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2. The existence of a local Bernstein identity for f , due to J.E. Bjork in the analytic case (see [START_REF] Bernstein | Prolongement analytique des fonctions généralisées avec paramètres (en russe)[END_REF] and [START_REF] Björk | Ring of differential operators North Holland[END_REF]).

As an application we first deduce of this result the absence of torsion for some Dmodules generated by the distributions constructed in the first part. In fact we prove more : any distribution in such a D-module has the Standard Extension Property (compare with the result of [START_REF] Barlet | Le réseau L 2 d'un système holonome régulier[END_REF]). We recall the definition of the Standard Extension Property in the begining of the section 2.

Then we apply this Theorem to the determination of generators of the conjugate D-modules of the D-modules N λ associated to z(σ) λ , the power λ, where λ is any complex number, of the (multivalued) root of the universal equation of degree k, z k + k j=1 (-1) h σ h z k-h = 0 whose structure is studied in [START_REF] Barlet | On partial differential operators which annihilate the roots of the universal equation of degree k, math[END_REF].

2 Existence of the Principal Value

The Standard Extension Property

First, we recall the definition of this property (see [START_REF]Barlet Fonctions de type trace[END_REF] in Appendix and [START_REF] Barlet | Le réseau L 2 d'un système holonome régulier[END_REF] in Paragraph 3.1 or [START_REF] Björk | Analytical D-Modules and Applications, Mathematics and Its Applications[END_REF])

Definition 2.1.1 Let M be a complex manifold of pure dimension n + 1 and let T be a distribution on M . We shall say that T has the Standard Extension Property if the following condition are fulfilled:

1. Outside a hypersurface H in M the distribution T is a C ∞ function. It is easy to see that if the condition 2 of the previous definition is satisfied for some choice of local equation of H, it is satisfied for any other choice. Note also that this property is clearly stable by multiplication by a C ∞ function but is not stable, in general, by the action of D M . For instance the locally integrable function 1/z defines a distribution on C which has the standard extension property, but ∂ z (1/z) = iπδ 0 is a non zero torsion element in Db C .

The following result is proved in [START_REF] Barlet | Le réseau L 2 d'un système holonome régulier[END_REF] Theorem 2.1.2 Let M be a regular holonomic D M -module and let H be a hypersurface in M such that M M \H is O M \H -coherent. Let i : M → Db M be a D M -linear morphism such that i belongs to L 2 (c(M)), the L 2 lattice (see [START_REF] Barlet | Le réseau L 2 d'un système holonome régulier[END_REF]) of the conjugate module of M (see [START_REF] Kashiwara | Regular Holonomic D-modules and Distributions on a Complex Manifolds[END_REF]). Then any distribution in i(M) has the Standard Extension Property (relatively to H).

The main difficulty to use this theorem is the identification of the L 2 -lattice. When the D M -module has no O M -torsion, the L 2 -lattice is given by a local square integrability condition along H which is often rather easy to verify. But we must know "a priori" that the D M -module we are considering has no O M -torsion to use this simple characterization of the L 2 -lattice. We shall see in section 5 that the main point is to prove that there is no torsion in some of the regular holonomic D M -modules involved in our computations.

Principal Value

Let us begin by giving the precise Asymptotic Expansion Theorem for fiber-integrals proved in [START_REF] Barlet | On symmetric partial differential operators[END_REF] which we shall need below. We keep the situation and the notations introduced in the beginning of section 1.

Theorem 2.2.1 Let ϕ ∈ C ∞ c (M ) be a differential form of type (n, n) on M . Define the function Θ(s) := f =s ϕ for each s ∈ C. This function, which is C ∞ on C \ {0}, admits when s → 0 a asymptotic expansion of the form Θ(s) r,j m,m a r,j m,m |s| 2r (Log |s|) j s m sm (1) 
where m, m are non negative integers, r describes a finite set R ⊂ [0, 1[∩Q and where j is an integer in [0, n + 1]. The finite set R is independent of the choice of ϕ. Moreover, this asymptotic expansion is term-wise differentiable at any order.

Remarks.

1. The continuity of the function Θ at the point s = 0 implies that for r = 0 and j ≥ 1 we have m+m ≥ 1. In fact it is proved in Proposition 6 of loc. cit. that for j ≥ 1 we have a 0,j m,0 = 0 (resp. a 0,j 0,m = 0) which implies that for r = 0 and j ≥ 1 we have m ≥ 1 and m ≥ 1 when a 0,j m,m = 0. This shows that no new type of term appears in such an expansion when we apply s∂ s or s∂ s. And, of course, neither a constant term nor a term like s m (Log|s|) j or sm (Log|s|) j with j ≥ 1 may appear in these expansions. So the functions s∂ s Θ, s∂ sΘ and ss∂ s ∂ sΘ are bounded by O(|s| γ ) for some γ > 0 when s goes to 0.

2. It is also proved, in loc. cit. that the linear map ϕ → a r,j m,m (ϕ) is a (1, 1)current on M . This current is supported by the singular set of the hypersurface {f = 0} when (r, j) = (0, 0), that is to say for terms which do not correspond to an usual term of a Taylor expansion at the origin of a C ∞ function.

It will be important in the sequel to use the following corollary of this theorem.

