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Abstract

Direct numerical simulations of particle laden flow are carried out with the Force-Coupling Method to study the effect of finite-
size neutrally buoyant particles on turbulent plane Couette flow. Two particle sizes and various concentrations (from 1 to 10%) are
investigated for different Reynolds numbers above the transition to turbulence. Our results show that particle dispersion is determined
by a balance between hydrodynamic wall repulsion, turbulent mixing and particle induced self-diffusion. Due to the presence of
particles, close to the wall, turbulence intensity is attenuated in streamwise direction but is increased in wall-normal direction. This
effect is enhanced by larger particles. The stress budget is also modified with two additional components, originating from particle
rigidity (Stresslet) and particle Reynolds stress. The Stresslet contribution is stronger near the wall where the strain rate is the largest
whereas maximum particle turbulent stress occurs in the core region where cross-gradient mixing is induced by turbulent flow structures.
Reynolds stress budgets show no significant modulation of flow turbulence by particles. The viscous dissipation rate is the main
component enhanced by particles near the transition threshold.
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1. Introduction

In wall-bounded flows, the turbulence length scales range
from the size of the smallest eddies η (micro-scale) set by the
bulk Reynolds number (Reb) and the macro-scale set by the flow
geometry. It is now well established that turbulence modula-
tion, either augmentation or attenuation, by particles depends on
the ratio between particle size d and flow micro-scale. Gener-
ally speaking, turbulence attenuation happens when d/η is small
while turbulence augmentation happens with bigger d/η. As
for wall-bounded flows, Gore and Crowe(1989)[1] established,
in their review, qualitative relationship between the flow turbu-
lence intensity and the ratio d/le (le being the integral length
scale). A critical ratio d/le = 1/10 was found, above (resp. be-
low) which turbulence augmentation (resp. attenuation) happens.
Later, Rashidi et al.(1990)[2] performed experiments with wall-
turbulent flows laden with polystyrene particles of two different
sizes (0.12mm and 1.1mm). They found that larger particles in-
crease the number of wall ejections, leading to higher turbulent
intensities and Reynolds stress as well. However, the opposite
was observed for smaller particles.

In turbulent flows close to laminar-turbulent transition, un-
derstanding turbulence modulation by particles is an important
issue for transport applications, as the flow regime might switch
or not from turbulent to laminar. Matas et al.(2003)[3] examined
the effect of particle size and concentration on transition by us-
ing neutrally-buoyant particles in tube flow. They observed that
either small particles at any concentration or large particles only
at high concentration, increase the transition threshold, whereas
large particles with moderate concentration reduce this threshold.
In an attempt to understand the latter situation, particle-resolved
numerical simulations of pressure-driven flows revealed that at
moderate concentration, particles of finite-size (with respect to
the hydraulic diameter) have a significant impact on the unsteady

nature of the flow, enhancing the transverse turbulent stress com-
ponents and modifying the flow rotational structures (Loisel et
al.(2013)[4], Yu et al.(2013)[5] and Lashgari et al.(2015)[6]).

In plane Couette flow (pCf) above the transition threshold,
the characteristic dimension of flow rotational structures (re-
ferred as Large-Scale Structures (LSS) by Lee and Kim(1991)
[7], Tsukahara et al.(2006)[8]) is comparable to the Couette
gap width. These structures contribute to ∼ 30% of Turbu-
lence Kinetic Energy(TKE), and they have direct impact on the
mean flow velocity profile. These structures play a key role
in the self-sustained turbulence process, as stated by Hamilton
et al.(1995)[9], Waleffe(1997)[10] and Brandt(2014)[11]. Very
small neutrally buoyant particles are expected to damp the flow
turbulence by increasing viscous dissipation at the smallest flow
scale. However the effect of finite-size particles on the flow re-
sponse is not fully understood yet. In this context, we aim to
investigate numerically the flow properties laden with finite size
particles. The suspension concentrations used for this work are
low to moderate.

