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Abstract. Numerous software systems are configurable through compile-
time options and the widely used ./configure. However, the combined
effects of these options on binary’s non-functional properties (size and at-
tack surface) are often not documented, and or not well understood, even
by experts. Our goal is to provide automated support for exploring and
comprehending the configuration space (a.k.a., surface) of compile-time
options using statistical learning techniques. In this paper, we perform
an empirical study on four C-based configurable systems. We measure
the variation of binary size and attack surface (by quantifying the num-
ber of code reuse gadgets) in over 400 compile-time configurations of a
subject system. We then apply statistical learning techniques on top of
our build infrastructure to identify how compile-time options relate to
non-functional properties. Our results show that, by changing the default
configuration, the system’s binary size and gadgets vary greatly (roughly
−79% to 244% and −77% to 30%, respectively). Then, we found out that
identifying the most influential options can be accurately learned with a
small training set, while their relative importance varies across size and
attack surface for the same system. Practitioners can use our approach
and artifacts to explore the effects of compile-time options in order to
take informed decisions when configuring a system with ./configure.

Keywords: Configurable systems, compile-time variability, binary size, gad-
gets, system security, non-funcional properties, statistical learning

1 Introduction

Modern software systems are highly configurable and expose to the users their
abundant configuration options. By enabling or disabling configuration options,
a software system can be customized for different contexts, such as for differ-
ent users or hardware with a limited memory size, without the need to modify
its source code. But this high flexibility of software systems comes with a cost.
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A large number of configuration options indeed makes the system complex and
threatens its maintenance. First, because "a significant percentage (up to 54.1%)
of parameters are rarely set by any user." [28] and thus they unnecessarily bloat
the software [14]. Then, the disabled options may have security issues or bugs,
which might be exploited and threaten the whole system. Further, there is evi-
dence that many software failures arise from misconfiguration [19,29], while find-
ing the cause of a failure among the large set of options is difficult. To reduce
the complexity and improve the software configuration quality, there are sev-
eral approaches [28,21,3,15]. But the large number of configuration options and
their enabling/disabling are likely to have an impact also on the non-functional
properties of a given system, such as in its binary size and attack surface.

Actually, most of embedded systems, mobile devices, or any resource-
constrained devices may exhibit requirements regarding the executable binary
size of a software application [11]. Further, from a security perspective, a large
code base of any configurable software system increases the possibilities of gad-
gets, that is, of small code chunks that an attacker can chain in order to build
an exploit [4,21,3]. Therefore, motivated by concrete requirements in real soft-
ware systems (cf. Section 2), it is of great importance to explore the effects of
configuration options on these two non-functional properties of a given system.
There are approaches on measuring a set of non-functional properties, including
the binary size, for a derived software system in the context of software product
lines [26,25]. But, there is hardly any work on exploring the compile-time config-
uration space during a system’s build with ./configure, which is extensive on
C-based software systems. In particular, we are unaware of works that attempt
to measure (i) how much vary the executable binary size and gadgets of a sys-
tem based on its compile-time configuration options, (ii) whether some options
are more influential than the others, and (iii) whether there is a relationship
between these two non-functional properties changes. By making explicit these
effects, a user may easily find the unneeded and most vulnerable options in order
to reach a desired executable binary size, to prevent any code reuse attack, to
improve the installation speed, or the occupied memory size of a system on a
device.

The contributions of this paper are as follows:

– We provide empirical evidence for the great variation of binary size and
attack surface in C-based systems, depending on their applied compile-time
configurations. We argue that changing the system’s default configuration
can be beneficial for its users, but how it should be changed is not trivial.

– Therefore, we made a comparison of different learning techniques to predict
binary size and gadget of any compile-time configuration. We then report
and qualitatively analyse the influential options and their interactions based
on interpretable information of performance prediction models.

– Furthermore, we provide the dataset of our measurements, as well as our
scripts, which can be used to reproduce our study.

To accomplish them, we provide the motivation (Section 2) and research
questions to be addressed (Section 3). Then, we set up an experiment to answer
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those questions by studying four popular C-based open-source systems (Sec-
tion 4). Next, we report on the variation of binary size and number of gadgets,
measured on a large set of configurations (Sections 5.1 and 5.2). In addition,
we provide an approach to find the most influential options on these two non-
functional properties and report on them for four systems (Section 5.3). We
also discuss the costs, benefits, and future work (Section 6), including threats to
validity (Section 7) and related work (Section 8). Section 9 concludes our paper.