Corollary 2.2.2 In the situation of the previous theorem, for any differential C ∞ form ψ and ξ respectively of type (n, n + 1) and (n + 1, n + 1) with f -proper supports in M the fiber-integrals

η(s) := f =s f ψ d f = s f =s ψ d f and ζ(s) := f =s f f ξ df ∧ d f = ss f =s ξ df ∧ d f
admit asymptotic expansions of the same type as above when s goes to 0 (but see the previous remark 1).

Remark. For any compact set K in {f = 0} there exists an integer N such that we have the inclusion of sheaves in an open neighborhood of K in M

f N Ω n+1 M ⊂ df ∧ Ω n M and f N f N Ω n+1 M ∧ Ω n+1 M ⊂ Ω n M ∧ Ω n M ∧ df ∧ df.
So the only new information in the previous corollary is that we may keep m and m non negative in the expansions.

Proof. Remark first that the previous theorem is in fact local around the hypersurface {f = 0} in M and so the asymptotic expansion is valid for any C ∞ differential form of type (n, n) with f-proper support in M . Then using the fact that for such a form ϕ we have the same type of asymptotic expansion for Proof. This an easy consequence of the fact that ∂ z and ∂ z ∂ z are surjective on C ∞ (D) and that we may solve the corresponding equations with C ∞ dependence of a parameter on a relatively compact open disc D ⊂⊂ D using a fundamental solution of the corresponding operator ( see for instance [START_REF] Barlet | Cycles analytiques complexes I: théorèmes de préparation des cycles[END_REF] chapter IV Proposition 5.2.4 for details).

s∂ s Θ(s) = f =s f d ϕ df , s∂ sΘ(s) = f =s f d ϕ d f
Remark. Note that d φ1 = ψ gives also the d -case.

Theorem 2.2.4 In the situation f : M → C introduced in section 1, let α be a complex number such that its real part (α) is non negative. Then, for any positive integer N and for any C ∞ differential form ξ of type (n + 1, n + 1) with compact support in M the limit when ε > 0 goes to 0 of

T ε α,N , ξ := |f |≥ε |f | 2α f -N ξ
exists and defines a distribution (that is to say a (0, 0) current) T α,N on M .

The main argument to prove this result uses the following consequence of the previous corollary of the Asymptotic Expansion Theorem (see also [START_REF] Herrera | Residues and principal values on complex spaces[END_REF] for a proof of the proposition below using a direct computation in a desingularization of the hypersurface {f = 0}). Proof. Note first that the result is local and is obvious near a point where f does not vanish. Around a point where f vanishes, Milnor's Fibration Theorem allows to use Fubini's Theorem to compute this integral for ε small enough as follows:

|f |=ε f -N ψ = 2π 0 dθ f =s f -N ψ dθ
where ψ/dθ on {f = s = εe iθ } is equal to f ψ/id f because we have dθ = id f / f and taking in account the type of ψ and the fact that {f = s} is a complex n-dimensional sub-manifold in M for s = 0. This gives with s := εe iθ

|f |=ε f -N ψ = 2π 0 dθ f =s f -N f ψ id f . When the integral f =s f ψ/d f is O(ε N +1
) it is clear that the limit when ε goes to 0 exists and vanishes. So it is enough to show the result when we replace the fiber-integral

-i s -N s∂ sΘ = f =s f -N f ψ id f
by its asymptotic expansion at a high enough order, and then, by linearity, to prove the assertion when we replace the fiber-integral by |s| 2r (Log|s|) j s m-N sm . In this case the exponent of e iθ is given, for s = εe iθ , by :

-N + m -m and the corresponding exponent of ε is given by 2r + m + m -N.

In order to find a non zero integral between 0 and 2π we need that m = m + N and then the exponent of ε is then equal to 2r + 2m . So the only terms where the limit is not clearly equal to 0 appear when r = m = 0. But in this case the limit is again zero thanks to Remark 1 following Theorem 2.2.1.

Proof of Theorem 2.2.4. The assertion is local near each point of {f = 0} so, using Lemma 2.2.3 (in fact the remark following it) we may assume that ξ = d ψ where ψ is a C ∞ differential form of type (n, n + 1) with f-proper support. Then Stokes' Formula gives

(α -N ) |f |≥ε |f | 2α f -N df ∧ ψ f + |f |≥ε |f | 2α f -N ξ = |f |=ε |f | 2α f -N ψ.
We know that the limit of the right hand-side is 0 when ε goes to 0 thanks to Proposition 2.2.5. Now write the first integral in the left hand-side as

|s|≥ε |s| 2α s -N ds ∧ ds ss f =s f ψ d f
and using polar coordinates s = ρe iθ so ds ∧ ds = -2iρdρdθ and the asymptotic expansion of the fiber-integral of f ψ/d f we may replace this fiber-integral by its asymptotic expansion at the origin at a sufficient large order. Then, using linearity, it is enough to consider the integrability at 0 of each non zero term which only depends on the real part of α. So we have only to consider the terms for which

-N + m -m = 0.
The corresponding real part of the power of ρ is given by

-N -1 + 2r + m + m + 2 (α) = -1 + 2r + 2m + 2 (α).
This is at least equal to -1 for (α) ≥ 0 because m + r ≥ 0. Then either we have r + m + (α) > 0 and this implies the integrability at 0, or r = m = (α) = 0. And in this case, thanks to Remark 1 following Theorem 2.2.1, the term to integrate is O(|s| γ-1 ) for some γ > 0, giving again the local integrability at 0. So the limit of T ε α,N , ξ exists for each test form ξ on M when ε goes to 0. The fact that the so obtained linear form on test differential forms is a distribution is an easy exercise left to the reader.

