

Jranium

77

Ir

Iridium 192, 22

Astatine 85

 \mathbf{A}

210

Arthur BONGRAND

Samuel DUVAL, Arnaud GUERTIN & Julie CHAMPION

Projet BePAT :

BeaQuant, un autoradiographe numérique au service de la production de radionucléides pour des applications en médecine nucléaire 15/03/2022

RaMI \rightarrow **Ra**dionucléides **M**édicaux Innovants – Innovative Medical Radionuclides

- ✓ Health
- ✓ Nuclear medicine \vdash →
- ✓ Radionuclides

(") my Troject Cross section measurement *Isotope productions*

Masse separation and laser ionisation: SMILES ©

IRMa → Interaction **R**ayonnement **Ma**tière – Radiation-Matter Interaction

- \checkmark Ion Beam Analysis, materials \rightarrow IBA platform: visible, X, γ
- \checkmark Non Destructive Testing \rightarrow Nuclear data X, γ : PIXE/PIGE High Resolution X-Ray Tomography System
- \checkmark Detector development and characterization \rightarrow profilers, diamond detectors, dosimeters...

$HB \rightarrow HadronBiologie - HadronBiology$

 \checkmark Health, Radiobiology, Dosimetry, Flash Hadrontherapy \rightarrow In-situ dose monitoring & Irradiation platform: proton and α beams Arthur BONGRAND

Radionuclide production scheme and RaMI's expertise

3

BeaQuant : real-time autoradiography system for "small" samples

Autoradiography

 \rightarrow An **emission imaging technique** carried out from a radioactive source placed in contact with an emulsion, a photographic film or an adapted detector

 \rightarrow Area of interest located at the surface (\approx 10 µm deep)

Lefeuvre et al., under review NIMA

Metal foil

Applications

→ Pre-clinical (oncology + drug discovery)
Visualization of molecules or fragments of molecules
labeled with radioactive elements

 \rightarrow Geology (study of uraniferous rocks, environmental pollution...)

Samples

 \rightarrow "Thin" (<1 cm thick) \approx size of a small sugar square

→ Can be electroplated on a glass slide, a "sugar" or a metal foil (new)

• Specificities of the BeaQuant

- \rightarrow Real-time direct counting
 - ✓ Quantification
 - ✓ Tracking

-			and the second se				
Technology	logy Direct gaseous counter						
Performance	 Spatial: Alpha 20 μm – Beta 20 μm – High energy β or β⁺ 50 μm Linearity over 5 orders of magnitude Sensitivity: 0.0005 cpm/mm² (≈ mBq) 						
Markers	All radioisotopes						

BeaQuant autoradiograph schematic diagram for β^+ , β^- , Auger...

Physics of Radiation InteractionS with Matter and Application

Laboratoire Imagerie et Cerveau, Unité Inserm 930 Université François-Rabelais de Tours

5

In vivo rat brain labelled with LBT999 - ¹⁸F ¹⁸F Spatial resolution: 50 μm

UCB

¹²⁵I QWBA

Spatial resolution: 50 µm

15/03/2022

BeaQuant autoradiograph schematic diagram for α

Physics of Radiation InteractionS with Matter and Application

Uranium ore sample (²³⁸U,²³⁵U,²³⁴U) Spatial resolution: 20 μm

* Lefeuvre *et al., under review NIMA*

Some rules for the preparation of the BePAT samples

Capsule and metal foils

Metal foil can be electrodeposited after digestion and chemical separation

Samples

 \rightarrow Metal foil

→ Metal foil electrodeposited after digestion and chemical separation (in the future)

- Sample activity
- → Insensitive to γ and X → A(α) + A(β+) + A(β-) < 20 kBq - Specific calculations required !
- Challenge
- \rightarrow Short-lived isotope !

7

(December 2021) Application of the RaMI thematic to BePAT

Physics of Radiation InteractionS with Matter and Applications

α therapy benefit

- Short range in human tissues : ≈ 100µm (≈ cell diameter)
- High Linear Energy Transfer (LET) : 60-200 keV/µm
- Great DNA damages → no cell repair

²³⁰U/²²⁶Th from ²³⁰Pa

considering Arronax's characteristics 17 and 30-70 MeV Proton beam

(December 2021) Application of the RAMi thematic to BePAT

Irradiation station and beam line

Capsule and foils

after degradation

E_o (keV)

BeaQuant

9

²³³Pa (t_{1/2} : 27j, β⁻)
²³¹Pa (t_{1/2} : 104 ans, α ≈ 5MeV)

• In a nutshell

- \rightarrow Large number of fission products not detected by γ spectroscopy
- \rightarrow Need for α spectrometry !
 - \rightarrow **BePAT** ! \leftarrow

Problem of purchasing metal foil for Z>83 !

