
HAL Id: hal-03627520
https://hal.science/hal-03627520v1

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Restoring the conservativity of characteristic-based
segregated models: application to the hybrid lattice

Boltzmann method
Gauthier Wissocq, Thomas Coratger, Gabriel Farag, Song Zhao, Pierre

Boivin, Pierre Sagaut

To cite this version:
Gauthier Wissocq, Thomas Coratger, Gabriel Farag, Song Zhao, Pierre Boivin, et al.. Restoring the
conservativity of characteristic-based segregated models: application to the hybrid lattice Boltzmann
method. Physics of Fluids, 2022, 34 (4), pp.046102. �10.1063/5.0083377�. �hal-03627520�

https://hal.science/hal-03627520v1
https://hal.archives-ouvertes.fr


Restoring the conservativity of characteristic-based segregated models:
application to the hybrid lattice Boltzmann method

G. Wissocq,1 T. Coratger,1 G. Farag,1 S. Zhao (赵崧),1 P. Boivin,1 and P.Sagaut1
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

(*Electronic mail: gaulthier.wissocq@univ-amu.fr)

(Dated: 30 March 2022)

A general methodology is introduced to build conservative numerical models for fluid simulations based on segregated
schemes, where mass, momentum and energy equations are solved by different methods. It is here especially designed
for developing new numerical discretizations of the total energy equation, adapted to a thermal coupling with the lattice
Boltzmann method (LBM). The proposed methodology is based on a linear equivalence with standard discretizations
of the entropy equation, which, as a characteristic variable of the Euler system, allows efficiently decoupling the en-
ergy equation with the LBM. To this extent, any LBM scheme is equivalently written under a finite-volume formulation
involving fluxes, which are further included in the total energy equation as numerical corrections. The viscous heat pro-
duction is implicitly considered thanks to the knowledge of the LBM momentum flux. Three models are subsequently
derived: a first-order upwind, a Lax-Wendroff and a third-order Godunov-type schemes. They are assessed on standard
academic test cases: a Couette flow, entropy spot and vortex convections, a Sod shock tube, several two-dimensional
Riemann problems and a shock-vortex interaction. Three key features are then exhibited: 1) the models are conservative
by construction, recovering correct jump relations across shock waves, 2) the stability and accuracy of entropy modes
can be explicitly controlled, 3) the low dissipation of the LBM for isentropic phenomena is preserved.

I. INTRODUCTION

The lattice Boltzmann method (LBM) has emerged as a
powerful alternative tool for computational fluid dynamics
during the last three decades1. Its low dissipation proper-
ties2, together with a simple and easily parallelizable algo-
rithm3 and an ability to handle complex geometries thanks
to immersed boundary conditions on an automatically gen-
erated Cartesian mesh4 have made it competitive for both
academic and industrial applications ranging from turbulent
flows5,6, combustion7–9, multiphase flows10,11 to magneto-
hydrodynamics12,13.

This original numerical method differs from conventional
approaches as inherited from the fluid kinetic description at a
mesoscopic scale. The Boltzmann equation, balancing inter
particles’ collisions with their statistical motion, is numeri-
cally modelled by a lattice of discrete velocities, further dis-
cretized in space and time14,15. The resulting scheme can be
splitted into two simple steps: a local non-linear collision term
followed by a node-to-node transport consisting in a mere
memory shift16. Original lattice Boltzmann (LB) schemes,
sometimes referred to as the standard LBM, are based on
first-order lattices with low numbers of velocities such as the
commonly used D3Q19 lattice17. The ensuing method is
inherently restricted to isothermal and weakly compressible
flows. This is due to two main limitations of these models: 1)
the numerical stability of the method is compromised as the
Mach number increases, especially in the inviscid limit18, 2)
the low-order velocity discretization of the lattice induces a
Mach-related error in the momentum equation, commonly re-
ferred to as Galilean or symmetry-breaking error19, and pre-
vents the consideration of temperature variations.

The first limitation has been the topic of many researches
in the LBM community these last decades20. Their main pur-
pose is to build more stable collision models than the simple

but low-dissipative Bhatnagar-Gross-Krook (BGK) approxi-
mation21. This model indeed suffers from a lack of robust-
ness due to the presence of non-hydrodynamic modes, eventu-
ally source of instabilities in the high-Mach and zero-viscosity
limits18,22. Several families of collision models have then
emerged, including multiple-relaxation-time (MRT)18,23–25,
regularized26–29 and entropic models30–33. These substantial
efforts have successfully led to considerable improvements in
the numerical stability of the LBM for high Reynolds and
Mach number flows. In this regime, the second limitation,
resulting from the velocity space discretization, then becomes
the most stringent one.

A natural way to deal with the second issue is to increase
the number of lattice velocities, yielding so-called multi-speed
approaches19,34. This strategy has recently been employed to
successfully build compressible LB schemes28,35–38. How-
ever, it suffers from drawbacks induced by the large number of
velocities, especially in three dimensions: it is memory con-
suming, the implementation of boundary conditions is deli-
cate and the stability is made sensitive by the large number of
non-hydrodynamic modes22,39. Furthermore, their extension
to polyatomic gases is not straightforward, eventually prompt-
ing the need for an additional set of distribution functions36,40.
A common strategy to extend the LBM to thermal and com-
pressible flows while preserving the low stencil of the lattice
is to solve the energy equation separately. This is the purpose
of so-called segregated methods, which can be grouped into
two main classes. The first one, referred to as the double dis-
tribution function (DDF) approach, relies on the introduction
of a second set of distribution functions, allowing for the re-
covery of one form of the energy equation14,41–43. The stabil-
ity of this method is, however, hardly controllable due to the
strong coupling occurring between the two lattices42. The sec-
ond class is referred to as hybrid methods. In the latter, tem-
perature fluctuations are explicitly considered by coupling the
LBM to a finite-difference form of the energy equation, while
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the Galilean error is handled via appropriate forcing terms44.
This approach has recently proven its worth for simulations of
compressible flows44–50.

The present article focuses on hybrid models, regardless
the collision kernel adopted for stabilizing the LBM. A cen-
tral point of this approach involves the coupling between a
LB scheme and an explicit discrete energy equation, which
can lead to new instabilities51. The question of a stable and
accuracy-preserving coupling is an active research topic of
compressible LBMs52. To prevent the coupling issue, one so-
lution exists, based on the characteristic variables of the hy-
perbolic system formed by the Euler equations. Their evolu-
tion obeys a simple advection equation, in one dimension,

∂L

∂ t
+Λ

∂L

∂x
= 0, (1)

where L is a characteristic variable, also referred to as Rie-
mann invariant53, and Λ is an eigenvalue of the hyperbolic
system. In the absence of discontinuities, the system formed
by the characteristic equations is equivalent to the Euler equa-
tions. Note that under a linear assumption, Eq. (1) comes
down to a system of fully decoupled advection equations at
constant velocities. The interest of dealing with the charac-
teristic variables is then clear: it allows for an explicit con-
trol of one single characteristic by using a well-known dis-
crete scheme for its advection equation. In a sense, this is
exactly the purpose of Riemann solvers in numerical fluid dy-
namics, which aim at building numerical methods for non-
linear systems allowing a correct resolution of the character-
istic waves53. In the context of hybrid LBM, this idea is re-
flected in models based on the entropy variable44, which is
precisely one characteristic L of the Euler equations. The
entropy advection equation is then linearly decoupled from
the rest of the system, modelled by the LBM. Its smart dis-
cretization allows an independent control of entropic phe-
nomena without degrading the stability and accuracy of the
LBM, which entirely deals with isentropic phenomena such
as acoustic and vorticity propagation. This technique has re-
cently extended the applicability of hybrid LBM to transonic
and supersonic flows47,54,55.

However, for these applications, a new concern can be
raised: the conservativity of the model. An explicit discretiza-
tion of a characteristic equation (1) does not lead to a conser-
vative system, for two reasons: 1) the evolution of all theo-
retically conserved quantities formed by the density, the mo-
mentum and the total energy, is not controlled, 2) Eq. (1) is
not written under conservative form since the temporal evo-
lution is not exactly balanced by the gradient of a flux, as
shown by the Λ pre-factor in front of the spatial derivative.
As well identified for the Euler equations53 and observed with
previous LB schemes52,56, a non-conservative formulation of
the energy equation leads to incorrect jump conditions across
shock waves. Restoring the conservativity of hybrid LBM is
therefore a crucial subject for compressible flows.

The natural way to address the conservativity issue is to
introduce a coupling of the LBM with a conserved discrete
equation for the total energy, which, unlike the entropy, is a
quantity for which the flux is conserved across shock waves.

Unfortunately, the use of classical finite-difference schemes
for the energy equation leads to strong coupling instabilities,
as mentioned above and in recent publications51,57. The ex-
planation is quite simple: when discretizing the total energy
equation, the characteristic waves are implicitly solved in a
non-controlled way by advection schemes whose numerical
stability is not a priori ensured. To the authors’ knowledge,
the first promising step towards a conservative hybrid LB
model was recently done by Zhao et al.52. In this work, con-
servative transport schemes are built in a general way by using
the knowledge of LB distribution functions in the construction
of the total energy flux. The purpose of this approach is to re-
store some consistency between the LBM fluxes and the total
energy one. The idea of using gas distribution functions at cell
interfaces to evaluate macroscopic fluxes was the key point of
the gas kinetic schemes (GKS), where macroscopic Navier-
Stokes variables are recovered from the Boltzmann equation
through a Chapman-Enskog expansion58. Unfortunately, al-
though promising, the methodology proposed by Zhao et al.52

does not ensure the numerical stability of independent charac-
teristics, which notably leads to instabilities for long simu-
lations such as vortex convection. Besides, with the use of a
completely new total energy scheme, some recent efforts done
to stabilize the hybrid LBM on entropy44,48,49,59 would have
been done in vain.

The objective of the present work is to develop a general
methodology for the construction of conservative total energy
models by using the knowledge of a discrete scheme on en-
tropy, which is a characteristic of the Euler system. Ensuring
the linear equivalence between a conservative scheme and its
non-conservative counterpart, the main advantages of the en-
tropy scheme, linearly decoupled with the LBM, can be pre-
served. In particular, this allows for an explicit control of the
entropy modes, which can be discretized by well-understood
advection schemes, without compromising the high accuracy
of the LBM for isentropic phenomena2. To this regard, the
methodology proposed in this work can be connected to Rie-
mann solvers, whose purpose is to construct conservative nu-
merical schemes ensuring a correct transport of the character-
istic waves. One big advantage of the proposed methodology
is its generality: it can be applied to any LB model, and more
generally to any segregated model. The resulting schemes be-
ing conservative, it will be shown that correct jump relations
are recovered across discontinuities, paving the way for new
compressible simulations with hybrid LBM.

