear, the regional stability must be managed, which requires the estimation of the region of attraction of the origin for the closed-loop system [START_REF] Tarbouriech | Stability And Stabilization Of Linear Systems With Saturating Actuators[END_REF]. In this context, [START_REF] Groff | Event-triggered control co-design for discrete-time systems subject to actuator saturation[END_REF] presents a method to simultaneously design a static state-feedback gain and the triggering function to stabilize discrete-time LTI systems subject to actuator saturation. [START_REF] Zuo | Co-design of event-triggered control for discrete-time systems with actuator saturation[END_REF] proposes a non-convex optimization problem for the co-design of event-triggered strategy and controller parameters. The static and dynamic feedback controllers were designed in [START_REF] Ding | Event-triggered static/dynamic feedback control for discrete-time linear systems[END_REF] to investigate the event-triggered control of discrete-time linear systems subject to actuator saturation. However, the eventtriggered control of discrete-time LPV systems with saturating actuators has not been widely explored in the literature (see [START_REF] Souza | Eventtriggered policy for dynamic output stabilization of discrete-time LPV systems under input constraints[END_REF], [START_REF] Souza | Co-design of an event-triggered dynamic output feedback controller for discretetime LPV systems with constraints[END_REF], for example). In particular, the case where the plant and the controller do not share the same scheduling parameters consists of a relevant gap in the literature.

Based on the above discussion, the main contributions of this paper are summarized as i) A new event-triggered parameter-dependent state-feedback controller design method is proposed for discrete-time LPV systems under saturating actuators; ii) two ETM policies are designed to reduce the data transmission of states and scheduling variables separately. As a consequence, the scheduling parameters of the controller and the event-triggering policies may be different from those of the system, yielding a certain degree of robustness concerning parameter deviations. The convex conditions based on linear matrix inequalities (LMIs) allow to ensure the closed-loop regional asymptotic stability and to provide an estimate of the basin of attraction of the origin. To formulate them, we use the Lyapunov theory combined with the generalized sector condition to handle the saturation map. A convex optimization scheme incorporating these conditions as constraints is proposed to reduce data transmission over the network. Numerical examples borrowed from the literature illustrate the efficacy of our proposal. Notation: R, and R + are the sets of real numbers, and nonnegative real numbers, respectively. The matrix 0 stands for the null matrix of appropriate dimensions and I n corresponds to the identity matrix with dimensions n × n. A blockdiagonal matrix A with blocks A 1 and A 2 is denoted as 

A = diag{A 1 , A 2 }.

II. PROBLEM FORMULATION AND MODELING

A. Discrete-time Setup

Consider the block diagram of the event-triggered control system shown in Figure 1, where the plant to be controlled is represented by the following linear parameter-varying (LPV) system subject to saturating actuators

x k+1 = A(ϑ k )x k + B(ϑ k )sat(u k ), (1) 
where x k ∈ R n is the state vector, u k ∈ R m is the control input, and sat(u k ) is the standard saturation function defined as sat(u k( ) ) = max(-ū ( ) , min(ū ( ) , u k( ) )), with ū( ) > 0, ∈ I[1, m], the symmetric saturation bound relative to the th control input. The parameter-varying matrices A(ϑ k ) ∈ R n×n and B(ϑ k ) ∈ R n×m can be written as a convex combination of N known vertices,

A(ϑ k ) B(ϑ k ) = N i=1 ϑ k(i) A i B i , (2) 
where ϑ k(i) ∈ R N is supposed to be a parameter-varying vector belonging to the unit simplex Φ defined by

Φ N i=1 ϑ k(i) = 1, ϑ k(i) ≥ 0, i ∈ I[1, N ] . (3) 
Observe that the same representation of LPV systems is used, for instance, in [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF], [START_REF] Huang | Event-triggered and self-triggered H∞ output tracking control for discrete-time linear parameter-varying systems with network-induced delays[END_REF], [START_REF] Saadabadi | Event-triggered dynamic output feedback control for discrete-time polytopic linear parameter-varying systems[END_REF]. To stabilize the system (1), we adopt the following event-triggered state-feedback controller

u k = K( θk )x k , (4) 
where θk and xk are the most recently transmitted values of the scheduling parameter and of the state vector, respectively. The gain matrix K( θk ) ∈ R m×n can also be written in a polytopic form, i.e.