2 Background and motivation

In this section, we provide a background on the ./configure flavour for con-
figuring C-based systems and on the number of gadgets, as an attack surface
metric. At the same time, the motivation of our study is presented.

./configure. Most of the C-based software systems, which are also the subjects
of this work, use the GNU autotools (e.g., Autoconf [5]) to help developers to
pack and distribute their software to multiple platforms and to facilitate their
configuration and installation by the end-users. All that end-users see is the
packed software with the generated configure script and Makefile.in file. Then,
all that is left for the users to do is simply to type the command sequence
./configure && make && make install in order to configure, build, and in-
stall the given software. As most of the C-based systems are configurable through
compile-time and run-time options, users can use the ./configure flavour to
customize the targeted software at compile-time. For example, x264 is a video en-
coder4 with 39 compile-time options. In case the support for mp4 video encoding
is not required, then it is possible to deactivate it by using the --disable-lsmash
option during the system build, as in the following listing.

1 $ ./ configure --disable -lsmash # It generates Makefile from Makefile.in
2 $ make # It uses Makefile to build the x264
3 $ make install # It uses Makefile to install the x264

In this way, the ./configure makes it possible to customize a software sys-
tem with only the needed functionalities. Despite this possibility, a software
system is often installed with off-the-shelf default configuration options. But,
there is evidence that system administrators frequently make poor configuration
choices, for example, the default settings for Hadoop result in the worst possible
performance [9]. Hence, system administrators often suggest users to customize
software systems to get their desired systems’ performance or non-functional
properties. Specifically, excluding certain unused functionalities at compile-time
is often seen as an opportunity to reduce the system’s binary size for cases where
it is an important factor, such as in embedded applications. Such an example is
SQLite, stating that "If optional features are omitted, the size of the SQLite li-
brary can be reduced below 180KiB." 5 for which reason SQLite is also a popular
4 x264 settings: http://www.chaneru.com/Roku/HLS/X264_Settings.htm
5 SQLite: http://barbra-coco.dyndns.org/sqlite/about.html

http://www.chaneru.com/Roku/HLS/X264_Settings.htm
http://barbra-coco.dyndns.org/sqlite/about.html
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database engine in memory-constrained devices. But, unlike system administra-
tors, end-users lack the expertise to tune the system to get the right binary size.
Basically, they lack knowledge on: Which are the optional compile-time options
in a system that should be removed to get a desired binary size? What is the
effect of each enabled or disabled option on the system’s binary size?

Gadgets. Nowadays, the security of modern software systems is mostly threat-
ened internally, that is, by reusing their existing code, without the need for code
injection [21]. This kind of attack allows an attacker to execute arbitrary code on
a victim’s machine. In this attack, the attacker is able to chain some small code
sequences (called gadgets) and threaten the security of the system. Basically,
the exploited code sequences by the attacker end in a return (RET or JMP) in-
struction. Therefore, one of the commonly used metrics for measuring the attack
surface in a system is the number of code reuse gadgets that are available and
which can be exploited by an attacker [4,3,21]. Hence, to a certain degree, the
attack surface of systems is related to their binary size. Therefore, considering
that the security in software systems is important, such as in SQLite6, as few
gadgets (smaller binary size) are often desirable to reduce the attack surface
in the system. But, end-users lack the knowledge regarding how much the un-
used compile-time options in their installed system with a default configuration
threaten their system? Or, what is the effect of each compile-time option on the
system’s attack surface?

Though numerous works have considered the performance of software prod-
uct lines [26,25], little is known about the effects of compile-time options on the
system’s non-functional properties, namely, on binary size, number of gadgets,
and how configuration knowledge related to binary size or attack surface can be
effectively recovered. The need to make users aware of the importance of cus-
tomizing software during ./configure and system administrators to document
the effects of options on binary size and gadgets motivates our work.

3 Research questions

Motivated by such examples, the goal of this study is to quantify and learn
the effects of compile-time options on binary size and attack surface of C-based
configurable software systems and which options are of great importance for
end-users. To attain this goal, we define the three following research questions.

RQ1: What is the effect of compile-time options of a system on its
binary size? To this end, we use four C-based configurable software systems,
as subjects, and enable or disable their compile-time options based on two
scenarios (cf. Section 4.3). We then record the binary size of each obtained
system’s executable and compare them with the baseline binary size.