The article is organized as follows. Section II describes the
theoretical construction of a conservative scheme in a general
way. To that end, any LB scheme is re-written as a finite-
volume scheme involving fluxes. The linear equivalence be-
tween the conservative scheme and its non-conservative en-
tropy counterpart, key point of the methodology, is demon-
strated. Section III summarizes the discretization schemes
adopted in the present work: a first-order upwind scheme,
a Lax-Wendroff scheme and a third-order Godunov type
method. They are further compared and validated with the en-
tropy schemes on several classical compressible test cases in
Section IV, including discontinuities. The LB model adopted
in the present work is described in App. A, and some math-
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ematical development involved in the theoretical work is de-
tailed in App. B and C.

II. CONSERVATIVE HYBRID LBM SCHEME BASED ON
TOTAL ENERGY

In this section, the derivation of the proposed total energy
scheme is introduced. It is first done considering the Eu-
ler equations for inviscid fluids and then extended to viscous
flows. The proposed methodology being completely indepen-
dent of the scheme used for solving the mass and momentum
equations, the lattice Boltzmann algorithm used in the present
work is detailed in App. A.

Unless otherwise stated, a dummy field Φ evaluated at
(x, t), where x is the position and t is the time, is simply de-
noted as Φ. Also note that all vector quantities are written in
bold.

A. Targeted continuous equations

The targeted continuous conservative system can be written
in the inviscid case as

∂tU+∂α FU,c
α = 0, (2)

where an implicit summation is done over the index α ∈
{x,y,z}, U = [ρ,ρux,ρuy,ρuz,ρE]T is the vector of conser-
vative variables, ρ is the density, uα is the α-component of
the velocity, E is the total energy and FU,c

α is the vector of
fluxes in the direction α . The latter reads

FU,c
α = [ρuα ,ρuxuα + pδαx,ρuyuα + pδαy,

ρuzuα + pδαz,ρHuα ]
T , (3)

where p is the pressure, H is the total enthalpy and δαβ is the
Kronecker symbol. For an ideal gas, p = ρRT where R is the
gas constant and T is the temperature. E and H can be related
to T as

E =
RT

γ−1
+

u2
α

2
, H = E +

p
ρ
=

γRT
γ−1

+
u2

α

2
, (4)

where γ is the adiabatic exponent.
This system can be equivalently written under a non-

conservative form as

∂tV+AV
α ∂α FV,c

α = 0. (5)

In the hybrid lattice Boltzmann literature, this is sometimes
done by replacing the total energy equation by an entropy
equation for stability purposes44,45,47–49,51,59,60. In this case,
one has V = [ρ,ρux,ρuy,ρuz,s]T , where

s =
R

γ−1
ln(p/ρ

γ) (6)

is the entropy, and

AV
α =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 uα

 , (7)

FV,c
α = [ρuα ,ρuxuα + pδαx,ρuyuα + pδαy,ρuzuα + pδαz,s]T .

(8)

Note that this choice of non-conservative system is not com-
monly encountered in the Euler literature, where the primitive
variables [ρ,uα , p]T may be preferred53. The main advantage
of the adopted non-conservative formulation is that the en-
tropy is a characteristic of the system53. This means that, in
the inviscid case, it obeys a simple advection equation:

∂ts+uα ∂α s = 0. (9)

Assuming linearity, the velocity appearing in the above equa-
tion has to be replaced by a constant, time- and space-
averaged, velocity. As a consequence, this form of the energy
equation is, under a linear assumption, completely decoupled
from the mass and momentum equations. This is why cou-
pling an isothermal LB scheme with an energy equation based
on the entropy does not affect the linear stability of the LB
system, as shown in a previous work51. Unfortunately, the
main drawback of this formulation is that it is not conserva-
tive, hence not adapted to handle discontinuities such as shock
waves.

B. Discrete hybrid system based on the entropy equation

In what follows, the mass and momentum equations are
solved by a lattice Boltzmann scheme. As a reminder, the
purpose of the LBM is to describe a fluid flow using a set
of distribution functions fi, designed to mimic the kinetic de-
scription of the Boltzmann equation. The standard method can
be divided into two parts: 1) a collision step, which intends to
model inter-particle collisions, 2) a streaming step, where the
distribution functions are simply transported on a lattice of Q
discrete velocities denoted as ci. The scheme can generally
be written as

∀i ∈ J0,Q−1K, fi(x, t +∆t) = f coll
i (x−ci∆t, t), (10)

where ∆t is the time step and f coll
i are so-called post-collision

distribution functions. They depend on the collision model
under consideration. More details regarding the lattice and
the collision model adopted in the present work are provided
in App. A.

By definition of mass and momentum in the LB formalism
in absence of body-force term affecting the mass and momen-
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tum equations, one has

ρ(x, t +∆t) =
Q−1

∑
i=0

fi(x, t +∆t)

=
Q−1

∑
i=0

f coll
i (x−ci∆t, t), (11)

ρuα(x, t +∆t) =
Q−1

∑
i=0

ci,α fi(x, t +∆t)

=
Q−1

∑
i=0

ci,α f coll
i (x−ci∆t, t). (12)

Furthermore, ρ and ρuα are collision invariant so that

ρ(x, t) =
Q−1

∑
i=0

f coll
i (x, t), ρuα(x, t) =

Q−1

∑
i=0

ci,α f coll
i (x, t).

(13)

Hence, the discrete time evolution of mass and momentum
can be written as

ρ(x, t +∆t)−ρ(x, t)
∆t

=
1
∆t

Q−1

∑
i=0

(
f coll
i (x−ci∆t, t)− f coll

i (x, t)
)
, (14)

ρuα(x, t +∆t)−ρuα(x, t)
∆t

=
1
∆t

Q−1

∑
i=0

ci,α

(
f coll
i (x−ci∆t, t)− f coll

i (x, t)
)
. (15)

As shown in App. B, this can be systematically re-written un-
der a conservative formulation involving fluxes as

δtρ +δβ Fρ

+∆β/2 = 0, (16)

δt(ρuα)+δβ Fρuα

+∆β/2 = 0, (17)

where an implicit summation is done on β ∈ {x,y,z}. The δt
and δβ operators are defined as

δtΦ =
Φ(x, t +∆t)−Φ(x, t)

∆t
, (18)

δβ Φ =
Φ(x, t)−Φ(x−eβ∆x, t)

∆x
, (19)

eβ is the unity vector in the direction β , ∆x is the mesh size
and FΦ

+∆β/2(x, t) is the intercell numerical flux of a quantitiy
Φ between two cells centered about x and x+ eβ∆x. The
latter is specified in App. B as function of f coll

i for several
lattices of interest. Note that, in the present context, mesh
size and time step are related to each other through an acous-
tic scaling16, which reads for the D1Q3, D2Q9 and D3Q19
lattices17,

cs ≡
√

RTre f =
1√
3

∆x
∆t

, (20)

where Tre f is an arbitrary reference temperature effectively
used to tune the CFL number48,61, defined as

CFL≡
(
||u||+

√
γRT

)
∆t
∆x

=
||u||√
3RTre f

+

√
γT

3Tre f
. (21)

As discussed above, the LB scheme can be coupled with
an entropy equation to account for the temperature variations.
Let us here assume that Eq. (9) is discretized by the following
explicit scheme:

δts+uα(x, t)δ ∗α s = 0, (22)

where δ ∗α is a spatial gradient operator associated to the se-
lected numerical scheme for the entropy equation. Without
loss of generality, such a spatial discretization can also be re-
written involving δα of Eq. (19) as

δ
∗
α s = δαF ∗

+∆α/2(s), (23)

where F ∗
+∆α/2 is a linear function of the scalar field s. Ex-

amples of numerical discretizations δ ∗α and their correspond-
ing numerical fluxes F ∗

+∆α/2 adopted in the present work are
specified in Sec. III. It is noteworthy that, as a consequence of
the consistency of the scheme,

F ∗
+∆α/2(s)(x, t) = s(x, t)+O(∆x). (24)

The complete discrete system can then be re-written as

δtV+AV
α δα FV,d

α = 0, (25)

with FV,d
α = [Fρ

+∆α/2,F
ρux
+∆α/2,F

ρuy
+∆α/2,F

ρuz
+∆α/2,F

∗
+∆α/2(s)]

T .
The system of Eq. (25) is not written under conservative form
for two reasons : (1) it does not describe the time evolution
of conserved quantities U because the entropy s is considered
instead of the total energy ρE, (2) a non-identity matrix AV

α

appears in front of the spatial gradient operator δα . Further-
more, note that Eq. (25) is not closed because the numerical
fluxes of the LB solver are likely to involve all the distribu-
tions fi of the LB scheme, so that the macroscopic quantities
of V may not be sufficient to describe it. Nevertheless, it will
be shown that this rewriting is sufficient to derive a conserva-
tive hybrid scheme in the next section.

C. Derivation of the conservative hybrid scheme

The purpose of the present section is to derive a conser-
vative total energy scheme based on the numerical scheme
adopted for the advection of entropy. The latter being a char-
acteristic of the system, preserving its correct discretization
would ensure that the linear stability of the energy equation
does not affect its mass and momentum counterparts. To this
end, let us multiply Eq. (25) by the following Jacobian matrix:

M =
∂U
∂V

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

h−κ ux uy uz ρT

 , (26)
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where h = γRT/(γ − 1) is the enthalpy and κ = u2
α/2 is the

kinetic energy. This Jacobian matrix allows the passage from
non-conserved variables V to conserved ones U, so that one
obtains

δtU+MAV
α δα FV,d

α = 0. (27)

Even if this system now involves the conserved variables U,
this formulation is still not conservative because of the matrix
MAV,d

α appearing in front of the space gradient operator. Note
that the mass and momentum equations are not affected by
this matrix (they still read as in Eqs. (16)-(17) which is in
conservative form), but the energy equation now reads:

δt(ρE)+(h−κ)δα Fρ

+∆α/2 +uβ δα F
ρuβ

+∆α/2 +ρTuα δ
∗
α s = 0.