н	X Available										He						
Li	Be Your global supplier for materials						X Not available					В	С	Ν	0	F	Ne
Na	Mg									Al	Si	Р	S	Cl	Ar		
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ba	*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	τι	Pb	Bi	Po	At	Rn
Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

03/2022

Z>83 : there remains the "grey" market: the stock of other laboratories...

The law is hard, but it's the law (Dura lex, sed lex)

Arthur BONGRAND

	EMENTS	
Aluminum Pieces	Holmium Pieces	Ruthenium Pieces
Antimony Pieces	Indium Pieces	Samarium Pieces
Arsenic Pieces	Iridium Pieces	Scandium Pieces
Barium Pieces	Iron Pieces	Selenium Pieces
Beryllium Pieces	Lanthanum Pieces	Silicon Pieces
Bismuth Pieces	Lead Pieces	Silver Pieces
Boron Pieces	Lithium Pieces	Strontium Pieces
Cadmium Pieces	Lutetium Pieces	Tantalum Pieces
Calcium Pieces	Magnesium Pieces	Tellurium Pieces
Carbon Pieces	Manganese Pieces	Terbium Pieces
Cerium Pieces	Molybdenum Pieces	Thallium Pieces
Chromium Pieces	Neodymium Pieces	Thulium Pieces
Cobalt Pieces	Nickel Pieces	Tin Pieces
Copper Pieces	Niobium Pieces	Titanium Pieces
Dysprosium Pieces	Osmium Pieces	Tungsten Pieces
Erbium Pieces	Palladium Pieces	Vanadium Pieces
Europium Pieces	Platinum Pieces	Ytterbium Pieces
Gadolinium Pieces	Potassium Pieces	Yttrium Pieces
Germanium Pieces	Praseodymium Pieces	Zinc Pieces
Gold Pieces	Rhenium Pieces	Zirconium Pieces
Hafnium Pieces	Rhodium Pieces	03/2022

AMERICAN

Current : BePAT update !

Aim of BePAT: to work on the development of spectrometry with metal foil

- α-emitter (5.9 MeV and 7.45 MeV)
- Can be produced "easily" @Arronax
- Well-known element but
 Ideal to optimize α spectroscopy method

Irradiation station and beam line

Capsule and foils

Study of a theranostic pair: (187 lr ,189 lr)

- "Strike" Auger * Targets DNA or important structural units 1-100nm cell nucleus and other organelles 1-10µm
- β+/Auger pair produced at the same time with a natural rhenium metal foil & α beam
- Good chemical characteristics but many contaminants 188-190Ir
- Exploratory work
- Gamma spectroscopy methods can be used !
- Ø α produced

Simulation Monte Carlo and implementation of new electronic

Goal : Search for the energy deposit in the gas to get the initial kinetic energy of the α particle

Simulation Monte-Carlo:

- \rightarrow Understanding the signals induced by the α
- \rightarrow Characterization of the detector
- \rightarrow Simulation of a localized α -spectroscopy using Garfield++ (CERN) in Geant4

12

Localized α -spectrometry

Conclusion

BePAT's goal:

Demonstrate how autoradiography can be useful in the acquisition of nuclear data for the production of radionuclides for nuclear medicine applications !

- \rightarrow To work on the development of spectrometry with metal foil
- \rightarrow Localized spectrometry
- \rightarrow Supported by the simulation

Thank you for your attention ! arthur.bongrand@subatech.in2p3.fr

prisma@subatech.in2p3.fr

Arthur BONGRAND

samuel.duval@ai4r.com www.ai4r.com

Backup

DE LA PRODUCTION AU RADIOMARQUAGE

<u>Collaborations</u>: à l'échelle locale : GIP Arronax, Ceisam, Ai4R; à l'échelle nationale IJC Lab, pHLAM, et à l'échelle internationnale: INR.

<u>Financements:</u> TransForMed (Next), PRC Franco-Russe (PaTH project , 2020-2022), ANR CHESS (2022-2026), Plan de relance (2021-2023), Labex IRON2 (2020-2024).

julie.champion@subatech.in2p3.fr