RQ2: What is the effect of compile-time options of a system on its
attack surface (a.k.a., gadgets)? To measure the attack surface of a

6 Security in SQLite: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sqlite

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sqlite
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Table 1. Four subject systems with their baseline binary size [bytes] and gadgets

Subject Analysed Baseline
system Description commit #LoC #Options Binary size Gadgets
x264 Video encoder db0d417 114,475 25/39 3,096,112 106,878
nginx Web server cc73d76 172,368 91/127 4,507,168 29,925
SQLite SQL database engine 385b982 318,496 31/72 8,561,208 67,734
xz Data compressor e7da44d 37,489 36/88 1,254,536 9,121

system, we rely on the number of found gadgets in its executable. In addition,
we explore whether there is a correlation between the binary size and the
number of gadgets for different enabled/disabled compile-time options.

RQ3: Which compile-time options are the most influential on the bi-
nary size and the gadgets of a software system? To this end, we use
statistical prediction models to predict the influence of compile-time options
on the binary size and number of gadgets in our subject systems. We report
on interactions among options and discuss qualitatively these options.

4 Experimental Protocol

In this section, we introduce the used subject systems and the experiment set-
tings in order to answer the three research questions.

4.1 Subject systems

To select a subject system for our study, we used several sources, such as the
studied systems by research papers on software variability and software debloat-
ing7, the website openbenchmarking8, and our knowledge on popular open-source
projects. Then, we had into consideration the fact that subjects should contain
compile-time configuration options, are open-source, cover different application
domains, and are popular projects. To reason on a project’s popularity, we used
as a proxy the number of stars, commits, and contributors in its git repository.

As the C-based software systems are typical systems that are rich with
compile-time configuration options to be handled, we selected four of them as
subjects, namely, x264, nginx, SQLite, and xz. Regarding their popularity, all of
them have between 86–15.6k stars, 1.3k–23.7k commits, and 17–94 contributors9.

In Table 1 are given a brief description of each subject system, its respective
analysed commit ID in its git repository, size in number of Lines of Code (LoC)10,
and the considered number (versus the overall number) of compile-time options.

7 https://www.cesarsotovalero.net/software-debloating-papers#2020
8 https://openbenchmarking.org/
9 Based on our last check on February 2022

10 Measured using the clocl tool: https://github.com/AlDanial/cloc

https://github.com/ternava/x264/tree/x264-compileoptions
https://github.com/ternava/nginx/tree/branches/nginx-conf-options
https://github.com/ternava/sqlite/tree/sqlite-compileoptions
https://github.com/ternava/xz/tree/xz-compileoptions
https://www.cesarsotovalero.net/software-debloating-papers#2020
https://openbenchmarking.org/
https://github.com/AlDanial/cloc
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4.2 Baseline configuration

Usually, by using the ./configure --help option during the build of a C-based
system, the available compile-time options are shown as a plain list, including
the external libraries and their default values. These are the used options to
customize the given system for a specific environment and user context. It is
important to note that, each system comes with a default build configuration,
that is, each of its compile-time options is by default either enabled or disabled.
We refer to this default configuration of a system as its baseline configuration.

The baseline configuration of our subject systems is the current configura-
tion in their respective git repository (cf. Table 1). In order to exercise with
as many compile-time options as possible, we had to install in our environment
the external libraries required by each subject. Furthermore, Table 1 presents
the executable binary size in bytes and the number of found gadgets11 for the
baseline configuration of each subject system. In the following, we will refer to
them as the baseline binary size and baseline number of gadgets.

4.3 The conducted experiment

With all four subject systems, we conducted an experiment in the same envi-
ronment. Specifically, we first fetched the targeted system from its git repository
and compiled it on its default configuration. To make sure that the compilation
was successful, we used the compiled system in an elementary example. For in-
stance, we encoded a video using x264, used a run-time option of nginx, opened
a database using SQLite, and compressed a file using xz. To later automate the
generation of configurations, we manually explored the configuration space of
each system, identified the dependencies of its compile-time options, and build
its feature model (FM)12 (their availability is given below).

Next, to answer the research questions RQ1 and RQ2, we automatically
customized the four subject systems by following these two scenarios.

S1 : First, each system is customized by a single compile-time option at a
time. The left value in column #Options in Table 1 shows the number of
considered options in each system. It has to be stressed that these options had
Boolean or enumerate values. Hence, using them, we built 31 configurations
with a single option for x264, 91 for nginx, 31 for SQLite, and 65 for xz.