The paper is organized as following. Particular features of the
Force-Coupling Method(FCM) used to simulate the suspension
flow dynamics and some validations are outlined. Then statistical
quantities are presented including velocity profile, concentration
distribution, turbulence intensity, stress and Reynolds stress bud-
gets. At the end of the paper, main findings are summarized in
the conclusion section.

2. Simulation method and validation

The numerical approach has been presented in [4] and [12].
The numerical simulation of particle trajectories and suspension
flow field is based on the Force Coupling Method (called here
FCM[13], [14]). Flow equations are dynamically coupled to La-
grangian tracking of particles. The fluid is assumed to fill the



entire simulation domain, including the volume occupied by the
particles. The fluid velocity and pressure fields are solutions of
the mass and momentum conservation equations. The presence
of the dispersed phase in the fluid is then represented by a body
force distribution written as a multipole expansion in the Navier-
Stokes equations. Only the first two terms of the expansion are
deployed. The first term of the expansion called the monopole
represents the force that the particle exerts on the fluid (due to
an external forcing or particle-to-particle contact forces). The
second term, called dipole, contains the torque that a particle ap-
plies on the fluid and also ensures that the strain-rate within the
fluid volume occupied by the dispersed phase is zero(particles are
solid bodies). The particle translation and rotation velocities are
obtained from a local weighted average of the volumetric fluid
velocity (resp. rotational velocity) field over the region occupied
by the particle. Particle trajectories are then obtained from nu-
merical integration of the equation of motion.

2.1. Validation

In the absence of external forces (no gravity effect for neu-
trally buoyant particles), the coupling between particles and the
carrier flow occurs exclusively from the force dipole forcing ten-
sor (more specifically from the symmetric part of the dipole ten-
sor called Stresslet) which is mainly related to the local flow
strain rate. This term is calculated iteratively to ensure zero
strain-rate within the fluid volume occupied by the particles. We
validated the computation of the dipole tensor in the situation of
a single particle located in the mid-plane of a plane Couette flow
(the upper and bottom wall velocities are opposite and equal in
magnitude). In this case, the particle does not experience any
streamwise or wall-normal motion for symmetry reasons. Dif-
ferent terms of the dipole tensor were calculated and compared
at steady state with previous direct numerical simulations. The
method revealed to be accurate when the particle Reynolds num-
ber Rep < 10 (see [4] and [12] for more details of this test).

When placed closer to one of the Couette walls, a neutrally
buoyant particle has a wall-normal (or lateral) motion towards
the center of the gap width at finite flow inertia (at the particle
scale), as observed by Halow and Wills(1970)[15] in cylinder.
DNS of 2D in pCf by J.Feng et al.(1994)[16]. Theoretical pre-
dictions were derived by Ho and Leal(1974)[17] and Vasseur
and Cox(1976) [18], at quasi-steady state, in the limit of finite
particle size and finite but low inertia. We tested the accuracy
of the FCM in such conditions, using a Couette gap-to-particle
diameter size ratio Ly/d = 32, and particle Reynolds number
Rep ≡ γ̇d2