(28)

This equation is clearly not conservative. To solve this issue,
the continuous equations of Eqs. (2)-(5) can be used. Multi-
plying Eq. (5) by M yields:

∂tU+MAV
α ∂α FV,c

α = 0. (29)

Comparing it with the conservative continuous equation of
Eq. (2), one can relate the differential form of conserved and
non-conserved fluxes:

dFU,c
α = MAV

α dFV,c
α . (30)

The last line of this matrix equality reads

d(ρHuα) = (h−κ)d(ρuα)+uβ d(ρuα uβ + pδαβ )+ρTuα ds.
(31)

Replacing the differential form with the discrete spatial
derivation δ ∗α and combining it with Eq. (28) yields

δt(ρE)+δ
∗
α(ρHuα)+(h−κ)

[
δα Fρ

+∆α/2−δ
∗
α(ρuα)

]
+uβ

[
δα F

ρuβ

+∆α/2−δ
∗
α(ρuα uβ + pδαβ )

]
= 0, (32)

which can equivalently be written as

δt(ρE)+δ
∗
α(ρHuα)+(h−κ)δα

[
Fρ

+∆α/2−F ∗
+∆α/2(ρuα)

]
+uβ δα

[
F

ρuβ

+∆α/2−F ∗
+∆α/2(ρuα uβ + pδαβ )

]
= 0. (33)

Finally, to obtain a conservative scheme, one can slightly
modify the above equation by including the (h− κ) and uβ

pre-factors inside the operator δα , noticing that it does not
affect the consistency and linear properties of the system (as
shown in Sec. II E below). It yields

δt(ρE)+δα FρE
+∆α/2 = 0, (34)

where

FρE
+∆α/2 = F ∗

+∆α/2(ρHuα)︸ ︷︷ ︸
(i)

+(h−κ)
[
Fρ

+∆α/2−F ∗
+∆α/2(ρuα)

]
︸ ︷︷ ︸

(ii)

+uβ

[
F

ρuβ

+∆α/2−F ∗
+∆α/2(ρuα uβ + pδαβ )

]
︸ ︷︷ ︸

(iii)

. (35)

Thanks to these modifications, Eq. (34) is now written un-
der a conservative form. Note that, as shown in App. C, the
linear behavior of the scheme is not affected by the location
where the pre-factors (h− κ) and uβ of Eq. (35) are evalu-
ated. However, to systematically ensure the symmetry of the
scheme, they will be extrapolated at the cell interface by aver-
aging their value between x and (x+eα∆x).

Let us now look in more details at each term of the result-
ing flux (35). The first term (i) is nothing but a total energy
flux ρHuα discretized by the linear scheme F ∗

+∆α/2, initially
designed to compute the entropy gradients. Regarding the
second term (ii), by consistency of the LB scheme with the
mass equation59,62 and using the fact that F ∗

+∆α/2(ρuα) =

ρuα +O(∆x), one has

Fρ

+∆α/2−F ∗
+∆α/2(ρuα) = O(∆x), (36)

so that this term does not affect the consistency of the total en-
ergy scheme: it vanishes as ∆t→ 0. As will be shown below,
its role is to restore the consistency between the total energy
scheme and the mass equation, numerically discretized by an-
other scheme. Finally, to interpret the last term (iii), one may
use the fact that, by consistency of the LB scheme59,

F
ρuβ

+∆α/2 = Παβ +O(∆x) (37)

= ρuα uβ + pδαβ +Π
neq
αβ

+O(∆x), (38)

where Παβ = ∑i ci,α ci,β fi is the second-order moment of
fi, and Π

neq
αβ

= Παβ − (ρuα uβ + pδαβ ) is its so-called off-
equilibrium part. Furthermore, by looking at the hydrody-
namic limits of the kinetic model using e.g. a Chapman-
Enskog expansion63 or a Taylor expansion62, it can be shown
that in the low-Knudsen limit, Π

neq
αβ
∼ −ΠNS

αβ
, where ΠNS

αβ
is

the Navier-Stokes viscous stress tensor defined as

Π
NS
αβ

= µ

(
∂α uβ +∂β uα −

2
D

δαβ ∂γ uγ

)
+µb∂γ uγ δαβ , (39)

where µ and µb are respectively the shear and bulk viscosities,
and D is the spatial dimension. As a consequence, the last
term (iii) can be re-written as

(iii)∼−uβ Π
NS
αβ

+O(∆x). (40)

Its role is then multiple. Like the second term (ii), it aims at
restoring the consistency between the total energy flux and the
discrete momentum equation. It is also remarkable that when
considering viscous flows, this term implicitly contributes for
the viscous heat expected by the Navier-Stokes equations.
Hence, the extension of the derived total energy schemes to
viscous flows only requires the explicit computation of the
conduction term, which is proposed in the next section.

D. Extension to viscous flows

In this section, the total energy schemes adopted in the
present work are extended to the Navier-Stokes case. Let us
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recall that the continuous total energy equation reads, in pres-
ence of viscosity and heat conduction,

∂t(ρE)+∂α(ρHuα) = ∂α(uβ Π
NS
αβ

)+∂α(λ∂α T ), (41)

where λ is the heat conductivity. As mentioned above, the
total energy schemes of Eqs. (34)-(35) implicitly include the
viscous heat production. Hence, only the last right-hand-side
term (conduction term) has to be explicitly discretized. In the
present work, this is done by replacing the “Euler” flux FρE

+∆α/2

appearing in Eq. (34) by its Navier-Stokes counterpart FρE,NS
+∆α/2,

defined as

FρE,NS
+∆α/2 = FρE

+∆α/2−λδα T (x+eα∆x, t). (42)

Note that for a constant conductivity λ , this scheme comes
down to a second-order centered scheme for the heat conduc-
tion term, since

δα δα T (x+eα∆x, t)

=
T (x−eα∆x, t)−2T (x, t)+T (x+eα∆x, t)

∆x2 . (43)

However, for a non-constant conductivity, Eq. (42) should be
preferred since it naturally ensures the conservativity of the
equations. The Euler part of the total energy flux FρE

+∆α/2 is
provided by Eq. (35), where the linear function F ∗

+∆α/2 de-
pends on the entropy scheme one wants to mimic, and espe-
cially its spatial derivative operator δ ∗α . Their expression is
provided in Sec. III for several schemes of interest.

E. Linear equivalence with an entropy-based hybrid scheme

The total energy schemes derived in Sec. II C have been ob-
tained in a systematic way starting from a given discretization
of the entropy equation. However, this derivation does not the-
oretically ensure that the numerical properties of the adopted
entropy scheme are conserved. Especially, some assumptions
result in neglecting the numerical errors in the construction of
the scheme, e.g. replacing continuous derivatives (∂t and ∂α )
by their discrete counterparts (δt and δα ), as well as the inclu-
sion of (h−κ) and uβ in spatial derivatives to obtain Eq. (34).
In this section, it is shown that, even if the derived total en-
ergy schemes are essentially different from the entropy ones,
they share equivalent properties in the linear approximation.
Hence, provided that the targeted entropy scheme is linearly
stable and sufficiently accurate, such properties are recovered
in the total energy scheme.

To this end, let us assume that a dummy field Φ can be
decomposed between a mean base flow, time- and space-
averaged, denoted as Φ, and a small perturbation, denoted
as Φ′. In particular, when applied to the total energy, one
assumes that ρE = ρE +(ρE)′, where (ρE)′ � ρE. A lin-
earized form of the total energy scheme in the viscid case can
then be written as

δt(ρE)′+δα

(
FρE,NS
+∆α/2

)′
= 0. (44)

Using linear transforms from the conserved perturbations U ′

and their non conserved counterparts V ′, it is theoretically
shown in App. C that, when coupled to the desired mass and
momentum schemes, Eq. (44) is equivalent to the following
linearized scheme on entropy:

δts′+uα δ
∗
α s′ =

λ

ρT
δα T ′(x+eα∆x, t). (45)

This equation is nothing but a linearization of the discrete en-
tropy equation (22), supplemented by the heat diffusion. Note
that the viscous heating is a purely non linear effect, this is
why it does not appear in the above equation. The linear
equivalence between the total energy scheme and the entropy
one is then demonstrated. As a consequence, the conserva-
tive scheme derived in Sec. II C shares all its properties in the
linear approximation. In particular:

• the linear stability of the total energy scheme can be
directly controled by the choice of advection scheme
through F ∗

+∆α/2,

• coupling with a LB scheme does not affect the linear
behavior of the latter.

The first point is very interesting for stability purpose. The
second point is important for the accuracy of the coupled
scheme, since it ensures that the total energy coupling does
not degrade the very low dissipation properties of the LBM2.

III. TOTAL ENERGY SCHEMES ADOPTED IN THE
PRESENT WORK

This section aims at summarizing the schemes adopted in
the present work.

Regarding the mass and momentum equations, they are
solved by a LB solver based on the unified formulation intro-
duced in a previous work50. The latter relies on a regularized
collision model27,29. The main steps of this algorithm, espe-
cially the way f coll

i is computed, are recalled in App. A.
Regarding the energy equation, it is discretized thanks to

the methodology introduced in the previous section. The gen-
eral form of the scheme is provided in Eq. (34), where the
total energy flux is given by Eq. (35) in the inviscid case, and
by Eq. (42) in the viscid one. These fluxes rely on the choice
of entropy scheme one wants to mimic, through the appear-
ance of the linear operator F ∗

+∆α/2, which is related to the nu-
merical gradient δ ∗α . Three choices are adopted in the present
work: (1) a first-order upwind scheme, (2) an isotropic Lax-
Wendroff scheme, (3) a monotonic upstream-centered scheme
for conservation laws (MUSCL). These standard schemes can
be found in several textbooks, e.g. Toro53. They are recalled
below using the non-conventional notations of the present ar-
ticle based on the F ∗

+∆α/2 operator.



7

A. First-order upwind scheme

In the case of a first-order upwind scheme for an advec-
tion equation at constant velocity u, the operator δ ∗α is defined
such that

δ
∗
α Φ =

{
[Φ(x, t)−Φ(x−eα∆x, t)]/∆x if uα ≥ 0,
[Φ(x+eα∆x, t)−Φ(x, t)]/∆x else.

(46)

This can be equivalently re-written as δαF ∗
+∆α/2(Φ) with

F ∗
+∆α/2(Φ) =

{
Φ(x, t) if uα ≥ 0,
Φ(x+eα∆x, t) else.

(47)

For a non-constant velocity u, as it is the case in the present
non-linear system of equations, a discussion has to be raised
regarding the location where the sign of the velocity is eval-
uated. First note that it has no impact on the linear stability
of the proposed algorithm, since a linearization only makes
the mean base value uα appear. To systematically ensure the
symmetry of the scheme, it is here proposed to evaluate uα ap-
pearing in Eq. (47) at the cell interface by averaging the values
at x and (x+eα∆x).

B. Lax-Wendroff scheme

In order to increase the order of accuracy of an advection
equation discretization, Lax and Wendroff proposed a second-
order scheme preserving a narrow spatial stencil64. As pro-
posed by Toro53, its numerical flux can be written as

F ∗
+∆α/2(Φ) =

1
2

(
1−uα

∆t
∆x

)
Φ(x+eα∆x, t)

+
1
2

(
1+uα

∆t
∆x

)
Φ(x, t)

+(δαβ −1)
uβ

2
∆t
∆x

[
Φ(x+eβ∆x, t)−Φ(x, t)

]
. (48)

One can easily show by Taylor expansions that F ∗
+∆α/2(Φ) =

Φ +O(∆x). However, it can be noted that setting this flux
function in Eqs. (22)-(23) does not exactly lead to a second-
order accurate scheme in space and time, because the time
evolution of uα has not been considered in the construction of
the advection scheme. In order to obtain a full second-order
accuracy, Eqs. (22)-(23) could be replaced by

δts+uα(x, t +∆t/2)δαF ∗
+∆α/2(s) = 0, (49)

which requires an estimation of uα after half a time step. This
strategy is not proposed in the present work. Hence, the result-
ing scheme is expected to be linearly second-order accurate.