Note that in the previous proof, we may conclude with the weaker hypothesis asking that (α) + r > 0 for any r in R ∪ {1} \ {0}. Remark that with this hypothesis (α) is not a pole for the meromorphic extension of F N,ξ (λ), ∀N ∈ N, defined below.

Remark R1. If we replace |f | 2α by |f | 2α (Log|f | 2 ) β
where β is any positive real number, the same result holds true with the same proof.

Bernstein identity and meromorphic extension

We first recall the fundamental theorem of Bernstein [START_REF] Bernstein | Prolongement analytique des fonctions généralisées avec paramètres (en russe)[END_REF], generalized to the local analytic case by Bjork [START_REF] Björk | Ring of differential operators North Holland[END_REF]. Theorem 3.0.1 Let f : (C n+1 , 0) → (C, 0) be a non zero holomorphic germ. Then there exists a monic polynomial b ∈ C[λ] and, near 0 in C n+1 , a holomorphic partial differential operator P with polynomial coefficients in λ such that the identity

P (z, ∂ z , λ)f λ+1 = b(λ)f λ (2)
holds locally outside the hypersurface {f = 0} on some open neighborhood of the origin.

The minimal monic polynomial b ∈ C[λ] such that and identity of this kind holds near 0 is called the Bernstein polynomial of f at the origin.

Recall also the fundamental result of Kashiwara [START_REF] Kashiwara | b-function and holonomic systems, rationality of roots of bfunctions[END_REF].

Theorem 3.0.2 For any non zero holomorphic germ f at the origin, the roots of the Bernstein polynomial of f at the origin are rational and negative. N by

F N,ξ (λ) := M |f | 2λ f -N ξ
is holomorphic and admits a meromorphic extension to the complex λ-plane with poles of order at most n + 1 at points in ∪ r {r -N} where r is a root of the Bernstein polynomial of f at the origin. Moreover, for any α ∈ C, the linear forms on C ∞ c (M ) (n+1,n+1) given by the coefficient

P k (λ = α, F N,ξ (λ)) of (λ -α) -k , k ∈ Z, k ≤ n + 1, in the Laurent expansion at λ = α of the meromorphic extension of F N,ξ is a distribution on M . For k ∈ [1, n + 1] this distribution has support in {f = 0} and, for k ∈ [2, n + 1] or for k ∈ [1, n + 1] and α ∈ Z, the support of this distribution is contained in the singular set of {f = 0}.
proof. The equation ( 2) implies, as b has rational coefficients, that we may find for any positive integer M a anti-holomorphic differential operator P M depending polynomially of λ such that we have

P M ( f λ+M ) = b(λ) . . . b(λ + M -1) f λ . (3) 
Note that the roots of B M (λ) := b(λ) . . . b(λ + M -1) are negative rational numbers. So for M N we obtain the equality of continuous functions for (λ)

N |f | 2λ f -N = 1 B M (λ) P M (|f | 2λ f -N f M )
If P * M is the adjoint of P M this implies for (λ) N and M large enough, that for

any test differential form ξ ∈ C ∞ c (M ) (n+1,n+1) we obtain M |f | 2λ f -N ξ = 1 B M (λ) M |f | 2λ f -N f M P * M (ξ). ( 4 
)
This gives the meromorphic extension to the complex λ-plane of the holomorphic

distribution ξ → M |f | 2λ f -N ξ defined for (λ) N , because P * M (ξ) is C ∞ c
in M and depends polynomially on λ and because the right hand-side of the above formula is holomorphic on the open set (λ) > -m for any given positive integer m as soon as M is large enough compare to N + m. Moreover this meromorphic extension has no pole at points which are not inside the union of the sets r -N where r is a root of b. It is easy to see that near points where f does not vanish, this meromorphic extension has no pole and that near points where f = 0 but where df does not vanish the poles of this meromorphic extension are at most simple poles at negative integers. This complete the proof.

Remark R2. Let q be a positive integer. The q-th derivative in λ of the holomorphic function F N,ξ (λ) is given, for (λ) large enough by the absolutely converging integral

M |f | 2λ (Log|f | 2 ) q f -N ξ
and the meromorphic extension of these functions allows to define, for each integer q, a meromorphic distributions on M which has no pole for (λ) ≥ 0. Now analog arguments as above give easily a generalization of the previous theorem to these cases.