4ν
= 2.4 × 10−4, where γ̇ is the shear-rate and ν is

the kinematic viscosity. Figure 1 shows the quasi-steady dimen-
sionless wall-normal migration velocity Vp,y(d/Ly)
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after 100 it-
erations. The simulation results are in very good agreement with
the theoretical predictions obtained by Vasseur and Cox(1976)
[18]. Only very close to the wall, the method is less accurate
because higher orders are required in the multipole expansion
to capture lubrication effect. At Rep = O(1) the equilibrium
position of a particle migrating in a Poiseuille flow, due to the
Segre Silberberg effect, is well captured by our method [4], [12].
However, the literature lacks quantitative information on the un-
steady motion of a particle in time, at Rep = O(1) . Therefore,
we limit ourselves to qualitative comments on particle trajecto-
ries in the Couette gap. For the particular case shown in Fig.2,
Ly/d = 10 andRep = 1.0, several particles (100 corresponding
to volumetric concentration of 1%) are randomly seeded in the
Couette gap at the beginning of the simulation. As time goes on,
all particles are observed to move towards the central plane, with
fluctuations in their trajectories, certainly due to pair interactions.
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Figure 1: Validation of the numerical method: quasi-steady wall-
normal velocity Vp,y(d/Ly)
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of a single particle at a distance y
from the wall in laminar pCf.
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Figure 2: Trajectories of 30 (among 100) particles in Laminar pCf
at Rep = 1. The trajectories show particle migration towards the
Couette center.

3. Flow configuration of turbulent Couette flow

The flow is sustained by two infinite planes moving in oppo-
site directions(Uw and −Uw). Periodic boundary conditions are
set in streamwise and spanwise directions, and no slip condition
is imposed at the walls. The domain size and velocity are noted
as Lx, Ly , Lz and u, v, w respectively in the flow x, wall-normal
y and spanwise z directions.

The domain used for the simulations has the size of the mini-
mal flow unit (or simply Miniunit) as introduced by Jiménez et
al(1991) [19] and Hamilton et al.(1995) [9]. This domain al-
lows to accommodate a single set of (periodic array of) vortical
structures, which are sufficient to reproduce low-order turbulence
statistics. In this domain, the turbulence is maintained when the
Reynolds number is decreased down to Reb = Uwh

ν
= 340,

where the flow becomes fully laminar (h is the Couette half
height). This threshold for flow relaminarization is higher than
in larger pCf simulation domains (Rec = 324 ± 1,[20]) which
allows longer and larger number of LSS to develop.

The grid resolution of the computational domain is set to in-
sure 7 grid points per particle diameter. The wall units are used to
scale the length and velocity such that y+ ≡ yuτ

ν
, and u+ ≡ u

uτ
,

where uτ =
√

τw
ρ

is the friction velocity based on the wall shear

stress. Table 3 contains a summary of all parameters chosen for
this study.Both the bulk and frictional Reynolds numbersReb and
Reτ do not account for the increase value of the mixture viscos-
ity. Due to their rigidity, particles increase the energy dissipa-
tion in the flow, leading to higher effective viscosity and therefore
lower effective Reynolds number. The effective viscosity could
be a priori estimated using models such as Eilers conclusion[21]
νe = ν[1+ 1.25Φv

1−Φv/0.63
]2, in the case of low Reynolds number and



Domain size Lx × Ly × Lz = 0.88π × 1.0 × 0.6π
Reb 500 750 1000
Reτ 39.5 52.2 67.3
y+ [0-80.5] [0-105.4] [0-134.5]
Ly/d 10,20 20 20

Rep(max) 17.5,8.75 5.83 4.38
Meshgrid 182 × 66 × 128 (for Ly/d = 10) 382 × 134 × 256 (for Ly/d = 20)
Φ(%) [0,1,5,10]

Table 1: Parameters of the numerical simulations. The particle Reynolds number Rep ranges between 0 at the Couette center and
Rep(max) at the wall.

homogenous suspensions. The real suspension viscosity can only
be obtained by post-processing using the shear stress distribution
as explained in the next section.

4. Result and discussion

4.1. Velocity profile

In turbulent single phase pCf, mean velocity profile is gov-
erned by streamwise vortices. The suspension flow profile is very
close to the single phase one as seen from Fig.3, the largest dis-
crepancy occurs for the highest concentration Φ = 10%. The ve-
locity gradient at the wall increases with Φ, which implies higher
shear stress τw and consequently higher energy input from the
two moving walls (

∫ Lx

0

∫ Lz

0
Uwτw(x, z)dxdz). This behaviour

is almost independent of the Reynolds number and particle size.
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Figure 3: Mean velocity profiles for different Reynolds numbers,
particle sizes and bulk concentrations. Half of the domain is
shown thanks for symmetry.