K( θk ) = N j=1 θk(j) K j , θk ∈ Φ. (5) 
By defining the dead-zone non-linearity Ψ(u k ) = u ksat(u k ) and the state error e x,k = xk -x k , the system (1) under the control law (4) results in the following closed-loop system

x k+1 = A(ϑ k ) + B(ϑ k )K( θk ) x k + B(ϑ k )K( θk )e x,k -B(ϑ k )Ψ(u k ). (6) 

B. Event-triggered scheme

By considering a communication network with limited bandwidth, two independent event generators are introduced between the sensor and the controller to reduce the number . of data transmissions while preserving the desired system performance, as shown in Figure 1. Periodically, they make the decision, based on event-triggering rules, whether the current state and the current scheduling parameter should be sent to the controller via network or not.

i) State-based ETM: We assume that the updating of the current state is performed whenever xk

-1 -x k 2 Q∆( θk ) ≤ x k 2 Qx( θk ) is violated, i.e., xk := x k , if xk-1 -x k 2 Q∆( θk ) > x k 2 Qx( θk ) xk-1 , otherwise. (7) 
The positive definite parameter-dependent matrices

Q ∆ ( θk ) = N i=1 θk(i) Q ∆i , Q ∆i ∈ R n×n and Q x ( θk ) = N i=1 θk(i) Q xi , Q xi ∈ R n×n
are variables to be designed, leading to an additional degree of freedom in the co-design. As these matrices acts as weights on the terms of the event-triggering condition, their computation has a direct impact on the event-triggering policy and, consequently, on the way of reducing the data transmissions. Note that such event-triggering rule is more involving than those considered, for instance, in [START_REF] Souza | Eventtriggered policy for dynamic output stabilization of discrete-time LPV systems under input constraints[END_REF], [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF], [START_REF] Saadabadi | Event-triggered dynamic output feedback control for discrete-time polytopic linear parameter-varying systems[END_REF], due to the parameter dependence of the weighting matrices.

Note that if x k is updated at instant k, then from ( 7), we have that e k = xk -x k = x k -x k = 0, and if x k is not updated at instant k, then from ( 7), we have that e k = xk -x k = xk-1 -x k . Thus, the following inequality is always satisfied.

e k 2 Q∆( θk ) ≤ x k 2 Qx( θk ) (8) 
ii) Scheduling-parameter based ETM: Additionaly, we assume that whenever the difference between the last transmitted scheduling parameter θk and the current one, ϑ k , multiplied by a given scalar 0 ≤ g ≤ 1 reaches the lower bound 0 or the upper bound 1 -g, then the current sample of ϑ k is transmitted through the network. Therefore, the policy of the scheduling parameter transmission is based on the violation of the condition

0 ≤ θk(i) -gϑ k(i) ≤ 1 -g, (9) 
for any i ∈ I[1, N ] and a given 0 ≤ g ≤ 1. Following [5, Lemma 2], we note that the last transmitted scheduling parameter, θk , can be written as

θk(i) = gϑ k(i) + (1 -g)ϕ k(i) , (10) 
for any vector

ϕ k ∈ R N verifying N i=1 ϕ k(i) = 1 and ϕ k(i) ≥ 0.
Therefore, once both sides of inequality (9) are satisfied, equation ( 10) is ensured. Such a fact can be noted by summing [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] 

up for i ∈ I[1, N ] and by considering ϑ k , θk ∈ Φ, to obtain N i=1 ϕ k(i) = N i=1 θk(i) -g N i=1 ϑ k(i) 1 -g = 1. (11) 
Moreover, taking into account the positivity of θk(i) -gϑ k(i) , one has ϕ k(i) ≥ 0.