Equality of the Principal Value with the value of the Meromorphic Extension

The equality theorem

We keep the notations of the introduction. The aim of this paragraph is to prove the following result:

Theorem 4.1.2 Assume that (α) ≥ 0. Then for any positive integer N we have for any test differential form ξ:

S α,N , ξ = T α,N , ξ = lim ε→0 |f |≥ε |f | 2α f -N ξ.
Proof. We want to show that the analog of the equality (4) for λ = α holds if we perform the integration only on the subset {|f | ≥ ε} with an error which goes to zero when ε goes to 0. This would be enough to complete the proof. But, of course, the error comes from the boundary terms which are integrals on {|f | = ε} appearing in the various Stokes Formulas necessary to pass from P M to its adjoint P * M . It is easy to see that such "error" terms have the following shape: a polynomial in λ with coefficient like n) and M is an integer in [0, M ]. Now using the same arguments than in the proof of Theorem 2.2.4 we see that the only non zero term in such an integral comes from the coefficient of s m sm in the asymptotic expansion at s = 0 of the function s

|f |=ε |f | 2α f -N f M ψ where ψ is in C ∞ c (M ) (n+1,
→ f =s f ψ/d f such that m -m -N -M = 0.
And this non zero term comes with a power of ε which is at least equal to 2 (α) + m + m -N + M + 2r = 2 (α) + 2m + 2M + 2r ≥ 0 and may be some (Log ε) q factor. So such term goes to 0 when ε goes to 0 when m + r + M > 0 for (α) ≥ 0 but also in the case where (α) + m + M + r = 0, thanks again to Remark 1 following Theorem 2.2.1. This concludes the proof.

Again in the previous proof, we may conclude with the weaker hypothesis asking that (α) + r > 0 for any r in R ∪ {1} \ {0}.

Remark R3. Using Remarks R1 and R2 we obtain again with the same proof, that the previous theorem is still valid if we replace |f | 2α by |f | 2α (Log|f | 2 ) q for any positive integer q.

Non torsion of the corresponding D-modules

We shall deduce from Theorem 4.1.2 an important corollary. To formulate this result we need the following definition, where we keep the situation described in the introduction. Definition 4.2.1 Let α be a complex number with a non negative real part. Let V be an holomorphic vector field on M . We define the formal action of V on |f | 2α f -N by the formula

V, |f | 2α f -N := (α -N )V (f )|f | 2α f -N -1 .
Then this defines a "formal action" of Proof. Let V be a holomorphic vector field on M . Then let T α,N be the distribution defined by

D M on the O M -module O M |f | 2α [f -1 ].
T α,N , ξ := P 0 (λ = α, M |f | 2α f -N ξ)
and let V * be the adjoint of V ; we obtain:

V (T α,N ), ξ = T α,N , V * (ξ) = lim ε→0 |f |≥ε |f | 2α f -N V * (ξ) = lim ε→0 |f |≥ε V (|f | 2α f -N )ξ
because the boundary term on {|f | = ε} has limit 0 when ε goes to 0 using the fact that

V (|f | 2α f -N ) = (α -N )V (f )|f | 2α f -N -1 ,
the same argument than in the proof of Theorem 4.1.2 and the remark that ,n+1) . This gives, using again Theorem 4.1.2, that V (T α,N ) = V (f )T α,N +1 in Db M . As holomorphic vector fields generate the O M -algebra D M , this is enough to complete the proof.

V (f )ξ is in C ∞ c (M ) (n+1
Remark R4. The generalization of the previous corollary to the cases where we replace |f | 2α by |f | 2α (Log|f | 2 ) q for any positive integer q is again an easy exercise.

The case α < 0

We shall explain now how to define, when α is a negative real number 3 a "Finite Part " of the integral

M |f | 2α f -N ξ using the Asymptotic Expansion Theorem. For a differential form ξ ∈ C ∞ c (M ) (n+1,n+1
) , we shall write as follows the asymptotic expansion when s goes to 0 of the fiberintegral

s → f =s f f ξ/df ∧ d f r,j,m,m T r,j m,m (ξ)|s| 2r s m sm (Log|s|) j
where ξ → T (ξ) is a distribution with support in {f = 0} for each r ∈ R a finite subset in [0, 1[∩Q, for j ∈ [0, n + 1] and for m, m ∈ N (see the Corollary 2.2.2 and also also Remark 1 following Theorem 2.2.1).

Theorem 4.3.1 For α a negative real number such that -α ∈ R + N the following limit exists and defines a distribution on M Then the result is analogous.

lim ε→0 {|f |≥ε} |f | 2α f -N ξ + 2iπ α+r+m <0 m=m +N T r,j m,m (ξ) ε 2(α+r+m ) 2(α + r + m ) (-Logε
Proof. Using the asymptotic expansion for the fiber-integral f =s f f ξ/df ∧ d f recalled above, the proof that the limit in the left hand-side exists is analogous to the proof of Theorem 2.2.4.

Of course, the constant term of the Laurent development at λ = α of the meromorphic extension of the function λ → M |f | 2λ f -N ξ gives also such a distribution. But in the case α < 0 the relation between the distribution defined by 3 We leave the case where α is a complex number with a negative real part as an exercise.