S2 : Then, each system is customized by a mixed set of compile-time op-
tions. In total, we used a significant sample of 400 configurations in each
subject system. All of these configurations are generated using the random
product generator in the FeatureIDE framework.

Finally, to answer RQ3, we designed the following protocol to identify in-
fluential compile-time options i.e., options having a statistically significant in-
fluence on non-functional properties. There exist several techniques to identify
11 Measured using the ROPgadget: https://github.com/JonathanSalwan/ROPgadget
12 For this purpose, we used FeatureIDE framework: https://featureide.github.io/

https://github.com/JonathanSalwan/ROPgadget
https://featureide.github.io/
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influential options, most of them based on supervised machine learning mod-
els13 predicting the performance properties of our systems. We first rely on the
measurement of feature permutation importance [16] (in short: feature impor-
tance). Feature importance is computed through the observation of the effect on
machine learning model accuracy of randomly shuffling each predictor variable.
We compute feature importance over random forest [16], the machine learning
method leading to the best accuracy in our case14. Feature importance gives a
score between 0 (no influence) and 1. It is comparable across different problems,
e.g., we can compare the influence of the same compile-time option over binary
size and gadgets. The measure automatically takes into account all interactions
with other features. This is a good property but also a disadvantage since fea-
ture interactions are not made explicit. To further understand and mitigate this
lack, we consider: (i) the coefficients of Lasso [8] with feature interactions for
gadgets; and (ii) the rules of the decision trees that give information on how
features interact. We then confront identified options with the documentation
of the project in order to understand whether their effect on size and gadgets
make sense from a domain or technical point of view.

Moreover, all steps of our experiment are automated by Python scripts. The
used artifacts, such as the Feature Model and over 400 selected configurations of
each system, the details to reproduce our experiment, and all the obtained results
are made available in the git repository https://github.com/diverse-project/
confsurface and in zenodo https://doi.org/10.5281/zenodo.6401250.

Fig. 1. The variation of binary size in four soubject systems

13 Owing to space issue, we place the technical details about our machine learning
models in the companion repository and encourage our readers to consult them; the
implementation, the chosen learning methods, the choice of metric and the obtained
results when predicting the binary size and the number of gadgets of our systems.

14 See the detailed results at https://github.com/diverse-project/confsurface/blob/
main/learning/results.md

https://github.com/diverse-project/confsurface
https://github.com/diverse-project/confsurface
https://doi.org/10.5281/zenodo.6401250
https://github.com/diverse-project/confsurface/tree/main/learning/goal.md
https://github.com/diverse-project/confsurface/tree/main/learning/methods.md
https://github.com/diverse-project/confsurface/tree/main/learning/metric.md
https://github.com/diverse-project/confsurface/tree/main/learning/results.md
https://github.com/diverse-project/confsurface/blob/main/learning/results.md
https://github.com/diverse-project/confsurface/blob/main/learning/results.md
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Fig. 2. Binary size baseline comparisons Fig. 3. Gadgets baseline comparisons

5 Results

We now report the results and observations with regard to our research questions.

5.1 The effect of compile-time options on binary size (RQ1)

By using over 400 sample configurations based on two given scenarios in Sec-
tion 4.3, we measured the binary size of each subject after its customization.

Figure 1 shows resulting variation of the binary size of each subject system.
Depending on the used configuration, we found out that the binary size in all
four systems varies considerably. Namely, in x264 between 0.62 MiB and 10.16
MiB, in nginx between 1.38 MiB and 5.82 MiB, in SQLite between 3.22 MiB
and 9.77 MiB, and in xz between 0.85 MiB and 1.28 MiB. The colored part of
box plots of x264, SQLite, and xz suggests that these systems hold quite similar
binary sizes for roughly 50% of their configurations. But, the far upper outliers
signify that there are some configurations in x264, nginx, and xz that lead to a
far higher binary size. Still, the bottom outliers suggest that x264, SQLite, and
xz can reach a far smaller binary size in a considerable number of configurations.
Figure 2 shows the relative difference, in percentage, of a system’s binary size
after its customization to the baseline binary size. By comparing with the baseline
binary size given in Table 1, it can be observed that most of the configurations
in three of the four systems lead to a smaller binary size than their baseline
binary size (0 percentage in Figure 2 is the baseline value). Specifically, 56% of
configurations in x264, 68% in nginx, 28% in SQLite, and 92% in xz provide
a smaller binary size. Fewer configurations increase the system’s binary size,
namely, 6% in x264, 32% in nginx, 67% in SQLite, and 1% in xz. Then, 38%,
5%, and 7% of the configurations in x264, SQLite, and xz, respectively, have the
same binary size as in their default configuration. Only in nginx, for any other
configuration that is different from its baseline configuration, its binary size is
always different.
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Fig. 4. The variation of gadgets in four subject systems