Observe that the value of g has a direct influence on the size of the error allowed between the plant and controller parameters, and consequently, on the transmission rate. For g close to 0, the greater the admissible parameter error, the lower the transmission rate. On the other hand, for g close to 1, the lower the admissible parameter error, the greater the transmission rate. Concerning the transmission rate, the worst case is reached with g = 1, which leads to a 100% transmission rate. Therefore, g = 1 implies that the controller shares the same scheduling parameter of the plant, then recovering the assumption of parameter sharing in [START_REF] Souza | Eventtriggered policy for dynamic output stabilization of discrete-time LPV systems under input constraints[END_REF], [START_REF] Souza | Co-design of an event-triggered dynamic output feedback controller for discretetime LPV systems with constraints[END_REF], [START_REF] Li | Co-design of event-triggered H∞ control for discrete-time linear parameter-varying systems with network-induced delays[END_REF], [START_REF] Saadabadi | Event-triggered dynamic output feedback control for discrete-time polytopic linear parameter-varying systems[END_REF].

Note that the proposed ETM policy (9) differs from those usually found in the literature, such as those in [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF], [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF], [START_REF] Li | Uniformly ultimate boundedness eventtriggered control for discrete-time uncertain linear parameter-varying systems[END_REF], [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF]. In our approach, the transmission policy depends directly on the scheduling parameters. In the previous works, the decision policy depends on the norm of the dynamic matrices variations, an indirect parameter-based decision, or on some prescribed (small) deviation of the parameter.

By using [START_REF] Ding | Event-triggered static/dynamic feedback control for discrete-time linear systems[END_REF] and doing some manipulations, the closed-loop system (6) can be rewritten as: [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] with ν ij = 1 when i = j and ν ij = 2 otherwise. Note that we omitted the dependence of ϑ, θ and ϕ on k to simplify the expression.

x k+1 = N i=1 N j=1 ν ij ϑ i ϑ j 0.5 (A i + A j )x k -(B i + B j )Ψ(u k ) + g(B i K j + B j K i )(x k + e k ) + N q=1 N i=1 N j=i ν ij ϑ i ϑ j ϕ q 0.5 × (1 -g)(B i K q + B j K q )(x k + e k )
Assuming the two ETM schemes ( 7) and ( 9), we intend to solve the following problem:

Problem 1: Consider the LPV system under saturating actuators [START_REF] Braga | Discretization and event triggered digital output feedback control of LPV systems[END_REF]. Given a scalar 0 ≤ g ≤ 1, co-design the parameter-dependent state-feedback controller (4) and the two independent ETMs (7) and ( 9) that ensure the regional asymptotic stability of the closed-loop system while reducing data transmissions of states and scheduling variables on the network. Let us emphasize that the presence of input saturation needs to characterize the region of attraction of the origin for the closed loop [START_REF] Tarbouriech | Stability And Stabilization Of Linear Systems With Saturating Actuators[END_REF]. Due to the fact that we do not assume any stability hypothesis for the open loop, we are interested by the regional asymptotic stability of the closed-loop system and therefore the region of attraction will not be the whole state space [START_REF] Moreira | PI event-triggered control under saturating actuators[END_REF], [START_REF] Groff | Event-triggered control co-design for discrete-time systems subject to actuator saturation[END_REF], [START_REF] Souza | Eventtriggered policy for dynamic output stabilization of discrete-time LPV systems under input constraints[END_REF]. As the exact characterization of such a region is extremely challenging, a workaround consists in characterizing an estimate of the domain of attraction of the origin for the closed-loop system [START_REF] Souza | Emulation-based dynamic output-feedback control of saturating discretetime LPV systems[END_REF]. This is definitively an implicit objective in solving Problem 1, which we will address by building level sets from the Lyapunov function considered.

III. MAIN RESULTS

In this section, we present a solution to Problem 1. The theoretical conditions appearing in Theorem below are based on the Lyapunov theory and, more specifically, on the use of the following candidate Lyapunov function V (x k , θk ) = x k P ( θk )x k , where P ( θk ) = N i=1 θk P i , θk ∈ Φ with 0 < P i = P i ∈ R n×n . Their feasibility ensures that the level set L V associated with V (x k , θk ), i.e. L V = {x k ∈ R n , θk ∈ Φ : V (x k , θk ) ≤ 1}, is a contractive set with respect to the trajectories of the closed-loop system (6), and, therefore, constitutes an estimate of the domain of attraction for the system. Furthermore, we use the well-known generalized sector condition approach [26, Lemma 1.6, p.43] to handle the non-linearity Ψ(•). A direct adaptation to the current setting leads to the following lemma.