C. MUSCL-Hancock scheme

The order of accuracy of the advection equation discretiza-
tion can be further increased with a so-called MUSCL-
Hancock scheme53,65. Such a strategy has been successfully

employed to couple an entropy scheme with the LBM49,50,55.
In this scheme, the inter-cell flux can be constructed as:

F ∗
+∆α/2(Φ) =

{
Φ+∆α/2(x, t) if ũα ≥ 0,
Φ−∆α/2(x+eα∆x, t) else,

(50)

where, to ensure the symmetry of the algorithm, ũα =
[uα(x, t)+uα(x+eα∆x, t)]/2,

Φ+∆α/2 = Φ+∆α/2 +
uα

2
∆t
∆x

(
Φ−∆α/2−Φ+∆α/2

)
, (51)

Φ−∆α/2 = Φ−∆α/2 +
uα

2
∆t
∆x

(
Φ−∆α/2−Φ+∆α/2

)
, (52)

and

Φ+∆α/2 = Φ+
∆α

2
, Φ−∆α/2 = Φ− ∆α

2
. (53)

∆α is an approximation of the slope of Φ in the direction α ,
which can be given by

∆α =
1
2

{
(1+ηα)[Φ(x, t)−Φ(x−eα∆x, t)]

+(1−ηα)[Φ(x+eα∆x, t)−Φ(x, t)]
}
, (54)

where ηα = 1
3

[
2uα

∆t
∆x − sign(uα)

]
as suggested in53 to obtain

a third-order accurate convection scheme in space and time.
Yet, note that in the present work, this algorithm is not ex-
actly third-order accurate for two reasons : (1) in the case of
a coupled system, the time evolution of uα should be consid-
ered to build a high-order scheme, as discussed above with the
Lax-Wendroff scheme, (2) in multi-dimensions, a high-order
scheme would involve diagonal points, which are not consid-
ered here. To recover a high-order scheme even in multi-
dimensions, one could use a directional splitting53,66, which
is not adopted in the present work for the sake of simplicity.

D. Summary

The schemes adopted in the present work are summarized
in Table I. Note that the order of accuracy is provided in the
linearized one-dimensional case.

Scheme Order Stencil Equation

Upwind 1st 3 points (47)
Lax-Wendroff (LW) 2nd 3 points (48)

MUSCL (MHM) 3rd 5 points (50)

TABLE I: Summary of the adopted discretization schemes.

IV. VALIDATION

In this section, the proposed conservative formulation is as-
sessed on different compressible test cases aiming to exhibit
its features. To this end, reference results will be compared
with numerical solutions from
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• Classical upwind, Lax-Wendroff and MUSCL-Hancock
schemes (respectively denoted as s-upwind/LW/MHM)
based on the entropy equation (9) in non-conservative
form. These schemes are recalled in Sec. III.

• Proposed upwind, Lax-Wendroff and MUSCL-
Hancock schemes (ρE-upwind/LW/MHM) based
on the total energy equation in conservative form,
following the proposed method Sec. II.

• The upwind scheme Econs-Up proposed by Zhao et
al.52.

The specific features we intend to validate are the accuracy,
robustness and the linear equivalence between classical s-
schemes and their ρE-counterparts.

In all the following simulations, the adiabatic exponent is
set to γ = 1.4 and the gas constant is set to R = 1, which only
affects the dimensionalization of the problems. Given the lat-
tice Boltzmann model described in App. A, the only numeri-
cal parameters are the shock sensor coefficient sc and the CFL
number, whose values are detailed for each of the forthcoming
simulations. Regarding the CFL number, it is, for each case,
prescribed to its maximum achievable value. The adopted lat-
tice is the D3Q19 one17, and only one cell is considered in the
invariant directions of one- and two-dimensional cases.

A. Thermal Couette flow

The first test case we present is the thermal Couette flow.
An identical wall temperature T0 is imposed on two parallel
walls. The left wall remains at rest while the right one is
moving with a constant velocity uR. When the temperature
increase induced by the viscous heat is exactly compensated
by heat diffusion, the velocity and temperature profiles reach
a steady state67 characterized by

Tth

T0
= 1+

x
H

Pr
(

γ−1
2

)
Ma2

(
1− x

H

)
, (55)

uth =
x
H

Ma
√

γRT0. (56)

Here, Pr stands for the Prandtl number defined as Pr =
µγR/[(γ−1)λ ], Ma = uR/

√
γRT0 is the Mach number of the

right wall and H = 1 is the distance between the walls.
The numerical setup is the following: the one-dimensional

domain is discretized by 100 nodes. The first and last nodes
are located at a distance ∆x/2 from the left and right walls.
On the left boundary, a no slip condition is imposed using
the classical bounce-back approach16 on the first node. The
right boundary condition also uses a bounce-back scheme and
an additional term16 meant to prescribe a given wall veloc-
ity – corresponding here to Ma = 1.3 – and a prescribed wall
density enforcing a zero pressure gradient normal to the right
wall. The wall temperature T0 = 1 is set by enforcing the value
of the analytical profile of Eq. (55) on the first and last points
(x = ∆x/2 and x = H −∆x/2). Note that the MHM scheme
having a larger stencil, it is replaced by a LW scheme near the
boundaries. Other parameters are Pr = 1, µ = 10−4, Tre f = 10
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FIG. 1: Convergence study of the L 2
T error of the thermal

Couette flow.
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FIG. 2: Temperature profile of the thermal Couette flow.

so that max(CFL) ≈ 0.5. The solution being smooth, the
shock sensor is turned off during this test case, sc = 0.

Fig. 1 displays the time evolution of the L 2
T error on tem-

perature, defined as

L 2
T =

√
∑(T −Tth)2√

∑T 2
th

, (57)

where the sums are performed over the whole simulation do-
main. As can be seen in Fig. 1 the simulation is started from
the expected steady solution. Eventually, due to numerical
errors, a short unsteady regime is observed before reaching
a plateau. The final steady state L 2

T errors can be found in
Table II, they remain of the order of 10−4 or below. Fig. 2 il-
lustrates the normalized temperature profile using the upwind,
LW and MHM schemes. Results are in good agreement with
the theoretical solution for all tested schemes, as can be seen
from the L 2

T errors previously discussed.
The viscous heat term appearing in the total energy equa-

tion (41) is inherited from the momentum conservation, see
Sec. (II D). The ability to accurately reach the steady state so-
lution of the thermal Couette flow means that the equilibrium
between viscous heat and heat diffusion is properly captured
by our schemes, thereby validating the implicit computation
of the viscous heat by the proposed schemes.
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Upwind LW MHM

0.000092 0.00010 0.000058

TABLE II: L 2
T errors after 4.106 iterations of the thermal

Couette flow. Regarding the MHM model, an average is done
between 3.106 and 4.106 iterations.

B. Entropy spot convection

The second test case is among the key configurations we
need to check. Assuming a constant flow with perturbations
of small amplitude, any fluctuation can be decomposed as a
sum of entropy, vorticity and pressure fluctuations. These
modes are known as the Kovásznay modes68–70. When a LBM
solver is coupled to a discretized entropy equation, Kovásznay
modes are separated from each other,

• the entropy scheme carries the entropy mode,

• the LBM solver carries vorticity and pressure modes.

This means that in the linear limit, entropy fluctuations should
behave as if they were uncoupled from the LBM scheme, and
the numerical errors of the entropy scheme are likely to im-
pact the entropy mode only. The proposed conservative ρE-
upwind/LW/MHM schemes are designed to be linearly iden-
tical to s-upwind/LW/MHM schemes. This means that for
small entropy fluctuations, a given entropy scheme and its pro-
posed linearly equivalent total energy scheme are supposed to
give identical results.

To illustrate this particular behavior, a (L× L) fully peri-
odic domain with L = 1 is discretized by a (200×200) mesh.
The simulation is initialized by density, pressure and velocity
components defined as

ρ = ρ0

[
1+εe−((x−xc)

2+(y−yc)
2)/R2

c
]
, (58)

p = 1, ux = Ma
√

γRT0, uy = uz = 0, (59)

where a cold spot of amplitude ε = 0.01 and radius Rc = 0.1
is centered in the middle of the domain (xc = yc = 0.5), super-
imposed on a constant flow characterized by its Mach number
Ma = 2, its density ρ0 = 1 and its temperature T0 = 1. The
Euler limit is modeled by µ = 0, the shock sensor is turned
off sc = 0 and the reference temperature is set to Tre f ≈ 104,
so that the mean CFL number is 0.2.

The Kovásznay entropy mode68 obeying a passive scalar
advection, the reference solution is simply advected horizon-
tally as a frozen pattern by the mean flow. After 20 tc cor-
responding to 20 flow through time periods tc = 1/(Ma

√
γ),

numerical solutions are compared. Note that an equivalent
test case is also performed on the diagonal direction using a
slightly modified velocity field, (ux,uy) = (

√
2,
√

2)Ma
√

γ/2,
where the flow-through-time is now tc =

√
2/(Ma

√
γ) and ap-

proximately 14 periods are performed so as to keep the simu-
lation time identical between the horizontal and diagonal test
cases (20/

√
2≈ 14).

Formulation Upwind LW MHM

Entropy 23.5% 90.2% 96.8%
Total energy 23.5% 90.2% 96.8%

(a)
Formulation Upwind LW MHM

Entropy 7.3% 90.1% −
Total energy 7.3% 90.1% −

(b)

TABLE III: Density amplitude ratios of the convected
entropy spot. (a) Horizontal advection at t = 20tc, with

tc = 1/(Ma
√

γ). (b) Diagonal advection at t = 14tc, with
tc =
√

2/(Ma
√

γ).

For the horizontal case, entropy schemes s-upwind, s-LW
and s-MHM are compared to their linearly equivalent total
energy ρE schemes in Fig. 3. For the diagonal case, MHM
schemes led to unstable solutions and the upwind ones led to
extremely damped amplitudes. Hence, only the results from
the LW schemes are reported on Fig. 4. Density amplitude ra-
tios, defined as (max(ρ)−1)/ε, are summarized in Table III.
We can see that:

• Upwind schemes lead to robust but extremely damped
results. This is a consequence of the low order (first-
order accuracy) of this scheme, inducing a large numer-
ical viscosity with the adopted mesh.

• LW schemes lead to slightly damped amplitudes, with
about 10% loss in both cases but also exhibit a strong
dispersion error.

• MHM schemes lead to accurate results for horizontal
but unstable ones for diagonal advection.

Importantly, note the almost point-by-point agreement ob-
served in Figs. 3-4 between a given entropy scheme and its
total energy counterpart, as theoretically expected.