Answer to RQ1: These results show that compile-time options of a system
have a noticeable effect on its executable binary size. Based on four popular
systems, changing the system’s default configuration, it is very likely (in 61% of
the cases) that the system’s binary size will be reduced, but it is less likely (in
26% of the cases) that it will be increased or remained the same (in 13% of the
cases). Then, the binary size on average decreases for more bytes (36%) than
that it increases (33%). Hence, the compile-time customization of a software has
mainly a positive effect on its binary size.

5.2 The effect of compile-time options on attack surface (RQ2)

Using the same sample of configurations, S1 and S2 in Section 4.3, we measured
the number of code reuse gadgets of each system after its customization.

The variation of the number of gadgets. Figure 4 shows resulting variation of
the number of gadgets in each subject system. By changing the baseline config-
uration of a system, we found out that the number of gadgets in all four systems
varies considerably. Specifically, in x264 between 25K and 109K, in nginx be-
tween 12K and 39K, in SQLite between 54K and 81K, and in xz between 7K and
9K gadgets. The tall box plots of four systems suggest that each system config-
uration provides a customized system with a quite different number of gadgets.
Figure 3 shows the relative difference, in percentage, of a system’s gadgets after
its customization to the baseline gadgets. By comparing with the baseline num-
ber of gadgets given in Table 1, it can be noticed that most of the configurations
in x264, nginx, and xz (61%, 68%, and 92%, respectively) lead to a smaller
number of gadgets than the baseline configuration (0 percentage in Figure 3 is
the baseline value). Whereas, only 30% of them are in SQLite. Still, only in a few
configurations the number of gadgets is increased (1% in x264, 32% in nginx,
and 0.43% in xz) or remained the same (38% in x264, 4% in SQLite, and 7% in
xz) with the baseline number of gadgets. As with its binary size (cf. Section 5.1),
the number of gadgets in nginx is always different for any other configuration
that is different from its baseline configuration.
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The correlation between binary size and gadgets. The shown results in RQ1 and
RQ2 suggest that the attack surface (i.e., gadgets) and binary size may correlate.
To prove if this is the case, we compute the Pearson correlation coefficient for
each subject system. It is a widely used measure of linear correlation between
two distributions. The extreme values of −1 and 1 indicate a perfectly linear
relationship, whereas a coefficient of 0 represents no linear relationship. In addi-
tion, we also report on Spearman rank correlation [12]. A value of 1 indicates a
similar rank of configurations (e.g., roughly, the configurations leading to smaller
binaries remain the same as the configurations leading to fewer gadgets).

As a result, we found out that nginx has almost a perfect correlation of 0.99
(in both Pearson and Spearman correlation). And, SQLite has a very strong
correlation, with Pearson being 0.90 and Spearman 0.98. This signifies that con-
figurations in nginx and SQLite have the same effect on their binary size as in
their number of gadgets. Next, xz has a very strong correlation, but not per-
fect, with Pearson being 0.85 and Spearman 0.83. This suggests that there are
configurations that have a different effect on the binary size from that in the
number of gadgets. On the other hand, x264 differs from the three other sys-
tems. It has a weak to medium, positive, correlation, with Pearson being 0.52
and Spearman 0.82. In this system, we noticed that there are several options
in its configurations that increase its binary size but reduce the number of its
gadgets.

Answer to RQ2: These results show that the attack surface of a software
system highly depends on its used compile-time options during its build. Based
on four popular systems, changing the system’s default configuration, it is more
likely that its number of gadgets will get reduced (in 63% of the cases) than
they will get increased (in 25% of the cases) or remain the same (in 12% of the
cases). On average, by enabling/disabling new options, the attack surface will be
reduced far more (25%) than that it will be increased (6%). Moreover, there is
a weak (0.52) to almost perfect (0.99) Pearson correlation between the variation
of binary size and the number of gadgets in a given system.