4.2. Concentration spatial distribution

Fig.4 shows the mean concentration profiles for different,
Reb, particle sizes and bulk concentrations. In all cases, the con-
centration is higher in the Couette gap than near the walls, due
to their inertial migration as explained in section 2. The profiles
are relatively flat in the center due to an equilibrium reached be-
tween the inward (towards the center) inertial migration and the
outward (towards the wall) shear-induced and turbulent fluxes.

A local maximum of the concentration profile appears near
the wall. It is more evident at higher concentrations (Φ = 5% and
Φ = 10%) and higher Reb. Picano et al.(2015)[22] noted that
these peaks are of the same order of magnitude as the bulk con-
centration, and therefore they are not related to the turbophoretic
drift typically observed in dilute suspensions when particles are
heavier than the fluid. They claimed that these near-wall layers

are induced by the planar symmetry of the wall and the excluded
finite volume of the solid spheres. Once a particle reaches the
wall the strong wall-particle lubrication interaction keeps the par-
ticle trapped close the wall. This argument could probably in av-
erage explain the local maximum. However, strong instantaneous
coupling between distribution of neutrally buoyant particles and
flow structures is noted in Figure 5.
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Figure 4: Mean concentration profiles for different Reynolds
numbers, particle sizes and bulk concentrations. Only half of the
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Figure 5: Upper panel: contours of the magnitude of the stream-
wise flow velocity in the middle cross section. Bottom panel:
particle positions projected on the plane (y, z), colored accord-
ing to local streamwise velocity.

4.3. Turbulence intensity

The Reynolds stress components represent all contributions
to turbulent agitation. Fig.6 shows the Root-Mean-Square
(R.M.S) of normal velocity fluctuations. They are scaled with
uτ which is the friction velocity of single-phase flow. Close to
the Couette walls (y+ < 20), u′rms decreases whereas trans-
verse components increase with concentration, especially the
wall-normal direction v′rms. The increase of transverse veloc-
ity fluctuations with concentration is even more pronounced with
larger particles. It is not necessarily due to the increase of turbu-



lent activity. It could be related to the local concentration peak
observed near the wall (at y+ = 8 − 10 when Reb = 500).

Also velocity fluctuations profiles in all directions are flatter
in particle-laden than in single-phase flow. This indicates that
particles redistribute the fluctuating energy into a more isotropic
state. The trend towards isotropy is more pronounced with larger
particles. Such trend is also observed in pressure-driven flow [22]
with neutrally buoyant finite-size particles, whereas it is not ap-
plicable for inertial point-particles [23].
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Figure 6: Turbulence intensity profiles for different Reynolds
numbers, particle sizes and bulk concentrations. Only half of the
domain is shown here.

4.4. Shear stress budget

In a Couette flow, the momentum conservation of the suspen-
sion flow in the streamwise direction leads to a constant shear
stress τtotal across the Couette gap. In single phase flow, the
shear stress is composed of two contributions, namely viscous
and Reynolds stress contributions. In particle-laden flow, addi-
tional momentum transfer arises due to particle rigidity, to the
forces and torques they apply on the fluid, and to their fluctu-
ating motion with respect to local flow. The stress of a sus-
pension flow has been derived by Batchelor(1970) [24] assum-
ing homogeneous conditions. Batchelor introduced a decompo-
sition of the stress into fluid and dispersed phase contributions
Σij = Σ

(f)
ij + Σ

(p)
ij where both terms are explicitly written in

eq. (1) and (2) (the dispersed phase has total surface ΣA0 and
volume ΣV0).