Lemma 1: Consider u k given by ( 5), ū ∈ R m + , and a matrix

G( θk ) = N i=1 θk(i) G i with G i ∈ R m×n , i ∈ I[1, N ]
and θk ∈ Φ, and define the following set

S(ū) {x k ∈ R n : |G( θk )x k | ≤ ū}. (13) 
If x k ∈ S(ū), then for any diagonal positive definite matrix

T ( θk ) = N i=1 θk(i) T i with T i ∈ R m×m , i ∈ I[1, N
] and θk ∈ Φ, the following inequality is verified.

Ψ(u k ) T ( θk ) Ψ(u k )-(K( θk )-G( θk ))x k -K( θk )e x,k ≤ 0.
(14) Theorem 1: Given a scalar 0 ≤ g ≤ 1, suppose there exist symmetric positive definite matrices W i ∈ R n×n , Q∆i ∈ R n×n , and Qxi ∈ R n×n , matrices Z i ∈ R m×n , Y i ∈ R m×n , and U ∈ R n×n , and positive definite diagonal matrices S i ∈ R m×m , with i ∈ I[1, N ], such that the LMIs in (15) (given at the top of the next page) and the following ones

  gW i + (1 -g)W q -U -U gZ i( ) + (1 -g)Z q( ) -ū ( ) 2   < 0, q, i ∈ I[1, N ], ∈ I[1, m]. , (16) 
are feasible. Then, the saturated LPV system (1) in closed loop with the state-feedback controller (5) computed as

K i = Y i U -1 (17) 
subject to the ETMs ( 7) and ( 9) with matrices

Q ∆i = U - Q∆i U -1 and Q xi = U - Qxi U -1
, is asymptotically stable and has a reduced number of data transmissions. Moreover, the level set L V , computed as 1

L V = ∀ θk ∈Φ E(P ( θk )) = ∀i∈I[1,N ] E(P i ), (18) 
with

E(P, 1) = {x k ∈ R n : x k P i x k ≤ 1} for i ∈ I[1, N ],
is a region of asymptotic stability for the closed-loop system. Proof: We split the proof into two steps. In the first one, we show that any trajectory initialized in L V belongs to the polyhedral set S(ū), which guarantees the validity of the generalized sector condition [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF], i.e., Lemma 1 applies. In the second, we prove the regional asymptotic stability of the closed-loop system. In other words, the asymptotic stability of the closed-loop system is guaranteed for any initial condition belonging to L V .

Step 1: By supposing the feasibility of ( 16), multiply its left-hand side by ϑ k(i) and ϕ k(q) , sum it up to i, q ∈ I[1, N ] and replace Z i by G i U . Then, according to [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], replace 1 Details on this computation can be found in Lemma 1 in [START_REF] Souza | Emulation-based dynamic output-feedback control of saturating discretetime LPV systems[END_REF].

(1 -g) N q=1 ϕ k(q) by N q=1 θk(q) -g N q=1 ϑ k(q) . Note that, in this step, the matrices W and G become functions only of the most recent transmitted scheduling parameter θk . So, assume that W ( θk ) = P -1 ( θk ) and use the fact that P -1 ( θk ) -U P ( θk ) P -1 ( θk ) -U ≥ 0 to replace P -1 ( θk ) -U -U by -U N i=1 θk(i) P i U . Next, with the regularity of U , pre-and post-multiply the resulting inequality by diag{U -, 1} and its transpose, respectively, to get

  -P ( θk ) G ( ) ( θk ) -ū ( ) 2   < 0. (19) 
Finally, apply Schur complement, pre-and post-multiply the resulting inequality by x k and x k , respectively, we have that

x k G( θk ) ( ) G( θk ) ( ) ū2 
( )

x k < x k P ( θk )x k
, which yields for x k ∈ L V :

x k G( θk ) ( ) G( θk ) ( ) x k < x k P ( θk )x k ū2 ( ) ≤ ū2 ( ) .
That allows us to conclude that |G( θk ) ( ) x k | 2 ≤ ū2 ( ) for x k ∈ L V , ensuring the inclusion L V ⊆ S(ū) and, therefore, Lemma 1 applies. Therefore, any trajectory of the closed-loop system starting inside L V remains in S(ū).