1. Order of accuracy

In order to explain these results, a convergence study is per-
formed using a simpler configuration. A (1 tc)-long simulation
with Ma = 1 and CFL = 0.2 is performed for different grid
resolutions from (100×100) to (1600×1600) points. Again,
both the horizontal and diagonal cases can be found in Fig. 5.
For the horizontal case, the expected accuracy orders are ob-
served,

• upwind schemes and Econs-Up are 1st -order accurate,

• LW schemes are 2nd-order accurate,

• MHM schemes are 3rd-order accurate, except for very
fine grids where the 2nd-order accuracy of the LBM
dominates the error.
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FIG. 3: Temperature iso-contours of the horizontal entropy spot convection at t = 20 tc with tc = 1/(Ma
√

γ), Ma = 2 and
CFL = 0.2. Top, from left to right: s-upwind, s-LW, s-MHM. Bottom, from left to right: ρE-upwind, ρE-LW, ρE-MHM.
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FIG. 4: Temperature iso-contours of the diagonal entropy spot convection at t = 14 tc, with tc =
√

2/(Ma
√

γ), Ma = 2 and
CFL = 0.2. Left: s-LW, right: ρE-LW.

For the diagonal case, a slightly different result is observed:
the accuracy of the MHM schemes is reduced to the 1st order.
On the contrary, LW schemes preserve a 2nd order of accuracy
whatever the direction of the advection flow.

2. Stability and precision

In order to summarize the properties of the different
schemes, we plot the function (max(ρ)−ρ0)/ε on Fig. 6 for
both horizontal and diagonal advections in the aforementioned
Ma = 2 case. Note that the analytical solution of the entropy
spot is a frozen pattern passively advected over time, such that
its amplitude should remains constant. The main observations
for the different schemes are,

• Econs – Up52 solutions crash before 4 tc for both the

horizontal and diagonal cases.

• Upwind solutions are stable but they also lead to very
high damping of the amplitude. For both horizontal and
diagonal transport, 50% of initial amplitudes are lost
before reaching 5 tc. This is a consequence of the nu-
merical viscosity induced by the first-order accuracy of
the scheme.

• LW solutions are stable and lead to similar results what-
ever the direction, where roughly 90% of the initial am-
plitude remains at the end of the simulations.

• MHM solutions outperform the other ones for the hor-
izontal case with around 3% loss on the maximum am-
plitude. However, for a diagonal advection, the maxi-
mum amplitude grows over time such that the solution
rapidly diverges.
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FIG. 5: Convergence study of the energy schemes on the
entropy spot convection at Ma = 1. (a) Horizontal

convection. (b) Diagonal convection.

Again, note the point-by-point agreement for this linear case
between entropy schemes and their total energy counterparts
proposed in the present work.

In summary, for streamlines aligned with an axis of the
Cartesian mesh, the MHM scheme highly outperforms the
other schemes. However, for more general flows where
streamlines are not aligned with the grid, the LW scheme leads
to more robust results with in return a small loss of accuracy.

For the diagonal advection, the accuracy decrease of the
MHM schemes from 3rd- to 1st -order and the corresponding
unstable results are the consequence of the cross-shaped sten-
cil used in49,50 in which the diagonal points are not consid-
ered. Note that the high order of accuracy of the MHM could
be restored using a directional splitting53,66, but this would
lead to a multi-step algorithm that would hardly be imple-
mented in the LB solver used in the present work.

C. Isentropic vortex convection

In this section, a classical isentropic vortex advection is per-
formed. The entropy being constant in this case, it involves
the entropy scheme only through numerical errors. Therefore,
while the entropy spot advection was primarily meant to as-
sess the stability of the finite difference part of the algorithm,
the isentropic vortex is primarily meant to validate the robust-
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FIG. 6: Density amplitude decay of the entropy spot
convection. (a) Horizontal convection, with tc = L/U . (b)

Diagonal convection, with tc =
√

2L/U .

ness of the LBM, as well as a correct decoupling with the
entropy characteristic. Compared to the entropy spot, only the
initial conditions differ as

ρ =

[
1− (γ−1)

2
Mv

2e−((x−xc)
2+(y−yc)

2)/R2
c

]1/(γ−1)

,

p = ρ
γ ,

ux = Ma
√

γ−Mv
√

γ

(
y− yc

Rc

)
e−((x−xc)

2+(y−yc)
2)/(2R2

c),

(60)

uy = Mv
√

γ

(
x− xc

Rc

)
e−((x−xc)

2+(y−yc)
2)/(2R2

c).

The vortex and mean Mach numbers are Mv = 1/(4π
√

γ)

and Ma = 2, similarly to previous studies44,48–50. Other pa-
rameters are identical to the entropy spot and the total simula-
tion time is 20 tc, again corresponding to 20 flow-through-time
periods.

Qualitative results for the classical s scheme and the pro-
posed linearly equivalent ρE-upwind, LW and MHM schemes
can be found in Fig. 7, where a very close agreement between
s- and ρE-schemes is observed. All entropy and total energy
variants of the upwind, LW and MHM schemes are able to
preserve the circular shape of the vortex. Only the ρE-LW
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FIG. 7: Temperature iso-contours of the horizontal vortex convection at Ma = 2, for t = 20tc with tc = 1/(Ma
√

γ). Top, from
left to right: s-upwind, s-LW, s-MHM. Bottom, from left to right: ρE-upwind, ρE-LW, ρE-MHM.

scheme exhibits little discrepancy with its entropy counter-
part, which can be attributed to a non-linear dispersion. The
LW scheme is indeed known to suffer from numerical disper-
sion53.

Note that the test case is not reproduced in the diagonal di-
rection because the results are, this time, very similar to the
horizontal case, expect for the MHM schemes for which the
instability of the diagonal entropy mode, exhibited in the pre-
vious section, leads to an instability.

More quantitative results can also be found in Fig. 8, where
the normalized amplitudes of the density, temperature and
pressure are plotted over time for the different investigated
schemes. Results highlight that:

• The Econs-Up scheme is almost immediately unstable.

• s-schemes along with the ρE-upwind scheme lead to a
very small damping of the maximum amplitude of less
than 1%.

• However, the ρE-LW and ρE-MHM schemes exhibit
an unexpected – although very small – behavior. This is
attributed to weak non-linear effects that seem to create
density and temperature fluctuations with constant pres-
sure. Therefore, this is interpreted as a non-linear shear-
to-entropy production phenomenon similar to what was
pointed out by Renard et al. in a linear framework51.
The generated spurious entropy wave is then slightly
dispersed by the LW scheme as shown in Fig. 7.

Except for these negligible effects observed with the total
energy LW and MHM schemes, all results are in good agree-
ment between a given entropy scheme and its proposed to-
tal energy counterpart. Additionally, the results presented in

Figs. 7-8 are also in line with the expected passive advection
of the vortex. After 20 tc, the amplitude errors remain below
4% for the three entropy schemes and their linearly equivalent
total energy schemes, which is of the same order as reported
by previous models44,48–50.

D. Sod shock tube

The Sod shock tube71 is a classical test case for compress-
ible solvers. A (L = 1)-long domain is discretized by 400
points. Left and right constant states separated by a discon-
tinuity localized at x = 0.5 are initialized as (ρL, uL, pL) =
(1, 0, 1) and (ρR, uR, pR) = (0.125, 0, 0.1). The CFL number
is set using Tre f = 9TL, corresponding to max(CFL)≈ 0.45.

As previously shown by Zhao et al.52, the use of the en-
tropy equation leads to inaccurate temperature jumps when
the shock Mach number is sufficiently large. The natural way
to circumvent this problem is to use a conservative form of the
system based on a total energy equation. Therefore, while a
point-by-point agreement between entropy and corresponding
total energy schemes was assessed on the previous test cases,
at least in the linear approximation, substantial discrepancies
are now expected.

Results are shown in Fig. 9, where a gap is easily notice-
able on the temperature profile between entropy and total en-
ergy schemes. While the Econs-Up and proposed total energy
schemes are able to accurately capture jump conditions, all en-
tropy schemes underestimate the temperature behind the right
facing shock. Comparing entropy and total energy schemes,
jump contact discontinuities are different from each other but
remarkably close Gibbs oscillations are observed between lin-
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FIG. 9: Density, Mach and temperature profiles at time t = 0.2
√

RTL/L in the Sod shock tube test case71.

early equivalent formulations of the same numerical scheme.
These oscillations are due to our choice to set µ = 0,

sc = 0 and to remove the artificial bulk viscosity introduced
by Eq. (A15) for this specific test case. By doing so, we want
to emphasize the robustness of all the investigated schemes.
Of course, Gibbs phenomenon could have been removed by
using a shock sensor or a finite viscosity, similarly to other
studies38,72,73. Another possible solution to damp the Gibbs
oscillations located close to the contact discontinuity, which is
related to an entropy wave, is to rely on a total variation dimi-
nushing (TVD) formulation of the energy equation53. The
principle of TVD schemes is to locally decrease the order of
accuracy of the numerical scheme by redefining the flux as
a combination of a high-order and a first-order flux. When
applied to the total energy scheme, it reads

FρE,NS
+∆α/2 = φα Fhigh

+∆α/2 +(1−φα)F low
+∆α/2, (61)

where Fhigh
+∆α/2 is a high-order flux, computed here either with

the LW or the MHM scheme, F low
+∆α/2 is a low-order flux, com-

puted with the upwind scheme and φα is a slope limiter func-
tion in the direction α . For instance, the van Albada slope
limiter74 reads

φα =
r2 + r
r2 +1

, r =
ρE(x, t)−ρE(x−eα∆x, t)
ρE(x+eα∆x, t)−ρE(x, t)

. (62)

As illustrated in Fig. 10, this strategy efficiently removes the
Gibbs oscillations located close to the contact discontinuity.

E. 2D Riemann problems

From the above test cases, LW and MHM seem to outper-
form the upwind and Econs-Up schemes. The MHM exhibits
an advantageous low numerical dissipation whereas the LW
scheme is subject to a spurious numerical dispersion. Ex-
cept the unstable diagonal advection of fluctuations, which
would require an advanced multi-dimensional model, all re-
sults are in favor of the use of the MHM scheme. Therefore,
the last two test cases are presented with the MHM scheme
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Quadrant p ρ ux uy

x≥ 0.5, y≥ 0.5 1.5 1.5 0.0 0.0
x < 0.5, y≥ 0.5 0.3 0.5323 1.206 0.0
x < 0.5, y < 0.5 0.029 0.138 1.206 1.206
x≥ 0.5, y < 0.5 0.3 0.5323 0.0 1.2

(a)
Quadrant p ρ ux uy

x≥ 0.5, y≥ 0.5 1.1 1.1 0.0 0.0
x < 0.5, y≥ 0.5 0.35 0.5065 0.8939 0.0
x < 0.5, y < 0.5 1.1 1.1 0.8939 0.8939
x≥ 0.5, y < 0.5 0.35 0.5065 0.0 0.8939

(b)
Quadrant p ρ ux uy

x≥ 0.5, y≥ 0.5 0.4 0.5313 0.0 0.0
x < 0.5, y≥ 0.5 1.0 1.0 0.7276 0.0
x < 0.5, y < 0.5 1.0 0.8 0.0 0.0
x≥ 0.5, y < 0.5 1.0 1.0 0.0 0.7276

(c)

TABLE IV: 2D Riemann initial solutions, from Lax and
Liu75. (a) Configuration 3. (b) Configuration 4. (c)

Configuration 12.

only. The Gibbs oscillations, of low amplitude with the MHM
model, can be addressed thanks to the shock sensor Eq. (A4),
as shown below.