5.3 Influential compile-time options (RQ3)

Which options are the most influential in these systems? To answer it, we did a
detailed analysis of the effect of each compile-time option on the system’s binary
size and gadgets, which is described in Section 4.3. The results are as follows.

x264: As shown in Figure 5 (right), --system-libx264 is by far the most
important option for predicting gadgets in x264 (around 80% of the impor-
tance). However, the prediction of binary size involves much more options and
interactions among --enable-debug, --enable-strip, --disable-lsmash, and
--disable-asm. That is, there are more influential options (and more interac-
tions to capture through learning) for size than for gadgets. It partly explains
why achieving low prediction errors with gadgets is easier than with size (fur-
ther details are given in the companion web page). The options’ effects we have
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Fig. 5. An interaction example of two options in x264 that changes its binary size but
not its number of gadgets (left). Feature importance in x264 (right)

learned also make sense: identified options are related to the compiler behavior
or libraries linked to the binary.

nginx: The option --without-http is the most influential (feature importance
greater than 0.85). It is quite intuitive since this option deactivates a major
functionality. It should be noted that --without-http corresponds to a real-
istic usage, since nginx can be used as e.g., a reverse proxy or to handle ar-
bitrary TCP connections. However, the strong importance of --without-http
tends to hide the fact that other options are actually influential w.r.t. size and
gadgets. Looking at the decision tree15, we can observe that many options are
actually interacting with the option --without-http. Such interactions are ac-
tually needed to reach high accuracy. Our learning can retrieve options like
--without-http_proxy_module, --with-stream, etc. An expert can certainly
intuit the positive or negative effect, but neither to quantify the strength of
the effects nor to capture interactions with other configuration choices. Hence,
an expert can rely on the prediction model of nginx to explore configuration
tradeoffs between functionality, size, and attack surface.

SQLite: Its most influential options are by far --enable-all and --enable-fts5
with more than 90% of the importance. The importance of the first option is
intuitive and its effect on binary size or gadgets is obvious since numerous fea-
tures are added. The other option "FTS5 is currently disabled by default for the

15 See https://github.com/diverse-project/confsurface/tree/main/nginx/nginx.pdf

https://github.com/diverse-project/confsurface/tree/main/nginx/nginx.pdf
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source-tree configure script", but it "is included as part of the SQLite amalgama-
tion"16. There are two other options --enable-geopoly and --enable-session
that have an influence, but we observe very few interactions for binary size or
gadgets. In summary, the "take it all" feature and the identification of an indi-
vidual option (fts5) is sufficient to accurately configure SQLite w.r.t. size and
gadgets.

xz: Compared to SQLite, the importance is more spread among compile-time
options for xz. The maximum is 0.17 for binary size and 0.24 for gadgets, and
there are 6 main influential options. We also observed many pair-wise interactions
(e.g., --enable-sandbox with --enable-small).

Are the influential options of a system the same for binary size and gadgets? We
observed that the ways how options have an effect on the x264’s binary size and
gadgets differ, as shown in Figure 5 (right). For instance, --system-libx264 has
a strong importance for gadgets (0.78), but its importance is much lower (0.18)
for binary size. The intent of this option is to "use system libx264 instead of
internal". Hence, an interesting result of our learning process is that the way a
code is integrated may have a different impact on attack surface and binary size.
For instance, --disable-lsmash has almost no effect on gadgets but plays a key
role in size prediction. Similarly, --enable-debug and --enable-strip options
have negligible influence on gadgets while their importance for size is 0.19 and
0.17, respectively. Figure 5 (left) suggests that a combination of --enable-strip
set to True and --enable-debug set to False for a compile-time configuration
increases drastically the associated binary size of x264 (+122.6% of binary size,
on average, compared to the other compile-time options).

For nginx and SQLite, the influential options are exactly the same; it is
not surprising owing to the strong correlation. However, it is good news for the
reuse of prediction model and configuration knowledge. As for xz, however, the
option --enable-checks is the most important for binary size (0.17), but not
for gadgets (0.05). On the other hand, --enable-small is the most important
option for gadgets (0.24) but not for size (0.05). We have carefully verified,
there is no dependency and collinearity between these two options. Hence, the
"switch" between --enable-small and --enable-checks mainly explains the
strong but not perfect correlation between binary sizes and gadgets in xz. Be-
sides, --enable-checks has a strong influence on the xz’s binary size, but disable
integrity checks and the documentation17 warns that "this option should be used
only when it is known to not cause problems". All these observations tend to show
the complexity of configuring a system w.r.t. size, gadgets, and functionality.