Step 2: It remains to demonstrate the regional asymptotic stability of closed-loop system. By supposing the feasibility of ( 15), multiply its left-hand side by ϑ k+1(r) , ϑ k(i) , ϑ k(j) , ϕ k+1(s) and ϕ k(q) , sum it up to r, s, q, i ∈ I[1, N ] and j ∈ I[i, N ], and replace K i by Y i U -1 , Z i by G i U , Q∆i by U Q ∆i U , and Qxi by U Q xi U . Then, make some algebraic manipulations to simplify the expressions, as in [START_REF] Da Cunha | Analysis and synthesis conditions for T-S fuzzy continuous-time systems with partially matched premises[END_REF]. Next, according to [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], replace (1 -g) N q=1 ϕ k(q) by N q=1 θk(q) -g N q=1 ϑ k(q) . Note that, in this step, the matrices W , Q x , Q ∆ , G, S, and K become functions only of the most recent transmitted scheduling parameter θk . So, assume that W ( θk ) = P -1 ( θk ) and use again the fact that -U P ( θk )U ≤ P -1 ( θk ) -U -U . Then, with the regularity of U , pre-and post-multiply the resulting inequality by diag{U -, U -, S -1 ( θk ), I n } and its transpose, respectively. After that, apply Schur complement to obtain M < 0 with M given by ( 20) (depicted at the top of the next page). Then, pre-and post-multiply (20) by the augmented vector

ξ k = x k e x,k Ψ(u k )
and ξ k , respectively.

Next, according to (6), replace

A(ϑ k ) + B(ϑ k )K( θk ) x k + B(ϑ k )K( θk ))e x,k -B(ϑ k )Ψ(u k ) by x k+1 . Also, observe that x k+1 P ( θk+1 )x k+1 -x k P ( θk )x k = V (x k+1 , θk+1 ) - V (x k , θk ) = ∆V (x k , θk ). Finally, denote S -1 ( θk ) = T ( θk )
and take into account ( 7) and ( 8), to conclude that

ξ k Mξ k = ∆V (x k , θk )-2Ψ(u k ) T ( θk ) Ψ(u k )-(K( θk )-G( θk ))x k - K( θk )e x,k -e x,k Q ∆ ( θk )e x,k +x k Q x ( θk )x k < 0.
Therefore, the feasibility of ( 15) ensures the positivity of V (x k , θk ) and the negativity of ∆V (x k , θk ) for any x k ∈ L V . Then, L V is an invariant and contractive set with respect to the closed-loop system, and therefore, constitutes an estimate of the domain of attraction for the system, concluding the proof.

                    0.5g(W i + W j + Qxi + Qxj ) +(1 -g)(W q + Qxq ) -U -U 0 -0.5g( Q∆i + Q∆j ) -(1 -g) Q∆q 0.5g(Y i + Y j -Z i -Z j ) 0.5g(Y i + Y j ) -g(S i + S j ) +(1 -g)(Y q -Z q ) +(1 -g)Y q -2(1 -g)S q 0.5(A i + A j )U + 0.5g(B i Y j + B j Y i ) 0.5g(B i Y j + B j Y i ) -0.5g(B i S j + B j S i ) -gW r +0.5(1 -g)(B i + B j )Y q +0.5(1 -g)(B i + B j )Y q -0.5(1 -g)(B i + B j )S q -(1 -g)W s                     < 0. r, s, q, i ∈ I[1, N ], j ∈ I[i, N ]. ( 15 
) M =        -P ( θk ) + Qx( θk ) 0 -Q ∆ ( θk ) S -1 ( θk )(K( θk ) -G( θk )) S -1 ( θk )K( θk ) -2S -1 ( θk )        +    (A(ϑ k ) + B(ϑ k )K( θk )) (B(ϑ k )K( θk )) -B(ϑ k )    P ( θk+1 ) × (A(ϑ k ) + B(ϑ k )K( θk )) B(ϑ k )K( θk ) -B(ϑ k ) . ( 20 
)
Observe that g parameter may affect the feasibility of the LMIs condition in Theorem 1 and a search on this parameter over the interval 0 ≤ g ≤ 1 can be used to improve the ETM performance. In general, the feasibility of conditions ( 15) and ( 16) is easier to verify for g = 1, since this case corresponds to consider a full transmission rate and no parameter error. Examples presented later illustrate such a possibility.