In order to assess the ability of the proposed method to
handle complex 2D patterns of interacting discontinuities and
to demonstrate benefits of using a total energy conservative
scheme, configurations 3, 4 and 12 of Lax & Liu75 are repro-
duced with s-MHM and ρE-MHM schemes. For these con-
figurations, a 2D (L×L) domain with L = 1 is discretized by a
(400×400) mesh. The time step is set as ∆t/∆x = 0.15, 0.25
and 0.25 respectively. Initial conditions of the four quadrants
can be found in Table IV.

Note that we set µ = 0 in order to mimic an Euler solver,
leading to Gibbs oscillations that are removed by setting sc =
1.5, 0.5 and 0.5 for configurations 3, 4 and 12.

Results are displayed in Fig. 11, where the middle and right
columns correspond to the s-MHM and ρE-MHM schemes,
respectively. Configurations 4 and 12 involving relatively
weak discontinuities, both entropy and total energy schemes
are able to provide satisfactory results, although a slightly bet-
ter agreement is observed on ρE-MHM than s-MHM isocon-
tours.

As pointed out by Zhao et al.52, stronger discontinuities are
involved in configuration 3, where the entropy equation is un-
able to capture the interaction of the four strong shock waves,
as can be seen on Fig. 11. However, the proposed ρE-MHM
scheme is perfectly able to capture this configuration, and de-
tails are in remarkable agreement with the reference solution.
Also note the appearance of intermediate plateaux between
the zones at constant density with the entropy scheme, which
are due to its inability to recover the Rankine-Hugoniot rela-
tions imposed at the initial state. This phenomenon is greatly
attenuated with the total energy scheme.

F. Shock-vortex interaction

Inoue & Hattori76 investigated the shock-vortex interaction
for seven different sets of parameters listed from A to G. Pre-
vious works49,50,60 successfully managed to reproduce case
C using an entropy equation. Here, our purpose is to show
that case G, having stronger mean and vortex Mach numbers
Ma = 1.29 and Mv = 0.39, can only be accurately reproduced
using a total energy scheme. To this end, case G, correspond-
ing to the experimental results by77, is simulated with both
s-MHM and ρE-MHM schemes and then compared to the ref-
erence solution76.

The computational domain is a rectangle of size [0,28]×
[0,24] discretized by a 1120×960 mesh. A Ma = 1.29 planar
shock is located at x = 0. Upstream of the shock, a Mv = 0.39
vortex is initialized following Eq. (60) with (xc,yc) = (6,12)
and Rc = 1, where we implicitly consider an arbitrary sys-
tem of units where ρ = 1 and RT =1 in the unshocked re-
gion. Other parameters such as heat capacity ratio γ = 1.4,
Re = ρ

√
γRc/µ = 800 and Pr = 0.75 are similar to case

C76. The reference temperature is set as Tre f ≈ 8.4 so that
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FIG. 11: Two-dimensional problems of Lax & Liu75. From left to right: reference75, s-MHM, ρE-MHM. From top to bottom:
density fields for configurations 3, 4 and 12 at time t = 0.3, 0.25 and 0.25 respectively.

max(CFL)≈ 0.6 and the shock sensor parameter is prescribed
at sc = 0.1.

Results can be found in Figs. 12-13. Again, a better agree-
ment is found with the total energy ρE-MHM than with en-
tropy s-MHM. While Fig. 13 shows an excellent agreement
with reference of the circumferential distributions of sound
pressure around the vortex, small defects between entropy
and total energy can be observed on the density isocontours
Fig. 12 :

• The vortex wake is accurately reproduced by ρE-MHM
only.

• Rankine-Hugoniot jump relations across the shock are
not a solution of the entropy equation. This creates the
spurious vertical line located at x≈−9.

Again, this test case clearly favors the use of the ρE-MHM as

it leads to more accurate results for large values of the Mach
number than s-MHM.

V. CONCLUSION

Based on the fact that the entropy equation offers several
advantages for the stability and accuracy of segregated mod-
els, an original methodology has been introduced to build con-
servative schemes. It is especially designed for the hybrid LB
method, so as to extend its applicability to transonic and su-
personic flows.

The construction of the new hybrid schemes relies on
two steps: 1) the LB scheme is equivalently re-written as a
(conservative) finite-volume scheme, inspired by a previous
work52, 2) a total energy scheme involving the LB fluxes is
systematically derived. Subsequent schemes can then be in-
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terpreted as classical discretizations of the total energy equa-
tion, to which some corrections are added in order to address
the coupling instabilities. The key point of this strategy is to
end up with a conservative scheme that is linearly equivalent
to its non-conservative entropy counterpart, thus preserving
most of its advantages. The latter are:

• Entropic phenomena can explicitly be controlled by the
choice of an appropriate scheme, notably ensuring their
linear stability.

• The low dissipation of the LBM for isentropic phenom-
ena, such as acoustic propagation and vorticity, is pre-
served.

• The implementation of the viscous heating is made im-
plicit and consistent with the viscous stress tensor mod-

elled by the LBM.

The methodology has been used to develop three different
schemes, namely a first-order upwind, a Lax-Wendroff and a
MUSCL-Hancock schemes. They have been further assessed
on classical test cases for compressible flows: a Couette flow,
entropy spot and vortex convections, a Sod shock tube, sev-
eral two-dimensional Riemann problems and a shock-vortex
interaction. The simulations allowed validating two important
properties of the models: they are conservative and linearly
equivalent to their entropy counterpart.

The algorithms proposed in the present work are very sim-
ilar to previous hybrid LB models coupled with an entropy
equation, especially those introduced by Farag et al.49,50. To
this extent, they share the ability of the hybrid LBM to deal
with complex geometries thanks to the use of immersed-like
boundary conditions55, and the easy parallelization is pre-
served since the spatial stencil is not modified. As a matter
of fact, the only drawback of this new conservative approach,
compared to former non-conservative hybrid methods, relies
in the additional computational cost induced by the correction
terms appearing in the total energy scheme. In this regard,
a further study and optimisation of the computational cost of
the present method on increasing complexity simulations is
planned for a future work.

The present article can be viewed as a first step towards
the adaptation of Riemann solvers to the LB formalism. The
proposed conservative schemes have indeed been built by
ensuring the correct behaviour of a characteristic variable,
namely the entropy, which is precisely the purpose of Rie-
mann solvers53. Following this adaption would require modi-
fications of the LB scheme in order to properly address acous-
tic and vorticity waves. Such a task may be the purpose of fu-
ture work, together with the development of TVD schemes for
a better consideration of discontinuities. Notably, this topic
has been partially addressed in Sec. IV D, where the effect of a
slope limiter on the energy equation has been demonstrated on
the Sod test case. However, a complete TVD scheme remains
necessary to reduce the Gibbs oscillations induced by shock
waves. Furthermore, improvements of the proposed MHM
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scheme for non-aligned flows will have to be considered. Fi-
nally, one may take the advantage of the original finite-volume
interpretation of the LB scheme to develop new models such
as conservative boundary conditions.

ACKNOWLEDGMENTS

Part of this research was supported by ANR, Renault,
Airbus and SafranTech by the Industrial Chair Program
ALBUMS (ANR-CHIND-18-ALBUMS) and by the French
project BALBUZARD. Centre de Calcul Intensif d’Aix-
Marseille is acknowledged for granting access to their high
performance computing resources. We also acknowledge
support from Labex MEC (ANR-10-LABX-0092) and the
A*MIDEX project (ANR-11-IDEX-0001-02), funded by the
“Investissements d’Avenir”.

Appendix A: Lattice Boltzmann collision model

The collision model adopted in the present work is based
on the unified model recently proposed by Farag et al.50, re-
lying on the hybrid recursive regularization (HRR) of Jacob
et al.29. The free parameters of the unified model are set, for
all the test cases introduced in Sec. IV, to the following con-
stant values: σ = 1, κ = 0, ζ = 0 (see Farag et al.50 for the
definitions of these parameters). In particular, the fact that
σ = 1 reduces the HRR model to the more common recursive
regularization (RR)27,28. Furthermore, the D3Q1917 lattice is
adopted, whose discrete velocities (see Fig. 14) read

c∗i,x = {0,1,1,0,−1,0,0,0,1,−1,−1,−1,0,1,0,0,0,−1,1},
c∗i,y = {0,0,0,0,0,1,1,−1,1,1,0,0,0,0,−1,−1,1,−1,−1},
c∗i,z = {0,0,1,1,1,0,1,1,0,0,0,−1,−1,−1,0,−1,−1,0,0},

(A1)

where c∗i,α = ci,α ∆t/∆x. The present appendix aims at detail-
ing the main steps of this LB scheme.

Post-collision distribution functions read

f coll
i (x, t) = f eq

i (x, t)+
(

1− ∆t
τ

)
f neq
i (x, t)

+
∆t
2

FE
i (x, t)+∆tFµb

i (x, t), (A2)

where f eq
i is the equilibrium distribution function, f neq

i is the
off-equilibrium part, FE

i is a body-force term designed to re-
store the Galilean invariance at the Navier-Stokes level, Fµb

i
aims at introducing a stabilizing bulk viscosity and τ is the
relaxation time. The latter is related to the fluid dynamic vis-
cosity µ as

µ +ρνsc =

(
τ− ∆t

2

)
ρc2

s , (A3)

where cs =
√

RTre f =
1√
3

∆x
∆t , Tre f is a reference temperature

and where νsc is an artificial kinematic viscosity introduced
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FIG. 14: Sketch of the D3Q19 lattice.

to handle discontinuities. The latter is defined in the one-
dimensional case as50

νsc = sc

∣∣∣∣ρ(x−∆x, t)−2ρ(x, t)+ρ(x+∆x, t)
ρ(x−∆x, t)+2ρ(x, t)+ρ(x+∆x, t)

∣∣∣∣ , (A4)

where sc is a free parameter whose value is specified in each
case of Sec. IV. In multi-dimensions, νsc is computed as the
average value of the above expression in each direction. Ad-
ditionally, in order to spatially filter the artificial viscosity, its
local value is retained as the maximal value of all its direct
neighbours.