Σ
(f)
ij =

1

V

∫
V−

∑
V0

[
µ(
∂ui
∂xj

+
∂uj
∂xi

)

]
dV︸ ︷︷ ︸

τv ,viscous stress

− 1

V

∫
V−

∑
V0

ρu′iu
′
jdV︸ ︷︷ ︸

τTf
,turbulent Reynolds stress of fluid

(1)

Σ
(p)
ij =

1

V

∑ 1

2

∫
A0

[σikxj + σjkxi]nkdA︸ ︷︷ ︸
τs ,stresslet of particle

+
1

V

∑ 1

2

∫
A0

[σikxj − σjkxi]nkdA︸ ︷︷ ︸
Rotlet of particle

− 1

V

∫
∑
V0

ρf ′ixjdV︸ ︷︷ ︸
stress due to external force

− 1

V

∫
∑
V0

ρu′iu
′
jdV︸ ︷︷ ︸

τTp ,turbulent Reynolds stress of particle

(2)

In the absence of external torques and forces applied on particles,
the first and last terms of eq. (2) account for the contribution of
particles to the total stress. Note that the Reynolds stress compo-
nents in the work of Batchelor only appear inside the particle con-
tribution because the flow is laminar. Here, the Reynolds stress
appears also in the fluid stress due to the turbulent nature of the
flow. To summarize,the stress budget is:

τtotal = τv + τTf + τs + τTp (3)

similarly to what has been obtained by [22] and [25]. When
scaled by the wall shear stress τw of each two-phase configu-
ration, this budget becomes

τ+total = 1 = τ+v + τ+Tf
+ τ+s + τ+Tp

(4)

Figure 7 shows the dependence on bulk concentration of all terms
in eq. 4, for different Reynolds numbers and particle sizes. Our
numerical simulations lead to an accurate balance for the shear
stress (eq. 4). Only slight non zero budget is obtained near the
wall at highest concentration (φ = 10%). Particle size has no
significant effect on the stress budget components. The impact
of increasing the bulk concentration on stress components de-
pends on the wall-normal position. The fluid and particle turbu-
lent stress components reach their maximum values in the Cou-
ette center, where cross-gradient mixing (as defined by Robin-
son(1990) [26]) is ensured by LSS motion [7]. When concen-
tration increases, turbulent fluid stress is reduced whereas turbu-
lent particle stress is augmented. Near the walls, the momentum
transfer is governed by the viscous contribution. When the con-
centration increases, the fluid viscous stress decreases whereas
the rigidity stress (stresslet) significantly increases (it becomes as
high as 20% of the total stress), the latter being especially pro-
moted by the high shear rate of the flow near the Couette walls
(whereas it is almost zero in the center of the Couette gap).

y/h
0 0.2 0.4 0.6 0.8 1

S
tr
es
s
bu
d
g
et

0

0.2

0.4

0.6

0.8

1

τ
+
v τ

+
Tf

τ
+
Tp

τ
+
s

τ
+
total

Φ = 0

Φ = 5%

Φ = 10%

y/h
0 0.2 0.4 0.6 0.8 1

S
tr
es
s
bu
d
g
et

0

0.2

0.4

0.6

0.8

1

Φ = 0
Φ = 5%
Φ = 10%

y/h
0 0.2 0.4 0.6 0.8 1

S
tr
es
s
bu
d
g
et

0

0.2

0.4

0.6

0.8

1

Φ = 0
Φ = 5%
Φ = 10%

y/h
0 0.2 0.4 0.6 0.8 1

S
tr
es
s
bu
d
g
et

0

0.2

0.4

0.6

0.8

1

Ly/d = 10;Φ = 5%
Ly/d = 20;Φ = 5%

Figure 7: Profiles of the stress budget components for different
Reynolds numbers, particle sizes and bulk concentrations. Only
half of the domain is shown here.