A. Optimization procedure

This section aims to propose an optimization procedure that indirectly reduces the number of state signal updates. By looking at the event-triggering condition [START_REF] Souza | Eventtriggered policy for dynamic output stabilization of discrete-time LPV systems under input constraints[END_REF], we can see that it is a relative measure of the deviation between the last sampled state and the current state with Q ∆i and Q xi acting as weights on this measure. Thus, we have that the "smaller" Q ∆i and the "larger" Q xi are, the more the current state is allowed to deviate from the last sampled one and the fewer transmissions events are expected. However, the matrices Q ∆i and Q xi do not appear explicitly as decision variables in the conditions of Theorem 1, due to the congruence transformation required to formulate them in terms of LMIs. To overcome such an issue, we propose to consider the following constraints with the aim to get lower bound on Q xi and upper-bound on Q ∆i to recover representative optimization scheme:

    g Qxi + (1 -g) Qxq U g Qxi + (1 -g) Qxq     > 0, (21) 
      g Q∆i + (1 -g) Qxq I n U + U -g Q∆i -(1 -g) Q∆q       > 0. (22) i, q ∈ I[1, N ]; j ∈ I[i, N ].
The first one enforces the lower bound

Q xi > Q-1
xi through the direct application of the Schur's complement. The second enforces the upper bound Q ∆i < Q∆i through the direct application of Lemma 1 in [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF]. In this case, the fact of minimizing the variables ( Q∆i , Qxi ) effectively minimizes the variables (Q ∆i , Q xi ). Therefore, we consider the following optimization procedure: 15), ( 16), [START_REF] Palmeira | Aperiodic sampled-data mpc strategy for LPV systems[END_REF], and ( 22). [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF] Let us recall that the scalar g plays a relevant role on the transmission activity of the scheduling parameter, making its choice very important. As discussed earlier, the closer g is to zero, the smaller the transmission activity. Such a fact will be highlighted in Section IV.

O :    min N i=1 tr( Q∆i + Qxi ), subject to (

IV. SIMULATIONS RESULTS

This Section illustrates the effectiveness of our results through numerical examples borrowed from the literature [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF], [START_REF] Li | Uniformly ultimate boundedness eventtriggered control for discrete-time uncertain linear parameter-varying systems[END_REF], [START_REF] Li | Co-design of event-triggered H∞ control for discrete-time linear parameter-varying systems with network-induced delays[END_REF]. Example 1. Consider saturated LPV system (1) with matrices

A =   0.25 1 0 0 0.1 0 0 0 0.6 + ρ k   , B =   1 -0.8ρ k 0 1 -ρ k   , (24) 
where the time-varying parameter ρ k ∈ I[0, 0.5] and the symmetric saturation limit is ū = 0.5. In this case, we can take

ϑ k(1) = 1 -2ρ k and ϑ k(2) = 2ρ k with A 1 = A(0), B 1 = B(0), A 2 = A(0.5) and B 2 = B(0.5).
First, we are interested in investigating the influence of parameter g (see [START_REF] Ding | Event-triggered static/dynamic feedback control for discrete-time linear systems[END_REF]) in the update rate of the scheduling parameter and the state. With this purpose, for g = 0.1, 0.2, . . . , 1, we use the optimization procedure O given in [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF] to design the control gains and the event-triggering parameters. For each case, we simulate the closed-loop response for 1000 initial conditions belonging to L V and ϑ k chosen randomly. The average update rate (%) of the scheduling parameter, marked with ×, and the state, marked with , as a function of g are illustrated in Figure 2. We can see that as g approaches to 1, the update rate increases until it reaches 100% for g = 1, i.e. θk = ϑ k . In such a case, we also have the smallest update rate of the states, which is expected as the controller is better adjusted to the conditions of the plant.