ξ → P 0 λ = α, M |f | 2λ f -N ξ
and the distribution defined in the previous theorem is not so clear in general, even if the difference between these two distributions has clearly its support in {f = 0}. Of course, when α satisfies the condition α + r > 0 for each r in R ∪ {1} \ {0}, not only there is no term in the sum where α + r + m ≤ 0 (using Remark 1 following Theorem 2.2.1 for the case 0) and the equality of the two distributions follows from the remark following Theorem 4.1.2. n+1) , n + 1 := p i=1 n i + 1 and where

An easy generalization and an example

Consider now p ≥ 2 domains M i in C n i +1 for i ∈ [1, p] and p holomorphic functions f i : M i → C. Then on M := p i=1 M i it is easy to prove, for α := (α 1 , . . . , α p ) satisfying (α i ) ≥ 0, ∀i ∈ [1, p], using Fubini' s Theorem, the existence of the distribution T α,N , ξ := lim ε→0 T ε α , ξ where ε := (ε 1 , . . . , ε p ) is in (R + * ) p , N := (N 1 , . . . , N p ) is in N p , ξ is in C ∞ c (M ) (n+1,
T ε α,N , ξ := p i=1 {|f i |≥ε i } p i=1 |f i | 2α i f -N i i ξ.
It is also easy to make the meromorphic extension to λ := (λ 1 , . . . , λ p ) ∈ C p of the holomorphic distributions on M defined for p i=1 { (λ i ) N i } and then to prove the following generalization of Theorem 4.1.2 to this "product" case: Theorem 4.4.1 In the product situation described above the meromorphic extension of the distribution

ξ → M p i=1 |f i | 2λ i f -N i i ξ is holomorphic near the point α ∈ C p satisfying (α i ) ≥ 0, ∀i ∈ [1,
p], and we have the equality

P 0 λ = α, M p i=1 |f i | 2λ i f -N i i ξ = T α,N , ξ
where the left hand-side denotes the value at λ = α of the meromorphic extension.

Proof. The only point to precise in order to apply the p = 1 case and Fubini's Theorem successively to prove this generalization it the following remark:

• Let M 1 × M 2 be the product of two complex manifolds M 1 × M 2 and let ξ be a C ∞ c test differential form on M 1 × M 2 and T 2 a distribution on M 2 . Then the test differential form defined on M 1 by T 2 , ξ is a C ∞ c test differential form on M 1 . So for any distribution T 1 on M 1 the distribution T 1 T 2 is well defined on M 1 × M 2 by the rule T 1 T 2 , ξ := T 1 , T 2 , ξ .
Remark. Note that the definition of T α,N implies that we have

T α,N , ξ = lim ε→0 | p i=1 f i |≥ε p i=1 |f i | 2α i f -N i i ξ.
Then, using the argument in Corollary 4.2.2 on each M i , i ∈ [1, p] we obtain that for any P ∈ D M the distribution P T α,N has the standard extension property for the hypersurface { p i=1 f i = 0}. So the sub-D M -module of Db M generated by T α,N has no torsion. Note also that this implies that the sub-D M -module generated by T α,0 is contained in the O M -module generated by the T α,N when N is in N p .

Remark R5. Again it is easy to generalize the previous theorem to the cases where we replace

|f i | 2α i by |f i | 2α i (Log|f i | 2 ) q i for any non negative integers q i , i ∈ [1, p].
An example.

Notations. Let M := C k with coordinates z 1 , . . . , z k and let π : M → N C k be the quotient by the action of the permutation group S k on M . Let σ 1 , . . . , σ k be the elementary symmetric polynomials in z 1 , . . . , z k which give a coordinate system on N . Let also ∆ := 1≤i<j≤k (z i -z j ) 2 be the discriminant which is a polynomial in σ 1 , . . . , σ k . 

2 := C k-1 with coordinates x h , h ∈ [2, k]. Moreover f is in C[x 1 ] and ∆ is in C[x 2 , . . . , x k ].
Proof. The reader will see easily that ∆

= k h=2 x 2 h 2≤i<j≤k (x i -x j ) 2 .
This easy lemma allows to apply Theorem 4.4.1 to the situation described in the previous lemma.

Corollary 4.4.3 For any α ∈ C such that (α) ≥ 0 and any non negative integers q and N 1 , N 2 the distribution on M associated to the locally integrable function Proof. For our assertion on M it is enough to prove that for any holomorphic vector field V on M the distribution V (|z 

X α,N 1 ,N 2 ,q := k j=1 |z j | 2α (Log|z j | 2 ) q z -N 1 j ∆ -N 2
1 | 2α z -N 1 1 ∆ -N 2 )

Some conjugate D-modules

The aim of this section is to give some examples of explicit computations of the conjugate module (in Kashiwara sense, see [START_REF] Kashiwara | Regular Holonomic D-modules and Distributions on a Complex Manifolds[END_REF]) of some regular holonomic D-modules. We consider here the case of the D-modules associated to the multivalued functions z(σ) λ for λ ∈ C where z(σ) is the root of the universal degree k equation

z k + k h=1 (-1) h σ h z k-h
where σ := (σ 1 , . . . , σ k ) is in N := C k . The structure of these regular holonomic D N -modules has been described in [START_REF] Barlet | On partial differential operators which annihilate the roots of the universal equation of degree k, math[END_REF] and we describe here for each such D-module and for each simple factor which appears in its decomposition a distribution T on N which generates the sub-D N -module of Db N which is the conjugate of the module we consider. The reader will notice that even if in each case the corresponding distribution T is rather easily constructed from the horizontal (multivalued) basis of the corresponding vector bundle with a simple pole connection associated to the D N -module under consideration, the proof that this distribution generates the conjugate module uses in a crucial way the non trivial argument of "non torsion" which is proved in the previous section (see Corollary 4.4.3).