Answer to RQ3: Our learning process can identify influential options that make
sense from a domain knowledge point of view. Moreover, our prediction model
can be used to take informed decisions when customizing a software system

16 According to https://sqlite.org/fts5.html, last access February 2022
17 https://github.com/xz-mirror/xz/blob/master/INSTALL, last access February 2022

https://sqlite.org/fts5.html
https://github.com/xz-mirror/xz/blob/master/INSTALL
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at compile-time. We have also shown that options’ effects and interactions on
either binary size or gadgets can vary. As a user, it makes the tuning of software
systems difficult to achieve at compile-time.

6 Discussion

In this section, we discuss our findings and share insights about the costs and
benefits of learning the effects of compile-time configurations.

Costs. Findings from RQ1, RQ2, and RQ3 show that knowing the precise effects
of compile-time options is possible, but comes at a price. We noticed that there
is a triple cost:
1. There is a human cost to automate the generation of a well-built system con-

figuration. A configuration with a wrong combination of options, that have
dependencies, usually triggers a warning or error during the system’s build.
Based on four systems, the options’ dependencies are hardly documented.
That is why we retrieved them manually when we build the feature models,
requiring several tries and fixes. In addition, the provision of reusable con-
tainers with pre-installed libraries and tools (e.g., Dockerfiles) can decrease
the burden of developers, users, and researchers in charge of the building.

2. Then, to quantify the effects of each compile-time option on binary size and
gadgets, but not only, the system needs to be built each time. But, this can
be costly in terms of the required time and disk resources. For instance, the
time to build x264 and NodeJS (another configurable system) in their default
configuration varies between a few seconds and 30 minutes, respectively.

3. Lastly, there is also a smaller but important cost, the learning cost. Once the
effects of options are measured and quantified, it is possible to instrument
the different machine learning methods in order to obtain the final list of in-
fluential options and thus predict the best compile-time options to use w.r.t.
user constraints. However, a tradeoff should be found between the accuracy
of the learning and the time needed to train the models. For instance, in our
case, (i) random forest is the most accurate and more stable, reaching low
prediction errors with a relatively small number of compilations, (ii) decision
tree is also competitive, less accurate but faster to train, whereas (iii) linear
regression is both unstable and inaccurate18.

Benefits. Despite these costs, having information about the effects of compile-
time configuration space on the non-functional properties of a system is beneficial
for different stakeholders. First, developers can use that knowledge to build and
test only configurations with resolved dependencies and to find the best baseline
configuration for users for which the system’s binary size or security matters.
It should be noted that the configuration knowledge about the binary size and
18 Detailed results about the tradeoff cost-accuracy of machine learning models can be

consulted at https://github.com/diverse-project/confsurface/tree/main/learning/
results.md

https://github.com/diverse-project/confsurface/tree/main/learning/results.md
https://github.com/diverse-project/confsurface/tree/main/learning/results.md
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surface attack is poorly documented in the four projects. This knowledge is also
non-trivial: basic linear regression models are poorly accurate since interactions
are not taken into account. In response, we are capable of synthesizing accurate
information that is both interpretable and actionable to quantify the effects of
options and their interactions. Developers can better document their projects
and provide an infrastructure capable of building any configuration. Second, the
identification of influential options (and interactions) will help users to have a
quicker intuition on how to customize a given system in order to reach their pur-
pose. Users can predict the properties of configurations without actually building
them. An open issue is how to build tools (e.g., configurators) on top of feature
models and inferred knowledge to further assist users when configuring the com-
pilation of their systems. In particular, we provided evidence that binary size
and surface attack are not necessarily correlated and possibly conflicting. Beyond
security and size concerns, there are other non-functional properties (e.g., exe-
cution time) to consider, calling to explore tradeoffs and resolve multi-objective
problems with automated guidance. We leave it as future work.

7 Threats to validity

Internal validity. A first internal threat stems from the installed external li-
braries in our environment, which resemble an instrumentation threat. In this
study, we do not report on the version of the installed libraries in our experimen-
tation environment, which are required by subject systems. We always installed
the last possible version of each library. But, if our experiment is reproduced
by installing an older or newer version of them then the resulting binary size,
gadgets, and the effects of options may differ. For this reason, providing a Docker
image to precisely reproduce our experiments is envisioned in our future work.
It can also be useful for developers and maintainers. Another instrumentation
threat is related to the manual identification of dependencies between compile-
time options during the build of feature models for each subject system. New or
other dependencies between compile-time options of the considered systems can
be present, still, for all over 400 considered configurations per system, we make
sure that the system is at least always compilable. Hence, on our next future step
is to automatically identify the dependencies between compile-time options and
to build the feature model of a given software system. A further internal threat
is related to the sample of measurements used to test our prediction models. The
sample may not be representative of the whole configuration space, which may
threaten the supposed qualities of the models. To mitigate this threat, we use
random sampling and compile hundreds of configurations. We also notice that
the accuracy of learning models tends to reach a plateau with the increase of the
training with no overfitting – it is a good signal.