For the D3Q19 lattice, the equilibrium distribution function
is expanded onto the orthogonal basis of Jacob et al.29 as

f eq
i = ωi

{
ρ +

ωi−δ0i

ωi
ρ(θ −1)+

+
H

(1)
i,α

c2
s

ρuα +
H

(2)
i,αβ

2c4
s

ρuα uβ

+
1

6c6
s

[
3(H (3)

i,xxy +H
(3)

i,yzz)(ρuxuxuy +ρuyuzuz)

+3(H (3)
i,xzz +H

(3)
i,xyy)(ρuxuzuz +ρuxuyuy)

+3(H (3)
i,yyz +H

(3)
i,xxz)(ρuyuyuz +ρuxuxuz)

+(H
(3)

i,xxy−H
(3)

i,yzz)(ρuxuxuy−ρuyuzuz)

+(H
(3)

i,xzz−H
(3)

i,xyy)(ρuxuzuz−ρuxuyuy)

+(H
(3)

i,yyz−H
(3)

i,xxz)(ρuyuyuz−ρuxuxuz)
]}

, (A5)

where θ = T/Tre f , ωi are the weights associated to lattice ve-
locities defined as

ωi =
{1
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and Hi are discrete Hermite polynomials in the velocity
space, defined as:

H
(0)

i = 1, (A7)

H
(1)

i,α = ciα , (A8)

H
(2)

i,αβ
= ciα ciβ − c2

s δαβ , (A9)

H
(3)

i,αβγ
= ciα ciβ ciγ − c2

s
[
ciα δβγ + ciβ δγα + ciγ δαβ

]
. (A10)

The forcing term FE
i is introduced in the collision step

Eq. (A2) to correct the isotropy defect of the lattice50. For
the equilibrium distribution function of Eq. (A5), it reads

FE
i =

ωi

2c4
s
H

(2)
i,αβ

aF,(2)
αβ

, (A11)

where, as proposed in49,

aF,(2)
αβ

=
2
D

δαβ ρc2
s ∂γ uγ −δαβ c2

s ∂t(ρ(1−θ))+aC
αβ

, (A12)

D is the spatial dimension and aC
αβ

is the equilibrium-
dependent component of the force term,

aC
αβ

= c2
s
[
uα ∂β (ρ(1−θ))+uβ ∂α(ρ(1−θ))

]
−∂γ D f eq,(3)

αβγ
,

(A13)

where

∂γ D f eq,(3)
αβγ

= δαβ ∂α(ρu3
α)+(1−δαβ )∂ψ(ρuxuyuz). (A14)

In the above equation, no summation is done over the index
α and ψ is chosen as ψ 6= α and ψ 6= β . In Eq. (A12), the
spatial derivative operator is discretized using a second-order
centered scheme and the time derivative using a temporal up-
wind scheme. In Eqs. (A13)-(A14), spatial gradient operators
are discretized using a first-order upwind scheme.

The body-force term Fµb
i reads

Fµb
i =− ωi

2c4
s
H

(2)
i,αβ

δαβ ρc2
s ∂γ uγ 0.07Ma2, (A15)

where Ma = ||u||/(cs
√

γθ). As proposed in50, it is designed
to increase the numerical stability of the LB scheme as the
Mach number increases.

Finally, the off-equilibrium distribution functions f neq
i are

computed thanks to a recursive regularization27–29. It reads

f neq
i = ωi

{
H

(2)
i,αβ

2c4
s

aneq,(2)
αβ

+
1

6c6
s

[
3(H (3)

i,xxy +H
(3)

i,yzz)(a
neq,(3)
xxy +aneq,(3)

yzz )

+(H
(3)

i,xxy−H
(3)

i,yzz)(a
neq,(3)
xxy −aneq,(3)

yzz )

+3(H (3)
i,xzz +H

(3)
i,xyy)(a

neq,(3)
xzz +aneq,(3)

xyy )

+(H
(3)

i,xzz−H
(3)

i,xyy)(a
neq,(3)
xzz −aneq,(3)

xyy )

+3(H (3)
i,yyz +H

(3)
i,xxz)(a

neq,(3)
yyz +aneq,(3)

xxz )

+(H
(3)

i,yyz−H
(3)

i,xxz)(a
neq,(3)
yyz −aneq,(3)

xxz )
]}

, (A16)

where aneq,(2)
αβ

and aneq,(3)
αβγ

are respectively second- and third-
order Hermite off-equilibrium coefficients. The former reads

aneq,(2)
αβ

= ãneq,(2)
αβ

−
δαβ

D
ãneq,(2)

γγ , (A17)

where an implicit summation is performed on index γ , and
where

ãneq,(2)
αβ

= ∑
i

H
(2)

i,αβ

(
fi− f eq

i +
∆t
2

FE
i

)
. (A18)

The third-order coefficient is then computed recursively as27

aneq,(3)
αβγ

= uα aneq,(2)
βγ

+uβ aneq,(2)
αγ +uγ aneq,(2)

αβ
. (A19)

Note that the second-order coefficient is here replaced by its
traceless counterpart as suggested in49 to increase the robust-
ness of the LB scheme. This filtering process can be inter-
preted62 as the regularization of the non-equilibrium moment
aneq,(2)

αα .

Appendix B: Lattice Boltzmann fluxes

In this appendix, the following conventions are adopted for
the numbering of the lattice velocities: (1) the index i = 0 is
attributed to the static velocity, i.e. c0 = 0, (2) velocities are
numbered so that

∀i ∈ J1,bQ/2cK, ci+bQ/2c =−ci, (B1)

where b·c is the floor function of a real number. In what fol-
lows, the notation ī = i+bQ/2c is adopted for referring to the
opposite index of i.

With these conventions, Eq. (14) can be re-written as

δtρ =
1
∆t

bQ/2c

∑
i=1

[
f coll
i (x−ci∆t, t)− f coll

i (x, t)

+ f coll
ī (x+ci∆t, t)− f coll

ī (x, t)
]
, (B2)

or equivalently

δtρ +
1

∆x

bQ/2c

∑
i=1

[
Fρ

i (x, t)−Fρ

i (x−ci∆t, t)
]
= 0, (B3)

with

Fρ

i (x, t) =
∆x
∆t

[
f coll
i (x, t)− f coll

ī (x+ci∆t, t)
]
. (B4)

Similarly, the momentum equation (15) can be written as

δt(ρuα)+
1

∆x

bQ/2c

∑
i=1

[
Fρuα

i (x, t)−Fρuα

i (x−ci∆t, t)
]
= 0,

(B5)
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with

Fρuα

i (x, t) = ci,α
∆x
∆t

[
f coll
i (x, t)+ f coll

ī (x+ci∆t, t)
]
. (B6)

Eqs. (B3)-(B5) are now written under a conservative form in-
volving fluxes. However, the latter involve all the possible
directions of the lattice, including diagonal ones, which is not
in agreement with the standard formalism involving Cartesian
directions only. It is therefore necessary to find a relationship
between the fluxes Fρ

i and Fρuα

i , and their Cartesian coun-
terparts Fρ

+∆β/2 and Fρuα

+∆β/2, which appear in Eqs. (16)-(17).
This is done below for several lattices of interest. Note that
the proposed relationships are, in general, not unique, but the
choices adopted below are made to enforce the symmetry of
the scheme.

1. D1Q3 lattice

With the D1Q3 lattice, composed of three velocities (Q =
3) in one dimension17, let us use the convention ci,x =

{0,1,−1}∆x/∆t. The sum ∑
bQ/2c
i=1 is simply reduced to one el-

ement, which corresponds to the flux along the x-axis. Then,
one simply has

Fρ

+∆x/2(x, t) = Fρ

1 (x, t), Fρux
+∆x/2(x, t) = Fρux

1 (x, t). (B7)

2. D2Q9 lattice

With the D2Q9 lattice, composed of nine velocities (Q = 9)
in two dimensions17, let us use the following convention for
the numbering of velocities:

ci,x = {0,1,1,0,−1,−1,−1,0,1}∆x/∆t, (B8)
ci,y = {0,0,1,1,1,0,−1,−1,−1}∆x/∆t. (B9)

Then, for a given quantity Φ ∈ {ρ,ρux,ρuy},

∇≡ 1
∆x

bQ/2c

∑
i=1

[
FΦ

i (x−ci∆t)−FΦ
i (x)

]
= FΦ

1 (x−,y)−FΦ
1 (x,y)+FΦ

2 (x−,y−)−FΦ
2 (x,y)

+FΦ
3 (x,y−)−FΦ

3 (x,y)+FΦ
4 (x+,y−)−FΦ

4 (x,y), (B10)

where x± = x± ∆x and y± = y±∆x. This quantity can be
decomposed as x-derivatives and y-derivatives:

∇ = FΦ
1 (x−,y)−FΦ

1 (x,y)︸ ︷︷ ︸
x−derivative

+
1
2
[
FΦ

2 (x−,y−)−FΦ
2 (x,y−)

]
︸ ︷︷ ︸

x−derivative

+
1
2
[
FΦ

2 (x,y−)−FΦ
2 (x,y)

]
︸ ︷︷ ︸

y−derivative

+
1
2
[
FΦ

2 (x−,y−)−FΦ
2 (x−,y)

]
︸ ︷︷ ︸

y−derivative

+
1
2
[
FΦ

2 (x−,y)−FΦ
2 (x,y)

]
︸ ︷︷ ︸

x−derivative

+
1
2
[
FΦ

4 (x+,y−)−FΦ
4 (x,y−)

]
︸ ︷︷ ︸

x−derivative

+
1
2
[
FΦ

4 (x,y−)−FΦ
4 (x,y)

)
]︸ ︷︷ ︸

y−derivative

+
1
2
[
FΦ

4 (x+,y−)−FΦ
4 (x+,y)

]
︸ ︷︷ ︸

y−derivative

+
1
2
[
FΦ

4 (x+,y)−FΦ
4 (x,y)

]
︸ ︷︷ ︸

x−derivative

+FΦ
3 (x,y−)−FΦ

3 (x,y)︸ ︷︷ ︸
y−derivative

.