We begin by recalling the basic results on the conjugation functor of M. Kashiwara. The following theorem is proved in [START_REF] Kashiwara | Regular Holonomic D-modules and Distributions on a Complex Manifolds[END_REF]: Notations. We consider the quotient map π : M := C k → N := C k S k C k with respective coordinates z 1 , . . . , z k and σ 1 , . . . , σ k , where σ h is the h-th elementary symmetric function of (z 1 , . . . , z k ). The vector fields on M associated to partial derivatives in z 1 , . . . , z k are denoted by ∂ z 1 , . . . , ∂ z k and the vector fields on N associated to partial derivatives in σ 1 , . . . , σ k are denoted by ∂ 1 , . . . , ∂ k . We note I the left ideal in D N generated by the following global sections:

A p,q = ∂ p ∂ q -∂ p+1 ∂ q-1 where (p, q) ∈ [1, k -1] × [2, k] T m := ∂ 1 ∂ m-1 + ∂ m E where E := k h=1 σ h ∂ h and m ∈ [2, k]
Recall that a trace function on N is a holomorphic function F such that there exists a holomorphic function f in one variable z such that

F (σ) = k j=1 f (z j )
where σ := (σ 1 , . . . , σ k ) are the elementary symmetric functions of z 1 , . . . , z k . It is proved in [START_REF] Barlet | On symmetric partial differential operators[END_REF] that the trace functions are annihilated by the left ideal I in D N and this characterizes the trace functions.

We note U -1 the vector field on N given by U -1 := k∂ 1 + k-1 h=1 (k -h)σ h ∂ h+1 which is the image by the tangent map T π to π of the vector field V -1 := k j=1 ∂ z j on M . We note U 0 the vector field on N given by U 0 := k h=1 hσ h ∂ h which is the image by T π of the vector field V 0 := k j=1 z j ∂ z j on M . We note U 1 the vector field on N given by U 1 := k h=1 (σ 1 σ h -(h + 1)σ h+1 )∂ h which is the image by T π of the vector field V 1 := k j=1 z 2 j ∂ z j on M . The left ideal J λ in D N is, by definition, the sum I + D N (U 0 -λ) and we define N λ := D J λ .

The following results which give the structure of the D N -module N λ for each λ ∈ C are proved in [START_REF] Barlet | On partial differential operators which annihilate the roots of the universal equation of degree k, math[END_REF]:

1. For each complex number λ, the D N -module N λ is holonomic and regular. 9. The right multiplication by U 1 which sends N 1 in N 0 vanishes4 on Im( U -1 ) and induces an isomorphism of N 1 onto N 0 .

2 .

 2 For each point x in H there exists an open neighborhood U of x, a local holomorphic equation {f = 0} = H ∩U of H in U such that for any test differential form ξ in C ∞ c (U ) (n+1,n+1) we have T, ξ = lim ε→0 |f |≥ε T ξ.

Proposition 2 . 2 . 5

 225 Let ψ be a C ∞ differential form of type (n, n + 1) with f-proper support in M . Then we have for any positive integer N lim ε→0 |f |=ε f -N ψ = 0.

Corollary 3 . 0 . 3

 303 Let f : (C n+1 , 0) → (C, 0) be a non zero holomorphic germ and let M be an open neighborhood of the origin on which the Bernstein identity of f is valid 2 . For any N ∈ N and any test differential form ξ ∈ C ∞ c (M ) (n+1,n+1) the function defined for λ ∈ C such that (λ)

Definition 4 . 1 . 1

 411 In the situation above we define the distribution S α,N on M by the formulaS α,N , ξ := P 0 (λ = α, M |f | 2λ f -N ξ).

  Remark that, thanks to Theorem 4.1.2, each element in O M |f | 2α [f -1 ] defines an unique distribution on M having the standard extension property along the hypersurface {f = 0}. This gives a natural O M -linear embedding of this O M -module in Db M . Corollary 4.2.2 The action of any P ∈ D M on any element in the sub-O M -module O M |f | 2α [f -1 ] ⊂ Db M coincides with the formal action defined above. In particular, the sub-D M -module generated by Z α in Db M has no torsion, where Z α is the distribution on M associated to the locally bounded function |f | 2α on M .

  ) j which extends to M the function |f | 2α f -N on {f = 0}. If -α is in R + N, write -α = r + m , r ∈ R and m ∈ N and add to the sum inside the limit in the left hand-side above the sum 2iπ n+1 j=0 T r,j m +N,m (ξ)(-Logε) j+1 /(j + 1).