For g = 0.8, we plot for a specific initial condition x 0 = -0.035 -0.025 -0.589 , the closed-loop temporal response and the inter-event interval of the event generators, as seen in figures 3 and 4, respectively. In the first one, we can observe that the states converge to origin despite the saturation of the actuator in the first two instants of simulation. In the second figure, we have (on the bottom) the inter-event interval of the scheduling parameter, marked with ×, and the state, marked with . Note that both mechanisms are independent, although one can affect the other indirectly, as discussed previously. Moreover, we have (on the top) the difference between θk and ϑ k , which is marked with • (×) when its value is inside (outside) the region of validity imposed by [START_REF] Ding | Event-triggered static/dynamic feedback control for discrete-time linear systems[END_REF], traced with black lines. With g close to 1, the smaller the error allowed between θk and ϑ k , and therefore, the higher the update rate. The control gain and the event-triggering parameters used for this simulation were K = K 1 K 2 = -0.054 -0.084 -0.148 -0.088 -0.222 -1.046 and To complete the illustration of the results, let us make some consideration on the estimate of the region of attraction L V . In Figure 3, we plot the estimate of the region of attraction L V (light gray lines) with some state trajectories starting from the border of L V (colored lines). As we can see, the state trajectories converge to the origin. For initial conditions outside of L V , our method does not ensure convergence. The initial condition, x 0 = -0.1750 -0.1250 -2.9450 , for instance, results in a divergent trajectory.

Q ∆ = Q ∆1 Q ∆2 =   0.
Q x = Q x1 Q x2 =   0.
Example 2. By assuming that the LPV system [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF] is not subject to any restriction on the input signal, we compare our approach with [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF], [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF]. The authors in [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF] consider the co-design of an event-triggering condition and a statefeedback controller for LPV systems. The proposed ETM sends information on states and scheduling variables simultaneously to the controller when needed. On the other hand, the authors in [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] propose an event-triggered reference tracking control design method for the LPV system, in which are designed a state-feedback controller and three separate ETMs for transmitting the state, the scheduling variables, and the controller output over the network. By solving Theorem 1 in [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF], we got the control gain K = -0.095 -0.373 -0.368 -0.179 -0.728 -1.205 and the triggering parameter σ = σ -1 x = 0.048. Also, by disregarding the reference tracking setup, we solve Theorem 2 in [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] with the scheduling parameter error threshold δ 0 = 0.05 obtaining the control gain K = -0.032 -0.111 -0.322 -0.030 -0.1388 -1.071 and the triggering parameters σ Ψ = 0.0226 and σ u = 0.0250. We use the data of both approaches to simulate the system's closed-loop response for x 0 = 1 -1 -0.5 and 1000 values of ϑ k generated randomly.