4.5. Reynolds Stress budget

The Reynolds stress budgets describe the change rate of both
Reynolds normal and shear stresses. As stated by Jeong et
al.(1997)[27], energy is extracted from mean flow LSS to u′u′

due to advection. Inter-component energy transfer (from u′u′ to
v′v′ and w′w′) occurs by vortex stretching and reorientation of
vorticity from mean flow. Starting from Navier-Stokes equations
coupled to particle dynamics by the Force Coupling Method,
one can obtain balance equations for the velocity fluctuations or
Reynolds stress (Eqn. 5) and the mean flow energy (Eqn. 6), as
following:



ρ

(
∂

∂t
u′iu
′
j + uk

∂

∂xk
u′iu
′
j

)
= P′ij − ε′ij + T′ij + Π′ij

+ D′ij + FB′ij (5)

ρ

(
∂

∂t
(
1

2
ui ui) + uj

∂

∂xj
(
1

2
ui ui)

)
= Pij − εij + Tij + Πij

+ Dij + FBij (6)

Here the prime denotes fluctuating components. The expres-
sions of all contributions at the right hand side of Eqns. 5 and 6
are written in table 2, and their physical meaning is the following.
Pij : Production;
εij : Dissipation;
Tij : Turbulent transport;
Πij : Velocity pressure-gradient tensor decomposed into pressure
rate of strain tensor Πs

ij and pressure diffusion Πd
ij ;

Dij : Viscous diffusion;
FBij : Feedback from particles.

In the feedback term, the main contribution comes from the
dipole forcing (stresslets) due to particle rigidity. The monopole
term is different from zero only when two particles are close to
contact, and its contribution to transport equations (5 and 6) is
negligible in the range of concentrations used here. For this rea-
son it is not plotted on the following figures.

Different contributions to Reynolds stress and mean flow
budgets are plotted on Fig.8. In two-phase flow, the sign of all
contributions is conserved with respect to the reference single
phase flow case. It is observed that particles mainly increase the
rate of energy dissipation of all turbulent components. Other ob-
servations can be summarized as following.

• P ′11 is the only term to extract energy from the mean flow
to produce u′u′. This production term is almost unchanged
by particles.

• FB′22 inject energy in v′v′. The feedback term is maxi-
mum near the wall where the shear rate is large. It consti-
tutes the major evident signature of the turbulent modula-
tion by particles.

• The source term in the budget w′w′, Π′s33, is slightly
stronger in two-phase flow.

• P ′12 is the main production term of u′v′ and Π′
s
12 is the

main sink term. Their respective rates are both augmented
when particles are added to the flow (this figure is not
drawn in this paper).
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particle-laden flows(right part), both are plotted in one figure for
comparison.

5. Conclusion

The objective of our study is to evidence the interactions be-
tween particles and coherent structures of turbulent plane Cou-
ette flow. Particle-resolved numerical simulations are carried out
in the case of Couette gap-to-particle diameter Ly/d = 10 and
20, solid volumetric concentration from 1 to 10% and Reynolds
number varying from 500 to 1000.

The position of neutrally-buoyant particles in turbulent pCf
results from the competition between inertial lift force, turbulent
mixing and shear-induced diffusion. The concentration of parti-
cles is larger in the Couette center, with a local maximum con-
centration near the wall, probably due to strong ejection events
pushing some particles from one wall to another where they are
trapped for a while.

The partcile contribution (via the Stresslet) to the suspension
flow shear stress is the strongest near the Couette wall where the
strain rate is the strongest. It generates a local increase of the
mixture viscosity. This effect is promoted by concentration and
is independent of particle size. Reynolds shear stress induced by
particles is stronger in the core region where cross-gradient mix-
ing is ensured by LSS motion.

From the analysis of Reynolds stress budget, it is observed
that particles mainly increase the rate of energy dissipation. Par-
ticles contribute to pump some energy in the wall normal direc-
tion due to the feedback term and they increase energy transfer
to spanwise fluctuations by the velocity-pressure-gradient corre-
lation. Though, they do not seem to enhance the flow turbulent
nature as one may expect from the study of turbulence enhance-
ment near the threshold of laminar-turbulent transition [3].
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