Lemma 4 . 4 . 2

 442 Consider on M := C k with coordinates z 1 , . . . , z k the holomorphic functions f := z 1 and ∆ := 1≤i<j≤k (z i -z j ) 2 . Then defining new coordinates x 1 := z 1 and x h := z h -z 1 for h ∈ [2, k] we obtain a decomposition M = M 1 × M 2 where M 1 := C with coordinate x 1 and M

  generates a sub-D M -module of the D M -module Db M which has no torsion. Moreover, any distribution in this sub-D M -module has the standard extension property along the divisor {π -1 (σ k ∆(σ)) = 0} in M and is C ∞ (in fact real analytic) outside this divisor. The same properties are true along the divisor {σ k ∆(σ) = 0}, for the sub-D Nmodule of Db N generated by the distribution π * (X α,N 1 ,N 2 ,q ).

  has the standard extension property and this is clear from the remark following Theorem 4.4.1 and Remark R5. The assertion on the corresponding D N -module is consequence of the fact that if a distribution T on M has the standard extension property along the divisor {π -1 (σ k ∆(σ)) = 0} then the distribution π * (T ) has the standard extension property along the divisor {(σ k ∆(σ) = 0} because the quotient map π is a finite étale map outside {∆(σ) = 0}. Remark. If S and T are two distributions on a complex manifold N such that D N S ⊂ Db N and D N T ⊂ Db N have no O N -torsion, it is not clear that there is no O N -torsion in D N (S + T ) ⊂ Db N . But if we know that D N S and D N T contain only distributions having the standard extension property for a given hypersurface H, then this also the case for any distribution in D N S + D N T ⊂ Db N which contains D N (S + T ).

Theorem 5 . 0 . 1 (

 501 Kashiwara conjugation functor) Let N be a complex manifold, D N the sheaf of holomorphic partial differential operators on N and D N the sheaf of anti-holomorphic partial differential operator on N . Note Db N the sheaf of distributions on N . It is a left-D N -module but also a left-D N -module and these two actions commute. For each regular holonomic D N -module N the sub-D N -module c N (N ) := Hom D N (N , Db N ) is regular holonomic (as a D N -module) and the contra-variant functor c is an antiequivalence of categories which satisfies c N • c N = Id. Moreover, M. Kashiwara also obtains the following proposition which will be useful to describe the D N -modules c(N λ ): Proposition 5.0.2 ( see [13] Prop. 5) If N is a regular holonomic D N -module on a complex manifold N and if T is in c(N ), the following conditions are equivalent: a) T is an injective sheaf homomorphism of N to Db N . b) T generates c(N ) as a D N -module.

2 .

 2 The right multiplication by U -1 induces a D N -linear mapU -1 : N λ → N λ+1which is an isomorphism for each λ = -1, 0. Moreover the right multiplication by U 1 induces an isomorphism U 1 : N λ+1 → N λ for any λ = 0, -1 and we haveU 1 • U -1 = λ(λ + 1) on N λ . 3. For λ ∈ Z the D N -module N λ is simple. 4. The kernel N -1 of the D N -linear map ϕ -1 : N -1 → O N ( σ k ) defined by ϕ -1 (1) = σ k-1 /σ k is simple.5. The sub-module N 0 generated by U 1 in N 0 is simple and the quotientN 0 N 0 is isomorphic to O N ( σ k ) 6. The torsion sub-module T in N 1 is isomorphic to H 1 [σ k =0] (O N ); it is generated by the class of ∂ k U -1 in N 1 .7. The sub-module Im( U -1 )in N 1 (which is generated by U -1 ) contains T and the quotient Im( U -1 ) T is isomorphic to O N via the map ϕ 1 : N 1 → O N defined by ϕ 1 (1) = σ 1 (and then [U -1 ] → k).

8 .

 8 The quotient N 1 := N 1 Im( U -1 ) is simple and isomorphic to the quotientD N I + D N (U 0 -1) + D N U -1 .

  and for ss∂ s ∂ sΘ(s) = Let U be an open polydisc in C n and D a disc in C. Let ψ and ξ be C ∞ forms respectively of type (n, n + 1) and (n + 1, n + 1) with support in K × D where K ⊂ U is a compact set. Fix a relatively compact open disc D in D. Then there exists ϕ 1 and ϕ 2 which are C ∞ forms of type (n, n) and with support in K × D

		f f d d ϕ
	f =s	df ∧ d	f
	we see that it is enough to show that we have the local surjectivity of d , d , d d with
	f-proper supports for the type (n + 1, n), (n, n + 1) and (n + 1, n + 1) respectively.	
	Using a partition of unity, this is consequence of the following lemma and the local
	parametrization theorem for the hypersurface {f = 0} 1 .		
	Lemma 2.2.3 such that		
	d ϕ 1 = ψ and d d ϕ 2 = ξ		
	on U × D .		

In order that we may choose, near each point in {f = 0}, U and D such that Ū × ∂D does not meet {f = 0} in our next lemma.

This means precisely that the Bernstein identity for f is valid in the universal cover of M \ {f = 0}, on which f λ is defined as exp(λLog f ) for any given determination of Log f .

It is proved in[START_REF] Barlet | On partial differential operators which annihilate the roots of the universal equation of degree k, math[END_REF] Formula (19) page 20, that we have U -1 U 1 = (U 0 + 1)U 0 modulo I.

10. The right multiplication by U -1 which sends N -1 to N 0 induces an isomorphism of N -1 onto N 0 .

Important remark. The point 2 recalled above shows that to study the D Nmodules N λ it is enough to consider the following cases:

• The cases (λ) ∈ [0, 1[ and λ = 0. We call it the case G.

• The cases λ = -1, 0, 1. We call them the case λ = -1, 0, 1 respectively.

Then for any λ ∈ C we reach one of these previous cases using an isomorphism given either by U N 1 or by U N -1 for a suitable N ∈ N.