(B11)

This can finally be written as

∇ = FΦ

+∆x/2(x
−,y)−FΦ

+∆x/2(x,y)

+FΦ

+∆y/2(x,y
−)−FΦ

+∆y/2(x,y), (B12)

with

FΦ

+∆x/2(x,y) = FΦ
1 (x,y)+

1
2

FΦ
2 (x,y−)+

1
2

FΦ
2 (x,y)

− 1
2

FΦ
4 (x+,y−)− 1

2
FΦ

4 (x+,y), (B13)

FΦ

+∆y/2(x,y) = FΦ
3 (x,y)+

1
2

FΦ
2 (x−,y)+

1
2

FΦ
2 (x,y)

+
1
2

FΦ
4 (x,y)+

1
2

FΦ
4 (x+,y). (B14)

This equality can be applied to both Fρ

+∆β/2 and Fρuα

+∆β/2. Using
Eq. (B4), this leads to

Fρ

+∆x/2(x,y) =
∆x
∆t

[
f coll
1 (x,y)− f coll

5 (x+,y)+
1
2

f coll
2 (x,y−)

− 1
2

f coll
6 (x+,y)+

1
2

f coll
2 (x,y)− 1

2
f coll
6 (x+,y+)

− 1
2

f coll
4 (x+,y−)+

1
2

f coll
8 (x,y)− 1

2
f coll
4 (x+,y)

+
1
2

f coll
8 (x,y+)

]
, (B15)

Fρ

+∆y/2(x,y) =
∆x
∆t

[
f coll
3 (x,y)− f coll

7 (x,y+)+
1
2

f coll
2 (x−,y)

− 1
2

f coll
6 (x,y+)+

1
2

f coll
2 (x,y)− 1

2
f coll
6 (x+,y+)

+
1
2

f coll
4 (x,y)− 1

2
f coll
8 (x−,y+)+

1
2

f coll
4 (x+,y)

− 1
2

f coll
8 (x,y+)

]
. (B16)
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One can easily check that the mean values of these mass fluxes
are

(
Fρ

+∆x/2

)
=

∆x
∆t

(
f1− f5 + f2− f6− f4 + f8

)
= ρux, (B17)(

Fρ

+∆y/2

)
=

∆x
∆t

(
f3− f7 + f2− f6 + f4− f8

)
= ρuy. (B18)

Finally, regarding the x- and y-momentum fluxes, it is suffi-
cient to replace every f coll

i appearing in Fρ

+∆β/2 by ci,α f coll
i to

obtain the expressions of Fρuα

+∆β/2. It yields

Fρux
+∆x/2(x,y) =

∆x2

∆t2

[
f coll
1 (x,y)+ f coll

5 (x+,y)+
1
2

f coll
2 (x,y−)

+
1
2

f coll
6 (x+,y)+

1
2

f coll
2 (x,y)+

1
2

f coll
6 (x+,y+)

+
1
2

f coll
4 (x+,y−)+

1
2

f coll
8 (x,y)+

1
2

f coll
4 (x+,y)

+
1
2

f coll
8 (x,y+)

]
, (B19)

Fρux
+∆y/2(x,y) =

∆x2

∆t2

[1
2

f coll
2 (x−,y)+

1
2

f coll
6 (x,y+)

+
1
2

f coll
2 (x,y)+

1
2

f coll
6 (x+,y+)− 1

2
f coll
4 (x,y)

− 1
2

f coll
8 (x−,y+)− 1

2
f coll
4 (x+,y)− 1

2
f coll
8 (x,y+)

]
,

(B20)

Fρuy
+∆x/2(x,y) =

∆x2

∆t2

[1
2

f coll
2 (x,y−)+

1
2

f coll
6 (x+,y)

+
1
2

f coll
2 (x,y)+

1
2

f coll
6 (x+,y+)− 1

2
f coll
4 (x+,y−)

− 1
2

f coll
8 (x,y)− 1

2
f coll
4 (x+,y)− 1

2
f coll
8 (x,y+)

]
, (B21)

Fρuy
+∆y/2(x,y) =

∆x2

∆t2

[
f coll
3 (x,y)+ f coll

7 (x,y+)+
1
2

f coll
2 (x−,y)

+
1
2

f coll
6 (x,y+)+

1
2

f coll
2 (x,y)+

1
2

f coll
6 (x+,y+)

+
1
2

f coll
4 (x,y)+

1
2

f coll
8 (x−,y+)+

1
2

f coll
4 (x+,y)

+
1
2

f coll
8 (x,y+)

]
. (B22)

It can then be easily checked that
(

Fρuα

+∆β/2

)
= Παβ .

3. D3Q19 lattice

Regarding the D3Q19 lattice, the similar strategy as for the
D2Q9 lattice is employed to construct the Cartesian flux. With
the convention adopted in App. A for the lattice velocities, this

leads to the possible expression for the fluxes:

Fρ

+∆x/2(x,y,z) =
∆x
∆t

[
f coll
1 (x,y,z)− f coll

10 (x+,y,z)

+
1
2

f coll
2 (x,y,z−)− 1

2
f coll
11 (x+,y,z)+

1
2

f coll
2 (x,y,z)

− 1
2

f coll
11 (x+,y,z+)− 1

2
f coll
4 (x+,y,z−)+

1
2

f coll
13 (x,y,z)

− 1
2

f coll
4 (x+,y,z)+

1
2

f coll
13 (x,y,z+)+

1
2

f coll
8 (x,y−,z)

− 1
2

f coll
17 (x+,y,z)+

1
2

f coll
8 (x,y,z)− 1

2
f coll
17 (x+,y+,z)

− 1
2

f coll
9 (x+,y−,z)+

1
2

f coll
18 (x,y,z)− 1

2
f coll
9 (x+,y,z)

+
1
2

f coll
18 (x,y+,z)

]
, (B23)

Fρ

+∆y/2(x,y,z) =
∆x
∆t

[
f coll
5 (x,y,z)− f coll

14 (x,y+,z)

+
1
2

f coll
8 (x,y,z)− 1

2
f coll
17 (x+,y+,z)+

1
2

f coll
8 (x−,y,z)

− 1
2

f coll
17 (x,y+,z)+

1
2

f coll
9 (x,y,z)− 1

2
f coll
18 (x−,y+,z)

+
1
2

f coll
9 (x+,y,z)− 1

2
f coll
18 (x,y+,z)+

1
2

f coll
6 (x,y,z−)

− 1
2

f coll
15 (x,y+,z)+

1
2

f coll
6 (x,y,z)− 1

2
f coll
15 (x,y+,z+)

− 1
2

f coll
7 (x,y+,z−)+

1
2

f coll
16 (x,y,z)− 1

2
f coll
7 (x,y+,z)

+
1
2

f coll
16 (x,y,z+)

]
, (B24)

Fρ

+∆z/2(x,y,z) =
∆x
∆t

[
f coll
3 (x,y,z)− f coll

12 (x,y,z+)

+
1
2

f coll
2 (x,y,z)− 1

2
f coll
11 (x+,y,z+)+

1
2

f coll
2 (x−,y,z)

− 1
2

f coll
11 (x,y,z+)+

1
2

f coll
4 (x,y,z)− 1

2
f coll
13 (x−,y,z+)

+
1
2

f coll
4 (x+,y,z)− 1

2
f coll
13 (x,y,z+)+

1
2

f coll
6 (x,y,z)

− 1
2

f coll
15 (x,y+,z+)+

1
2

f coll
6 (x,y−,z)− 1

2
f coll
15 (x,y,z+)

+
1
2

f coll
7 (x,y,z)− 1

2
f coll
16 (x,y−,z+)+

1
2

f coll
7 (x,y+,z)

− 1
2

f coll
16 (x,y,z+)

]
. (B25)

As mentioned with the D2Q9 lattice, the expressions of
Fρuα

+∆β/2 can then be simply obtained by replacing every f coll
i

appearing in Fρ

+∆β/2 by ci,α f coll
i .

Appendix C: Details on the linear equivalence between
proposed total energy and entropy schemes

In this appendix, any space- and time-averaged value of a
dummy quantity Φ is denoted as Φ, and its small perturbations
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are referred to as Φ′.
Let us write the complete discrete conservative system as

δtU +δα FU,d
α = 0, (C1)

where FU,d
α = [Fρ

+∆α/2,F
ρux
+∆α/2,F

ρuy
+∆α/2,F

ρuz
+∆α/2,F

ρE,NS
+∆α/2]

T , and

where FρE,NS
+∆α/2 is the total energy flux derived in Secs. II C-

II D for a viscous flow. Using the notations of Sec. II E, a
linearization yields

δtU ′+δα

(
FU,d

α

)′
= 0. (C2)

Then, using the fact that U ′ =
[
∂U/∂V

]
V ′ = MV ′, one has

MδtV ′+δα

(
FU,d

α

)′
= 0. (C3)

The last line of this matrix system reads

(h−κ)δtρ
′+uβ δt(ρuβ )

′+ρT δts′+δα

(
FρE,NS
+∆α/2

)′
= 0.

(C4)

Let us now focus on the last left-hand-side term of this equa-
tion representing the fluctuating flux of total energy. As shown
by Eq. (35) and Eq. (42), it reads:

δα

(
FρE,NS
+∆α/2

)′
= δα(i)′+δα(ii)′+δα(iii)′

−λδα T ′(x+eα∆x, t), (C5)

where

(i)′ = F ∗
+∆α/2

[
(ρHuα)

′] , (C6)

(ii)′ = (h−κ)

[(
Fρ

+∆α/2

)′
−F ∗

+∆α/2
(
(ρuα)

′)]
+

[(
Fρ

+∆α/2

)
−F ∗

+∆α/2(ρuα)

]
(h′−κ

′), (C7)

(iii)′ = uβ

[(
F

ρuβ

+∆α/2

)′
−F ∗

+∆α/2
(
(ρuα uβ + pδαβ )

′)]
+

[(
F

ρuβ

+∆α/2

)
−F ∗

+∆α/2(ρuα uβ + pδαβ )

]
u′

β
. (C8)

This expression can then be considerably simplified. First,
one can notice that, by consistency of the scheme adopted
for the entropy equation in Eq. (22), one systematically has
F ∗

+∆α/2(Φ) = Φ. This can be easily checked for all the
adopted schemes of Sec. III. Moreover, by consistency of the
mass and momentum schemes (e.g. solved by a LB approach),
one has(

Fρ

+∆α/2

)
= ρuα , (C9)(

F
ρuβ

+∆α/2

)
= Παβ = ρuα uβ + pδαβ +Π

neq
αβ︸︷︷︸
=0

. (C10)

This can also be easily checked from the LB fluxes obtained
in App. B. Thanks to these observations, the second lines of
Eqs. (C7)-(C8) directly vanish.

Furthermore, by using Eq. (31), the first term of the fluctu-
ating flux (i)′ can be expressed as

F ∗
+∆α/2

[
(ρHuα)

′]= (h−κ)F ∗
+∆α/2

(
(ρuα)

′)
+uβ F ∗

+∆α/2
(
(ρuα uβ + pδαβ )

′)+ρTuαF ∗
+∆α/2

(
s′
)
.

(C11)

After simplification, Eq. (C4) can be re-written as

(h−κ)

[
δtρ
′+δα

(
Fρ

+∆α/2

)′]
+uβ

[
δt(ρuβ )

′+δα

(
F

ρuβ

+∆α/2

)′]
+ρT

[
δts+uα δαF ∗

+∆α/2
(
s′
)]

= λδα T ′(x+eα∆x, t).

(C12)

Finally, the first two lines of the above equation vanish thanks
to the mass and momentum equations of Eq. (C2). The fol-
lowing linearized entropy scheme is then obtained:

δts′+uα δ
∗
α s′ =

λ

ρT
δα T ′(x+eα∆x, t). (C13)
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