We performed the same procedure using our approach for some values of 0 ≤ g ≤ 1. Table I shows the respective results. One can see that the average update rates of the states and the scheduling parameter obtained by [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF] and [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] are higher than ours in almost all cases. Unlike this approach, [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] considers a third ETM between controller and actuator. However, such a mechanism had a high transmission rate, almost matching our case where all control signals are sent to the plant, reason why the last line in Table I is marked with "-" for Theorem 1 and [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF]. For g = 0.2, for instance, our transmission activity are about 88% and 90% smaller than of [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF] and [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] w.r.t. the scheduling parameter, respectively, and about 26% and 51% smaller than [START_REF] Golabi | Event-triggered control for discrete-time linear parameter-varying systems[END_REF] and [START_REF] Golabi | Event-triggered constant reference tracking control for discrete-time LPV systems with application to a laboratory tank system[END_REF] with respect to the state, respectively. Example 3. By assuming that the LPV system ( 24) is not subject to any restriction on the input signal, and has a fixed matrix of control i.e. B 1 = B 2 = B(0), we compare our approach with [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF]. The authors in [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF] propose the co-design of an ETM and a state-feedback controller for LPV systems where the parameters are not exactly known, but estimated parameters satisfying certain level are known. The robustness of the proposed event-triggered control system concerning the uncertainty of the parameter is indicated by the scalar δ 0 for the method in [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF], according to the inequality ∆A(ϑ k , θk )x k 2 ≤ δ 2 0 x k 2 , with ∆A(ϑ k , θk ) = A(ϑ k ) -A( θk ). Thus, we solve Theorem 1 in [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF], with δ 0 = 0.1 and the triggering parameter η = 0.99, obtaining the control gain K = -0.095 -0.354 -0.414 -0.091 -0.335 -0.768 . By using the ETM and the controller designed, we simulated the closed-loop response for x 0 = 1 -1 -0.5 and 1000 values of ∆A(ϑ k , θk ), generated randomly within the allowed range, obtaining a percentage average update rate of x k equal to 84.11%, as indicated in Table II. Note that, from the values of ∆A(ϑ k , θk ) and θk , we can determine ϑ k . We used these values of ϑ k to establish a fair comparison with [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF].

To compare our approach with that proposed by [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF], we measured, for some values of 0 ≤ g ≤ 1, the robustness of our event-triggered control system and computed the average update rate of both x k and ϑ k . The robustness of our method was determined by computing the following scalar δ : δ = max k ∆A(ϑ k , θk )x k 2 / x k 2 among the instants of simulation. The results are shown in Table II. As we can see, for values of g smaller than 0.8, our approach is more robust to the variation of parameters than [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF], almost 4 times for g = 0.2. In addition, we found an average update rate of x k smaller than [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF] in all cases. For g = 0.8, for instance, we obtained a rate 36% smaller, approximately. As [START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF] does not consider an ETM to sent the information about the scheduling parameter over the network, these data are not comparable. 

V. CONCLUSION

This paper examines the state-feedback event-triggered control design problem for a discrete-time LPV system subject to saturating actuators. We proposed two separate ETMs for transmitting the states and the scheduling variables through a communication network. In this sense, it is assumed that the scheduling parameters of the controller and the eventtriggering mechanism may differ from those of the plant. The convex conditions based on linear matrix inequalities (LMIs) ensure the regional asymptotic stability of the closed-loop system for every initial condition belonging to the estimated attraction region. An optimization procedure is derived, allowing the minimization of the data transmission over the network. Future work could be dedicated to expanding the results to polynomial scheduling parameters, which can lead to lower update rates for the scheduling parameters and states and larger estimates of the region of attraction. Furthermore, it could be interesting to address the case where the states are not fully available for building the ETM, adopting, for example, an observer-based strategy or the use of only local information.

  The th line of a vector or matrix A is indicated by A ( ) . The set of integer numbers belonging to the interval from a ∈ N to b ∈ N, b ≥ a, is denoted by I[a, b]. R m×n is the set of matrices with real entries and dimensions m × n. The symbol represents the transpose blocks in relation to the diagonal of real square and symmetric matrices, • represents an element that has no influence on development.
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 5 Fig. 5. The estimate of the region of attraction of the origin for Example 1.
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TABLE II RELATIVE

 II ROBUSTNESS (δ/δ 0 ) ACHIEVED BY THE PROPOSED METHOD AND THAT FROM[START_REF] Shanbin | Event-triggered control for discrete-time uncertain linear parameter-varying systems[END_REF] AND THE PERCENTAGE OF TRANSMISSION RATE.

					Theorem 1		
		[24]			g		
			0.2	0.4	0.6	0.8	1.0
	δ/δ 0	1	3.86	2.87	1.95	0.96	0
	ϑ k (%)	-	4.80	10.90	44.40	74.75	100
	x k (%)	84.11	55.63	55.61	55.59	53.86	40.21
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