Now define the following distributions on M :

For each case we define the distribution X λ := π * (X λ ) on N .

Define also the following distributions on N :

1. For the case G : Y λ := 0.

2. For the case λ = 1:

Then we have the following results:

In all cases G, -1, 0, 1 the distribution X λ defines an element in c(N λ ) via the D Nlinear map sending 1 to X λ . In case G the distribution X λ defines a generator of the (simple) D N -module c(N λ ).

In cases λ = 1 the distribution X 1 defines an element in c(N 1 ) ⊂ c(N 1 ) and gives a generator of this (simple) D N sub-module.

In cases λ = -1, 0 the simple module c(N λ ) is a quotient of c(N λ ) and the image of X λ in c(N λ ) gives a generator of this (simple) D N -module. In all cases λ = -1, 0, 1 the map sending 1 to Y λ is in c(N λ ) and the D N -module c(N λ ) is generated by X λ and Y λ .

Proof. Consider the first point. We have to prove that the left ideal J λ annihilates the distribution X λ for each case. We have also

Now the verification that in each case the distribution X λ is annihilated by the generator of the left ideal J λ is "formal" (see Corollary 4.4.3 ) because X λ is locally on the open set {σ k ∆(σ) = 0} a linear combination with anti-holomorphic coefficients of the holomorphic trace functions

Moreover it is clear that z j (σ) λ is homogeneous of degree λ on M and the vector field U 0 is equal to π * (V 0 ) where V 0 is the Euler vector field on M .

In the case G we know that c(N λ ) is a simple D N -module. So the second point of the theorem is proved as X λ is clearly not 0 in Db N .

For λ = 1, as we know that ideal J 1 = I + D N (U 0 -1) already annihilates X 1 it is enough, thanks to the point 8 recalled above, to check that U -1 (X 1 ) = 0 in Db N to conclude because we know that N 1 is simple and X 1 is not 0 in Db N . Again the fact that it is enough to check this on the open set {∆(σ) = 0} makes the computation easy : 

Proof. It is proved in Proposition 4.1.7 and Lemma 4.1.8 of [START_REF] Barlet | On partial differential operators which annihilate the roots of the universal equation of degree k, math[END_REF] that the annihilator of the class of U -1 in N 1 is generated by ∂ h , h ∈ [1, k-1] and σ k ∂ k . Note that this is also the annihilator in D N of the distribution 1/σ k in Db N thanks to the previous lemma. This shows that the D N -linear map defined by [U

where the map α is the quotient map. Now, let us prove that the distribution

As σ 1 commutes with the action of D N , the annihilator of σ 1 /σ k in D N is the same than the annihilator of 1/σ k proving our claim. But we know that X 1 is a generator of c(N 1 ). So, it is enough to prove that Y 1 is in c(N 1 ) to see that with X 1 they generate this D N -module. This is proved in our next lemma and completes the proof of this corollary. Proof. The fact that Y 1 in in c(N 1 ) is easy because σ 1 is a trace function which satisfies U 0 (σ 1 ) = σ 1 , because ∂ h , h ∈ [1, k -1] and σ k ∂ k annihilate the distribution 1/σ k and it is easy to check that the generators of I and U 0 are in this left ideal of D N generated by these vector fields. Now we have also, using the same argument, that Y 0 is in c(N 0 ). To see that Y -1 is annihilated by

is a trace function on the open set {σ k ∆(σ) = 0} and that U 0 + 1 kills also this holomorphic function on this open set. This is enough to complete the proof of the lemma using again the absence of torsion. Lemma 5.0.7 The D N -linear map defined by [START_REF] Barlet | On symmetric partial differential operators[END_REF] → X 0 ∈ Db N is a generator of c(N 0 ) and the D N -linear map defined by [1] → X -1 ∈ Db N is a generator of c(N -1 ).

Proof. As we already know that the distribution X 1 is a generator of c(N 1 ) the point 9 above implies that a distribution Z in c(N 0 ) which satisfies U 1 (Z) = X 1 must induce a generator in c(N 0 ). But X 0 is such a distribution. Thanks to point 10 above and the previous result, the distribution U -1 (X 0 ) gives a generator in c(N -1 ) and we have, using as above the absence of torsion the equality

End of proof of Theorem 5.0.3. For λ = 0 we have the exact sequence of D N -modules (see point 5 above) Complement. We give in the following lemma, for each case λ = -1, 0, 1, a distribution which generates the D N -module c(N λ ).

Lemma 5.0.8 Consider the distribution Z -1 := k j=1 zj /z j on M and define Z -1 := π * (Z -1 ). Then Z -1 is a generator of c(N -1 ).

Proof. First write Z -1 = k j=1 |z j | 2 /z 2 j in order to show that any distribution in the D M -module generated by Z -1 has the standard extension property, by applying Corollary 4.4.3. Then the same is true for any distribution in the D N -module generated by Z -1 . Then it is easy to see that Z -1 is in c(N -1 ). Then we have Ū-1 (Z -1 ) = π * ( k j=1 1/z j ) = Y -1 and

So D N Z -1 is equal to c(N -1 ) thanks to Theorem 5.0.3. This is enough to conclude, thanks to Theorem 5.0.3.