External validity. While we believe that the four selected subject systems from
different application domains show the effect of compile-time options in two non-
functional properties of typical configurable software systems, still, we considered
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only the C-based systems. Therefore, the considered number and used language
of subject systems do not enable us to conclude that the results of a newly added
system will always be in the same range as our obtained results.

8 Related Work

There are numerous works about the non-functional properties and performance
of configurable systems (e.g., see [13,18,10,23,6,24,27]). The idea is to build pre-
diction models out of a sample of measurements. Non-functional properties are
usually runtime performance (e.g., execution time, memory consumption) that
require the actual execution of the compiled system. In this work, we have con-
sidered non-functional properties that can be computed at compile-time, such
as binary size and gadgets. Footprint has been subject to attention in [24] for
Java-based and C-based systems. We have focused our effort on C-based projects
with the ./configure facility. Our goal was to instrument a build infrastructure
capable of compiling any configuration, making no assumptions about which op-
tions to consider or not. To the best of our knowledge, the effects of compile-time
options on attack surface (gadgets) have not been considered in this context.

Halin et al. [7] built a testing scaffold for the entire configuration space
of JHipster, a Web generator. They reported that building a variability-aware
testing infrastructure requires a substantial engineering effort to cover all de-
sign, implementation and validation activities. We have shared similar difficul-
ties for elaborating the FMs and anticipating all possible libraries required by
any compile-time configuration (see Section 6). Our work can be seen as a re-
engineering effort to make configurable ./configure. This is also an important
topic in software product line engineering. Many techniques have been proposed
to locate features, synthesize FMs out of artifacts, or recover an architecture out
of variants [1,20,22,2,31]. In our study, we have started with a manual approach
when recovering the informal documentation. Automated techniques come after
to validate and refine both the FM and the build infrastructure.

There are several works in highly configurable systems that analyse the build
files, such as Makefiles, of a system in order to extract its configuration or vari-
ability knowledge [17,30]. The main reason of these approaches is to detect the
variability anomalies, such as dead code, that steams from Makefiles or during
the build time of the system.

Xu et al. analyse over 600 real-world configuration issues in 4 subject sys-
tems to understand the consequences of too many configuration options (a.k.a.,
knobs) [28]. They propose a way to simplify the configuration space of a system
by removing, hiding, or categorizing them. Unlike them, we propose to configure
a system by taking into consideration its binary size and attack surface.

9 Conclusion

Modern software systems are highly customizable through the compile-time op-
tions, which are especially extensive in C-based systems. These options are en-



16 Xh. Tërnava et al.

abled or disabled during a system’s build through the widely used ./configure.
While they have an evident impact on the functional properties of a system, their
effect on its non-functional properties is hardly explored. In this work, we inves-
tigate the effect of compile-time options on the binary size and attack surface of
a system by using four C-based systems. Our obtained results show that:

Depending on the used compile-time options in a configuration, the binary size
and number of gadgets can be increased (244.13% and 30.08%, respectively)
or decreased considerably (78.98% and 76.97%, respectively), compared to
the baseline system configuration. Whereas, the variation of gadgets has a
weak (0.52) to almost perfect (0.99) correlation to the binary size of a system.

Then, we show that the interactions among compile-time options can be best
captured by expressive learning models. Our build infrastructure and learn-
ing process can accurately find the most influential options for binary size or
gadgets. Our results show that developers and integrators can use prediction
models to take informed decisions when configuring a system.

In short, practitioners can benefit from configuration knowledge that is non-
trivial to quantify and otherwise undocumented. We will consider integrating
configuration tools into these software projects to achieve size and attack surface
goals, possibly with other (conflicting) functional or performance concerns. One
lesson learned is that the computational and engineering cost of automating the
exploration of the configuration space is not negligible and may be a barrier
to the adoption of our approach for existing configurable projects. Modelling,
reverse engineering, and learning techniques to assist developers in "scratching
the surface" are therefore welcome. As future work, we plan to extend the study
with more subjects, also implemented in other languages, and further consider
compile-time options including compiler flags.
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